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Abstract
Let Fg(t) be the generating function of intersection numbers on the moduli spaces Mg,n

of complex curves of genus g. As by-product of a complete solution of all non-planar
correlation functions of the renormalised Φ3-matrical QFT model, we explicitly construct
a Laplacian ∆t on the space of formal parameters ti satisfying exp(

∑
g≥2N

2−2gFg(t)) =

exp((−∆t + F2(t))/N2)1 for any N > 0. The result is achieved via Dyson-Schwinger
equations from noncommutative quantum field theory combined with residue techniques
from topological recursion. The genus-g correlation functions of the Φ3-matricial QFT
model are obtained by repeated application of another differential operator to Fg(t) and
taking for ti the renormalised moments of a measure constructed from the covariance of
the model.

MSC 2010: 14C17, 32G15, 32G81, 81R60
Keywords: intersection numbers, matrix models, topological recursion, Dyson-Schwinger

equations, noncommutative geometry

1. Advertisement

This paper completes the reverse engineering of a special quantum field theory on non-
commutative geometries. The final step could be of interest in other areas of mathematics:

Theorem 1.1. Let

Fg(t0, t2, t3, . . . , t3g−2) :=
∑
(k)

〈τ k22 τ k23 . . . τ
k3g−2

3g−2 〉
(1− t0)2g−2+

∑
i ki

3g−2∏
i=2

tkii
ki!
,
∑
i≥2

(i− 1)ki = 3g − 3,

be the generating function of intersection numbers of ψ-classes on the moduli spacesMg,n

of complex curves of genus g [Wit91, Kon92]. For any N > 0, the stable partition function
satisfies

exp
( ∞∑
g=2

N2−2gFg(t)
)

= exp
(
− 1

N2
∆t +

F2(t)

N2

)
1 (1.1)
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where F2(t) =
7

240
· t

3
2

3!T 5
0

+
29

5760

t2t3
T 4

0

+
1

1152

t4
T 3

0

with T0 := (1−t0) generates the intersection

numbers of genus 2 and ∆t = −
∑

i,j ĝ
ij∂i∂j −

∑
i Γ̂

i∂i is a Laplacian on the formal
parameters t0, t2, t3, . . . given by

∆t := −
( 2t32

45T 3
0

+
37t2t3

1050T 2
0

+
t4

210T0

) ∂2

∂t20
−
( 2t32

27T 4
0

+
1097t2t3
12600T 3

0

+
41t4

2520T 2
0

) ∂

∂t0

−
∞∑
k=2

(( 2t22
45T 3

0

+
2t3

105T 2
0

)
tk+1 +

t2Rk+1(t)

2T0

+
3Rk+2(t)

2(3 + 2k)

) ∂2

∂tk∂t0

−
∞∑

k,l=2

(t2tk+1tl+1

90T 2
0

+
tk+1Rl+1(t)

4T0

+
tl+1Rk+1(t)

4T0

+
(1+2k)!!(1+2l)!!Rk+l+1(t)

4(1+2k+2l)!!

) ∂2

∂tk∂tl

−
∞∑
k=2

(( 19t22
540T 4

0

+
5t3

252T 3
0

)
tk+1 +

t2Rk+1(t)

48T 2
0

+
Rk+2(t)

16(3 + 2k)T0

+
t2tk+2

90T 3
0

+
Rk+2(t)

2T0

) ∂

∂tk

with Rm(t) :=
2

3

m∑
k=1

(2m−1)!! ktk+1

(2k+3)!!T0

m−k∑
l=0

l!

(m−k)!
Bm−k,l

({ j!tj+1

(2j+1)!!T0

}m−l+1

j=1

)
.

The Fg(t) are recursively extracted from Zg(t) := 1
(g−1)!

(−∆t + F2(t))g−11 and

Fg(t) = Zg(t)− 1
(g−1)!

∑g−1
k=2Bg−1,k

({
h!Fh+1(t)}g−kh=1

)
= Zg(t)− 1

(g−1)!

∑g−1
k=2(−1)k−1(k − 1)!Bg−1,k

({
h!Zh+1(t)}g−kh=1

)
.

Here and in Theorem 1.1, Bm,k({x}) are the Bell polynomials (see Definition 4.9). These
equations are easily implemented in any computer algebra system.

Theorem 1.1 seems to be closely related with exp(
∑

g≥0 Fg) = exp(Ŵ )1 proved by

Alexandrov [Ale11]1, where Ŵ := 2
3

∑∞
k=1(k + 1

2
)tkL̂k−1 involves the generators L̂n of the

Virasoro algebra. Including N and moving exp(N2F0 + F1) to the other side, our ∆t is
in principle obtained via Baker-Campbell-Hausdorff formula from Alexandrov’s equation.
Of course, evaluating the necessary commutators is not viable.

Theorem 1.1 suggests several fascinating questions which we haven’t studied yet:

• Is Γ̂i a Levi-Civita connection for ĝij, i.e. Γ̂i =
∑

j ĝ
ij
√

det ĝ−1∂j(
1√

det ĝ−1
)? Here

det ĝ−1 would be the determinant of (ĝij), whatever this means.

• Is there a reasonable definition of a volume
∫
dt 1√

det ĝ−1(t)
? If so, is there any rela-

tion to the Weil-Petersson volumina which are deeply connected with intersection
numbers [AC96, Mir07]?

• Is it possible to reconfirm, maybe also to improve, the asymptotic estimates of
Weil-Petersson volumina and intersection numbers [MZ15]?

