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TILINGS OF CONVEX POLYGONS BY EQUILATERAL

TRIANGLES OF MANY DIFFERENT SIZES

CHRISTIAN RICHTER

Abstract. An equilateral triangle cannot be dissected into finitely many mu-
tually incongruent equilateral triangles [17]. Therefore Tuza [18] asked for the
largest number s = s(n) such that there is a tiling of an equilateral triangle
by n equilateral triangles of s(n) different sizes. We solve that problem com-
pletely and consider the analogous questions for dissections of convex k-gons
into equilateral triangles, k = 4, 5, 6. Moreover, we discuss all these questions
for the subclass of tilings such that no two tiles are translates of each other.

1. Overview

1.1. Motivation. A (finite) tiling of a subset A of the Euclidean plane R
2 is a

family T = {A1, . . . , An} of subsets of A, called tiles, such that A = A1 ∪ . . . ∪ An

and the interiors of A1, . . . , An are mutually disjoint. A tiling is called perfect if
all tiles are images of each other under similarity transformations, but mutually
incongruent under isometries. The concept of a perfect tiling has been introduced
in [2] for the construction of perfect dissections of rectangles and even of squares
into squares. Tutte showed that there are no perfect tilings of triangles by (at least
two) equilateral triangles [17, Theorem 2·12] (see also [2, Section 10.3]). In fact, no
convex polygon admits a perfect tiling by equilateral triangles, as has been shown
by Buchman [3, Section 2] and Tuza [18, Theorem 1].

Therefore Tuza considered tilings of triangles by equilateral triangles that are
nearly perfect in the sense that only few of the tiles are isometrically congruent:
The size size(T ) of an equilateral triangle T is measured by the length of (one
of) its sides. For a family T = {T1, . . . , Tn} of equilateral triangles, we define
s(T ) = |{size(T1), . . . , size(Tn)}|, where | · | denotes the cardinality of a set. Tuza
introduced the numbers

stri(n) = max{s(T ) : T is a tiling of a triangle by n equilateral triangles}.

He showed by an inflation argument that there exists a constant c, 5
7 ≤ c ≤ 1, such

that stri(n) = cn−o(n) as n → ∞ [18, Theorem 2] and he asked for the exact values
of stri(n) [18, Problem 1] or at least for the exact value of c. We solve that problem
completely in Theorem 1(a).

If a convex polygon P admits a tiling by equilateral triangles, its inner angles
are of size π

3 or 2π
3 and P must be an equilateral triangle (all inner angles have

size π
3 ), a trapezoid (sizes of angles are π

3 ,
π
3 ,

2π
3 , 2π

3 in cyclic order), a parallelogram

(π3 ,
2π
3 , π

3 ,
2π
3 ), a pentagon (π3 ,

2π
3 , 2π

3 , 2π
3 , 2π

3 ) or a hexagon (six times 2π
3 ). (When

speaking of trapezoids in the present paper we mean trapezoids that are no paral-
lelograms.) As we know that no convex polygon has a perfect tiling by equilateral
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2 CHRISTIAN RICHTER

triangles, we introduce relatives of Tuza’s numbers, namely

strap(n) = max{s(T ) : T is a tiling of some convex

trapezoid by n equilateral triangles}

and, similarly, spar(n), spent(n) and shex(n) with ‘trapezoid’ replaced by ‘parallelo-
gram’, ‘pentagon’ and ‘hexagon’, respectively. Theorem 1 gives our results on these
numbers including the determination of the domains of the functions stri, . . . , shex.
These are the sets of all integers n such that there exists a tiling of a suitable convex
polygon of the respective shape by n equilateral triangles.

Another possibility of weakening the property of perfectness is based on the fact
that, if two tiles of a tiling of a convex set by equilateral triangles are congruent
under isometries, then they are either congruent under some translation or under
some rotation by an angle of π. Some authors call the tiling already perfect if no
two tiles are congruent under translations [17, 5]. In order to avoid confusion with
(isometric) perfectness, we shall speak of translational perfectness (or t-perfectness
for short). That is, a tiling by equilateral triangles is called t-perfect if no two tiles
are translates of each other. First examples of t-perfect tilings of parallelograms
and triangles by equilateral triangles are given in [17]. Drápal and Hämäläinen [5]
present a systematic computational approach to dissections of equilateral triangles
into equilateral triangles with a particular emphasis on the t-perfect case. Illustra-
tions of all t-perfect tilings of triangles by up to 19 equilateral triangles are given
in [7].

We are interested in t-perfect tilings of convex polygons by equilateral triangles
that are close to be (isometrically) perfect in so far as the number of tiles of equal
size is as small as possible. More precisely, we study the numbers

st-perftri (n) = max{s(T ) : T is a t-perfect tiling of a

triangle by n equilateral triangles}

as well as the analogous variants st-perftrap (n), st-perfpar (n), st-perfpent (n) and st-perfhex (n) of
strap(n), spar(n), spent(n) and shex(n), respectively. Our corresponding results are
summarized in Theorem 2.

Finally, let us point out that the study of dissections into incongruent equilateral
triangles is a fruitful field of ongoing research, see e.g. [4, Section C11], [6, Exercise
2.4.10], [9, Problem 4] and [1, 8, 11, 12, 13, 14, 15].

1.2. Main results and open problems.

Theorem 1. (a) dom(stri) = {1, 4} ∪ {6, 7, . . .} and

stri(n) =







1, n = 1, 4,
2, n = 6,

n− 5, n = 7, 8, . . .

(b) dom(strap) = {3} ∪ {5, 6, . . .} and

strap(n) =







1, n = 3,
2, n = 5,

n− 4, n = 6, 7, . . .

(c) dom(spar) = {2} ∪ {4, 5, . . .} and

spar(n) =







1, n = 2, 4,
2, n = 5,

n− 4, n = 6, 7, . . .

(d) dom(spent) = {4, 5, . . .} and

spent(n) =

{

2, n = 4,
n− 3, n = 5, 6, . . .
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(e) dom(shex) = {6, 7, . . .} and

shex(n)







= n− 5, n = 6, 7, 8,
= n− 4, n = 9, 10, . . . , 19; 21, 22; 24, 25,
∈ {n− 5, n− 4}, n = 20; 23; 26, 27, . . .

