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EMERGENT GEOMETRY OF MATRIX MODELS WITH EVEN
COUPLINGS

JIAN ZHOU

ABSTRACT. We show that to the modified GUE partition function with even
coupling introduced by Dubrovin, Liu, Yang and Zhang, one can associate n-
point correlation functions in arbitrary genera which satisfy Eynard-Orantin
topological recursions. Furthermore, these n-point functions are related to
intersection numbers on the Deligne-Mumford moduli spaces.

1. INTRODUCTION

In the early 1990s there appeared two different approaches to 2D topological
gravity. The first one is via the double scaling limits of large N Hermitian one-matrix
models. In this approach a connection to KdV hierarchy and Virasoro constraints [2]
is established. Witten [I4] introduced another approach via the intersection theory
on the Deligne-Mumford moduli spaces M, ,, of stable algebraic curves [I4]. He
conjectured a famous connection between intersection numbers on M, ,, and KdV
hierarchy and Virasoro constraints based on the conjectural equivalence between
these two approaches. Of course, at the same time, a connection between matrix
models and intersection numbers of moduli spaces ﬂg,n of Riemann surfaces was
suggested. In the mathematical literature, a connection between matrix models
and the orbifold Euler characteristics of M, , appeared earlier in the works of
Harer-Zagier [7] and Penner [13].

Witten’s conjecture was proved by Kontsevich [9] by introducing a different
kind of matrix models, now called the Kontsevich model. His result establishes a
connection between Kontsevich model with intersection numbers on My ,,. We are
interested in establishing a connection between the original Hermitian one-matrix
models and intersection theory on ﬂgm, without taking any double scaling limit.

A result of this type has already appeared recently in the work of Dubrovin,
Liu, Yang, and Zhang [I], and so we will first examine their results in this paper
to test our idea for the general case. They considered some modified partition
function of Hermitian one-matrix model with only even couplings and identified
with the generating series of some special Hodge integrals. Our goal is to consider
the Hermitian one-matrix model with all possible couplings. We will achieve this
goal in a subsequent paper which is modelled on this paper.

The method of [I] is as follows. Starting with the Virasoro constraints for GUE
partition functions with all possible couplings, they derived the Virasoro constraints
for modified partition function of Hermitian one-matrix model with only even cou-
plings. On the other hand, they made a cleaver modifications of some Virasoro
constraints for Hodge integrals derived by the author in an unpublished paper to
get the same Virasoro constraints for some special Hodge integrals. The success
of this method depending on knowing the intersection numbers (in this case, some
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Hodge integrals) to be identified with. In this paper we will use an approach with-
out this knowledge a priori. This will be particularly useful in our subsequent paper
when we study Hermitian one-matrix model with all couplings, without knowing
in advance what type of intersections numbers will be involved.

We will start with the Virasoro constraints derived in [I] for modified GUE
partition function with even couplings. Our approach is based on the topological
recursions developed by Eynard-Orantin [6], its connection with intersection num-
bers discovered by Eynard [4] inspired by results in the theory of matrix models,
and the idea of emergent geometry from Virasoro constraints developed by the au-
thor [16 [I7]. Our key result (Theorem []) is that not only the spectral curve, but
also the process of topological recursions, emerge from the Virasoro constraints.
This is exactly in the same spirit as our treatment of the case of Witten-Konsevich
tau-function in [I5]. The spectral curve and the Bergman kernel emerge as a result
of studying the genus zero one-point function and two-point functions respectively,
and the Eynard-Orantin topological recursions emerge as one reformulate the Vi-
rasoro constraints in terms of residues on the spectral curve. As a result, we can
use Eynard’s result to relate the corresponding n-point functions to intersection
numbers (cf. Theorem [3)). We leave the problem of rederiving the result of [I] from
our approach to future investigations.

As for the case of Hermitian one-matrix model with all couplings, the emergence
of the spectral curve has been addressed in [I7]. In [I8] we will discuss the corre-
sponding emergence of the topological recursions. In that case since the spectral
curve has two branchpoints, we will use the generalization of [4] made by Eynard
himself in [5] to relate to intersection numbers.

2. EYNARD-ORANTIN TOPOLOGICAL RECURSIONS AND INTERSECTIONS ON
My

In this Section we recall the n-point multilinear differentials wy ,, obtained from
Eynard-Orantin topological recursions and their relationship with the intersections
numbers on My ,,.

2.1. Eynard-Orantin topological recursions. Recall a spectral curve is a pa-
rameterized curve

(1) x = x(z), y=1y(z)
together with a Bergman kernel B(z1, z2) with the following property
1

For the purpose of this work, assume that = has only one nondegenerate critical
point a:

(3) 7' (a) =0, 2" (a) #0.

Near a there is an involution o such that x(0(2)) = z(z). A sequence wg (21, ..., 2n)
of multidifferential with n» > 1 and g > 0 are defined by Eynard-Orantin [6] as fol-
lows:

wo,1(2) = y(2)dz(2),
wO.,Q(Zv ZO) = B(Z5 ZO)?
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and for 29 —2+n > 0,

Wgnt1(20, 21, - - ., 2n) = Res; 4 K (20, 2) {w917n+2(z, o(2), 2n))
g
+Z Z Wh,|[|+1(zuzl)wgh,nI+1(U(Z)uz[n]1):|7
h=01C[n]

the recursion kernel K near a is:

f;/:g(z) B(zg,2")
2(y(2) — y(o(2)))dx(z)

() K(20,2) =

2.2. Expansions near the branch point. Near the branch point z = a, one can
introduce a new local coordinate (:

(6) ((2) = Va(z) — z(a),
In other words,
(7) z = z(a) + 2

This local coordinate is called the local Airy coordinate.

With the introduction of the local Airy coordinates, one can express everything
involved in the Eynard-Orantin recursion in terms of it. For z near a, let o(z)
denote the unique point near a such that

(8) ((o(2)) = =C(2).

The function y can be expanded in Taylor series:
9) y(2) ~ > gl
k=0

Similarly, the Bergman kernel can be expanded:
ot
(€ —¢)?
The differential d(j(z) is defined by:

(2k — 1)
2k

(10) B(z,7) = [ + ZBk,zC(Zl)kC(Zz)l] d¢(z1)d¢(22).
kol

(11) dli(z) = — Res./—q B(z,2")

C(Z/)Wc-‘rl ’
From the expansion (I0)) one gets:

12 da) = -G - RS g,
l

therefore, d(i(z) is the differential of the function (x(z) defined by:

2k — 1)!! 1 z)Ht!
(13) Qc(z):( ok ) (C(z)2k+1 —ZI:B%JC;L )
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2.3. Laplace transform and intersection numbers. To make connection with
intersection numbers on My ,,, one needs to perform the Laplace transforms of wy .
The Laplace transform of the 1-form wg ; = ydx gives the times #;:
I 3/2 uz(a)
(14) o™ Suleu" _2u e "“ydx,
RV 8

where 7 is a steepest descent path from the branchpoint to z = +o0, i.e. x(y) —
x(a) = R4. More precisely

. 3/2 uzx(a o)
e Trtku" 2u¥/2enat) (a)+¢?) 3 tgaCdc?

\/_ efu(z
™
—0 E>0

Z(2I€ + 1)!!t2k+3u_k
k

The double Laplace transform of the Bergman kernel gives the kernel

(15) B(u,v) = Z By, jutv!
k.l

by

E Bk lukvl

1/2 (utv)z(
( € / / —uz(z)e—u z(2") (B( /) _ Bo(Z, ZI)>,
zEy Jz' ey

where the integral is regularized by substracting the singular part with double pole
dx(z1)dz(z2) 1

4V/2(21) — a(a)/a(z2) — a(a) (/2 (z1) = 2(a) — /o(22) — 2(a))*

More concretely,

(17) Biy = (2k — 1)11(20 — )12 F1=1 By o).

k‘

(16)

BO(Zl, 2’2) =

The main result of Eynard [4] is that the Laplace transforms of wg , when 2g —
2 +n > 0 are given by intersection numbers on My ,,:

n n
| g ) — .
H _Zeuzw(a) - H e HZI(ZZ)wg,n(Zlu e Zn)
i=1 0 z1€Y 22€7 =1
n

_2393+QH<H H1,1/1/}z 1/225 Zk,tBk,lb(s*wkw,leZk Eklik>

a,n

Equivalently,
Wyn(z1,- -+, 2n)

(19)  _g3g-3+n ) TT @6, (2 <6225L5*B<ww> Ektmndj >

di++d,<3g—3+n i n
When n = 0:

(20) F, = 2393<e% S5 e B o3 sm>
9,0
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The following are some examples from [4]:

(21)  wo(z1, 22, 23) = €0do(21)dGo(22)dCo(23) = %d@(zl)d(o(zz)d(o(%)-

(22) wra(z) = 534G () + (%0 - %)dgo(z),
wo,4(21, 22, 23, 24) = 212 (dC1(21)dCo(22)dCo(23)dCo(24) + perm.)
23) 3(Bo,o — t5/t3)

12 dCo(z1)dCo(22)dCo(23)dCo(2a).
3
The following are some well-known special cases from [4].