• Is it possible to prove that
∑∞

g=2 N
2−2gFg(t) is Borel summable for tl < 0?

1We thank Gaëtan Borot for bringing this reference to our attention.
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Theorem 1.1 is a by-product of our effort to construct the non-planar sector of the
renormalised Φ3

D-matricial quantum field theory in any dimension D ∈ {0, 2, 4, 6}. These
are closely related to the Kontsevich model [Kon92] so that a link to intersection numbers
is obvious. After an overview about the context we proceed with our construction. It is
clear that a more streamlined proof of Theorem 1.1 in a better adapted setting can be
given. This will be done elsewhere.

2. Introduction

Matrix models have a huge scope of applications [BIPZ78, DF04], ranging from com-
binatorics over 2D quantum gravity [GM90, DFGZJ95] up to quantum field theory on
noncommutative spaces [LS02, LSZ04, GW05, GS06b, GS06a, GS08, DGMR07, GW14].
Of particular interest is the Kontsevich model [Kon92], which was designed to prove Wit-
ten’s conjecture [Wit91] that the generating function of the intersection numbers of stable
complex curves satisfies the KdV equations. See also [Wit92, LZ04, Eyn16].

More recent investigations of matrix models led to the discovery of a universal struc-
ture called topological recursion [CEO06, EO07]. Topological recursion was subsequently
identified in many different areas of mathematics and theoretical physics [Eyn14, Eyn16].
The Kontsevich model itself satisfies topological recursion, even though it is not a matrix
model in the usual sense (but related via Miwa transformation; see e.g. [ACKM93]).

On the other hand, renormalisation of quantum field theories on noncommutative ge-
ometries generically leads to matrix models similar to the Kontsevich model. The crucial
difference is that convergence of all (usually) formal sums is addressed, and achieved
by renormalisation [GS06b, GS06a, GS08]. Renormalisation is sensitive to the dimension
encoded in the covariance of the matrix model. For historic reasons, namely the perturba-
tive renormalisation [GW05] of the Φ4-model on Moyal space and its vanishing β-function
[DGMR07], also the quartic analogue of the Kontsevich model was intensely studied. In
[GW14] the simplest topological sector was reduced to a closed equation for the 2-point
function. This equation was recently solved for the covariance of 2D-Moyal space [PW18].
All correlation functions with simplest topology can be explicitly described [dJHW19].

In [GSW17, GSW18] these methods developed for the Φ4-model were reapplied to the
cubic (Kontsevich-type) model. The new tools, together with the Makeenko-Semenoff
solution [MS91] of a non-linear integral equation, permitted an exact solution of all planar
(i.e. genus-0) renormalised correlation functions in dimension D ∈ {2, 4, 6}. In particular,
exact (and surprisingly compact) formulae for planar correlation functions with B ≥ 2
boundary components were obtained. The simplicity of the formulae [GSW17] for B ≥ 2
suggests an underlying pattern. It is traced back to the universality phenomena captured
by topological recursion2. We refer to the book [Eyn16].

In this article we give the complete description of the non-planar sector of the renor-
malised Φ3

D-model. The notation defined in [GSW18] will be used and recalled in sec. 3.
We borrow from topological recursion the notational simplification to complex variables
z for the previous

√
X + c and the vision that the correlation functions are holomorphic

2We thank Roland Speicher for the hint that there might be a relation between our work and topological
recursion.
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in z ∈ C \ {0}. Knowing this, we proceed however in a different way. Our main tool is a
boundary creation operator Â†gz1,...,zB which, when applied to a genus-g correlation function
Gg(z1| . . . |zB−1) with B − 1 boundaries labelled z1, . . . , zB−1, creates a Bth boundary la-
belled zB. The existence of such an operator is suggested by the ‘loop insertion operator’
in topological recursion [Eyn16], but their precise relationship is not entirely clear to us.

We rely on the sequence {%l}l∈N of moments of a measure arising from the renormalised
planar 1-point function [GSW17, GSW18]. This sequence is uniquely defined by the renor-
malised covariance of the model, the renormalised coupling constant and the dimension
D ∈ {2, 4, 6}. The boundary creation operator acts on Laurent polynomials in the zi
with coefficients in rational functions of the %l. The heart of this paper is a combina-
torial proof, independent of topological recursion, that the boundary creation operator
does what it should (Theorem 4.6, portioned into Lemmata proved in an appendix). It
is then (to our taste) considerably easier compared with topological recursion to derive
structural results about the Gg(z1| . . . |zB) such as the degree of the Laurent polynomials,
the maximal number of occurring {%l} and the weight of the rational function.

By Dyson-Schwinger techniques we derive an equation of type K̂zGg(z) =

f(Gh(z), Â† g−1
z,z Gg−1(z)) for h < g, where f is a second-order polynomial and K̂z an integral

operator. Thus, all Gg(z) can be recursively evaluated if K̂z can be inverted. Topological
recursion tells us that the inverse is a residue combined with a special kernel operator.
We give a direct combinatorial proof that the same method works in our case.

We easily show that the Gg(z) arise for g ≥ 1 by application of the boundary creation
operator to a uniquely defined ‘free energy’ Fg(%). These Fg(%) are characterised by ’only’
p(3g − 3) rational numbers, where p(n) is the number of partitions of n. The above
second-order polynomial f can be written as a second-order differential operator acting
on exp(

∑
g≥1N

2−2gFg) in which it is convenient to eliminate F1. The result is Theorem 1.1

expressed in terms of %0 = 1− t0 and %l = − tl+1
(2l+1)!!