Here only the case of hexagons is not completely solved. All tilings we know
to attain the upper bound shex(n) ≤ n − 4 (n ≥ 9) are displayed in the appendix
(tilings (a)-(s)). Is this list complete?

The situation of t-perfect tilings appears more difficult. Only for pentagons we
have a full solution. However, in the open cases the differences between upper and
lower estimates are at most 2. In the case of hexagons it remains open if there are

t-perfect tilings by 12 or 13 triangles. We conjecture that 12, 13 /∈ dom
(

st-perfhex

)

.

Theorem 2. (a) dom
(

st-perftri

)

= {1} ∪ {15, 16, . . .} and

st-perftri (n)















= 1, n = 1,
= n− 5, n = 15; 17, 18, . . . , 26; 28,
= n− 6, n = 16,
∈ {n− 6, n− 5}, n = 27; 29, 30, . . .

(b) dom
(

st-perftrap

)

= {13, 14, . . .} and

st-perftrap (n)

{

= n− 4, n = 14; 16, 17, . . . , 25; 27,
∈ {n− 5, n− 4}, n = 13; 15; 26; 28, 29, . . .

(c) dom
(

st-perfpar

)

= {2} ∪ {13, 14, . . .} and

st-perfpar (n)







= 1, n = 2,
= n− 4, n = 15; 18, 19; 21, 22, 23; 26,
∈ {n− 5, n− 4}, n = 13, 14; 16, 17; 20; 24, 25; 27, 28, . . .

(d) dom
(

st-perfpent

)

= {12, 13, . . .} and

st-perfpent (n) = n− 4 for all n = 12, 13, . . .

(e) {11} ∪ {14, 15, . . .} ⊆ dom
(

st-perfhex

)

⊆ {11, 12, . . .} and

st-perfhex (n)







= n− 4, n = 11; 14, 15; 17, 18, 19; 22,
∈ {n− 5, n− 4}, n = 16; 20, 21; 23,
∈ {n− 6, n− 5, n− 4}, n = 24, 25, . . .

2. Proof of Theorem 1

2.1. Spiral pentagons and related tilings. The Padovan spiral numbers [16, 10]
are defined recursively by

(1) p(0) = p(1) = p(2) = 1 and p(n) = p(n− 3) + p(n− 2) for n = 3, 4, . . .

Lemma 3. (a) The Padovan spiral numbers satisfy
• p(0) = p(1) = p(2) = 1, p(3) = p(4) = 2 and p(n) > p(n−1) for n ≥ 5,
• p(n− 3) < 1

2p(n) < p(n− 2) for n /∈ {3, 4, 6}.
(b) For every n ∈ {4, 5, . . .}, there is a convex pentagon Pn with sides of lengths

p(n − 4), p(n − 3), p(n − 2), p(n − 1) and p(n) that admits a tiling by n
equilateral triangles Ti with size(Ti) = p(i− 1), i = 1, . . . , n (see [16]).

Proof. The first part of (a) follows from (1) by induction. It implies the second one
by p(n) = p(n − 3) + p(n − 2). Claim (b) can be found in [16], see Figure 1: the
pentagon Pn+1 is obtained from Pn by adding a triangle of size p(n) at the longest
side of Pn. �
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Figure 1. The spiral pentagon Pn (here with with n = 8), cf. [16]

Pn

Pn Pn

Pn

(a) (b) (c) (e)

Figure 2. Modifications of Pn by added equilateral triangles

Corollary 4. (a) {6, 7, . . .} ⊆ dom(stri) and

stri(n) ≥

{

2, n = 6,
n− 5, n = 7, 8, . . .

(b) {5, 6, . . .} ⊆ dom(strap) and

strap(n) ≥

{

2, n = 5,
n− 4, n = 6, 7, . . .

(c) {5, 6, . . .} ⊆ dom(spar) and

spar(n) ≥

{

2, n = 5,
n− 4, n = 6, 7, . . .

(d) {4, 5, . . .} ⊆ dom(spent) and

spent(n) ≥

{

2, n = 4,
n− 3, n = 5, 6, . . .

(e) {7, 8, . . .} ⊆ dom(shex) and shex(n) ≥ n− 5 for all n = 7, 8, . . .

Proof. The pentagons Pn, n = 4, 5, . . ., from Lemma 3(b) prove (d). For (a), we
add two triangles of sizes p(n − 4) and p(n − 2) at the respective sides of Pn, cf.
Figure 2. For (b), we add only one of these two triangles. For (c), we add a triangle
of size p(n− 3). Every added triangle is of the same size as one of the original tiling
of Pn from Lemma 3(b).

For (e), we add three triangles of size 1
2p(n) at the longest side of length p(n)

if n 6= 6, see Figure 2. By Lemma 3(a), the size of the new triangles differs from
all sizes of the given tiling of Pn if n = 5 or n ≥ 7, whereas that size appears
already in the tiling of Pn if n = 4. For n = 6, we add three triangles of size
1
2p(5) =

3
2 /∈ {p(0), . . . , p(5)} at the side of size p(5) = 3 of P6. �

2.2. Domains and lower estimates. If a convex polygon P has a tiling T by
equilateral triangles, its inner angles are of sizes π

3 and 2π
3 . A side between two

vertices of sizes α and β is called an (α, β)-side of P . All vertices of triangles from
T are called vertices of T . We speak of π

3 -vertices or 2π
3 -vertices of T , if they

coincide with vertices of P of the respective sizes, of π-vertices of T , if they are no
vertices of P but on the boundary of P , and of 2π-vertices of T if they are in the
interior of P . A triangle T ∈ T is called exposed if it contains a π

3 -vertex of T or,
equivalently, if P \ T is still convex.
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Figure 3. Tilings of small cardinality and with congruent tiles

Let us show that

2, 3; 5 /∈ dom(stri),(2)

1, 2; 4 /∈ dom(strap),(3)

1; 3 /∈ dom(spar),(4)

1, 2, 3 /∈ dom(spent),(5)

1, 2, 3, 4, 5 /∈ dom(shex).(6)

To see (2), let n be the cardinality of a tiling T of some triangle T and let vπ
be the number of π-vertices of T . If vπ = 0 then n = 1. If 1 ≤ vπ ≤ 3 then
vπ = 3 and T splits into three congruent exposed triangles and a tiling T ′ of the
remaining triangle T ′ of T . The cardinality |T ′| = n − 3 cannot be two, whence
n = 4 (if |T ′| = 1) or n ≥ 6 (if |T ′| ≥ 3). If vπ ≥ 4 then one side of T contains
two consecutive π-vertices v1, v2. Hence n ≥ 6, because T contains three exposed
triangles, one triangle covering the segment v1v2 and two triangles for covering the
yet uncovered remainders of neighbourhoods of v1 and v2.