Example 2.1. When the spectral curve is the Airy curve given by the parameter-
ization

r = =z, Yy ==z,

with the Bergman kernel

one has
" (2d; + 1) ”dg
di+-+dn=3g—3+n 1 C
The Eynard-Orantin topological recursions in this case are equwalent to the DVV

Virasoro constraints for Witten-Kontsevich tau-function [15].

Example 2.2. When the spectral curve is the Airy curve given by the parameter-
ization

1 o0
:v=§zQ, yzz—i—Zukzk,
with the Bergman kernel
dxldxg
B =
(II;IQ) (J:l —I2)27
one has

Wyn(z1,- -+, 2n)

(25) gy 3 H (2d; ;wdg <eposnf<an-wai> 7
n=1 i g,n

di+-+dp=39g—3+n i

where the parameters {s,},>1 are related to {uy}x>2 by

(26) exp(— Z sp2t) = Z 2m + 1)!!u2m+1z2m

m>1
The Eynard-Orantin topological recursions in this case are related to higher Weil-

Peterssson volumes in [3]. They are shown to be equivalent to the Virasoro con-
straints for higher Weil-Petersson volumes proved by Mulase-Safnuk [I1] and Liu-Xu

[10] in [15].
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3. COMPUTING CORRELATION FUNCTIONS OF MODIFIED HERMITIAN
ONE-MATRIX MODEL WITH EVEN COUPLING CONSTANTS BY VIRASORO
CONSTRAINTS

In this Section we define the n-point functions of the modified partition func-
tion of Hermitian one-matrix model and derive an algorithm to compute them by
Virasoro constraints.

3.1. Modified GUE partition function and modified Virasoro constraints.
Let Zeypen denote the GUE partition function with even couplings. Define Z by
(27) log Zeven = (A1/2 + A_1/2) log Z

Then Z satisfies the followings system of equations which are called the Virasoro
constraints:

| Lo, B0 G

2 852 =1 4 16’

n—1 n—1

1 0F, 0?F, oF, OF,
29) = = g +t + S ks g
( 2 0S2n+2 Z 352k 352n 2% Z 052105252k 382n é 2 Dsakran Dsokton’
n > 1, where
(30) logZ =Y €97°F,.

g>0

In the above t = Ne, and A = e“%. See [I] for notations and the proof of the above
results.

3.2. Virasoro constraints in terms of correlators. Define the n-point corre-
lators by
871

(31) (P20 P20, )g = g Fy
ay Qn

SQkZO,kzl

Then the equation (28] can be written in terms of the correlators as follows:
1
(32) §<p2 D241 " P2an)g = Zaj “(P2as " P2a,) g

together with initial value:

(53 oo =& o)1 =
P2/0 = 5 P21 = —g-
And for m > 1,
1 c c
§<p2m+2 *P2a; - 'p2an>g = Zaj “(P2a1 " P2a+2m 'p2an>g
m—1
t ¢ c
(34) + t(P2m * P2a1 P20, )g T+ Z (P2kP2m—2k " P2ay ** " P2ay ) g—1
k=1
m—1
+ Z Z (2 - szal (P2m—2k - szal Voo
k=1 g1+g2=g i€l i€l

11 HIQ:[TL]
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where [n] = {1,...,n}.
For example,

<p§>0 = 2<p2>0 = t2
<P§>0 =2-2(papa)g = 4¢2,
(pa)§ = 2t{pa)§ = t*.

Now we define the genus g, n-point functions by:

.1 1
(35) G97n(217 s 72") = E <p2a1 o 'p2an>g,n Za1+1 e ZanJrl'
1 n

ay,...,an>0

Our goal is to compute these functions and interpret the result gemetrically.

3.3. Computation of genus zero one-point function by Virasoro constraints.
From

(p2)§ =17/2,

m—2
(Pam)§ = 2 Z DP2k)G - (Pam—2—2k)G + 2t - (Pam—2)G, ™M > 2.
k=1

we get:
t2 1 m—2
Goa(z) = o2 T Z poTE] <2 (P2k)6 - (P2m—2-2k) + 2t - <p2m2>8)
m>2 k=1
22t )
= ﬁ + —Gy 1($) + 2Gy 1(x)

w0 Gt~ 1(1-2 - [(1-2) - 12)

It is then easy to see that:

2n— 1 (2n —2)! "
37 G 2t) "z ™" = .
(37) 0.1( 47;2 22 n—l'n'x"

1 2t 4t
4( T x)

The following are the first few terms of Gy 1(z):

G (2) Ly t2 N 2t3 N 5t N 14¢° N 4216 N 132t7 N 429¢8 N

0.1 2 2 3 gt b 26 x7 8 ’
where the sequence 1,2,5,24,42,132,429 are the Catalan numbers. In terms of he
correlators, we have shown that:

(2”) tn-‘rl .
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3.4. Computation of genus zero two-point function by Virasoro con-
straints. By equation (28],

(P2 - P2n)y = 21~ <p2n>f],

and so

S
1
Z b2 - p2n 0 —n P Z2n p2n 0 n+1

= n>2
d ( 1
= ———| 22 <pzn>8n—>
dxo r; x2+1
d 2t 4t
= —— @(1——— 1——)
dIQ 2 Lo €2
2t
9, /1 — 4 2
T2
It follows that
i ( 6 1 N 463 15t*  56t°  210t5 79217
n:1 D2 - P2n 0x2_n_1 — x% xg I% Ig Ig x'zy )

where the sequences of the numbers 1, 4, 15, 56, 210, 792 are the sequence A001791
on [12], they are given by

(59) an:( o ): (2n)!

n—1 (n—1)n!"
The second equation in the sequence can be written as
(40) (pa - P2n)6 = 21+ (P2n+2)G + 2t - (P2 - P2n)G-

By taking generating series, one gets:

. 1
Z<p4 'p2n>oxn+1

n>1 2
1 . .
= Z T+l 2n - (pant2) + 2t - (p2 - P2n)g
n>1 T2
n—1 c 2t .
= 2 Z s {p2n)G + Z —57 (P2 - Pan)g
n>2 2 n>1 L2
d 1 1
= _2d_ (JJ% Z 2n+2 <p2n> ) + 2t Z P2 p2n>0 n+1
T2\ > P2 w1
d 1 2t 4t t2 1- 2t 1
= 29— (221 -=—/1—- ) - — U —=22— — =
dZCQ <$2<4( i) ,TQ) 2$%>)+ <2 1_£ 2>
\ T2
2t 2t
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Therefore,
1
> (pa-p2n)i—at
n>1 %2
2t3 9t 36t° 140t 540t 2079t 8008t° 3088810
=2 2t E T 255 o Tttt )

where the numbers 2, 9, 36, 140, 540, 2079, 8008, 30888 are the sequence A007946
on [12], and they are given by

3(2n)!

(41) tn = (n—1Dlnl(n+2)

Proposition 3.1. The following formula holds:

_2t 2t 1
42 G072 T1,T2) = 2 L2 — .
" S s R

Z2

Proof. For m > 4,

m—1

(43)  (pam - D2n)§ = 20+ (Pansam—2)5 +4 Y (Pak - P2n)§ - (P2m—2-26)5,
k=0
where we use the following convention:
c t
(4) (P = 5.
Therefore,
. 1 1
GO,Q(‘TIVTQ) = Z <p2m'p2n>0WW
m,n>1 1 2
1 1
= Z 2n - (pan+2m—2)6—miT )
m+n>2 Ly Ty
m—1
+ 4 Z T Z P2k - D2n)§ - (P2m—2-2k)0
m>2n>1 " 3 k=0

1 1
= 2 Z {P2nt2m— 2>Oxm+1x 1

m4+n>2 ! 2
11 . e 1
+ 4 Z k—Hw<p2k'p2n>o'Z<p2j>0 J+1
n,k>1 Ty 2 j=0 1
1 1
= 2 Z (Pant2m— 2>0 m+1 n+1

+ 4W0,1(21) - Wo,2(21, 22),
where Wy 1(z1) is defined by:

45)  Woa(z) = Ly Go,1(21) = Z@MS% - i<1 —/1- ﬂ)