. In other words, to construct the non-

planar sector of the Φ3
D-matricial QFT model one has to replace the formal parameters tl

in the generating function Fg(t) of intersection numbers by precisely determined moments
{%l} resulting from the renormalisation of the planar sector of the model.

3. Summary of previous results

3.1. Setup

We are following the definitions in [GSW18] to generalise their results to higher genera in
the same notation. Define the following tuple n = (n1, n2, .., nD

2
), ni ∈ N with the 1-norm

|n| = n1 + n2 + .. + nD
2

. The number of tuples n of norm |n| is
(|n|+D

2
−1

D
2
−1

)
. A further

convention will be ND/2
N := {m ∈ ND/2 : |m| ≤ N}.

The action of the Φ3
D-model is then defined by

S[Φ] = V

( ∑
n,m∈ND/2N

Z
Hnm

2
ΦnmΦmn +

∑
n∈ND/2N

(κ+νEn+ζE2
n)Φnn +

λbareZ
3/2

3

∑
n,m,k∈ND/2N

ΦnmΦmkΦkn

)
,

(3.1)
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where Hnm := En + Em. The constant V is first of all a formal parameter; for a non-
commutative quantum field theory model, V = ( θ

4
)D/2 will be related to the deformation

parameter of the Moyal plane. The parameters λbare, κ, ν, ζ, Z and soon µbare are N -
dependent renormalisation parameters. They will be determined by normalisation condi-
tions parametrised by physical mass µ and coupling constant λ. The matrices (Φnm) are
multi-indexed Hermitian matrices, Φnm = Φmn. The external matrix E = (Emδn,m) can

be assumed to be diagonal and has the eigenvalues En =
µ2bare

2
+ e
( |n|
µ2V 2/D

)
, where e(x) is

a monotonously increasing differentiable function with e(0) = 0 (on the noncommutative
Moyal plane, e(x) = x).

The next step is to define the partition function

Z[J ] =

∫
DΦ exp (−S[Φ] + V Tr(JΦ))

=K exp
(
− λbareZ

3/2

3V 2

∑
n,m,k∈ND/2N

∂3

∂Jnm∂Jmk∂Jkn

)
Zfree[J ], (3.2)

Zfree[J ] := exp

(
V

∑
n,m∈ND/2N

(Jnm − (κ+ νEn + ζE2
n)δm,n)(Jmn − (κ+ νEn + ζE2

n)δm,n)

2ZHnm

)
,

K :=

∫
DΦ exp

(
− V Z

∑
n,m∈ND/2N

Hnm

2
ΦnmΦmn

)
,

where the source (Jnm) is a multi-indexed Hermitian matrix of rapidly decaying entries.
The correlation functions are defined as moments of the partition function. It turns

out by earlier work [GW14] that the correlation functions expand into multi-cyclic contri-

butions. It is therefore convenient to work with Jp1...pNβ :=
∏Nβ

j=1 Jpjpj+1
with pNβ+1 ≡ p1.

Taking into account that genus-g correlation functions scale with V −2g [BIPZ78, GW14],
the following expansion of the partition function is obtained:

log
Z[J ]

Z[0]
=:

∞∑
B=1

∞∑
1≤N1≤...≤NB

∑
p11,...,p

B
NB
∈ND/2N

∞∑
g=0

V 2−B−2g
G

(g)

|p11...p1N1
|...|pB1 ...pBNB |

S(N1,...,NB)

B∏
β=1

Jpβ1 ...pβNβ
Nβ

.

(3.3)

We call the moment G
(g)

|p11...p1N1
|...|pB1 ...pBNB |

an (N1 + ...+NB)-point function of genus g; when

the Nβ do not matter, a correlation function of genus g with B boundary components.
Finally, we recall from [GSW18] the Ward-Takahashi identity for |q| 6= |p|∑

m∈ND/2N

∂2

∂Jqm∂Jmp
Z[J ] =

∑
m∈ND/2N

V

(Eq − Ep)Z

(
Jmq

∂

∂Jmp
− Jpm

∂

∂Jqm

)
Z[J ]

− V

Z
(ν + ζHpq)

∂Z[J ]

∂Jqp
. (3.4)

It arises from invariance of the partition function under unitary transformation Φ 7→
U †ΦU of the integration variable [DGMR07], or directly from the structure of Zfree[J ]
[HW18].
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3.2. Dyson-Schwinger equation for B = 1

The Dyson-Schwinger equations are determined in [GSW18] for g = 0 and solved for all
planar correlation functions. To be safe in using the results of [GSW18], we define

G|p11...p1N1
|...|pB1 ...pBNB |

:=
∞∑
g=0

V −2gG
(g)

|p11...p1N1
|...|pB1 ...pBNB |

(3.5)

and the shifted 1-point function

W
(g)
|p|

2λ
:= G

(g)
|p| + δg,0

Fp

λ
, W|p| :=

∞∑
g=0

V −2gW
(g)
|p| ,

Fp := Ep −
λν

2
=
µ2

2
+ e
( |p|
µ2V 2/D

)
. (3.6)

Three relations between renormalisation parameters are immediate [GSW18]: λ =
Z1/2λbare,

λζ
Z

= 1 − 1
Z

and µ2
bare = µ2 + λν. Now we can use all the Dyson-Schwinger

equations evaluated in [GSW18]. The 1-point function satisfies [GSW18, eq. (3.12)]

(W|p|)
2 + 2λνW|p| +

2λ2

V

∑
n∈ND/2N

W|p| −W|n|
F 2
p − F 2

n

+
4λ2

V 2
G|p|p| =

4F 2
p

Z
+ C, (3.7)

where C := −λ2ν2(1+Z)+4κλ
Z

. The convention (3.5) immediately gives the genus expansion:

∑
h+h′=g

W
(h)
|p| W

(h′)
|p| + 2λνW

(g)
|p| +

2λ2

V

∑
n∈ND/2N

W
(g)
|p| −W

(g)
|n|

F 2
p − F 2

n

+ 4λ2G
(g−1)
|p|p| = δ0,g

(4F 2
p

Z
+ C

)
.

