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ABSTRACT

Disclaimer: I am no professional mathematician. Though, it seems to me that the intuition presented
in this preprint has not yet been explored by the mathematical community. This intuition seems very
consistent and makes predictions, these predictions can be verified numerically. Because this article
is a preliminary work, some parts of the proof are not complete. They will be explicitly indicated.

In this paper, we introduce a geometrical summation method that makes the original Riemann series
converge over the critical strip. This method gives an analytical function, that coincides with zêta.
This point of view allows us to introduce a quantity of interest that seems to give a characterization of
the non-trivial zeros of the Riemann zêta function.
For: z = x+ iy, x ∈ R∗+, y ∈ R∗, zêta can be defined as:

ζ(z) = lim
N→∞

N∑
n=1

1

nz
+

1

(N + 1)z
1

1− z

(
1− x− y

tan(y ln(N+2
N+1 ))

)
From here, we can show that if z is a non trivial zero of zêta, the following quantity converges to
a relative integer seemingly even. Though the reciprocal is false, it is natural to compute it for the
known non-trivial zeros of zêta:

ζ(z) = 0⇒ lim
n→∞

−y ln(n+ 1)− arg
sum

(ζn(z)) + arctan( y
1−x )

π
= Uz,Uz ∈ Z

arg
sum

(ζn(z)) =
∑n
m=1 arg

(∑m+1
l=1

1
lz∑m

l=1
1
lz

)
At the end of this document you can find the table of these values computed for the first 30 know
zeros of zêta. This last identity seems to be deeply correlated with the Riemann hypothesis.
In this paper, we are taking full advantage of formal calculation algorithms, especially to compute
some asymptotic expansions. Here is the GitHub link to all codes used for this work:

https://github.com/UlysseREGLADE/Zeta

Keywords Riemann · Zêta · Summation method
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1 Introduction

For convenience, we define for z ∈ Ω:

ζn(z) =

n∑
j=1

1

jz
, n ∈ N∗

ζ0(z) = 0

(1)

In the whole paper, z is defined as a complex number of Ω an open set of C. x and y are defined with no ambiguity as
its real and complex parts:

x = <z
y = =z (2)

We are not going to make a real difference between the complex representation of z and its vectorial form (x, y).
Therefore, we will allow ourselves to use these representations quite freely.

Let’s now discuss the intuition that gave rise to this paper. I’m uncomfortable with the usual way of defining the zêta
function [1].

ζ(z) =

∞∑
n=1

1

nz
, x > 1 (3)

In this notation, information is lost on how the partials sums converge to zêta. To me, a more meaningful, but still not
perfect way to define zêta would be something like:

ζ(z) = {ζn(z)}n∈N (4)

This definition is not equivalent to the usual one, it is indeed defined even if x = 1. Though it is possible to do much
better. What we are going to show is that, in a way, the zêta function can be defined as the center of a logarithmic
asymptotic spiral described by the partial sums of the Riemann series {ζn(z)}n∈N. In fact, this sequence describes a
converging spiral for x > 1, a circle for x = 1, and a diverging spiral for x < 1. In each case, the value of zêta is the
center of these spirals. We are going to take advantage from this fact to define zeta for: x > 0.

Figure 1: Plot of the Riemann series, for: z = 1
2 − 3i, z = 1− 3i, ans z = 3

2 − 3i
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2 The radial convergence, a geometrical summation method for the Riemann series

2.1 The radial convergence for the special case z ∈ {1 + iy, y ∈ R∗}.

In this subsection, Ω is defined as:

Ω = {1 + iy, y ∈ R∗} (5)

Let us define:

∆n(z) =

{
ζn(z) +

tei
π
2

(n+ 1)z
, t ∈ R

}
, z ∈ Ω, n ∈ N (6)

∆n(z) is a straight line of the complex plan. Considering 1
nz as a vector, it is clearly not collinear to 1