2x
1 >0 x]
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So we have:

l
2 . n 1
Goa2(21,22) = W'Z@?%Z;sz R

>1 n=1 "1 2

l

2 . n 1
= ﬁZ@moZ T

o 1>1 n=1 "1
Furthermore,
1
Z<p2z>(c)z #xn—lﬁ-l
>1 n=1"1 2
Z< > 1 n 1
- =1 pato AR R R R
Sl (LB 1)
- >1 p21>0$11+1$§ <( - %)2 S 1- %)
1 11 1 > l
Y P ;@21)8 (55_11 - ,T_l2> + . l:1<P21>8 =
1 B 1

— 72(5516'0,1(551) — $2G0,1($2)) -

171(171 —l“z)

2oz oo -4

d
d—@($2G0,1($2))

$1(I1 - 172)

Ay —22)2 /(1= L)

where in the last equality we have used ([B6l). Therefore, we have proved [{@2). O

Corollary 3.1. The two-point function in genus zero has the following expansion:

(46) Go,g(wl,xg)ZQZtTl Z (2m +1)! . (2n 4 1)! 1

(m!)2 (n!)? x}””x;’”’

In terms of correlators we have

. 1 2m)! 2n)! gmtn
(47) (P2mpznly = 2 (m(— lilm! . (n(— 1))!77,! “m+n

Proof. By [@2]) we have:

Gualonaa) = 5 i L)

= Goz(21,22) = = -

ot ot 2($1 _ =T2)2 (1— ;1_115)(1 _ ;1_2) 2(x1 — w9)?
2t 1

2,2 _ 4tN\3/2(1 _ 4t\3/2
a?y? (1 — 20)3/2(1 = 25)3/

2t i@m—l—l)!tm S (2n+ 1)t
?y? = (ml)? a2t = (nl)? af

2 -itl_l Z 2m+1! 2n+1)! 1
=2

2 A ) R ) e
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Then Q) is proved by integration.

3.5. Computation of n-point functions in arbitrary genera by Virasoro
constraints. By ([34) we have:

Gg,n(x07xl7 trty xn)
1 1
= E <p2m : p2a1 : p2an>q m+1 a1+1
MA@y >1 To = ®

1 1
= 2 Z Z@j “{P2a, ©rP2a;42m—2 ¢ pzan>q T RSN

M1 yomran >1 =1 To =it
1 & 1
C
+ E 2U(p2m—2 " P2a1 " P2an )6 —mrT | | —agT
m2>2,ay,...,an>1 :CO i=1 "1
m—2 n
1 1
+ 2> (pakpom-2-26 *P2ar ** P2an) 1 =i L] =
2kP2m—2—-2 2a1 2an /g—1 m+1 a1
k=1 0 i=1 "1
m—2
+ 2 E E (p2k - Hpal (P2m—2-2k - Hanl m+1 H a1+1
k=1 gi1+g2=g i€l i€l
11 U[gz[’ﬂ]
16 5 1
- < Y9,19n,0—5 -
8 g

Denote by I, I1, II1I, IV and V the five lines on the right-hand side of the second
equality respectively.
We now rewrite I in the following fashion. Note

. 1 1
E a; - <p2a1 ©rP2a;42m—2 " 'p2an>gWW
m,a;>1 0 7
1 1
E : § : a; - <p2al © P2 p2an>(]wm+l aj+1
b;>1 m,a;>1 0 g

m-l—aj:bj +1

This leads us to an operator

1 1
(48) —0T Z ! m+1 n—+1
m,n>1 To J
mtn=I+1
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For [ > 0. Because we have:

1 1
Z n: m+1 x;}-i-l

m,n>1 Zo

m+n=I[+1
S no1
o =@ gy
- xf)+1x§((1—i—:)2_ —i—j)

B 1 L1y, 1 l
- Io(xo — xj)2 ,CCZO (Eé {E()(IO — Ij) ;plfl ’

this operator can be realized by:

zof(xo) —x;f(x; 1 d
49) Do o) = BB L (1)
Now we examine
m—2 1 n 1
Iir = (D2rD2m—2-2k " Pa; - - 'Zhﬁ?q(ﬂw H ST
k=1 0 i=1 "1

This leads us to the operator:

1 1 = 1
uFHL L T R

(50)

This operator can be realized by taking the limit:
(51) Erguwf(u,v) = 3131; F (1w, 0)[p=o-

We combine IT with the terms in IV with ¢; = 0 and |I;] = 0, or go = 0 and
|Iz] = 0. These together give us 4Wy 1(20)Go,n+1(Z0, T1,- .., 2s). The rest of the
terms in IV give us

E IEJCO;%U (G.(h (U,Ih) : ng (’Uv‘rlz))'
g1+92=9
11 U 12:[71]

To summarize, we obtain the following identity:

Gy(zo,21,...,2p)

= 2 Z Dyyw;Gg(1, .o 2n) + 2B u,0Gg—1(u,v, 21, ..., 1)
j=1

+ 2 Z /Eﬂﬂo,uﬂl (G.(h (uvxh) ’ ng (’Uv‘rfz))

91+92=9
11 I_[Ig:[n]
1 1
+ AW (20)Gony1 (o, T1, ..o Tp) — gég,lén,OF-
0

From this we derive the following:
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Proposition 3.2. Define the renormalized operators D and E as follows:

2 ~ 2

52 ﬁm wZiD;E T Em uvziEm u,v
( ) 0o 1—4W071(I0) 0ot 0t 1—4W071(I0) 0t

Then one has:

Gynii(zo,x1,...,2p)

n
= Z D o,m]G ((El, e 7xn) + Emo,u,ng—l,n+2(uu U, L1, 7xn)

+ Z /Eﬂﬂo;uﬂ) (G91711|+1(u7 xll) ’ Gg27|12|+1(/u7 xlz))
g1+92=g
11 ]_[Ig:[n]

N 5_(],1571,0 i
8(1 — 4W071($0)) x% ’

3.6. Examples. We now present some sample computations of G ,, using (53).

3.6.1. Three-point function in genus zero.

Go(zo, 21, 22)

I
NE

Dzo x]G (171; IQ) + 2Ezo,u,v <G0(u; Il) . Go(’U, x2)>
1

<.
Il

|
'M"’

J

~ 2t 2t 1
1 2(x1 —x9)2, /(1 — ;l—f)(l — 4ty 2(xy — x2)

Z2

N -2 _ 2 1
+ 2E10,u,v(( N - 2)
2u—a1)2y /(1 - )1 — &) 2Au—m)

.<2(v . x2)12_ (UI : ié)u 4 2 —1172)2))'

After a complicated computation with the help of Maple, the following simple
formula is obtained:

4¢2
(54)  Golwo,21,22) = 222223 ((1 — 4t/xo) (1 — 4t/w1)(1 — At/x2))3/2"

After expanding this in Taylor series in ¢:

- 2m] + 3)! (2t)™
Golzo,z1,22) - = xox x% H Z U
7=0m;=0 j
we get
c 3 ni—1 ’ (2n; + 1)
(55) <p2n1p2n2p2n3>0 = (Qt) j=1"j H T
!

Jj=1
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3.6.2. Four-point function in genus zero. In this case (B3] takes the following form:

3
Go(xo,71,%2,73) = »_ Day o Go(1, 72, 73)
Jj=1

+ 2Ex0,u,1) (GO(%xl) : GO('U,.IQ,.Ig)

+ Go(u,x2) - Go(v,21,23) + Go(u,x3) - Go(v, 21, 172))

A calculation shows that:
€4 — 2€3t + 32€1t3 - 256t4

_ o2
(56) G074(£L'0, ceey ,Tg) = 24t 3 5
[1 231 — )2
=0 7
where e; denotes the j-th elementary symmetric polynomial in g, ..., zs.
2442 SN (2my + 3 (2™
GOA(IO, e ,I‘g) = 3 (84 _ 283t + 32€1t3 _ 256t4) H Z 3 Jm ( 7211.
N j=0m;=0 it
j=0
3 00
(2m; + 3)I1 (2¢)™
_ 2 J
= [ Y0 CR TR
Jj=0m;=0 Tj
S SETT S @m0
SEONIDY 3-m,l g
k=0 j=0m, =0 L
22 S 2my ) (2t)™
5 J
EECD I IR A
k=0 j=0m;=0 L
3 0o
(2m; + )N (2t)™
6 J
— 61440 ] Z Tl gt
j=0m;=0 7
3 00
(2m; + 3N (2t)™
_ 2 J
= [ 30 IR
j=0m;=0 Z;

3 3 00
(2mj — 28, 5 + 3)! (2t)™
_ 24t2 J Js
I Do s T
3 3 [e%e)
9 (2mj + 25] kT 1)” (2t)m1
DRI PI e
k=0 j=0 0 J J

0j=0m;=
3 0o
(2m F N (2t)mﬂ
— 384t2 J

After simplification we get

00 3 3

(2m; +1 1 (2¢)™i
Guaaoncova) =6 3 (Y my ) [[ 2Rt E
7=0

- xT.
mo,...,m3=0 j=0

J
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In terms of correlators,

o i 2n; — !
(57) (p2ny -+ P2n,)§ = 22021 T HE= 2y oy = 1) [ ] ﬁ
j=1 '
3.6.3. One-point function in genus one. In this case (G3)) takes the form:

1 ~
- 8.@%(1 - 4t/l‘0)1/2 + Ewovu;UGO,Z(u, ’U),

G1.1(0)

It is easy to see that

2 122 1
Erpog Wi (a,y) = ———4m< P - )
2(u—w)

4t u—v 4t 4t 2(u —v)?
Ji- & WJa-ha-a) A=)
2t2
xd(1 — 4t/x)5/?