(3.8)

We choose here that C has no expansion in 1
V

because non-planar correlation functions
do not need to be renormalised. There would be no problem treating a non-vanishing rhs
in (3.8) at any g; only the formulae become clumsy.

3.3. Integral equations

Introducing the measure

%(X) :=
2(2λ)2

V

∑
n∈ND/2N

δ(X − 4F 2
n), (3.9)

we can rewrite (3.8) as an integral equation. The measure has support in [4F 2
0 ,Λ

2
N ] where

Λ2
N = max(4F 2

n : |n| = N ). For quantum field theory it is necessary to take a large-N
limit. In general this produces divergences which need renormalisation. Optionally the
large-N limit can be entangled with a limit V →∞ which, supposing the Fn scale down
with V (as e.g. in (3.6)), can be designed to let %(X) converge to a continuous function.
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We also pass to mass-dimensionless quantities via multiplication by specified powers of µ
[GSW18]. This amounts to choose the mass scale as µ = 1.

To keep maximal flexibility we consider a measure % with support in [1,Λ2] of which a
limit Λ → ∞ has to be taken for quantum field theory. As already observed in [MS91],
for g = 0 the resulting integral equation extends to a closed equation for a sectionally
holomorphic function W0(X) from which one extracts W

(0)
|p| = W0(4F 2

p ). The same refor-

mulation of (3.8) can be done for any genus:∑
h+h′=g

Wh(X)Wh′(X) + 2λνWg(X) +

∫ Λ2

1

dY %(Y )
Wg(X)−Wg(Y )

X − Y
(3.10)

= −4λ2Gg−1(X|X) + δ0,g

(X
Z

+ C
)
,

where a similar extension of the 1 + 1-point function is assumed. In general, the original
correlation functions are recovered from the continuous formulation via

G
(g)

|p11...p1N1
|...|pB1 ...pBNB |

= Gg

(
4F 2

p11
, ..., 4F 2

p1N1

|...|4F 2
pB1
, ..., 4F 2

pBNB

)
,

W
(g)
|p| = Wg(4F

2
p ).

Using techniques for boundary values of sectionally holomorphic functions [MS91], eas-
ily adapted to include Z − 1, ν, C 6= 0 [GSW18], one obtains the following solution of
(3.10) for the 1-point function at genus g = 0:

W0(X) =

√
X + c√
Z
− λν +

1

2

∫ Λ2

1

dY
%(Y )

(
√
X + c+

√
Y + c)

√
Y + c

. (3.11)

Here, the finite parameter c and the (for Λ2 →∞) possibly divergent Z, ν are determined
by renormalisation conditions depending on the dimension:

W0(1) = 1︸ ︷︷ ︸
D≥2

, W ′
0(X) =

1

2︸ ︷︷ ︸
D≥4

, W ′′
0 (1) = −1

4︸ ︷︷ ︸
D=6

,

together with the convention Z = 1 for D ∈ {2, 4} and ν = 0 for D = 2. For given
coupling constant λ as the only remaining parameter, these equations can be solved for c:

(1−
√

1 + c)(1 +
√

1 + c)δD,6 =
1

2

∫ Λ2

1

dY
%(Y )

(
√

1 + c+
√
Y + c)D/2

√
Y + c

. (3.12)

By the implicit function theorem, (3.12) has a smooth solution in an inverval −λc < λ <
λc, in any dimension D ∈ {0, 2, 4, 6}. The Lagrange inversion theorem gives the expansion
of c in λ2:

c =
∞∑
n=1

1

n!

dn−1

dwn−1

∣∣∣∣∣
w=0

( w
2

∫ Λ2

1
dY %(Y )

(
√

1+w+
√
Y+w)D/2

√
Y+w

(1−
√

1 + w)(1 +
√

1 + w)δD,6

)n

.

After that renormalisation procedure the limit Λ2 →∞ is safe in all correlation function
and any dimension D ∈ {2, 4, 6}.
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3.4. Dyson-Schwinger equation for B > 1

An (N1 + ...+NB)-point function of genus g is given by the (1 + 1 + ...+ 1)-point function
of genus g with B boundary components through the explicit formula [GSW18, Prop. 4.1]

Gg(X
1
1 , ..., X

1
N1
|...|XB

1 , ..., X
B
NB

)

= λN1+...+NB−B
N1∑
k1=1

...