(n+1)z . Indeed:
arg( n

n+1
z) = y ln( n

n+1 ) 6= 0. Therefore, ∆n(z) and ∆n+1(z) must have an unique intersection point. Let us call it
cn(z):

cn(z) = ∆n(z) ∩∆n+1(z), n ∈ N (7)

Let us adopt the following notation:

δn(z) = cn(z)− cn−1(z), n ∈ N∗ (8)

Figure 2: Plot of {cn(z)}n∈N for: z = 1− 2i

Figure 2 is a plot {cn(z)}n∈N, and we can enunciate our first theorem:

Theorem 2.1. For z ∈ Ω,
∑
δn(z) converges by Riemann sommation, and we can define with no ambiguity:

c(z) = lim
n→∞

cn(z) (9)

Proof. Using geometrical relationships, we can write from the Figure 3:

|δn(z)| =

∣∣∣∣∣ 1

(n+ 1) tan(−y ln(n+2
n+1 ))

−
√

1

n2
+

1

n2 tan(y ln(n+1
n ))2

∣∣∣∣∣ (10)

3
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Figure 3: Geometrical view of the situation

From Equation 10, we can calculate the asymptotic expansion of δn(z). This calculation is quite tedious, but at the
end of the day one can show that:

δn(z) =
n→∞

1

2n2

∣∣∣∣y +
1

y

∣∣∣∣+ o(
1

n2
) (11)

The series converges by Riemann sommation. This proves the theorem.

In addition, we can observe that:

|cn(z)− ζn(z)| = 1

(n+ 1) tan(|y| ln(n+2
n+1 ))

=
n→∞

1

|y|
+ o(1) (12)

Which leads us to our second theorem:
Theorem 2.2 (Asymptotic circle). Lets note Cab the circle of radius b and center a. We have:

{ζn}n∈N ⊂ C
c(z)
1
|y|

(13)

Proof. By triangular inequality, we can write:

|ζn(z)− cn(z)| − |cn(z)− c(z)| ≤ |ζn(z)− c(z)| ≤ |ζn(z)− cn(z)|+ |cn(z)− c(z)| (14)

Let us denote d(C
c(z)
1
|y|

, ζn(z)) the distance between the circle and the sequence:

d(Cc(z)1
|y|

, ζn(z)) =

∣∣∣∣|ζn(z)− c(z)| − 1

|y|

∣∣∣∣ (15)

We have:

|ζn(z)− cn(z)| = 1

|y|
+ o(1)

|cn(z)− c(z)| = o(1)

(16)

4
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From Equation 14 we can conclude that:

lim
n→∞

d(Cc(z)1
|y|

, ζn(z)) = 0 (17)

which finishes the proof.

From the Figure 2, one can expect {ζn(z)}n∈N to populate densely the circle, which is a reasonable conjecture. It
would lead to an equality and not a simple inclusion in Theorem 2.2. Though, the demonstration of this conjecture is
not necessary for the rest of the proof.

An other reasonable hypothesis is that c is actually ζ . But as Equation 10 only applies for x = 1, we need first to extend
the definition of c to a bigger open set and show that it is analytical and coincides with the Riemann zêta function.

2.2 The radial convergence for z ∈ {x+ iy, x > 0, y ∈ R∗}

For the rest this section, we define Ω and ω as:

Ω = {x+ iy, x > 0, y ∈ R∗}
ω = {x+ iy, x > 1, y ∈ R∗} (18)

To understand the rest of the proof, we first need to make the following observation:

Figure 4: Representation of a logarithmic spirale

Let us consider the integral test for convergence of ζn(z):

∫
n−zdn =

n1−z

1− z
=

1

1− z
e(1−x) ln(n)e−iy ln(n) =

1

1− z
e
x−1
y θeiθ

θ = −y ln(n)

(19)

We recognize the definition of a logarithmic spiral [2] in the complex plan. Such a spiral intersects its radius with a
constant angle α, like it is shown in Firgure 4. In this case, we can compute this value, and we find:

α(z) =

{ π
2 − arctan( 1−x

y ) y > 0
3π
2 − arctan( 1−x

y ) y < 0
(20)

5
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We can see that x = 1 implies α = π
2 [π]. Therefore, it is natural to give a new definition to ∆n(z):

∆n(z) =

{
ζn(z) +

teiα

(n+ 1)z
, t ∈ R

}
, z ∈ Ω, n ∈ N (21)

For the same reason than in the first section, we can define with no ambiguity the sequences {cn(z)}n∈N and
{δn(z)}n∈N∗ .