Therefore,
1 N 212
8x3(1 — 4t/wo) /2 a2} (1 —4t/x()5/2"

By expanding into Taylor series in t,

(58) Gl_,l(xo) =

B 1 & 2m =D O™ 22 X (20 + 3)!1(2t)"
Graleo) = 8x2 mzo m! xg + 3z} nZ:o n! x5
ey e D 1L 3 L e (2m — D! (26)™
83:(2) mzo m)! g + 63:(2) mzzom(m 1) m! g
we get
_ 1(2n —3)! no1 . 1(2n—=13) o1
 @2n=5)-@2n-DN" _
B 24 - (n —1)! @6

A crucial observation which will play an important role below is that one can rewrite
G1.1(x0) as follows:

1 t
59 G = - .
(59) 11(%0) = = 3 T T2t 3B = 41wy
3.7. General structure of G, (x1,...,z,). By induction one easily sees that

Proposition 3.3. When 29 —2+n >0, Gy n(p1,-..,pn) have the following form:

g,n —aq —an,,2b1+1 L. 2b,+1

(60) E : Aal ...,an;biZaifl,lgiSn(t)xl Ty, Y Yn ’
A1,y >2
b1,...,bn€Z

where y; is defined by

In particular, they only have poles of odd orders at y; = 0.

vV—>XT0
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Proof. We have verified the cases of G 3, G1,1 and G 4. We now use (53] to induc-

tively finish the proof. We first consider the terms Emo,u,ng—l,n+2 (U, 0,21, ...y Tp).
They involve

By uw(u” " y(u

)72b171. —as )72b271) 1 —ai1—az 0 72b172b2737

v y(v

where we have used the fact that

2 1

1—4Wha(zo) T2y
Because by > a1 — 1, by > as — 1, we have

b1+b2+12(a1—1)+(a2—1)+1:a1+a2—1.

Simila'ﬂY7 when (glu |Il|+1) 7& (07 2) and (927 |IQ|+1) 7& (07 2)7 Ewo,u,'u (Ggl,11|+1(u7 xh)'

Gy, 1 1s)+1 (v, a:12)) can be treated in the same way. The rest of the terms are of the

following form:

[f)%@j Gyn(T1,...,20) + 2E~’w07u,v (Go)g(’u, xj) Ggn(v,21, ..., &, ..., :C,J)} ,
j=1

and so they involve:

Dz (x;ay;2b71) + 2E20,u,0(Go2(25, u)v_“y(v)_%_l)

—a, —2b—1 —a, —2b—1
To - Ty Yo —Tj T Y, 1 d ( e 2b1)
J’ j

xo(xo—Ij)Q B $0($0—Ij) d_{EJ
1— 2t _ 2t

+ 2( 0 J _ ) cx ay 2b—1
3w — g P~ I~ 2 B —at) O

—a, —2b—1 —a, —2b—1
Zo - Ty Yo —xj -z ty;

2

{E()({EO — Ij)

1 t
_ - _ 1 —a _72b71 _ 2b 1 faJrl _72b72 .
zo(z0 — ;) (( a—+ )CCJ Y (20 + )xj Y; —8:17?%-
—a, —2b—1
R T
16($0 — xj)2y0yj (xO — Ij)2
= 1 —a+1, —2b—1
 zo(wo — ;)2 [ i Y
t
_ (IO _ Ij) . ((—CL + l)I;ay;2b71 _ (2b + 1)x;a71yj72b73 . §>
1 2t 2t _, o o
+ (- = - )z 1y 2yj 1|
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We rewrite the right-hand side as follows:

—a—1, —2b—3_—a—1, —2b—2
L Yj Lo Yo 2 2 a+l, 2b42
—LY;T Y,
)2 J0 0
xo(xo — )

t
~ (oo a)- (o Doy - @+ 1) § o R

1 2t 2t

S R 2 a+1 2042
+ 16( Zo {Ej) yJ

—a— b—3, ,—a—1, —2b—
1 yj2 B galy-2-2 _wz.(l_ﬁ)anrl(l_ﬂ)b-i-l
28b+12$0(170 — xj)Q J Ij 0 i)
4t 4t
— (LL'Q — LL‘j) . ((—a + 1)11]‘ . (1 — x—) — (2b+ 1) . 2t)$8+1(1 — x_o)b+1
J

2t 2t 41
+oa- 2o Bygana - Ly
Zo Zj Ly
—a—1, —2b—3_,—a—1,6 —2b—2

x Ty P TN b b1
J J . . +
= 2 2 (20 — 2,)° { xj - (z; —4t)xg " (o — 4t)

- (20 —xy) - (( a+1)(x; —4t) — (2b+1) - 2t> 28 (zg — 4t)PH?

+  (wom; — 2txo — 2tw;)won by — 4t)b+1}

y72b73y72b72

o J 0 b—a+2 b+1
= -z (x; —4t)(xg — 4t
28b+12:vg+2x§-+2(:vo —xj)? { ! (= (o )

- (zo— ) - (( a+1)(z; —4t) — (20 + 1) - 2t> 2™ (g — 4t)"

4+ (zoxj — 2txo — 2tx;)ah T (x5 4t)b+1}

—2b—3, —2b—2

Y Y 3 o Py
98b+12,,0+2,.b+2 P,q;r 0 Y
0 J pt+q+r=2b—a+2
0<p,q<b

By this we complete the proof. 1

4. EMERGENT GEOMETRY OF MODIFIED HERMITIAN ONE-MATRIX MODEL

In last Section we have defined the n-point function G ,, and derive an algorithm
to compute them by the operators D and E. This algorithm is based on the
Virasoro constraints. Inspired by Eynard-Orantin [6], we will reformulate the n-
point functions as multilinear diffrentials on a plane algebraic curve, satisfying the
Eynard-Orantin topological recursions in the next Section. In this Section we show
how spectral curve and its geometry naturally appear from the point of view of
emergent geometry.
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4.1. Emergence of the spectral curve. Recall the Virasor constraints in genus
zero are the following sequence of differential equations:

10F, oFy 12
62 D N =
( ) 2 682 ]; 52k 85% * 4 ’

1 0F Z 0Fy, O0F) oFy ZkSQk oFy

+t n>1.
2 0s2n+42 OSokton’

(63)

+
08op, 089y, — Js
2k 2n—2k 2n E>1

In earlier work the author has developed the theory of emergent geometry of spectral
curves, associated with Virasoro constraints, see [I5] [T6] [I7]. The starting point is
to consider a suitable generating series of the first derivatives of Fjy in all coupling
constants. In this case, we consider:

e t =~ 1 0F,
64 - ——5 k=l g .
(64) 2 g o2k k1) T ; zF 1 Dsgy,
Then we have:
1 & 1 2 =1 R\’
2 _ = k 25 kE—1 L _- Yo
Yy 4(; (S2k 5 p1)zhh)? +4x2 + ;xk“ D5
t 1 _ = 1 0F 1 OFy 4,
— k — =0 k=2 ¢ —_ k — 20— k2,
* 2Z (521 2 k1) Zxk” 0Say; * Z (52 2 k’l)asmx
k=1 k=1 ki>1
Therefore,
1 1 aFO —1
W)- = (-(2——+Zl+182l+2 )
2 2 = 052
oFy t2
F(sop — =5 — |a~?
+ (Z (s2k k1)8$2k + 4):5
k>1
8F0 8F0 8 aFO
t k( 5 — ).
- Z ant? (Z 0521 0S2n—2k + 0san, + g o2k k’1)352n+2k
So by the Virasoro constraints above:
1 OF _
(65) (y*)_ = (2t(82 - 5 +Z I+1 S2l+28—0)$ Y
1>1 !
and so
2= LS ko - ety
4 2"
k=1
t OF,
+ Ezk(szk——tskl zt~ 2+Z Z ko5 — 9 gh—t=2,
k=1 1>1 k>1+1
It follows that when s9, = 0,
1 t
(66) oL
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This defines an algebraic curve on C2. We refer to this curve as the spectral curve
of the modified Hermitian one-matrix model. We say that (G4) defines a special
deformation of the spectral curve. From (GGl we get:

4t

(67) T T T Tep

We call the right-hand side the LG superpotential function of the modified Hermit-
ian one-matrix model.