NB∑
kB=1

Gg(X
1
k1
|...|XNB

kB
)

B∏
β=1

Nβ∏
lβ=1
lβ 6=kβ

4

Xβ
kβ
−Xβ

lβ

. (3.13)

Furthermore, a (1 + 1 + · · · + 1)-point function Gg(X1|X/J) with B > 1 boundary com-
ponents and genus g fulfils the linear integral equation [GSW18, eq. (4.5)]

0 =λGg−1(X1|X1|X/J) + λ
∑

h+h′=g

∑
I⊂J

1≤|I|≤B−2

Gh(X1|X/I)Gh′(X1|X/J\I)

+
∑

h+h′=g

Wh(X1)Gh′(X1|X/J) + λνGg(X1|X/J) + λ
∑
β∈J

Gg(X1, Xβ, Xβ|X/J\{β})

+
1

2

∫ Λ2

1

dY %(Y )
Gg(X1|X/J)−Gg(Y |X/J)

X1 − Y
, (3.14)

where J = {2, 3, .., B} and Gg(X/I) := Gg(Xi1|Xi2|...|Xip) if I = {i1, ..., ip}. The differ-
ence to the planar sector (g = 0) is the first term indexed g − 1 which only contributes if
g ≥ 1. Furthermore, the entire sector of genus h < g contributes to the genus-g sector.

The equations (3.14) for g = 0 have been solved in [GSW17]:

G0(X|Y ) =
4λ2

√
X + c

√
Y + c(

√
X + c+

√
Y + c)2

,

G(X1| . . . |XB) =
dB−3

dtB−3

( (−2λ)3B−4

(R(t))B−2
√
X1+c−2t

3 · · ·
√
XB+c−2t

3

)∣∣∣∣∣
t=0

, B ≥ 3, (3.15)

where R(t) := lim
Λ2→∞

( 1√
Z
−
∫ Λ2

1

dTρ(T )√
T+c

1

(
√
T+c+

√
T+c−2t)

√
T+c−2t

)
.

Note that multiple t-derivatives of R(t) at t = 0 produce renormalised moments of the
measure (3.9):

%l := lim
Λ2→∞

( δl,0√
Z
− 1

2

∫ Λ2

1

dT ρ(T )

(
√
T+c)3+2l

)
. (3.16)

In fact the proof of (3.15) consists in a resummation of an ansatz which involves Bell
polynomials (see Definition 4.9) in the {%l}.

The next goal is to find solutions for (3.10) and (3.14) at any genus by employing
techniques of complex analysis. The moments (3.16) will be of paramount importance for
that. We will find that all solutions are universal in terms of {%l}. The concrete model
characterised by the sequence En, coupling constant λ and the dimension D only affects
the values of {%l} via the measure (3.9) and the D-dependent solution c of (3.12).

8
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4. Solution of the non-planar sector

4.1. Change of variables

As already mentioned, the equation for W0 and its solution holomorphically extend to
(certain parts of) the complex plane. The corresponding techniques have been brought to
perfection by Eynard. We draw a lot of inspiration from the exposition given in [Eyn16].
Starting point is another change of variables:

z :=
√
X + c,

Gg(z(X)) :=Wg(X) for the 1-point function,

Gg(z1
1(X1

1 ), ..., z1
N1

(X1
N1

)|...|zB1 (XB
1 ), ..., zBNB(XB

NB
)) :=Gg(X

1
1 , ..., X

1
N1
|...|XB

1 , ..., X
B
NB

).

In the beginning, z is defined to be positive; nevertheless all correlation functions have
an analytic continuation. We define them by the complexification of the equations (3.10)
and (3.14), where we assume that the complex variables fulfil the equations if they lie
on the interval [

√
1 + c,

√
1 + Λ2]. By recursion hypothesis each correlation function is

analytic for non-vanishing imaginary part of the complex variables zi, possibly with the
exception of diagonals zi = ±zj.

We rephrase some of the earlier results in this setup. The solutions (3.10), (3.15) and
the formula for the (1 + 1 + 1)-point function given in [GSW17] are easily translated into

G0(z) =
z√
Z
− λν +

1

2

∫ √Λ2+c

√
1+c

dy
%̃(y)

(z + y)y
, %̃(y) := 2y%(

√
y2 − c), (4.1)

G0(z1|z2) =
4λ2

z1z2(z1 + z2)2
, G0(z1|z2|z3) = − 32λ5

ρ0z3
1z

3
2z

3
3

.

Note that %̃(y) has support in [
√

1 + c,
√

Λ2 + c] ⊂ R+ because of c > −1 [GSW18].
Furthermore, G0(z) extends to a sectionally holomorphic function with branch cut along
[−
√

1 + Λ2,−
√

1 + c], the (1 + 1)-point function of genus zero is holomorphic outside
zi = 0 and the diagonals z1 = −z2, whereas the (1 + 1 + 1)-point function (and all
higher-B functions) at genus 0 are meromorphic with only pole at zi = 0.

Definition 4.1. Let K̂z be the integral operator of the linear integral equation,

K̂zf(z) := G0(z)f(z) + λνf(z) +
1

2

∫ √Λ2+c

√
1+c

dy %̃(y)
f(z)− f(y)

z2 − y2
,

where G0(z) is given by (4.1).

In this notation, (3.10) takes the form

K̂zGg(z) = −1

2

g−1∑
h=1

Gh(z)Gg−h(z)− 2λ2Gg−1(z|z). (4.2)

We will heavily rely on:

9
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Lemma 4.2. The operator K̂z defined in Definition 4.1 satisfies

K̂z

(1

z

)
=

1√
Z
, K̂z

( 1

z3+2n

)
=

n∑
k=0

%k
z2n+2−2k

.

Proof. This is a reformulation of [GSW17, Lemma (5.5)].

The first step beyond [GSW17] is to determine the 1-point function at genus 1:

Proposition 4.3. The solution of (4.2) for g = 1 is

G1(z) =
2λ4%1

%2
0z

3
− 2λ4

%0z5
,

where the %l are given in (3.16).