For (3), note that n ∈ dom(strap) implies n+1 ∈ dom(stri), since a trapezoid can
be transformed into a triangle by adding one triangle at its

(

2π
3 , 2π

3

)

-side. Hence
(2) implies (3). Similarly, n ∈ dom(spar) implies n + 1 ∈ dom(strap) by adding a
suitable triangle. Thus (4) is a consequence of (3).

A tiling of a convex pentagon contains at least four tiles, because it must contain
one exposed triangle at the π

3 -vertex and at least one tile for each of the three
(

2π
3 , 2π

3

)

-sides. This gives (5). Similarly, we obtain (6), since a tiling of a convex
hexagon contains at least one tile for each of the six sides of the hexagon.

Claims (2)-(6) together with Figure 3 and Corollary 4 show that the domains of
stri, strap, spar, spent and shex are as claimed in Theorem 1. Moreover, Corollary 4
gives the lower estimates of these functions from Theorem 1 apart from shex(n) ≥
n− 4 for n ∈ {9, . . . , 19} ∪ {21, 22, 24, 25}. These last estimates are justified by the
tilings (a)-(s) presented in the appendix. We do not know other tilings of hexagons
that realize shex(n) ≥ n− 4. Table 2 gives the parameters of the illustrated tilings.

2.3. A necessary condition.

Lemma 5. Let T be a tiling of a convex m-gon P by at least two equilateral trian-
gles, and let vπ be the number of π-vertices of T . Then there are at least m+vπ −3
pairs of distinct triangles from T having a side in common.

Proof. We can assume that

(7) vπ ≥ 9− 2m.

Indeed, this is trivial if m ≥ 5. If m = 3 then vπ ≥ 3, since the trivial tiling
T = {P} is excluded. If m = 4 and vπ = 0 then T is a tiling of a rhombus P by
two equilateral triangles, and the claim of the lemma is obvious.

The following graph-theoretic arguments generalize a similar approach from [17,
3]. We associate a bipartite planar graph Γ to T : In the interior of every triangle
from T we place a white node of Γ. All vertices of T , except for the π

3 -vertices, are
the black nodes of Γ. A black and a white node of Γ are joined by an edge if the
black one is a vertex of the triangle represented by the white one, see Figure 4. Let
v, e and f be the numbers of nodes, edges and faces of Γ, respectively.
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Figure 4. A tiling of a parallelogram (dotted) and the associated graph

All nodes of Γ have degree 2, 3 or 6. Denoting the respective numbers by v2, v3
and v6, we have

(8) v = v2 + v3 + v6.

Since P is a convex m-gon whose inner angles have sizes of π
3 or 2π

3 , it has 6 −m

inner angles of size π
3 and 2m − 6 inner angles of size 2π

3 . A white node of Γ has
degree 2 if and only if it represents a triangle that covers an angle of P of size π

3 .
A black node of Γ has degree 2 if and only if it corresponds to an angle of P of size
2π
3 . Thus

(9) v2 = (6−m) + (2m− 6) = m.

Counting the edges of Γ in terms of the nodes we obtain

(10) 2e = 2v2 + 3v3 + 6v6.

Since Γ is bipartite, we have

(11) f =

∞
∑

i=2

f2i

where fj is the number of faces with j edges. The boundary of P contains exactly
(2m − 6) + vπ black nodes of Γ: 2m− 6 of them represent inner angles of size 2π

3
and vπ of them are π-vertices. Hence the unbounded face of Γ has 2((2m− 6)+ vπ)
edges, and in turn

(12) f2(2m−6+vπ) ≥ 1.

Counting the edges of Γ in terms of the faces we obtain

(13) 2e =

∞
∑

i=2

2if2i.

Euler’s formula for Γ gives

2 = f − e+ v

=

(

f −
1

6
2e

)

+

(

v −
1

3
2e

)

(8,10,11,13)
=

(

∞
∑

i=2

f2i −
1

6

∞
∑

i=2

2if2i

)

+

(

v2 + v3 + v6 −
1

3
(2v2 + 3v3 + 6v6)

)

(9)
=

1

3

(

f4 −
∞
∑

i=3

(i− 3)f2i

)

+
1

3
(m− 3v6) .

Thus

f4 = 6 +

∞
∑

i=3

(i− 3)f2i −m+ 3v6.

Using 2m− 6 + vπ ≥ 3 (as a consequence of (7)) and v6 ≥ 0 we get

f4 ≥ 6 + ((2m− 6 + vπ)− 3)f2(2m−6+vπ) −m
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and, by (12),

f4 ≥ 6 + ((2m− 6 + vπ)− 3)−m = m+ vπ − 3.

This estimate completes the proof, because every face of Γ with four edges represents
two triangles of T having a side in common. �

2.4. Upper estimates. We shall use the following observation.

Lemma 6. If a tiling T of a trapezoid by equilateral triangles satisfies one of the
conditions

(α) all π-vertices of T are contained in the
(

π
3 ,

π
3

)

-side of the trapezoid or
(β) |T | = 3,

then T is a similar image of the respective tiling from Figure 3 and s(T ) = 1.