4.2. Uniqueness of special deformation. For a formal power series a(z) =
Y onez an2", let

(68) o1 = Z anz".

n<—1
The following result is very easy to prove:
Theorem 1. For a series of the form

_ 10S(x;s) o
(69) 9—574—%4-211%17 )

n>0

where S is the universal action defined by:

1
(70) S(z;8) = —3% + Z Sonx™,

n>1

and each wy, € C|[[s2, s4,...]], the equation

(71) (¥*)<-1=0
has a unique solution given by:
1 oo o0

1 / 1 9F(t)
) Z(SQ 2 S 2z * Z "t Osq,

n=0 n=1

4.3. Quantization. The Virasoro constraints are given by the following differential
operators:

(12) L5 = 3 k(oo — 5n) g + 2y — o
o= kT % Gear | Ag2 167
E>1
n—1
0? 0 1 0
73 Lflven: g +t + k(sor. — =0 _, n>1.
( ) g ;aSQkaSQn_gk 682n ]; ( 2k 2 kﬁl)as2k+2n
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Consider the generating series of these Virasoro operators:

Levenx—n—2
E 0

n>0
1 ) 21
= (D k(sok— 50k1)5— + 5 — —)x_2
(w 2% Gsor 42 16
n—1
02 0 1 0 ) 1
+ 2 = S ko — 21— |
,;(g ; 05250822k Ds2p kz>1 (2% 2 k’1)852k+2n 2
1B 1 = 1
S BB + 5 g O (X s+ 208 )
k>1n>0 n>1 “k=1
where
1 1 t 0
74 k= 205 k(sak — =0k1)- = = g5
(74) Bk = 595 kls2r = 50k,1), Bo 59, Br=g D5ar

k > 0. They satisfy the Heisenberg commutation relations:

(75) (B ] = 5,1

As usual we take {8 }x>0 to be annihilators and take {8_j}x>0 to be creators, and
one can then define normally ordered products. With these notations,

1

76 even —n—2 = 2 Lo -2
where
N L E k—1 ﬂo E ﬂk
(77) y(z) = Zﬂ*kx + ? + Z okT1e
k=1 k=1
Note we have the following well-known OPE:
1/2

(78) 9(2)9(w) =: §(2)g(w) : +m-

To account for the extra term —1—1696_2, we use the idea of regularized product in

[15]. In this case one needs to consider the twisted field
(79) §rtt(x) = a2t gla),
We have the following OPE for the twisted field:

1/2,.,1/2

~twist ~twist __ . ~twist ~twist . Z w
(80) gt (2) g (w) = g (2) g (w) - +m-
In particular,

gtwiSt(I 4 E)gtwiSt(:E)
~twis ~twis (I + 6)1/2$1/2
= gt 4 o)ttt (x) —|—7262
— :gjtwiSt(I—l—E)gtwiSt(I) . _|_i + i _ L N ,
2¢2  4e 16z
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where we have the following expansion:
(17—0—6)1/2331/2 = x(1—|—e/:17)1/2 —:17(1—|— 12 — li —|—)
We defined the regularized product §t**t(x)®? = gtwist(z) @ §*wist(z) by:

B0 g i (e 00 - (s ) )

e—0 2¢2  4e

then we have

1

820 = g ) s g = i) g )

and so the Virasoro constraints can be reformulated in the following form:
(83) (gtwisf (x)®2Z> =0.
Remark 1. It seems to be more natural to consider instead:

, > - 1 OF
(84) ythst(x) 1/2 _Z 521@__5191) k— 1/2 I+Zxk——0
k=1

—_

2 +1/2 9sop

With this choice ([G3l) becomes:

' 1 OF,
(85) (™)) - = (2t(52 - )+ Z (1+1) szz+2a Oz) -

1>1
and so
twist\2 L — 1 k—1\2
(™) = Z(Z k(s2p — §5k,1)$ )
k=1
t 6F
D DT TP D) Dy e LR
k=1 1>1 k>1+1
When sof, = 0,
. t
86 twist 2:£__.
(36) (") = o -

Howewver, algebraic considerations force us to choose y. It is well-known that if

3 _
(87) [Lun, Ln] = (M — 1) Lopin + w%,n,

then the field

(88) L(z) =) Lyz """

neL
satisfies the OPE:
L' (w) 2L(w) c/2
+ .
z—w (z—w)? (z—w)*
In other words, Y, o L& a2 =: §j(x)* : —gi==. We are then forced by these
algebraic considerations to make the seemingly unnatural choice of taking §(x) in

(89) L(z)L(w) ~

the quantum case and y(zx) in the classical case.
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5. EMERGENCE OF TOPOLOGICAL RECURSIONS

_ In this Section we show that the recursion relations in terms of operators D and
E are Eynard-Orantin topological recursions for the spectral curve discussed in last
Section.

5.1. Genus zero one-point function and the spectral curve. Let us take
sor = 0 in ([64) to get:

oo

1 t 1 0F,
90 S —
(90) y 4+2x+;xk+1882k

San=0,n>1

By the definition of correlators and Go 1(x),

1 t
(91) Y= —Z+%+Go,1($)~
By the formula @6]) for Go 1,
1 4t
92 =—\1-=
( ) Yy 4 T’
and so
1 t
2 _ - _
(93) (R TR

This recovers the formula (G0) for the spectral curve of the modified Hermitian
one-matrix model derived in last Section.

The coordinates of a point p on the spectral curve is given by two holomorphic
functions x = x(p) and y = y(p). But this curve is a rational curve in the plane, it
has a global coordinate given by y, and

4t

4 -
(94) YT T 162

There is a natural hyperelliptic structure on this curve: One can define an involution
p o(p) by

(95) U(Ia y) = (Ia _y)
5.2. Correlation functions as functions on the spectral curve. With the
introduction of the spectral curve, one can regard the genus g n-point correlation

functions G, (21, ..., z,) as functions on it. We understand z and y as meromor-
phic function on the spectral curve. For a point p; on it, we write

(96) zj = x(pj), y; = y(pj)-
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In §3] we have used local coordinates z1,...,x,. The concrete examples computed
there can now be translated into functions in yi, ..., Yn:
Go,1(y1) = - s tun= l-1-y1 + 27 = 1(4y—|—1)2,
’ 4 2$1 8 8
_2t_ o2 1
Go2(y1,v2) = Y

242 (21 — x2)?y1y2 2(x1 — x2)?
1 (1—16y7)*(1 — 16y3)*
C2M Ryya(yn + )2
t2
216 - wadas (y1y2y3)°
1 (1-16y7)%(1 — 16y3)*(1 — 16y3)°

Gos(y1,y2,y3) =

o2y yiysys ’
- 2€4 — 2€3t + 3261t3 - 256t4
G074(y17 oo 7y4) = 24t 3 )
I =3 (4y;)°
3=0
1 t?

Gra(y) = -
L) = g5y Py
(1-16y7)” 1 (1-—16y7)"

2% 21T 2yy

Now we translate (B3] into the following form:

Gg,n+1(y07 Yty - 7yn)

n
= Z Dyo,y]‘ Gg,n(yl, cee 7yn) + gyo,y,y’Ggfl,’n.+2 (yv y/a Yty .- 7yn)
(97) =1

0g.10m,0 1
+ E "Evoy’ (Ggl,h-‘rl(yayh) : ng,llzl+1(yl’y12)> - 932 gl
3 Yo I
g1+g2=g
I []I2=[n]

where Dy, ;. and &, 4 are some operators to be determined below. Recall

i 0 (aef(en) —auf(e) L a4,
Dzo,l‘j f(IJ) - 1— 4W071(£C0) ( 960(200 — ,CCJJ‘)2 22— :EO(:I:O — xj) d_w]('rjf(xj)))v
Emo,u’vf(u,v) -z lim f(u, 0)|p=z,-

o 1 — 4W071(1170) U—v

It is clear that the operator E can be translated into the following operator acting
on functions in y:

T
(98) Eyo 9, Y') = 2 yl,liny FW 9 ly=yo-
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On the other hand,
2 (wof(fvo)—fvjf(wj) ot d (w,f(x.)»