Figure 5: Plot of the convergence for z = 0.5− 2i

From the Figure 5, it seems reasonable to expect {cn(z)}n∈N to converge over the critical strip. It can even already
conjecture that their limit coincides with ζ(z).

2.3 Existence and continuity of c : Ω→ C

First, let us remind the definition of a domination function:
Definition 2.1. Dd : R→ R dominates fn : C→ C over Ωd if and only if:

∃n0 ∈ N|∀z ∈ Ωd,∀n > n0, Dd(n) > |fn(z)| (22)

We are now ready to formulate the weak version of what will be called from now the radial convergence for the Riemann
zêta function.
Theorem 2.3. For z ∈ Ω, the sequence {cn(z)}n∈N converges uniformly to c(z). c : Ω→ C is continuous over Ω, and
we have:

c(z) = ζ(z), z ∈ ω (23)
c is complex-differentiable (i.e. holomorphic) over ω ⊂ Ω, and it coincides with ζ over this open set.

Proof. First, we observe from Figure 6 that we can write δn(z) as:

δn(z) =
1

nx
√

1 + ( 1−x
y )2

(
1

sin(−y ln n+1
n )
− 1

(1 + 1
n )x

(
1

tan(−y ln(n+2
n+1 ))

+
1− x
y

))
ei(α(z)−y ln(n+1)) (24)

To obtain this result, we have first computed the algebrical module of δn(z) only using geometrical relations in the
Figure 6. Then, we compute the algebrical argument of δn(z) by induction and show that it is in fact: α(z)−y ln(n+1).

We also work out the expression of c0(z) by hand. It can be neatly written as:

c0(z) = 1− 1

1− z
y2−iy

sin(y ln 2)
(25)

6
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Figure 6: Geometrical view of the situation for α ∈]0, π[∪]π, 2π[

This enable us to write:

cn(z) = c0(z) +

n∑
i=1

δi(z) (26)

Then, just like in the first section, we compute the asymptotic expansion of |δn(z)| as n goes to infinity:

|δn(z)| = 1

nx
√

1 + ( 1−x
y )2

∣∣∣∣∣ 1

sin(y ln n+1
n )
− 1

(1 + 1
n )x

(
1

tan(y ln(n+2
n+1 ))

+
x− 1

y

)∣∣∣∣∣ (27)

We find:

|δn(z)| =
n→∞

1

nx+1

x2 + y2

2
√

(1− x)2 + y2
=

1

nx+1

|z|2

2|1− z|
+ o(

1

n1+x
) (28)

c0(z) and δn(z) are continuous with respect to z over Ω. It can be even say right away that they are real-differentiable.

Now, a domination function needs to be chosen. Though, it is not that easy in this case. Indeed, for large values of y,
because of the presence of 1

sin(y ln n+1
n )

and 1
tan(y ln n+2

n+1 )
in the expression of |δn|, we can expect |δn| to explode for the

first values of n.

From Equation 27, we can give the following expression for |δn|:

|δn(z)| = 1

nx|1− z|

∣∣∣∣∣ y

sin(y ln n+1
n )
− y

(1 + 1
n )x tan(y ln(n+2

n+1 ))
+

1− x
(1 + 1

n )x

∣∣∣∣∣ (29)

We introduce: dx,y : R∗+ → R, the function defined by:

dx,y(n) = n

(
y

sin(y ln n+1
n )
− y

(1 + 1
n )x tan(y ln(n+2

n+1 ))
+

1− x
(1 + 1

n )x

)
(30)

The limit of dx,y is:

lim
n→∞

dx,y(n) =
x2 + y2

2
(31)

7
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The detailed study of dx,y is necessary in order to be able to properly dominate δn.