Proof. From (4.1) we have −2λ2G0(z|z) = −2λ4

z4
. Lemma 4.2 suggests the ansatz G1(z) =

β
z3

+ γ
z5

with K̂zG1(z) = β%0
z2

+ γ%0
z4

+ γ%1
z2

. Comparison of coefficients yields the assertion.

The N -point function of genus 1 is given by the explicit formula [GSW18, Prop. 3.1],
which holds for every genus g. In complex variables it reads

G1(z1, ..., zN) =
N∑
k=1

G1(zk)

2λ

N∏
l=1,l 6=k

4λ

z2
k − z2

l

.

Next we express equation (3.14) in the new variables. To find more convenient results
we use (3.13) to write with J = {2, .., B}

Gg(z1, zβ, zβ|z/J\{β}) = lim
zα→zβ

Gg(z1, zα, zβ|z/J\{β})

=16λ2

Gg(z1|z/J\{β})
(z2

1 − z2
β)2

− lim
zα→zβ

Gg(zα|z/J\{β})
z21−z2α

− Gg(zβ |z/J\{β})
z21−z2β

(zα + zβ)(zα − zβ)


=16λ2 ∂

2zβ∂zβ

Gg(z1|z/J\{β})− Gg(zβ|z/J\{β})
z2

1 − z2
β

(4.3)

and Gg(z1, z2, z2) = 8λ ∂
2z2∂z2

Gg(z1)−Gg(z2)

z21−z22
for one boundary component.

Inserting (4.3) into (3.14) gives with Definition 4.1 the following formula for Gg(z1|z/J),
for J = {2, .., B} 6= ∅:

0 = K̂z1Gg(z1|z/J) + λGg−1(z1|z1|z/J) + λ

g∑
h=0

∑
I⊂J

1≤|I|≤B−2

Gh(z1|z/I)Gg−h(z1|z/J\I)

+

g∑
h=1

Gh(z1)Gg−h(z1|z/J) +
(2λ)3

(2λ)δB,2

∑
β∈J

∂

zβ∂zβ

Gg(z1|z/J\{β})− Gg(zβ|z/J\{β})
z2

1 − z2
β

. (4.4)

10
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4.2. Boundary creation operator

We are going to construct an operator which plays the rôle of the formal Tn := 1
En

∂
∂En

applied to the logarithm of the partition function Z[0] given in (3.2). In dimension D = 0
where Z − 1 = κ = ν = ζ = 0 and µbare = µ, λbare = λ we formally have

Tn log
(∫

dΦ e−tr(EΦ2+λ
3

Φ3)
)

= − 1

Z[0]

∫
dΦ

∑
m

ΦmnΦnm

En
e−tr(EΦ2+λ

3
Φ3)

=
1

λZ[0]

∫
dΦ

1

En

( ∂

∂Φnn

+ 2EnΦnn

)
e−tr(EΦ2+λ

3
Φ3)

=
2

λZ[0]

∫
dΦ Φnne

−tr(EΦ2+λ
3

Φ3) =
2

λ
G|n|. (4.5)

By repeated application of Tni we formally produce an (1 + · · · + 1)-point function. Of
course, these operations are not legitimate: In dimensions D ∈ {2, 4, 6} we have to include
for renormalisation the Φ-linear terms in (3.1), and the partition function has no chance
to exist for real λ.

Nevertheless, we are able to show that Tni admits a rigorous replacement which we call
the boundary creation operator. It will be our main device:

Definition 4.4. For J = {1, . . . , p} let |J | := p and zJ := (z1, . . . , zp). Then

Â†gzJ ,z :=

3g−3+|J |∑
l=0

(
− (3 + 2l)%l+1

%0z3
+

3 + 2l

z5+2l

) ∂

∂%l
+
∑
i∈J

1

%0z3zi

∂

∂zi
. (4.6)

Note that the last variable z in Â†gzJ ,z plays a very different rôle than the zJ !

Lemma 4.5. The differential operators Â†gzJ ,z are commutative,

Â†gzJ ,zp,zqÂ
†g
zJ ,zp

= Â†gzJ ,zq ,zpÂ
†g
zJ ,zq

.

Proof. Being a derivative, it is enough to verify Â†gzJ ,zp,zqÂ
†g
zJ ,zp

(%k) = Â†gzJ ,zq ,zpÂ
†g
zJ ,zq

(%k) for

any k and Â†gzJ ,zp,zqÂ
†g
zJ ,zp

(zi) = Â†gzJ ,zq ,zpÂ
†g
zJ ,zq

(zi) for any i ∈ J . This is guaranteed by

Â†gzJ ,zp,zqÂ
†g
zJ ,zp

(%k) =
(3 + 2k)(5 + 2k)%k+2

%2
0z

3
qz

3
p

− (3 + 2k)(5 + 2k)

%0z7+2k
q z3

p

− 3(3 + 2k)%k+1%1

%2
0z

3
qz

3
p

+
3(3 + 2k)%k+1

%2
0z

5
pz

3
p

+
3(3 + 2k)%k+1

%2
0z

3
qz

5
p

− (3 + 2k)(5 + 2k)

%0z3
qz

7+2k
p

,

Â†gzJ ,zp,zqÂ
†g
zJ ,zp

(zi) =
3%1

%2
0z

3
qz

3
pzi
− 3

%2
0z

5
qz

3
pzi
− 3

%2
0z

3
qz

5
pzi
− 1

%2
0z

3
qz

3
pz

3
i

.