1-— 4W0_’1(£C0) Io(ZCO - xj)Q ZC()(IO — Ij) de

4t 4t
1 |: 1,16ygg(y0) - 1716‘7!]2_9(3/]')
G 2
2Y0 4t 4t a4t
1-16y2 \ 1—16y2 1716%2.

1 1 d ( 4t ( ))]
4t ( 4t 4t ) doj  dy; 1_16932'9%

1-16y2 \ T-16y7 ~ 1-16y7 Yi

(1= 16y3)*(1 - 16y7)°  2y;(9(v0) — 9(y;)) — (W5 — ¥})9' (v))
163841%yoy; (yg —v3)? ’

and so

(99)

(1 —16y5)°(1 - 16y7)* 2y;(9(vo) — 9(y;)) — W5 — v7)9' (y))
21 t2y0y; (5 —y3)? '

,Dyo,ng(yj) = -

Note
Ty T —a’,,—2b — 1 —a—a', — n_
Eyoyy’ <x ) g Y 2b 1) = —517 y 2(b+b") 3,
D I 16y3)%(1 — 16y]2-)2
wn \ Y - 21412y,

a a a
1-16y> —2p—1 1-16y; —2p—1 2 2\ d 1-16y; —2p—1
2%’( 4tuo) Yo _< I J) Yj >_(y0_yj)d_yj w ) Y :

(5 — v3)?
5.3. Examples. We now present some sample computations of G, ,, using (@7).

5.3.1. Three-point function in genus zero.

Go(yo,y1,92)

2
= ZDyo,yj Go(y1,Y2) + 2404,y (GO(yu y1) - Go(y', yz))
=1

_ 22: 5 (L (L= 16y3)%(1 — 1643)?
- j=1 A2 Py (i + ye)?

~ 1 (1—16y%)2(1 — 16y3)?
b 20y, 1 (1 —16y%)(1 — 16y7)
2N Pyyi(y + )2
1 (1= 16y2)%(1 - 16y§>2)
21 Py (Y +y2)?
After a complicated computation with the help of Maple, the following simple
formula is obtained:

4¢2
23xixd((1 — 4t/xo) (1 — 4t /21 ) (1 — 4t J25))3/2"

(100) Go(Io,Il,Ig) =
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5.3.2. One-point function in genus one. In this case (@7 takes the form:

1
Gl)l(xO) - 32x—2y0 + gyoly)yl GO)2(y7 y/)
0

1 1 ( 1 (1—16y2)%(1 — 16y'2)2>
= ———— lim | —
32$%y0 2y0 y' =y

21 Py (y+y')?
(1-16y3)* 1 (1—16y3)*

22y, 217 t2y3

Y—Yo

5.4. Multilinear differential forms. Instead of the functions Gy, (p1,...,pn),
one can also consider the multilinear differential forms:

(101) Wg,n(plv s apn) = Gg,n(yla s ,yn)dﬂﬁ B dZCn,

where G%n(yl, coosn) = Ggn(y1, ..., yn) except for the following two exceptional
cases:

A 1 t
102 G =—+—+4+G
(102) 0,1(y1) 1 + 901 + Go,1(y1),
(103) Goa(y1,40) = RS Go2(y1,92).
Since G071(y1) = y1, so we have:
(104) WO,l(pl) = yldwl.
By the following computations
1—3i1 —16y?) — 11 — 1642 1
Wo2(p1,p2) = ( 2( D 2( 5 2)+ 2)
4t 4t 4t 4t
32<1—16yf - m) Y1y2 2(1—16yf - m)
4t 4t
d 5d 2
1—16y; 1—16y;
_ dyldyg
(y1 —y2)?’
we get:
dyldyQ
105 Wo(p1,p2) = ——-
(105) (p1,p2) o —1)?

5.5. The computation of the recursion kernel. We use Wy 2 as the Bergman
kernel. Then

D2 Y2 dy1dy
- A
q=0(p2) y=—y> W1 = Y)
_ dyl v _ 2y2dy1
Yi—=Yly—y, Yi—Y3

It follows that

dyo (1—16y°)% dyo
106 K(po,p) = N dy
(106) (Po.p) 202 —y2)dz  28ty(y2 — y?) dy
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This has poles at y = 0 and y = £yp. To understand its behavior at y = oo, let
y=1/z. Then

2(22 = 16)? dyo

1 K - -7 290
( 07) (p()vp) 28t(1 — ygzg) dz

5.6. Eynard-Orantin topological recursions. Note

tdx B 27ty dy

(108) dy

T2y T (11622

Let us carry out the first few calculations of Eynard-Orantin recursion for the

spectral curve (@3) with wo1 = W1 and wpo = Wy given by ([I04) and (I05)
respectively.

wo,s(po,pl,pz)
= Respp, K (po,p) [W0,2(p7p1)W0,2(U(p),p2) + Wo,z(p7p2)W0,2(U(p)ap1)]

— Res, .o (1 - 16y*)*dyo ( dydy:  —dydy  dydy, .-—dydy1>
U ty(yg —vdy \v? — i -y yi—us vl

- dyodyl dy2 - tzd,fod/,fl d,TQ

T 2wdvhE 2adatadydyiyd

= Wo3(po,p2,p2)-

wi,1(po) = Respp, K(po,p)Wo2(p,o(p))
(1 —16y%)2dyy  —(dy)?
2ty(yg —y?)dy  4y?
1 — 2542 1 — 2542 t
= T o100 T dyo = — 10 T g—da
2%y, 2%y, 8xpY0
1 1

= — dIO
<28w%y8 213w%y8)

1 Y
= - x
2923y8  29afyy)
= Wii(po).

= Resyo
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w0,4(p07 P1, P2, p4)
Resp—p, K(po,p)[Wo,2(p, p1)Wo,3(a(p), p2,p3)

+ Wo2(p, p2)Wo,2(0(p), 1, p3) + Wo,2(p, p3)Wo,2(o(p), p1, p2)

+ Wos(p,p1,p2)Wo2(a(p), p3) + Wos(p, p1,03)Wo2(a(p), p2)

+  +Woz(p,p1,p3)Wo2(a(p), p2)]

— Resyp, dyo [ dydy: —t2drdrodrs + perm.

(v —y?)dz [(y —y1)?  102422x323(~y) y5y3

—t2dxdxsdrs d(—y)dyy

+ 210x2x%x§y3ygy323 . (—(y —)y1)2 -+perm}

= Res, 0 yo { dydy | t*dzadzs + perm.
e v Ly — )P 1024(2) 2303y s

n t?dzodxs _dydy +perm.]

1024(12452) 22503933 (v +u1)?

~dyodyy dxadus —8ydyt + 35 + u3

- 2125242303 Yoyt perm:
t2d$0d$1 d$2d$3
= . - y3y3(—8ygyt + 3yg + yi) + perm.

25 agatxiadygyy3y3
t2 €4 — 63t + 4€1t3 — 16t4d

3
20 3,5
220 [1 ajy;
Jj=0

= 3 :vl---d:v4.

Theorem 2. The multi-linear differential forms Wy, (p1, ... ,pn) defined by (IOT)
satisfy the Eynard-Orantin topological recursions given by the spectral curve

1 t
109 =
(109) YT16 T 4
Le., we have
(110) Wyn(P1,- - Pn) = Wgn(D1s -+ Pn)-

Proof. We have explicitly check the case of wp 3 and wy 1. We now show that other
case can be checked by induction. By () and the induction hypothesis,

ng"+1(p07p17 v 7pn) = Resy_,o K(yO, y)
: [éylynﬂ (Y, Y, Yjn) ) dwd

g li
+ Z Z G 1141 1) Gg—hon— 1141 (=Y Yin)—1)dadx | doy - - - dy, .
h=0IC[n]
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By (@) and (I0I),

Won1 (o, Yn)
= Gy(yo,y1,-- - yn)dao - day,

= Z’Dyo)ijg(yl, ceyYn) s dxg - - day,
j=1

+ gyo,y,y’Ggfl(yaylvyla- . ayn) : d'rO' dx'n,

+ Z "Eyo iy’ <Gg1 (v, y1,) - G (¥ yl2)> ~dxg - dzy
g1+92=g
11 ]_[Ig:[n]
5g,15n,0 1

32y0 x_(g) X0,

By comparing these two recursion, we see that it suffices to show that

(11) Resy—0 K(y0,v) - |Gg-1.n+2(Y; =Y, Yn))dvdz

:gyo,y,y’Gg—l(yu ylu Yiyee vy yn) . dwOa

and when (h, |[I| +1) # (0,2) and (g — h,n — |I| + 1) # (0,2),

Resy 0 K (yo, y) [Gh,|1|+l(ya Y1)Gg—hn—|11+1(—¥; y[n]—l)dxdx:|
(112)