Proof. We can assume (α), since (β) implies (α). Let T1, T2 ∈ T be the tiles covering
the two

(

π
3 ,

2π
3

)

-sides of the trapezoid and let T3 ∈ T be the triangle that covers the
(

2π
3 , 2π

3

)

-side. Since the two
(

π
3 ,

2π
3

)

-sides have the same length, size(T1) = size(T2).
We can exclude the situations size(T3) < size(T1), because then the interiors of T1

and T2 would overlap, and size(T3) > size(T1), since then the third vertex of T3

would be outside the trapezoid. Hence size(T1) = size(T2) = size(T3) and T3 covers
the remainder of the trapezoid between T1 and T2. The claim follows. �

For completing the proof of Theorem 1, it remains to show that

stri(n) ≤







1, n = 1, 4,
2, n = 6,

n− 5, n = 7, 8, . . . ,
(14)

strap(n) ≤







1, n = 3,
2, n = 5,

n− 4, n = 6, 7, . . . ,
(15)

spar(n) ≤







1, n = 2, 4,
2, n = 5,

n− 4, n = 6, 7, . . . ,
(16)

spent(n) ≤

{

2, n = 4,
n− 3, n = 5, 6, . . . ,

(17)

shex(n) ≤

{

n− 5, n = 6, 7, 8,
n− 4, n = 9, 10, . . .

(18)

In all situations we consider a tiling T of a respective polygon P . The cardinality
and the number of π-vertices of T are denoted by n = |T | and vπ, respectively. We
have to show that s(T ) is bounded from above by the claimed upper estimate of
stri(n), strap(n), spar(n), spent(n) or shex(n), respectively.

Proof of (14). We proceed by induction over n. The claim is trivial if n = 1.
If n = 4 then T contains three exposed triangles and the fourth tile covers the
remainder of P . We obtain the respective tiling from Figure 3 by four congruent
tiles. This yields s(T ) = 1. Now let n ≥ 6.

Case 1: vπ ≤ 3. Then vπ = 3 and T splits into three exposed triangles of the
same size and a tiling T ′ of the remaining equilateral triangle P ′ of P , P ′ being
of that size as well. Now |T ′| = n − 3 ≥ 3, and the induction hypothesis gives
s(T ′) ≤ |T ′| − 3 = n− 6. Since the tiles in P ′ are smaller than the exposed tiles of
T , we obtain s(T ) = s(T ′) + 1 ≤ (n− 6) + 1 = n− 5.

Case 2: vπ = 4 and n 6= 6. Now T contains three exposed triangles T1, T2 and
T3 such that T1 shares a vertex with each of T2 and T3. Thus size(T2) = size(T3),
but T2 and T3 are disjoint. By Lemma 5, T contains at least 3+ vπ− 3 = 4 pairs of
triangles that share a side. We introduce a graph Γ whose nodes are the triangles
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of T . Two triangles form an edge if these are T2 and T3 or if they have a side in
common. This graph has at least 1 + 4 = 5 edges and does not contain a cycle
of size less than six. (Cycles not involving the edge {T2, T3} have size at least six.
If a cycle contains {T2, T3} then all triangles of T \ {T1} are of the same size. By
vπ = 4, the side of P that meets both T2 and T3 contains exactly two π-vertices.
Hence there are exactly five triangles in T \ {T1} and in turn n = |T | = 6, which
is excluded.) We pick five edges of Γ. Since they do not contain a cycle and since
each of them connects two congruent triangles, we have s(T ) ≤ |T | − 5 = n− 5.

Case 3: vπ = 4 and n = 6. Lemma 5 shows that T contains at least 3+vπ−3 = 4
pairs of triangles having a side in common. This yields s(T ) ≤ |T | − 4 = 2.

Case 4: vπ ≥ 5. Now Lemma 5 shows that T contains at least 3 + vπ − 3 ≥ 5
pairs of triangles having a side in common. This yields s(T ) ≤ |T | − 5 = n− 5. �

Proof of (15). We add an equilateral triangle at the
(

2π
3 , 2π

3

)

-side of P and obtain
a triangle P ′ and a corresponding tiling T ′ of P ′ with |T ′| = n+ 1. Then

s(T ) ≤ s(T ′) ≤ stri(n+ 1)
(14)

≤







1, n = 3,
2, n = 5,

n− 4, n = 6, 7, . . .

�

Proof of (16). W.l.o.g. n ≥ 4, since n ∈ dom(spar) = {2} ∪ {4, 5, . . .} and the
situation is clear for n = 2.

Case 1: One side length of P is larger than max{size(T ) : T ∈ T }. We add
two triangles at two sides of P that meet at a π

3 -vertex of P . This way we obtain a
tiling T ′ of a triangle P ′ with |T ′| = n+ 2 and s(T ′) ≥ s(T ) + 1, since one of the
new triangles has a new size. Consequently,

s(T ) ≤ s(T ′)− 1 ≤ stri(n+ 2)− 1
(14)

≤







2− 1 = 1, n = 4,
2− 1 < 2, n = 5,
((n+ 2)− 5)− 1 = n− 4, n = 6, 7, . . .

Case 2: No side length of P is larger than max{size(T ) : T ∈ T }. Since no
side of P can be shorter than max{size(T ) : T ∈ T }, P is a rhombus and one tile
T0 ∈ P represents half of P . Then T ′ = T \ {T0} is a tiling of the other half P ′ of
P . In particular, P ′ is a triangle, s(T ′) ≥ s(T )− 1 and

n ∈ {5} ∪ {7, 8, . . .},

because n ∈ dom(spar) \ {2} = {4, 5, . . .} and n − 1 = |T ′| ∈ dom(stri) = {1, 4} ∪
{6, 7, . . .}. We obtain

s(T ) ≤ s(T ′) + 1 ≤ stri(n− 1) + 1
(14)

≤







1 + 1 = 2, n = 5,
2 + 1 = n− 4, n = 7,
((n− 1)− 5) + 1 < n− 4, n = 8, 9, . . .

�

Proof of (17). Case 1: vπ = 0. After removing the exposed triangle from T as
well as from P , we obtain a tiling T ′ of a trapezoid P ′ such that all π-vertices of
T ′ are on the

(

π
3 ,

π
3

)

-side of P ′. By Lemma 6, T ′ is a similar image of the tiling
of cardinality three from Figure 3. Hence T consists of n = 4 tiles, three of them
being of the same size. So we have s(T ) ≤ 2, the required upper estimate for n = 4.

Case 2: vπ ≥ 1. By Lemma 5, T contains at least 5 + vπ − 3 ≥ 3 pairs of
triangles that have a side in common. This yields s(T ) ≤ |T | − 3 = n− 3. �

Proof of (18). Case 1: vπ = 0 or n ≤ 6. We have vπ = 0. Indeed, if n ≤ 6 then
n = 6 by (6). Since no tile from T covers segments of more than one side of the
hexagon P , each side of P is a side of some triangle from T and in turn vπ = 0.