This shows that boundary components labelled by zi behave like bosonic particles at
position zi. The creation operator (2λ)3Â†gzJ ,z adds to a |J |-particle state another particle
at position z. The |J |-particle state is precisely given by Gg(z/J):

11
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Theorem 4.6. Assume that Gg(z) is, for g ≥ 1, an odd function of z 6= 0 and a rational
function of %0, . . . , %3g−2 (true for g = 1). Then the (1 + 1 + ... + 1)-point function of
genus g ≥ 1 and B boundary components of the remormalised Φ3

D-matricial QFT model
in dimension D ∈ {2, 4, 6} has the solution

Gg(z1|...|zB) = (2λ)3B−4Â†gz1,...,zB
(
Â†gz1,...,zB−1

(
· · · Â†gz1,z2Gg(z1)...

))
, zi 6= 0, (4.7)

where Gg(z1) is the 1-point function of genus g ≥ 1 and the boundary creation operator

Â†gzJ is defined in Definition 4.4. For g = 0 the boundary creation operators act on the
(1 + 1)-point function

G0(z1|...|zB) = (2λ)3B−6Â†0z1,...,zB
(
Â†0z1,...,zB−1

(
· · · Â†0z1,z2,z3G0(z1|z2)...

))
.

Proof. We rely on several Lemmata proved in Appendix A. Regarding (4.7) as a definition,
we prove in Lemma A.6 an equivalent formula for the linear integral equation (4.4). This
expression is satisfied because Lemma A.3 and Lemma A.5 add up to 0. Consequently,
the family of functions (4.7) satisfies (4.4). This solution is unique because of uniqueness
of the perturbative expansion.

Corollary 4.7. Let J = {2, ..., B}. Assume that z 7→ Gg(z) is holomorphic in C\{0} with
Gg(z) = −Gg(−z) for all z ∈ C \ {0} and g ≥ 1. Then all Gg(z1|z/J) with 2− 2g−B < 0

1. are holomorphic in every zi ∈ C \ {0}
2. are odd functions in every zi, i.e. Gg(−z1|z/J) = −Gg(z1|z/J) for all z1, zi ∈ C\{0}.

Proof. The boundary creation operator Â†gzJ ,z of Definition 4.4 preserves holomorphicity
in C \ {0} and maps odd functions into odd functions. Thus only the initial conditions
need to be checked. They are fulfilled for G0(z1|z2|z3) and G1(z1) according to (4.1); for
g ≥ 2 by assumption.

The assumption will be verified later in Proposition 4.13.

Corollary 4.8. The boundary creation operator Â†gzJ ,z1 acting on an (N1 + ...+NB)-point
function of genus g gives the following (1 +N1 + ...+NB)-point function of genus g

Gg(z1|z1
1 , .., z

1
N1
|..|zB1 , .., zBNB) = (2λ)3Â†g

z11 ,..,z
1
N1
,...,zB1 ,..,z

B
NB

,z1
(Gg(z1

1 , .., z
1
N1
|..|zB1 , .., zBNB)).

Proof. This follows from the change to complex variables in equation (3.13) and
Â†gzJ ,z1(

1
z2i−z2j

) = 0 for 1 6= i 6= j 6= 1.

4.3. Solution of the 1-point function for g ≥ 1

It remains to check that the 1-point function Gg(z) at genus g ≥ 1 satisfies the assumptions
of Theorem 4.6 and Corollary 4.7, namely:

1. Gg(z) depends only on the moments %0, . . . , %3g−2 of the measure,

2. z 7→ Gg(z) is holomorphic on C \ {0} and an odd function of z.

12
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We establish these properties by solving (4.2) via a formula for the inverse of K̂z. This
formula is inspired by topological recursion, see e.g. [Eyn16]. We give a few details in
section 4.4.

Definition 4.9. The Bell polynomials are defined by

Bn,k(x1, ..., xn−k+1) =
∑ n!

j1!j2!...jn−k+1!

(x1

1!

)j1 (x2

2!

)j2
...

(
xn−k+1

(n− k + 1)!

)jn−k+1

for n ≥ 1, where the sum is over non-negative integers j1, ..., jn−k+1 with j1 + ...+jn−k+1 =
k and 1j1 +...+(n−k+1)jn−k+1 = n. Moreover, one defines B0,0 = 1 and Bn,0 = B0,k = 0
for n, k > 0.

An important application is Faà di Bruno’s formula, the n-th order chain rule:

dn

dxn
f(g(x)) =

n∑
k=1

f (k)(g(x))Bn,k(g
′(x), g′′(x), ..., g(n−k+1)(x)). (4.8)

Proposition 4.10. Let f(z) =
∑∞

k=0
a2k
z2k

be an even Laurent series about z = 0 bounded

at∞. Then the inverse of the integral operator K̂z of Definition 4.1 is given by the residue
formula[
z2K̂z

1

z

]−1

f(z) = − Res
z′→0

[K(z, z′) f(z′)dz′] , K(z, z′) :=
2

(G0(z′)− G0(−z′))(z′2 − z2)
.

Proof. The formulae (4.1) give rise to the series expansion

1

2
(G0(z′)− G0(−z′)) =

∞∑
l=0

%l(z
′)2l+1, (4.9)

where the %l are given in (3.16). The series of its reciprocal is found using (4.8):

2

(G0(z′)− G0(−z′))
=

1

z′%0

∞∑
m=0

(z′)2m

m!
Sm, (4.10)

Sm :=
dm

dτm

∣∣∣
τ=0

( ∞∑
l=0

%l
%0

τ l
)−1

=
m∑
i=0

(−1)ii!