=Eyo,yy' {Gh,|1|+1(y, Y1)Go—nn—1141Y, y[n]f)] ~dxy,
and furthermore

Resy—0 K (yo,y) |:GA()72(y, yj)dedz; - Gg (=Y, Y15, Yjs - - - ,yn)dx}
+ Resy—o0 K (yo,y) {Gog(—y, yi))dxdz; Gy n (Y, Y1y - -« g - - ,yn)dac]
113) (D[ Ganlin o0
+Eyo,uy {GOQ(% Yi)Gon (W' s Y1, Uy 5 Un)

+Gg,n(y,y1,---,z)j,---,yn)Go,z(y’,yj)D -dzodz;.
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We now prove ([II1)) and (II2)) by Cauchy’s residue theorem. Indeed,

Resy 0 K(yo,y) - |:G917n+2(y) Y, Yjn))drdz

(1-165%)° dyo
= Resy0—5———Gy—1.n+2Y, =Y, Yn )dzdx
YTV Bty (g —y?) dy ! .
(116572 dyo
= Res 0{7—
U 28ty (yg — v?) dy
—1,n+2 —a, —20— —a’ —2b'—
Do A bbb, D2y ()

a,a’,a1,...,a0,>2
’
b)b )b17~~~;bn

n 2
.Hw_fainybifl . 27tydy
I (1— 162)?

o g—1,n+2 . —a; —2b;—1
= - > A b, @ T s

4,0 a1 ey >2 i=1
b)b/7b17~--;bn

dyo o (1— 16y%) =
‘Q2at2a—6pata—1 Y0 YLy — 4 2) Y\

whereb>a—1,0' >d'—1,b; >a;—1,i=1,...,n by Proposition 3.3l By Cauchy
residue theorem, the residue at y = 0 can be computed by the residue at y = +yq
and the residue at y = co. Because

(1— 16yt 2 (1-16/z%) 2 1
/ y - / -
y2b+2b +1(yg _ y2) »—(2b+2b +1)(yg _ z%) 2

2 _ ata’'—2
52b+2b' —2a—2a"+5 (2 16) d

z
1 —y22? ’

and b >a—1,b > a’ — 1, the residue at y = oo vanishes. We also have

(1 —16y?)a+e’ 2 } { (1 - 16y?)a+e’ 2
; dy| + Resy— - dy
YR (2 — y2) YT [y (g2 — y2)

(1 —16y3)*+—2
204+20' 12
Yo

Resy—y,
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Therefore,

Resy 0 K (Y0, ¥)Gyg—1,n12(Y; =Y, Y] )drdz
—Ln+2 —a;, —2b;—1
- Z Ag,a’,;ll,...,an;b,b/,bl,...,bn (t) H% Yy

4,01y >2 i=1
b)b/7b17~~~)b7120

dyo (1— 16y3)2+' 2
"92a+2a’—6pata —1 yRb T

_ g—1,n+2 . —a;, —2b;—1
- E : Aa,a’,al,...,an;b,b/,bl,...,bn (t) Z; i

4,01y >2 i=1
b)b/7b17~~~)b7120

dLL'Q
a+ta’ 2b+2b'+3
2z Y5

= gyo,y,y/Ggfl(yay/ayla-- ayn) 'de-

In the same fashion one can prove (I12).
We now only need to show that

Resy 0 K (yo,y) {éo,z(y, Yi))Ggn (=Y, Y1y oy Ujye e ,yn)dxdx} dz;

+  Resy—o0 K(yo0,v) {60,2(—% Y)Gon (Y yts - Ty e ,yn)dxdx} dz;

= (Dyo,yj {Gg,n(yla e ,yn)] + Eyo .y {GOQ(% Yi)Gan (W' y1s - Uy s Un)
+Gyn(Ys Yy gy Yn)Go2(Y, yj)]> - dzodz;.

Indeed, the left-hand side of (I3 is

Res [ (1-16y*)* dyo  dydy;
U Bty (e — ) dy (Y — )2

. v 27ty dy
g,n —a; —2b,—1 —a;, —2b;—1
Z AT by BT (=y) 7 'Hffi Yi : (1—16y2)2

a1,...,0n >2 i#]

b17~~~7bn20
1—16y%)? d d(—vy)dy;
+ Resyﬁo[ g 5 y )2 Yo (=y) yﬂ2
28ty(ys —y?) dy  (—y — )
Ca, —2b.— 27tydy
9, —aj, —2b;—1 i —2bi—1
Do AN i, Dy [ [y T e
Q1,...n >2 i#£] ( Y )
b17~~~7bngo
1 s i 2b;—1
= _5 Z Azlﬁ...,an,bl ..... by (t) sz “ Y;
ap,..., an>2 i#]
b17 ;bn>0
Ifajyfzbjfl dy Ifa]‘y72b]‘71 dy
Res %0{ . + . dy;dyo,
Y wWa—v?) (w—v)?  W-v>) (—y—y)?]
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so the computation of the left-hand is reduced to the computation of

%y

A

—2b,—1

dy .’L'_ajy_%j_l dy

1
——Res, 0 [
2L (vg -

) w-y)? B-v?)  (y-y)?]

In the same way, the right-hand side is reduced to

—aj —2b,-—1_ —aj, /—2b;—
b= <Dy07y]. TR I R [GO’Q(%%‘W iyl 2!
. . drg dx;
—|—$7a1 72b]71G /7 . :|) Rttt}
Y 0.2(¥",y;) dyo  dy;
7(1]‘ 72bj71
= (Dy07yj Ly i
L. {L(l — 16y%)%(1 — 16y3)> g2
M Pyy(y +y)? '
212 212
oy, L OO0ty i
21 2yl (Y +y)? dyo  dy;
(1 —16y5)*(1 — 16y7)*
- 2142yoy;
70.]' 72bj71 70.]' 72bj71 70.:, 72bj71
2y, (xo Yo —x; Y, ) - (9(2) - y?)% |:xj ; }
(5 — v3)?
_2 1 (1 16g0)%(1 - 16y7)° _zbj_1> . 2" yoy;
2yo 2" tyoy;(yo + y;)? o (1 —16y3)%(1 — 16y3)?
70.]' 72b]‘71 70.]' 72b]‘71 70.]' 72b]‘71
2y, (xo Yo —Zx; Y ) — (5 — y?)ﬁ [fj Y; ]
- W2 — 12)?
1 . 70.]' 72b]‘71
yolyo+y;)2 "0 77
and so we only need to show that
(114) A=B.
This can be reduced to the following identity:
1 —2n—1 d —2b—1 d
§Resy—>0[ 2 2y . 7+ y2 2y ! 2}
W —v*) (w—v)* W—v*) (—y—y;)
2y, (yo ety 2”1) ~ (W8~ ¥))ay {yj 2”1} ) -
+ Yo
(v — y3)? yo(yo +y;)2 7°
for n > —1. But this is very easy to prove. Note
1 ( 1 1 n 1 1 >
2\Ws —v») w—w)?* Wo—v») (—y—w)?
1 i +v° = y>" S N on—2k, 2k
= : =) Tz 2 Cn+ 1= 20)yg" 5T,
yo—v2 (Y7 —v?)? ,;) Yoty k; !

31

)
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therefore, the left-hand side is equal to

1 2n—2k 2k
T2 2nt2 Z 2n+1—2j)yg" "y
Yoo Ui ko

The right-hand side is equal to

2y, (yo_2"_1 — yf"”) +@2n+1) (g —y3)y; 2" )
—2n—1

+ Y
(yg — v3)? yo(yo +y;)? 7°

1

= o A 2y097 (T =gt + @+ D (g — v
yo PPy (g - ?)? ( I !

+ (yo— yJ)ny"”)

1

= (2n+ L)yg" ™ — (2n + 3)yZyg"
v PPy (g — y2)? ( 7o

+ ygyJQnJrQ + y2n+4)

1 2n—2k, 2k
= oni2 onie2 Z (2n+1—2j)ys" "y
Yo j k=0

This completes the proof. 1

6. RELATIONSHIP WITH INTERSECTION NUMBERS

In this Section we relate the n-point functions ofthe modified GUE partition
function with even couplings to intersection numbers.

6.1. Local Airy coordinate near the branchpoint. Recall the involution of
the spectral curve is given by o : (z,y) — (z,—y). It has only one fixed point:
(x,y) = (4¢,0). One can introduce the local Airy coordinate ¢ so that

(115) x =4t + (.