TILINGS OF CONVEX POLYGONS BY EQUILATERAL TRIANGLES 9

v0

T1

T2

T3

T4
T5

T6
T7

T ∗

(a) (b) (c)

(d) (e) (f)

Figure 5. Proof of (18), Case 2

Let T1, . . . , T6 ∈ T be the tiles that cover the sides of P in successive order. It is
enough to show that size(T1) = . . . = size(T6), since then P is a regular hexagon of
side length size(T1) that is completely tiled by T1, . . . , T6, hence n = 6 and s(T ) = 1,
as claimed in (18).

To obtain a contradiction, suppose that, say, size(T6) > size(T1). Then

(19) size(T6) > size(T1) ≥ size(T2) ≥ size(T3),

because tiles do not overlap. The side lengths of P satisfy

(20) size(T2) + size(T3) = size(T5) + size(T6).

Then (19) shows that size(T6) > size(T5), which implies

(21) size(T6) > size(T5) ≥ size(T4) ≥ size(T3)

as above. Adding the inequalities size(T2) < size(T6) from (19) and size(T3) ≤
size(T5) from (21) gives a contradiction to (20).

Case 2: vπ = 1 and n ∈ {7, 8}. Let v0 be the π-vertex, let T1, . . . , T7 ∈ T be the
tiles that form the boundary of P ordered consecutively such that v0 is a common
vertex of T1 and T7, and let T ∗ ∈ T be the third tile having v0 as a vertex, see
Figure 5(a). If n = 7 then necessarily T ∗ = T4, the hexagon P splits into T4 and
two trapezoids tiled by T1, T2, T3 and T5, T6, T7, respectively, Lemma 6 shows that
T is similar to Figure 5(b), and we obtain our claim s(T ) ≤ 2.

Now we consider n = 8. If v0 was a vertex of T4 then one of the two trapezoids
besides T4 would be tiled by four triangles, contrary to (3). Thus v0 is a vertex of
T8 ∈ T . Consequently, the union of the lower sides of T3 and T5 is the union of the
upper sides of T2, T6 and T8.

If the lower sides of T3 and T5 together form a segment, then size(T3) = size(T5)
and size(T2) = size(T6) = size(T8), the tiling T is similar to Figure 5(c), and we
obtain s(T ) = 2 < 3.

If the lower sides of T3 and T5 do not form a segment, then w.l.o.g. the lower side
of T3 is the union of the upper sides of T2 and T8 and the lower side of T5 coincides
with the upper one of T6, see Figure 5(d). Then size(T1) = size(T2) = size(T8),
size(T3) = 2 size(T1) and size(T5) = size(T6) = 3

2 size(T1). Now it follows easily

that either size(T4) =
3
2 size(T1) (and in turn size(T7) = size(T1), see Figure 5(e))

or size(T4) = 2 size(T1) (and in turn size(T7) =
3
2 size(T1), see Figure 5(f)). In both

the situations we obtain our claim s(T ) ≤ 3.
Case 3: vπ = 1 and n ≥ 9. Lemma 5 gives at least 6 + vπ − 3 = 4 pairs of

triangles in T that have a common side. This yields s(T ) ≤ |T | − 4 = n− 4.
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Case 4: vπ ≥ 2 and n ≥ 7. Lemma 5 shows that there are at least 6+vπ−3 ≥ 5
pairs of tiles in T having a side in common. This gives

s(T ) ≤ |T | − 5 = n− 5 ≤

{

n− 5, n = 7, 8,
n− 4, n = 9, 10, . . .

�

3. Proof of Theorem 2

3.1. Negative results on domains. For

(22) 2, 3, . . . , 14 /∈ dom
(

st-perftri

)

we refer to [5, Section 3.2]. It remains to show that

1, 2, . . . , 12 /∈ dom
(

st-perftrap

)

,(23)

1; 3, 4, . . . , 12 /∈ dom
(

st-perfpar

)

,(24)

1, 2, . . . , 11 /∈ dom
(

st-perfpent

)

,(25)

1, 2, . . . , 10 /∈ dom
(

st-perfhex

)

.(26)

These claims are prepared by a lemma.

Lemma 7. (a) Let ∗ stand for tri, trap, par, pent or hex. If n ∈ dom
(

st-perf∗

)

then 2 s∗(n) ≥ n.

(b) If n ∈ dom
(

st-perftrap

)

then n−2 ∈ dom
(

st-perftrap

)

∪dom
(

st-perfpent

)

∪dom
(

st-perfhex

)

.

(c) If n ∈ dom
(

st-perfpar

)

then

n− 2 ∈ {0} ∪ dom
(

st-perftrap

)

∪ dom
(

st-perfpar

)

∪ dom
(

st-perfpent

)

∪ dom
(

st-perfhex

)

.

(d) If n ∈ dom
(

st-perfpent

)

then n−1 ∈ dom
(

st-perftrap

)

∪dom
(

st-perfpent

)

∪dom
(

st-perfhex

)

.

Proof. (a) If n ∈ dom
(

st-perf∗

)

then there exists a corresponding t-perfect tiling

T of cardinality n. By t-perfectness, there are no three triangles of the same size

in T . Consequently, n ≤ 2 st-perf∗ (n). Combining this with the trivial estimate

st-perf∗ (n) ≤ s∗(n) we obtain the claim n ≤ 2 s∗(n).

(b) Let n ∈ dom
(

st-perftrap

)

be represented by a t-perfect tiling of some trapezoid

P . Cutting off the two exposed triangles of the tiling from P results in a smaller
polygon P ′ with a t-perfect tiling of cardinality n − 2. The polygon P ′ is neither
a parallelogram nor a triangle, since in the latter case the two exposed triangles
would have been congruent under a translation. So P ′ is a trapezoid, a pentagon

or a hexagon. Thus n− 2 ∈ dom
(

st-perftrap

)

∪ dom
(

st-perfpent

)

∪ dom
(

st-perfhex

)

.

(c) Now let n ∈ dom
(

st-perfpar

)

be represented by a t-perfect tiling of some parallel-
ogram P . Cutting off the two exposed triangles from P , we get a polygon P ′ that
may be empty (if n = 2) or a trapezoid, a parallelogram, a pentagon or a hexagon
and has a t-perfect tiling of cardinality n− 2. This yields (c).

