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2-regular Digraphs of the Lovelock Lagrangian
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The manuscripts tabulates arc lists of the 1, 1, 3, 8, 25, 85, 397 . . . unlabeled 2-regular digraphs
on n = 0, 1, 2, . . . , 9 nodes, including disconnected graphs, graphs with multiarcs and/or graphs
with loops. Each of these graphs represents one term of the Lagrangian of Lovelock’s type — a
contraction of a product of n Riemann tensors — once the 2 covariant and 2 contravariant indices
of a tensor are associated with the in-edges and out-edges of a node.
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I. REGULAR DIGRAPHS

A. Nomenclature

In the common language of graph theory, digraphs (di-
rected graphs) are graphs where the edges (called arcs)
are oriented, i.e., the two nodes of an arc are distin-
guished to be tail and head of the arc. The indegree of a
node is the number of arcs that have heads at a node; the
outdegree is the number of arcs that have tails at a node.
k-regular digraphs are digraphs where the indegree and
outdegree at each node is the same k [1, 2]. Loops are
arcs where head and tail are the same node. (Each loop
increases the indegree and outdegree of the node by one.)
Multiarcs are multisets of two or more arcs that share a
head and tail node.
The underlying simple graph of a digraph is obtained

by reducing the arcs to undirected edges, replacing mul-
tiedges by single edges, and removing loops. We will be
only interested in these simple graphs to classify the di-
graphs by the number of components of their underlying
simple graphs. (That means according to weak connec-
tivity).
(Vertex) labeled graphs have distinct labels at their

nodes, usually taken to be the positive integers while han-
dling graphs on computers, or letters from a onwards. We
define the Adjacency Matrix of a digraph of nodes labeled
1, 2, . . . as the square matrix which contains in row r and
column c the number of arcs which start at node r and
end at node c. Construction of the labeled k-regular di-
graphs admitting multiarcs and loops is therefore equiva-
lent to constructing the n×n matrices with non-negative
integer entries where all row sums and all column sums
are k. These are registered in Table A008300 in the
Online Encyclopedia of Integer Sequences for the cases
where multiarcs are not admitted, and in Table A257493
if multiarcs are admitted [3].
Denote the number of unlabeled and labeled k-regular

digraphs with n nodes and c components by Uk(n, c) and
Lk(n, c).
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The unlabeled graphs with c > 1 components can be
derived from the connected graphs quickly by the Multi-
set Transformation, collecting arrangements over all par-
titions of n into c parts [4, Theor. I.1][5, (4.2.3)]:

Uk(n, c) =
∑

n=n1+2n2+···+cnc

ni≥0

c
∏

i=1

(

Uk(i, 1) + ni − 1

ni

)

. (1)

The number of unlabeled and labeled k-regular di-
graphs with n nodes is

Uk(0) = 1; Uk(n) ≡

n
∑

c=1

Uk(n, c); (2)

Lk(0) = 1; Lk(n) ≡
n
∑

c=1

Lk(n, c). (3)

The case of the unlabeled 1-regular digraphs is simple:
the connected 1-regular digraphs are cycles (unicycles),
including the case with 1 node and its loop:

U1(n, 1) = 1. (4)

So the number of unlabeled, not necessarily connected,
1-regular digraphs on n nodes, U1(n), is the number of
partitions of n [3, A000041], and the U1(n, c) are the
partition numbers [3, A008284].

B. Symmetries

The key part of this work is to identify the Automor-
phism Group of the labeled 2-regular digraphs, which is
the group of permutations of the labels which keeps the
Adjacency Matrix of a graph the same. This bundles a
set of one or more labeled digraphs which are mapped
onto each other by the permutations of the group, and
each such set is represented by a single unlabeled 2-
regular digraph. This is one way of erasing/forgetting
any particular order on the nodes while maintaining the
connectivity and structure of the graph.
The unlabeled 2-regular digraphs might also be ob-

tained by starting from the cubic QED vacuum polar-
ization diagrams [3, A170946][6], coalescing each edge
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that represents an undirected photon line and its two
incident nodes into a single node such that only the di-
rected fermion lines connect to the remaining nodes, plus
a cleanup that eliminates duplicates.