In other words,

64ty>
116 2= —7
(116) =z T 1652
We consider the following expansion of the corrected genus zero one-point function:
1 " 1/2 ¢? 1/2 ¢
— J— _——_—— = :l: _ =
Y (16 (4t+<2)> <16(4t+<2)> 8t1/2(1 + C2/(41))1/2
27’L _ 1)” <2n+1
= 8t1/2 Z nl 23ntn '
This means the vanables ton+3 are given by
n(2n =1l 1
(117) tonys = (—1) nl 93nt3pnt1/2"
For example,
1 B 1
= ey b= ~gepr
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The conjugate variables 5, are then given by

SRR e @n+ D2 =1 1 .
(118) e~ rtruTt Z( 1) — Rl
n>0

6.2. Bergman kernel in local Airy coordinate. Next we consider the expan-
sion of genus zero two-point function in the local Airy coordinate:

__deide

B(p1,p2) G — ()2
- 1-2_ 2 1 SIS
a (8(:61 —22)yys | 2 — x2)2)da:1d:1?2 S G-er

1-— 2 N 2 1
_ ( 4? NI e <§>2)d(4t + Gt G)
8(¢t —¢3)? <4(4ti<f)) (4(4t-2+<§)>

_dGdG

(1 — ¢2)?
- (26C% + 2t¢2 + (2¢3) ! )
- (o arm T aa gy kad
__dade

(C1— ¢2)?

1 2(2t¢F + 2t¢3 + (3¢3)

(G-3Pr ((4t+ aEarr e G @)W@

_ 1 < ((F 4 ¢ +¢i¢3/(2t))
(G =2\ (14 CF/(4t) /2 (14 G5/ (4t))1/?

Now we use the same method used in the proof of [{@d). We let s = 1/t and % on
the right-hand side of the last equality to get:
B 1
(1 + C25/4)3/2(1 +(3s/4)3/2
(2m + 1 m (2n+ 1! n
= ——Z (=Ci's/4) 27(—65/4) :

27
n=0

-G+ c%)) d¢1dCG.

and so after integration we get:

(119) Blov.p) = £ + S CU s @mrr Gt g
=1 m+4n=Il—1

In other words,
—_1)k+i+1 " "

(120) ot = 23’”3”3{(1:—)# [+ 1)thti+1 (%l_:! e Jlr' =

By D),

(121) By — (=1)kH+ (2 + D2k — 1)1 (20 + DL - D

QAR+ (g 4 | 4 1)¢hHIHT k! I
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6.3. The variables (,. By ([I3) we then have

(2k — ! 1 (—D)FHHL 2K 4 1)11(20 4 1)1 ¢(2)2HT
ok C(z)2kH1 _Z 2363143 (| |+ 1)K+ 2041 )

(122) Gu(z) =

In particular,

1 1HL(20 + 1)1 ¢(2)2HH
(123) Go(2) = C— zl: B3I+ 1)+ 2141

The summation over [ can be carried out easily to get:

(124) Colz) = L+C)/@nv? 1

1
() EAE gpafia

t1/2
a:2(1 _ £)3/2 dz

We then also have
(125) dCo(z) =

In general, to take the summation over [ in the expression for (i, we introduce:

s — 3 (ZD)F 2k + UL DN ()
; 23kH3I43 (k4 [ 4 1) kWAL 20 + 1

Then we have

5 (—1)FHFL 2 4 1IN0+ 1) C(2)2H
%gk(w,z) = Z 93k+314+3 1] 1tk+I+1 20+ 1 v

l

_ (—1)F+1 (2% + 1)”C(z)wk ' Z (—D)H20+ 1) ¢(2)%

23k+3[Itk+1 23U 14 20+1

1kt
= e D ek - (1 w202 (a1)) 2

Now we integrate over w using Lemma below
(1)1 (2K + 1!
gr(w,z) = 03kt 3 oIkt 1
< V14 w((z zk:
(k+1) (32 (C(Z) )kt

7 () et a6y

_ (=D >
(k+ 1)) (C(Z)Q/(lfilﬁ))’”1
1\k+1 w )

and then set w =1 to get:

(2k =) T+ CEP/ED N~y (27) )%
ok OGE _0( ) ( ) ’

(126) C(z) =
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Using ([I6), we express (. as a polynomial in y~:

k .
(2k — 1! 1 (27 1 1
127 = . —1)/ (=
( ) Ck(Z) okk 8t1/2y Jgo( ) ] 94j 64y2
and we can also express it as a power series in z~! using:

k

1\
4 9

2k — 1)1 (2] 1
(128)  (i(2) = —% : Z(_l)J (j) 9451 1/2h—5 (1 —

j=0
In particular,

1, (2 1
<1 (Z) = —5 . Z(_l) (,] ) 24j+1tj+1/2xlfj(1 _

ﬁ)3/27j
=0 B
B 1 1
25¢3/2(1 — 4t)1/2 C221/2(1 — ity3/2’
and so
3 3t1/2
(129) ¢ (z) = (16151/2:1:2(1 —n LT %)S/Q)d:v.

Lemma 6.1. Forn >0,

(130)

x
de =
/ V1+4dax (n+1) (2"+2) antl & J

V14 dax Z(_l)n_j (2j

,)ajxj.

ﬁ)k—j+1/2 )
xT

35

Proof. This is very easy to verify: Simply take derivatives in z on both sides. The

right-hand side gives us

(n+1) (2n+2 a"+1

2a 25\ .
+ 1) J( _)ajx]
(n+ 1)(27:1:12)a"+1\/1 + dax Z( ) J

1 n N

— J i

mrEFers (e (2o
+(1 + 4ax) Z ( .)jajx] 1)

=
(—1)"
1) (2”:2) a"t1y/1 + dax

_|_

( ( )(2+4g)a7+1x7 —ni:l(—l)j (i]jf) (G + 1)aj+1xj)

Jj=0

\/1 T dax’

O

Remark 6.1. The numbers n(%?) are the sequence A005430 on [I2]. They are called

the Apéry numbers.



36 JIAN ZHOU

6.4. Relationship with intersection numbers. By combining Theorem 2] with
Eynard’s result recalled in §21 we get the following:

Theorem 3. For the modified partition function of Hermitian one-matrixz model
with even couplings,

Wyn(z1,...,2n)
(131) —93g—3+n Z Hdcdi (Zl)<€§ s Ls*B(w,w')eZk tpkk H1/};iz>

di+--4d,<3g—34+n i g.n

where ty, are given by:

O R »(2n+ D20 — 1) 1 .
(132) em Xt = N7 () — et

n>0
By.; are given by

(—1)kHi+1 (2k 4+ D2k — DI (20 + D21 — 1)

(133)  Biy = 24k+AIH4 (| 4 | 4 1) ¢kt k! I ’

and (i are given by:

k .

(2k — 1! (2] 1

(134)  Gele) = == ZO(_l)J j ) 2R 2 k=i (1 — A yk—j+1/2"
J= x

Let us now check some example. By (2I]) we have

wo,3(21,22,23) = zit?)d@(zl)d@(zz)d@(%)
1 /2 11/2 11/2
B e i R 3 e T A
— 5 4t dridzrodrs.

23xa3((1 — 4t /xo) (1 — 4t /x1)(1 — 4t /22))3/?
This matches with (54]). By (22)

1 Boo ts
wi(z) o1z, X1 () + < Aty 16t§) Go(2)
1 3 3t1/2
- T /2.2 i3z T 53 4i\5/2 dx
_ 1 1 1/2
+ ( 231t _ QGti/Q 2> ) b s ng;
4o 160 (gp)? /) 21— )Y

1 t 3
- (16:1:2(1 “sz T 931 - T2 16a2(1 - %)3/2)‘“
1 t

This matches with (B9)).
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1
wo,4(21, 22, 23, 24) = W(dcl (21)dCo(22)dCo(z3)dCo(24) + perm.)
3
3 /(B t
2B B oo ) o)
3 3
1 ( 3 N 3t1/2 )d
= . x
2 (griz)?  \16017223(1 = )32 " 95f(1— Iys/z )
£1/2 £1/2 £1/2 ;
Zg Z3 - Ly
w3(1— 7L)3/2 23(1— 35)%/2 ri(l— 35)3/2
+ perm.
4
3< —F _ —wwr > t/?
+ 2 - ) | [ —
4 (23,511/2)2 (23t11/2 )? E x?(l - ;1_:)3/2 !

4
dz;
2 J
= 6t (a1 +4t) (e — 4t) (a3 — 4t) (x4 — 4t) jlzll A0 AT

+ perm.
— 2est + 32e1t® — 256¢*
= 24¢? “ ;3 a dxy - dxy,
[ a3(1 - &)
J=0 !
where e; denotes the j-th elementary symmetric polynomial in z1,...,z4. This

matches with (56).
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