(d) Here we start with a t-perfect tiling of cardinality n of some pentagon P .
We cut off the one exposed triangle and get a t-perfect tiling of cardinality n− 1 of
some trapezoid, pentagon or hexagon P ′. �
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Corollary 8.

1, 2, . . . , 10 /∈ dom
(

st-perftrap

)

,

1; 3, 4, . . . , 10 /∈ dom
(

st-perfpar

)

,

1, 2, . . . , 9 /∈ dom
(

st-perfpent

)

,

1, 2, . . . , 8 /∈ dom
(

st-perfhex

)

.

Proof. The trivial inclusion dom
(

st-perf∗

)

⊆ dom(s∗), Theorem 1 and Lemma 7(a)

give

1, 2, 3, 4, 5, 6, 7 /∈ dom
(

st-perftrap

)

,

1; 3, 4, 5, 6, 7 /∈ dom
(

st-perfpar

)

,

1, 2, 3; 5 /∈ dom
(

st-perfpent

)

,

1, 2, 3, 4, 5, 6, 7, 8 /∈ dom
(

st-perfhex

)

.

Now fourfold application of Lemma 7(d) yields

4; 6, 7, 8 /∈ dom
(

st-perfpent

)

.

Then Lemma 7(b) and (c) show that

8, 9, 10 /∈ dom
(

st-perftrap

)

and 8, 9, 10 /∈ dom
(

st-perfpar

)

.

Finally, by Lemma 7(d),

9 /∈ dom
(

st-perfpent

)

.

�

Lemma 9. 9, 10 /∈ dom
(

st-perfhex

)

.

Proof. To obtain a contradiction, suppose that there is a t-perfect tiling T =
{T1, . . . , Tn} of some convex hexagon P with n ∈ {9, 10}. Let vπ be the number of
π-vertices of T .

Case 1: vπ = 0. As in Case 1 of the proof of (18) in Subsection 2.4, we see that
n = 6, a contradiction.

Case 2: vπ ≥ 3. Lemma 5 says that T contains at least 6− vπ + 3 ≥ 6 pairs of
triangles that share a side. Since n < 12, there must be three triangles of the same
size, which contradicts the t-perfectness of T .

Case 3: vπ = 2. Now Lemma 5 gives 6 + vπ − 3 = 5 pairs of triangles with
a common side. Since T is t-perfect, this shows that n = 10 and the five pairs
constitute five rhombi R1, . . . , R5 of mutually different side lengths that tile P .

For a vector w ∈ R
2 \ {0}, we define the functional ϕw(Q) of a polygon Q by

ϕw(Q) =
∑

s is a side of Q with
outer normal vector w

length(s)−
∑

s is a side of Q with
outer normal vector −w

length(s).

Clearly ϕw(Ri) = 0 and, since ϕw is additive under tiling, ϕw(P ) = ϕw(R1)+ . . .+
ϕw(R5) = 0 for every w. That is, opposite sides of P have the same length. By
the assumption vπ = 2, there are two opposite sides s1, s2 of P that do not contain
π-vertices of T . So s1 and s2 are sides of two triangles T1, T2 ∈ T whose union is
one of the rhombi, say R1, because length(s1) = length(s2). But then R1, . . . , R5

cannot tile P , a contradiction.
Case 4: vπ = 1. Now we are in the situation of the left-hand side of Figure 6,

where T9 (and possibly T10) are not displayed. Clearly T4 6= T8, because otherwise
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v0 v1

v2

v3v4

v5

v6

v′1
v′2

v′3
v′4v′5

v′6 v′7
vl8 vr8

T1

T2

T3

T4

T5

T6

T7
T8

T1

T2

T3

T4

T5

T6

T7
T8

P ′

Figure 6. Proof of Lemma 9, Case 4

the trapezoids v0v1v2v3 and v0v4v5v6 would be tiled by a total number of eight
or nine triangles, a contradiction to Corollary 8. The 2π-vertices of the triangles
T1, . . . , T8 are denoted by v′1, . . . , v

′

7, v
l
8, v

r
8 . We will discuss coincidences between

these vertices.
First note that two of these nine points cannot agree if their lower indices differ

by more than one modulo 8: Indeed, if a 2π-vertex of Ti coincides with a 2π-vertex
of Tj such that Ti and Tj are no neighbours in the cyclic order of T1, . . . , T8, then
there is a polygonal arc a along sides of Ti and Tj that connects a vertex of Ti with
a vertex of Tj and passes through their common 2π-vertex such that a dissects P
into two polygons P ′ and P ′′ both being tiled by at least three (and in turn at
most seven) triangles of T and such that one of P ′ and P ′′ is convex. (E.g., if
v′1 = v′3 we can pick a = v0v

′

1v3, if v
′

2 = vr8 we can pick a = v2v
′

2v
l
8v0.) Thus some

convex polygon admits a t-perfect tiling of a cardinality between 3 and 7. This is
impossible by (22) and Corollary 8. Consequently, the only possible coincidences
among v′1, . . . , v

′

7, v
l
8, v

r
8 are

v′1 = v′2, v
′

2 = v′3, v
′

3 = v′4, v
′

4 = v′5, v
′

5 = v′6, v
′

6 = v′7, v
′

7 = vl8, v
r
8 = v′1.

When counted cyclically, no two consecutive of these identities are satisfied, because
they would give rise to three tiles of the same size, which contradicts t-perfectness.

The total size of all inner angles of T1, . . . , T9(, T10) is 9π or 10π. The size of
those who are placed on the boundary of P is 5π. Thus the sizes of inner angles in
2π-vertices of T sum up to 4π or 5π. Since every 2π-vertex requires inner angles
of total size π or 2π, T has at most five 2π-vertices. All of v′1, . . . , v

′

7, v
l
8, v

r
8 are

2π-vertices. So there are at least four identities between them. Taking the above
observation into account, we obtain

(27) v′1 = v′2, v′3 = v′4, v′5 = v′6, v′7 = vl8

(the alternative situation v′2 = v′3, v
′

4 = v′5, v
′

6 = v′7, v
r
8 = v′1 would be equivalent).