Let us denote Ωd a bounded open set of Ω:

a = inf
z∈Ωd

x

A = sup
z∈Ωd

x

b = inf
z∈Ωd

|y|

B = sup
z∈Ωd

|y|

(32)

Theorem 2.4. Let Ob(Ω) the set of the bounded open sets of Ω. We can define:

n0 :

∣∣∣∣∣ Ob(Ω)→ N
Ωd 7→ n0(Ωd)

(33)

This function is such as:

∀Ωd ∈ Ob(Ω),∀z ∈ Ωd, n > n0(Ωd)⇒
1

4
(x2 + y2) < dx,y(n) <

3

4
(x2 + y2) (34)

Proof. This proof is very technical, and is not detailed in this paper. But here are the mains ideas:

• First, we observe that the sign of dx,y(n) does not depend on the sign of y. We can limit our study to y > 0.

• Then, we observe that for n > nB = 2−e
π
B

e
π
B −1

, the signs of sin(y ln(n+1
n )) and tan(y ln(n+2

n+1 )) do not change
anymore.

• We take advantage from the fact that the series expansion of sin(x), cos(x), ln(x), and 1
(1+x)α>0 , when

truncated, gives majorations or minorations of these function for x > 0.

• From here, we define two multivariate rational fractions that give upper and lower bounds for dx,y(n) starting
from nB , Figure 7.

• The dominant coefficient of the denominator of these two fractions is an integer.

Using this last argument, it is possible to show that from a certain value of n, dx,y(n) must lie in a certain range around
its limit. The code used to produce these upper and lower bounds of dx,y is accessible via the GitHub link at the
beginning of the document.

From here, it will be assumed such a domination function exists:

DΩd : R∗+ → R

Dd(n) =
1

n1+a

3(A2 +B2)

4|a− 1|
(35)

This function is integrable by Riemann sommation over any Ωd in Ω. We can even specify from when this domination
is effective for Ωd. It is from n0(Ωd), which does not depend on the choice of z in Ωd.

To summarize, we have:

• δn : Ωd → C is continuous.

•
∑
|δn(z)| converges over Ωd by Riemann sommation.

8
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Figure 7: Graph of the framing for dx,y(n)

• Dd(n) : R∗+ → R dominates δn : Ωd → C over Ωd, and is integrable.

Therefore, c0 +
∑
δn converges normally and in consequence uniformly to c over Ωd. c is continuous over any Ωd, so

c is continuous over Ω.

Finally, we have to prove that this expression coincides with ζ on ω ⊂ Ω. It comes from the fact that:

ζn(z) →
n→∞

ζ(z), z ∈ ω (36)

From Figure 6, we can show that:

|ζn(z)− cn(z)| =
n→∞

1

|1− z|nx−1
+ o(

1

nx−1
)

1

|1− z|nx−1
→

n→∞
0, z ∈ ω

(37)

Therefore:

z ∈ ω ⇒ c(z) = ζ(z) (38)

This implies that c is complex-differentiable over ω. We now need to show that c is complex-differentiable over Ω, in
particular on the critical strip.

2.4 Real-differenciability of c : Ω→ C

Showing that c is complex-differentiable over the critical strip is quite challenging because c0 and δn are not holomorphic
functions. Therefore, the first step is to show that the Jacobian of δn is well defined and continuous (real-differentiability).
Only then we can verify it satisfies the Cauchy-Riemann equation (complex-differentiability).