We shall keep track of the Automorphism Group A
of each graph by writing down the Cycle Index of the
group of the node permutations [5, §2]. Since A is a
subgroup of the group of all permutations of n, its order,
|A|, is a divisor of n!. The denominator of the cycle
index polynomial is |A|, so we can recover the number of
labeled digraphs by dividing n! through the denominator
of the Cycle Index [5, (1.1.3)]. For n = 3 nodes, for
example, U2(3) = 8 unlabeled 2-regular digraphs exist
with 4 different Cycle Indices:

• 1 graph with cycle index (t3
1
)/1,

• 3 graphs with cycle index (t3
1
+ t1t2)/2,

• 2 graphs with cycle index (t3
1
+ 2t3)/3,

• and 2 graphs with cycle index (t3
1
+ 3t1t2 + 2t3)/6,

and 1× 3!/1+3× 3!/2+2× 3!/3+2× 3!/6 = 21 = L2(3)
is the number of labeled graphs on 3 nodes [3, A000681].
As we are admitting loops, there is always at least one
graph on n nodes (the one consisting of n isolated nodes
with two loops each) that has the maximum symmetry
here, |A| = n!.

The labeled graphs with c > 1 components are de-
duced from the weakly connected labeled graphs by a
Bell transformation, summing over all compositions of n
into positive parts weighted by multinomial coefficients
[7, EFJ]:

Lk(n, c) =
1

c!

∑

n=n1+n2+···+nc

ni≥1

(

n

n1, n2, · · · , nc

) c
∏

i=1

Lk(ni, 1).

(5)
If

Lk(x, 1) ≡
∑

n≥1

Lk(n, 1)

n!
xn (6)

denotes the exponential generating function of the weakly
connected labeled graphs, the bivariate exponential gen-
erating function of the labeled graphs is [8]

Lk(x, t) ≡
∑

n,c≥0

Lk(n, c)

n!
xntc = exp [tLk(x, 1)] . (7)

The corresponding derivation starting from L1(n, 1) =
1 demonstrates that L1(n, c) are the Stirling Numbers of
the Second Kind [3, A008277] and L1(n) the Bell Num-
bers [3, A000110].
For L2, the number of labeled digraphs refined by the

number of weakly connected components is summarized
in Table I.

II. GALLERY OF UNLABELED 2-REGULAR DIGRAPHS

The unlabeled 2-regular digraphs on n ≤ 5 nodes are illustrated in the following sections. For easier visual
recognition, the graphs with more than one component are surrounded by a frame.

A. 1 graph on 1 node

B. 3 graphs (2 connected) on 2 nodes

C. 8 graphs (5 connected) on 3 nodes
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n\c 1 2 3 4 5 6 7 L2(n)

1 1 1

2 2 1 3

3 14 6 1 21

4 201 68 12 1 282

5 4704 1285 200 20 1 6210

6 160890 36214 4815 460 30 1 202410

7 7538040 1422288 160594 13755 910 42 1 9135630

TABLE I. Labeled 2-regular digraphs L2(n, c) with n nodes
and c (weak) components, allowing loops and multiarcs [3,
A307804].

D. 25 graphs (14 connected) on 4 nodes



4

E. 85 graphs (50 connected) on 5 nodes
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III. BIJECTION WITH LOVELOCK TERMS

Bogdanos has pointed at a graphical representation of
the terms of Lovelock’s Lagrange density [9–11]: A graph
of a particular term which is a product of n Riemann
Tensors is constructed as follows: (i) Start with a bot-
tom row of n nodes plus a top row of another n nodes,
where nodes are associated left-to-right with a left-to-
right reading of the R-factors of the product. (ii) Add an
edge from the b-th bottom node to the t-th top node if
a covariant lower index of factor number b appears as a
contravariant index of factor number t. This assignment
works because the two contravariant indices are permuta-
tions of the covariant indices. Since the Riemann Tensor
is (skew)-symmetric in the first and in the last two in-
dices, the representation does not need to track the two
edges at each node to distinguish a “first” from a “sec-
ond.” Bogdanos’ representation is a labeled, undirected
2-regular graph on 2n nodes.
Our graphical representation transforms these bipar-

tite graphs once more [12]:

• Bogdanos’ edges are turned into directed edges
(arcs), always heading from a node of the bottom
row to a node on the top row.