So T1∪T2, T3∪T4, T5∪T6 and T7∪T8 are rhombi and the sizes of T1, T3, T5, T7 are
mutually different. Since size(T2) + size(T3) = size(T5) + size(T6) = 2 size(T5), we
have either size(T2) < size(T5) < size(T3) or size(T2) > size(T5) > size(T3). As the
latter situation would cause an overlap of T2 and T5, the former inequality applies
and we are in the situation of the right-hand side of Figure 6. The remainder P ′ of
P after cutting off T1, . . . , T8 must be a pentagon with inner angles of sizes 2π

3 , π
3 ,

4π
3 , π

3 and π
3 in consecutive order. This excludes n = 9, because P ′ cannot be tiled

by one single triangle T9. If n = 10, the only possibility of tiling P ′ by T9 and T10

is dotted in the figure. But then the tiling of P is not t-perfect. This contradiction
completes the proof. �
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Proof of (23), (24), (25) and (26). By Corollary 8 and Lemma 9, it remains to
prove that

11, 12 /∈ dom
(

st-perftrap

)

, 11, 12 /∈ dom
(

st-perfpar

)

, 10, 11 /∈ dom
(

st-perfpent

)

.

The third claim follows from Corollary 8 and Lemma 9 by twofold application of
Lemma 7(d). Then the remainder is a consequence of Lemma 7(b) and (c). �

3.2. New spiral pentagons and corresponding t-perfect tilings. We define
a sequence of integers q(n), n = 8, 9, . . ., by

(28) q(8) = 8, q(9) = 11, q(10) = 9 and q(n) = q(n− 3) + q(n− 2) for n ≥ 11.

Lemma 10. (a) The above numbers satisfy
• q(n) > q(n− 1) and q(n) > 12 for n ≥ 11,
• 1

3 (q(n − 1) − q(n − 2)) /∈ {2, 3, 5, 7, 8, 9, 11, 12} ∪ {q(m) : m ≥ 8} for
n = 12, 13, 14, 15; 17, 18, . . .

(b) For every n ∈ {12, 13, . . .}, there is a convex pentagon Qn with sides of
lengths q(n−4), q(n−3), q(n−2), q(n−1) and q(n) (in consecutive order)
with an inner angle of size π

3 between the sides of lengths q(n − 1) and
q(n). That pentagon admits a t-perfect tiling Tn by n equilateral triangles
Ti, i = 1, . . . , n, such that

• size(T1) = size(T2) = 2, size(T3) = 3, size(T4) = size(T5) = 5,
size(T6) = size(T7) = 7, size(T8) = size(T9) = 8, size(T10) = 9,
size(T11) = 11, size(T12) = 12 and size(Ti) = q(i− 1) for i = 13, . . . , n,

• if one side length of Qn is a side length of some triangle Ti ∈ Tn and
different from 8 (the latter is always the case if n ≥ 13), then that side
of Qn is a side of Ti and there is only one triangle of that size in Tn.

Proof. The first part of (a) follows from (28) by induction. The second part of (a)
is shown for n ≤ 24 by explicit computation. For n ≥ 25, it is proved by inductive
verification of

q(n− 10) <
1

3
(q(n− 1)− q(n− 2)) =

q(n− 6)

3
< q(n− 9)

as follows: First note that

q(n−1)−q(n−2) = q(n−4)+q(n−3)−q(n−5)−q(n−4) = q(n−3)−q(n−5) = q(n−6).

The base cases for n = 25, 26, 27, obtained by computation, are q(15) = 48 <
q(19)

3 = 154
3 < q(16) = 67 < q(20)

3 = 202
3 < q(17) = 87 < q(21)

3 = 269
3 < q(18) = 115.

Finally, the step case for n ≥ 28 is

q(n− 6)

3
=

q(n− 9)

3
+

q(n− 8)

3

{

> q(n− 13) + q(n− 12) = q(n− 10),

< q(n− 12) + q(n− 11) = q(n− 9).

Also claim (b) is shown by induction: The pentagon Q12 and the tiling T12 is
illustrated in Figure 7 (see also tiling (c) in the appendix). Then Qn+1 and Tn+1

are obtained from Qn and Tn by adding a triangle Tn+1 of size q(n) at the side of
size q(n) of Qn, cf. Figure 7. �

3.3. Positive results on domains and lower estimates. We start with a direct
consequence of Lemma 10.

Corollary 11. (a) {15, 16, . . .} ⊆ dom
(

st-perftri

)

and st-perftri (n) ≥ n − 6 for all

n = 15, 16, . . .

(b) {13, 14, . . .} ⊆ dom
(

st-perftrap

)

and st-perftrap (n) ≥ n− 5 for all n = 13, 14, . . .

(c) {13, 14, . . .} ⊆ dom
(

st-perfpar

)

and st-perfpar (n) ≥ n− 5 for all n = 13, 14, . . .

(d) {12, 13, . . .} ⊆ dom
(

st-perfpent

)

and st-perfpent (n) ≥ n− 4 for all n = 12, 13, . . .
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Q12

q(12)

q(11)

7

7

12
8

q(8)
= 8

q(9)
= 11

q(10)
= 9

2
2

5

5

3

Qn+1

Qn

q(n − 4)

q(n − 3)

q(n − 2)

q(n − 1)

q(n)

q(n+ 1)

Tn+1

Figure 7. Pentagons Q12 and Qn+1

Qn

T ′

n+1

T ′

n+2

T ′

n+3

T ′

n+4

T ′

n+5

q(n − 2)

q(n − 1)

q(n)

Figure 8. Proof of Corollary 11(e)

(e) {17, 18, . . .} \ {21} ⊆ dom
(

st-perfhex

)

and st-perfhex (n) ≥ n − 6 for all n =

17, 18, 19, 20; 22, 23, . . .

Proof. The pentagons Qn and tilings Tn from Lemma 10(b) prove (d).
For (a), we add two triangles of sizes q(n−4) and q(n−2) at the respective sides of

Qn, cf. Figure 2(a). This gives a t-perfect tiling of a triangle by n+2 tiles of at least
n− 4 = (n+ 2)− 6 different sizes if n ≥ 13. (For n = 12, t-perfectness is violated,
since the size q(12− 4) = 8 is not allowed, see the last claim of Lemma 10(b).)