9
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A way to show that c is indeed real-differentiable is to show that
∑
Jδn converges normally for the infinity norm. This

works, but it leads to very tedious calculations that are not described here. Again, the domination is by far the most
technical aspect of this proof, though the formal calculation of Jδn gives immediately the following result:

∂δnx
∂x

= O(
ln(n)

n1+x
)

∂δnx
∂y

= O(
ln(n)

n1+x
)

∂δny
∂x

= O(
ln(n)

n1+x
)

∂δny
∂y

= O(
ln(n)

n1+x
)

(39)

Therefore:

‖Jδn‖∞ = O(
ln(n)

n1+x
) (40)

We can conclude that
∑
Jδn converges for any (x, y) in Ω. We now need to find a domination function for Jδn , for the

infinity norm over Ωd.

It’s possible to reuse the technique described in the last section to find a domination function for Jδn , but I think there
must be a more elegant solution to this problem. For the rest of the proof, we are just going to assume that we have the
following sum to converge normally for the infinity norm:

Jc((x, y)) = Jc0((x, y)) +

∞∑
i=1

Jδn((x, y)), x > 0, y ∈ R∗ (41)

2.5 Complex-differenciability of c : Ω→ C, equality with ζ : Ω→ C

First, we can rewrite Equation 24 as:

δn(z) = y
1− z
|1− z|2

(
2i

nz
1

n+1
n

2iy − 1
− i

(n+ 1)z

n+2
n+1

2iy
+ 1

n+2
n+1

2iy − 1
+

1

(n+ 1)z
1− x
y

)
(42)

The series
∑
δn converges normally, therefore we can rearrange the terms in the sum. More precisely we observe this

sum is actually telescopic. We can write that:

N∑
n=1

δn(z) =

N∑
n=2

1

nz
+

1− z
|1− z|2

(
y2−iy

sin(y ln 2)
− y

(N + 1)z
1

tan(y ln(N+2
N+1 ))

+ (1− x)
1

(N + 1)z

)
(43)

Therefore, from Equation 25, we can write:

cN (z) = c0 +

N∑
n=1

δn

= ζN (z) +
1

(N + 1)z
1− z
|1− z|2

(
1− x− y

tan(y ln(N+2
N+1 ))

) (44)

10
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Now, let us introduce:

gn(z) =
1

(n+ 1)z

fn(z) =
1− z
|1− z|2

(
1− x− y

tan(y ln(N+2
N+1 ))

)
rn(z) = gn(z)fn(z)

(45)

Because
∑
Jδn converges normally, this rearrangement is also true for the jacobian of cn(z):

Jcn((x, y)) = Jζn((x, y)) + Jrn((x, y)) (46)

ζn(z) is a sum of holomorphic functions. Therefore, what we have to show is that Jrn((x, y)) tends to satisfy the
Cauchy-Riemann equation as n goes to infinity for any (x, y) ∈ Ω.

First, we compute the following quantities:

∂fnx
∂x
−
∂fny
∂y

=
n→∞

1− x
|1− z|2

+ o(
1

n
)

∂fnx
∂y

+
∂fny
∂x

=
n→∞

1− x
|1− z|2

+ o(
1

n
)

(47)

Now, we can write:

∂rnx
∂x

=
∂

∂x

(
fnxgnx − fnygny

)
=
∂fnx
∂x

gnx +
∂gnx
∂x

fnx −
∂fny
∂y

gny −
∂gny
∂y

fny

∂rny
∂y

=
∂

∂y

(
fnxgny + fnygnx

)
=
∂fnx
∂y

gny +
∂gny
∂y

fnx +
∂fny
∂y

gnx +
∂gnx
∂y

fny

(48)

Then, we take adventage from the fact that gn is complex-differentiable:

∂gnx
∂x
−
∂gny
∂y

= 0

∂gnx
∂y

+
∂gny
∂x

= 0

(49)

Therefore we find: ∣∣∣∣∂rnx∂x
−
∂rny
∂y

∣∣∣∣ ≤ ∣∣∣∣∂fnx∂x
−
∂fny
∂y

∣∣∣∣|gnx|+ ∣∣∣∣∂fnx∂y
+
∂fny
∂x

∣∣∣∣∣∣gny∣∣ (50)