• Each pair of nodes associated with the same R-
factor is coalesced into a single node, keeping all
arcs fastened to their nodes. Loops appear if the
R-factors were already contracted (Ricci tensors).

• Labels are erased, meaning that the left-to-right
reading orders of the product of the R are all equiv-
alent reflecting the usual commutative law for mul-
tiplications. The multiplicity may be recovered by
examining the Automorphism Group of the new
graph

This transformation of Bogdanos’ bipartite graphs on 2n
nodes to our 2-regular digraphs on n nodes is lossless
(reversible).

IV. SUMMARY

Table II summarizes the bare counts U2(n, c).

n\c 1 2 3 4 5 6 7 8 9 U2(n)

1 1 1

2 2 1 3

3 5 2 1 8

4 14 8 2 1 25

5 50 24 8 2 1 85

6 265 93 28 8 2 1 397

7 1601 435 108 28 8 2 1 2183

8 11984 2486 507 113 28 8 2 1 15129

9 101884 17211 2811 527 113 28 8 2 1 122585

TABLE II. Unlabeled 2-regular digraphs U2(n, c) with n

nodes and c (weak) components, allowing loops and multi-
arcs [3, A306892,A006372].

The row sums 1, 3, 8, 25, . . . count the graphs with
any number of components. U2(4) and U2(5) have al-
ready been computed by Briggs [13, 14]. We observe
that Briggs’ extrapolations to more than 5 nodes [15]
underestimate the true number of graphs for 6 – 9 nodes.

Appendix A: Machine Readable Tables

The ancillary directory contains the information of the
unlabeled 2-regular digraphs in files named Regn.txt,
where n is the number of nodes. Due to file size con-
straints of the arXiv, Reg9.txt is not included. Each file
contains two successive lines per graph:

1. An arc list for 2n arcs, referring to a representative
of the labeled graphs created by the A-group, with
labels from 0 up to n− 1, in square brackets. Each
bracket contains a pair of numbers, separated by
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a comma; the first is the tail node and second the
head node of the arc. Multiarcs are rendered by
repeating such pairs.

2. A capital V, the number of multiarcs in the graph
(i.e., the number of entries larger than 1 in the Ad-
jacency Matrix), a blank, the trace of the Adja-
cency Matrix (i.e., the number of loops), a blank,
and the Pólya Cycle Index (a multinomial in the
free variables ti).

The top-bottom order of the graphs in these files is
the same as the top-down-left-right reading order of the
pictures shown above.
Filtering the lines that start with V0 in these files we

obtain 1, 3, 8, 27,. . . unlabeled, not necessarily connected,
2-regular digraphs with n ≥ 2 nodes without multiarcs
[3, A005641].
Filtering the lines that start with V0 0 in these files we

obtain 1, 2, 5, 23,. . . unlabeled, loopless, not necessarily
connected, 2-regular digraphs with n ≥ 3 nodes without
multiedges [3, A219889].
As a further check, filtering the lines that contain 0 we

obtain 1, 2, 6, 15, 68,. . . graphs on n ≥ 2 nodes without
loops (which may have multiarcs) [3, A307180].

One application of this information yields the r-rooted
unlabeled 2-regular digraphs by defining the generating
function r(x) = 1+x for the number of ways of labelling
a vertex as 0 (not marked) or 1 (marked), and then sub-
stituting ti → r(xi) in the cycle indices. Summation over
the cycle indices of all graphs of fixed n generates Table
III.

n\r 0 1 2 3 4 5 6

1 1 1

2 3 3 3

3 8 13 13 8

4 25 58 88 58 25

5 85 310 588 588 310 85

6 397 1909 4626 6035 4626 1909 397

7 2183 13843 40417 66471 66471 40417 13843

8 15129 114821 395324 782257 975715 782257 395324

TABLE III. Unlabeled 2-regular digraphs U
(r)
2 (n) =

U
(n−r)
2 (n) with n nodes and 0 ≤ r ≤ n rooted vertices, allow-

ing loops and multiarcs. U
(0)
2 (n) = U2(n).
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