For (b) and (c), we add a triangle of size q(n− 2) or q(n− 3), respectively, to Qn

and Tn for n ≥ 12, cf. Figure 2.
For (e), we add five triangles T ′

n+1, . . . , T
′

n+5 of sizes

size(T ′

k) =











1
3

(

q(n− 1)− q(n− 2)
)

, k = n+ 1,
2
3q(n− 2) + 1

3q(n− 1), k = n+ 2, n+ 3,
1
3q(n− 2) + 2

3q(n− 1), k = n+ 4, n+ 5,

over the sides of lengths q(n−2) and q(n−1) of Qn, see Figure 8. By Lemma 10(a),
size(T ′

n+1) 6= size(Ti) for i = 1, . . . , n if n ∈ {12, 13, . . .} \ {16}. Moreover, the
monotonicity from Lemma 10(a) gives

q(n− 2) < size(T ′

n+2) = size(T ′

n+3) < size(T ′

n+4) = size(T ′

n+5) < q(n− 1),

so that the sizes of the new triangles are different from those of Tn. Thus Tn
together with T ′

n+1, . . . , T
′

n+5 constitutes a t-perfect tiling by n + 5 triangles of
(n− 4) + 3 = (n+ 5)− 6 different sizes. This proves (e). �
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Table 1. Tilings proving claims (30), (31) and (32): the table
gives the respective initial tilings from the appendix and the sizes
of new triangles in the order of their addition.

Claim (30) Claim (31)
n n
15 (c); 12, 19, 20, 11 14 (c); 12, 19, 20
17 (c); 12, 19, 28, 39, 20, 28 16 (c); 12, 19, 28, 39, 20
18 (j); 27, 44, 47, 24 17 (j); 27, 44, 47
19 (k); 20, 32, 33, 17 18 (k); 20, 32, 33
20 (j); 27, 44, 67, 91, 47, 67 19 (j); 27, 44, 67, 91, 47
21 (m); 64, 106, 111, 59 20 (m); 64, 106, 111
22 (n); 102, 157, 162, 84 21 (n); 102, 157, 162
23 (o); 138, 213, 220, 114 22 (o); 138, 213, 220
24 (n); 102, 157, 235, 319, 162, 235 23 (n); 102, 157, 235, 319, 162
25 (o); 138, 213, 319, 433, 220, 319 24 (o); 138, 213, 319, 433, 220
26 (q); 325, 533, 534, 283 25 (q); 325, 533, 534
28 (q); 325, 533, 784, 1067, 534, 784 27 (q); 325, 533, 784, 1067, 534

Claim (32)
n n
15 (c); 12, 19, 28, 20 22 (n); 102, 157, 235, 162
18 (j); 27, 44, 67, 47 23 (o); 138, 213, 319, 220
19 (k); 20, 32, 48, 33 26 (q); 325, 533, 784, 534
21 (m); 64, 106, 158, 111

Now the remaining (non-trivial) claims from Theorem 2 on domains and lower
estimates are

11; 14, 15, 16; 21 ∈ dom
(

st-perfhex

)

,(29)

st-perftri (n) ≥ n− 5, n = 15; 17, 18, . . . , 26; 28,(30)

st-perftrap (n) ≥ n− 4, n = 14; 16, 17, . . . , 25; 27,(31)

st-perfpar (n) ≥ n− 4, n = 15; 18, 19; 21, 22, 23; 26,(32)

st-perfhex (n) ≥

{

n− 4, n = 11; 14, 15; 17, 18, 19; 22,
n− 5, n = 16; 20, 21; 23.

(33)

Proof of (29) and (33). It is enough to show that the lower bounds from (33) are
attained by t-perfect tilings of the respective cardinalities. We refer to the tilings (c),
(j), (k), (m), (n), (o), (q) and (t), (u), (v), (w) from the appendix and Table 2. �

Proof of (30), (31) and (32). These estimates are established by tilings constructed
as follows: We start with a particular tiling from the appendix. Then we add succes-
sively triangles of prescribed sizes such that in each step the new triangle is placed
over the side of the respective length of the previously tiled polygon. Table 1 sum-
marizes all parameters.

Several of the above tilings showing that st-perftri (n) ≥ n − 5 can be found in the
literature: for n = 15 see [17, Figure 1 and the text thereafter], [18, Figure 4], [5,
Figure 8, second tiling] and [7, perfect dissection size15 595 r5 c3], for n = 17 see [5,
Figure 10, first tiling] and [7, perfect dissection size17 3091 r3 c0], for n = 18 see [7,
perfect dissection size18 30413 r6 c3], for n = 19 see [7, perfect dissection size19 130975 r6 c4].

�

3.4. Upper estimates. The property of t-perfectness gives a new upper estimate
for pentagons.
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Lemma 12. st-perfpent (n) ≤ n− 4 for all n ∈ dom
(

st-perfpent

)

.

Proof. Assume that Lemma 12 fails. Let n0 ∈ dom
(

st-perfpent

) (25)
⊆ {12, 13, . . .} be

minimal such that st-perfpent (n0) ≥ n0−3, and let T = {T1, . . . , Tn0
} be a tiling of some

convex pentagon P realizing s(T ) = st-perfpent (n0). Cutting off the exposed triangle,
we obtain a t-perfect tiling T ′ of some convex polygon P ′ with |T ′| = n0 − 1 and

s(T ′) ≥ s(T )− 1 = st-perfpent (n0)− 1 ≥ (n0 − 3)− 1 = |T ′| − 3.

By |T ′| = n0−1 ≥ 11, Theorem 1 tells us that s(T ′) = |T ′|−3 and P ′ is a pentagon.
This contradicts the minimality of n0. �

The estimate st-perftri (16) ≤ 10 from Theorem 2(a) is shown in [5, Section 3.2 and
Figure 9]. The remaining upper estimates in Theorem 2 follow from Theorem 1 and

the trivial relations st-perf∗ (n) ≤ s∗(n) for n ∈ dom
(

st-perf∗

)

.

Appendix. Particular tilings of hexagons

The following illustrations are scaled such that the smallest tiles appear congru-
ent. Sizes of larger tiles are indicated in the figures. Sizes of all tiles are summarized
in Table 2.
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