Exactly the same phenomenon happens for
∣∣∣∂rnx∂y + ∂rnx

∂y

∣∣∣, and we can write:

∣∣∣∣∂rnx∂x
−
∂rny
∂y

∣∣∣∣ =
n→∞

1

(n+ 1)x

∣∣∣∣1− x1− z

∣∣∣∣+ o(
1

(n+ 1)x
)∣∣∣∣∂rnx∂y

+
∂rnx
∂y

∣∣∣∣ =
n→∞

1

(n+ 1)x

∣∣∣∣1− x1− z

∣∣∣∣+ o(
1

(n+ 1)x
)

(51)

11
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This is enough to conclude that c in holomorphic over Ω. In addition, it coincides with ζ over ω which is an open set,
therefore we finally have:

c(z) = ζ(z), z ∈ Ω (52)

2.6 Discussion one the radial convergence

This summation procedure can remind the reader the link between the Riemann zêta function, and the Dirichlet êta
function [3]:

η(z) =

∞∑
n=1

(−1)n−1

nz
, x > 0

ζ(z) =
1

1− 21−z η(z), z 6= 1, x > 0

(53)

Like the radial convergence, this definition is valid for x > 0. However, there is a much more interesting observation to
make here.

Indeed, applying Cesàro [4] summation on the original Dirichlet series makes it converge for x > −1. Applying it
again will have the series to converge for x > −2. From here, one can show by inference that the Dirichlet series can
be analytically extended to the whole complex plan by applying Cesàro summation infinitely many times.

It seems that we have exactly the same kind of property for the radial convergence applied on the Riemann series. This
result is purely numerical and will not be proven here. But it appears that applying the radial convergence infinitely
many times on the Riemann series makes it converge over the whole complex plan, private from the real axis.

An observation that is consistent with this idea is the following fact: For x = 0, one can observe that the sequence
{cn(z)}z∈N converges to an asymptotic circle.

3 Link with the non-trivial zeros of the Riemann zêta function

In this section, Ω is now the critical strip:

Ω = {x+ iy, 0 < x < 1, y ∈ R∗} (54)

We are now going to change our point of view on cn(z). Because it is the intersection of two straight lines in the
complex plan, we can see cn(z) as the solution of the following system:[

<cn(z)
=cn(z)

]
An = Bn (55)

With:

An =

[
= eiα

(n+1)z −< eiα

(n+1)z

= eiα

(n+2)z −< eiα

(n+2)z

]
, Bn =

[
<ζn(z)= eiα

(n+1)z −=ζn(z)< eiα

(n+1)z

<ζn+1(z)= eiα

(n+2)z −=ζn+1(z)< eiα

(n+2)z

]
(56)

We can now see explicitly that this system always has solutions:

det(An) =
sin(−y ln(n+2

n+1 ))

((n+ 1)(n+ 2))x
6= 0 (57)

The complete expression of A−1
n is:

A−1
n =

((n+ 1)(n+ 2))x

sin(−y ln(n+2
n+1 ))

[
−< eiα

(n+2)z < eiα

(n+1)z

−= eiα

(n+2)z = eiα

(n+1)z

]
(58)

12
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We then rewrite Bn as:

Bn(z) =

[
bn(z)
bn+1(z)

]
(59)

With:

bn =
|ζn(z)|

(n+ 1)x
sin

(
arg

(
eiα

(n+ 1)z

)
− arg(ζn(z))

)
(60)

For z ∈ Ω, it has already been proven that |ζn(z)| is unbounded. Therefore, considering the Equation 55, the following
assumption seems very reasonable, though it would deserve a explicit proof.

If z is a zero of ζ over Ω, then we have:∣∣∣∣sin(arg

(
eiα

(n+ 1)z

)
− arg(ζn(z))

)∣∣∣∣ →n→∞ 0 (61)

Which with a bit of rearrangement can be formulated as the following theorem:
Theorem 3.1.

z ∈ Ω, ζ(z) = 0⇒ lim
n→∞

−y ln(n+ 1)− arg
sum

(ζn(z)) + arctan( y
1−x )

π
= Uz,Uz ∈ Z (62)

With arg
sum

(ζn(z)) the cumulated argument of ζn(z):

arg
sum

(ζn(z)) =

n∑
j=1

arg

(
ζj+1(z)

ζj(z)

)
(63)

Again, the complete proof of this theorem is not given here, but the numerical results are very consistent.

Let us call this integer Uz when it is defined. For the known zeros of the Riemann zêta function, we can numerically
compute this value. Here are the first 30 values for the 30 first non trivial zeros:

We can observe these values are all even, But there are no clear pattern in their distribution despite this fact. The python
code used to generate this table of values is on the GitHub. This sequence does not appear yet on: https://oeis.org/ [5].

Let us call:

θn(z) = arg
ζn+1(z)

ζn(z)
(64)

In the figure Figure 9, we also introduce γn(z) accordingly. One can show by induction that this γn(z) value is actually:

γn(z) = −y ln(n+ 1)− arg
sum

(ζn(z)) (65)

Now, using geometrical considerations, it is possible to give the following induction formula for sin(θn(z)):

sin(θn+1(z)) =
sin(−y ln(n+2

n+1 ) + γn(z))

(n+ 2)x

√
sin(−y ln(n+1

n )+γn−1(z))2

(n+1)2x sin(θn(z))2 + 1
(n+2)2x +

2 sin(−y ln(n+1
n )+γn−1(z))

(n+1)x(n+2)x sin(θn(z)) cos(−y ln(n+2
n+1 ) + γn(z))

(66)

This formula does not generalize nicely by induction. That is why the quantity arg
sum

(ζn(z)) is not easy to compute.

However, from a geometrical point of view, because the Riemann series is notv bounded if z is in the critical strip, one
can remark that we must have γn(z) to converge to α(z) modulo 2π as n goes to infinity. This interpretation gives an

13
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n y(n) U(1/2-i*y(n))
1 14.1347251417346937904572519835624766 8
2 21.0220396387715549926284795938969162 14
3 25.0108575801456887632137909925627734 18
4 30.4248761258595132103118975305839571 24
5 32.9350615877391896906623689640747418 28
6 37.5861781588256712572177634807052984 32
7 40.9187190121474951873981269146334247 38
8 43.3270732809149995194961221654068456 40
9 48.0051508811671597279424727494276636 46
10 49.7738324776723021819167846785638367 48
11 52.9703214777144606441472966088808216 52
12 56.4462476970633948043677594767060321 56
13 59.3470440026023530796536486749921759 60
14 60.8317785246098098442599018245240815 64
15 65.1125440480816066608750542531836072 68
16 67.0798105294941737144788288965220700 72
17 69.5464017111739792529268575265546586 76
18 72.0671576744819075825221079698261175 78
19 75.7046906990839331683269167620305404 84
20 77.1448400688748053726826648563046925 88
21 79.3373750202493679227635928771160578 90
22 82.9103808540860301831648374947705599 94
23 84.7354929805170501057353112068275569 96
24 87.4252746131252294065316678509191351 100
25 88.8091112076344654236823480795095125 104
26 92.4918992705584842962597252418104965 108
27 94.6513440405198869665979258152079645 110
28 95.8706342282453097587410292192466718 114
29 98.8311942181936922333244201386223539 118
30 101.317851005731391228785447940292361 122

Figure 8: Values of Uz for the first 30 non trivial zeros of zeta

Figure 9: Geometrical view of the situation for θn(z)

explanation to why Uz is always even. One can remark it is in reality well defined all over the critical strip, though its
convergence rate appears to be slower. From here, we can plot Uz for x = 1

2 (Figure 10).

From this plot, we can clearly see that the zeros of the Riemann zêta function play a special role is the distribution of
the values of Uz .

14
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Figure 10: Plot of Uz for z = 1
2 − y
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