%i0
Bm,i(1!%1, 2!%2, ..., (m− i+ 1)!%m−i+1).

Multiplication by the geometric series gives

K(z, z′) = − 1

z2z′%0

∞∑
n,m=0

(z′)2m+2n

m!z2n
Sm. (4.11)

The residue of a monomial in f(z′) =
∑∞

k=0
a2k

(z′)2k
is then

Resz′→0

[
K(z, z′)

dz′

(z′)2k

]
= − 1

%0

k∑
j=0

Sj
j!z2k−2j+2

. (4.12)

13
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In the next step we apply the operator z2K̂ 1
z

to (4.12), where Lemma 4.2 is used:

z2K̂z

(1

z

(−1)

%0

k∑
j=0

Sj
j!z2k−2j+2

)
= −z

2

%0

k∑
j=0

k−j∑
i=0

Sj%i
j!z2k−2j−2i+2

= −
k∑
j=0

Sk−j
(k − j)!z2j

− 1

%0

k−1∑
i=0

k∑
j=i+1

Sk−j%j−i
(k − j)!z2i

. (4.13)

The last sum over j is treated as follows, where the Bell polynomials are inserted for Sm:

k∑
j=i+1

Sk−j%j−i
(k − j)!

=
k−i∑
j=1

Sk−j−i%j
(k − j − i)!

=
k−i∑
j=1

k−j−i∑
l=0

(−1)ll!

(k − j − i)!%l0
%jBk−j−i,l(1!%1, ..., (k − j − i− l + 1)!%k−j−i−l+1)

=

k−j−i∑
l=0

(−1)ll!

%l0(k − i)!

k−i−l∑
j=1

(
k − i
j

)
j! %jBk−j−i,l(1!%1, ..., (k − j − i− l + 1)!%k−j−i−l+1)

=
k−i∑
l=0

(−1)l(l + 1)!

%l0(k − i)!
Bk−i,l+1(1!%1, ..., (k − i− l)!%k−i−l)

= −%0
Sk−i

(k − i)!
.

We have used Bn,0 = 0 and B0,n = 0 for n > 0 to eliminate some terms, changed the order
of sums, and used the following identity for the Bell polynomials [GSW17, Lemma 5.9]

n−k∑
j=1

(
n

j

)
xjBn−j,k(x1, ..., xn−j−k+1) = (k + 1)Bn,k+1(x1, ..., xn−k). (4.14)

Inserted back we find that (4.13) reduces to the (j = k)-term of the first sum in the last
line of (4.13), i.e.

z2K̂z

(1

z
Res
z′→0

[
KB(z, z′)

dz′

(z′)2k

])
= − 1

z2k
.

This finishes the proof.

Theorem 4.11. For any g ≥ 1 and z ∈ C \ {0} one has

Gg(z) =
1

2z
Res
z′→0

[
K(z, z′)

{ g−1∑
h=1

Gh(z′)Gg−h(z′) + (2λ)2Gg−1(z′|z′)
}

(z′)2dz′

]
. (4.15)

Proof. The formula arises when applying Proposition 4.10 to (4.2) and holds if the
function in { } is an even Laurent polynomial in z′ bounded in ∞. This is the case
for g = 1 where only G0(z′|z′) = λ2

(z′)4
contributes. Evaluation of the residue recon-

firms Proposition 4.3. We proceed by induction in g ≥ 2, assuming that all Gh(z′)

14
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with 1 ≤ h < g on the rhs of (4.15) are odd Laurent polynomials bounded in ∞;
their product is even. The induction hypothesis also verifies the assumption of The-
orem 4.6 so that Gg−1(−z′|−z′) = −Gg(z′|−z′) = Gg(z′|z′) is even and, because of

Gg−1(z′|z′′) = (2λ)3Â†gz′′,z′Gg−1(z′′), inductively a Laurent polynomial bounded in∞. Thus,
equation (4.15) holds for genus g ≥ 2 and, as consequence of (4.12), Gg(z) is again an odd
Laurent polynomial bounded in ∞. Equation (4.15) is thus proved for all g ≥ 1, and the
assumption of Theorem 4.6 is verified.

A more precise characterisation can be given. It relies on

Definition 4.12. A polynomial P (x1, x2, . . . ) is called n-weighted if∑∞
k=1 kxk

∂
∂xk

P (x1, x2, . . . ) = nP (x1, x2, . . . ).

The Bell polynomials Bn,k(x1, . . . , xn−k+1) are n-weighted. The number of monomials in
an n-weighted polynomial is p(n), the number of partitions of n. The sequence p(n) is
OEIS A000041 and starts with (1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, . . . ). The
product of an n-weighted by an m-weighted polynomial is (m+ n)-weighted.

Proposition 4.13. For g ≥ 1 one has

Gg(z) = (2λ)4g

3g−2∑
k=0

P3g−2−k(%)

%2g−1
0 z2k+3

,

where P0 ∈ Q and the Pj(%) with j ≥ 1 are j-weighted polynomials in {%1
%0
, . . . ,

%j
%0
} with

rational coefficients.

Proof. The case g = 1 is directly checked. We proceed by induction in g for both terms

in { } in (4.15). The hypothesis gives Gh(z′)Gg−h(z′) = (2λ)4g
∑3g−4

k=0
P3g−4−k(%)

%2g−2
0 (z′)2k+6

. In the

second term in { }, Gg−1(z|z) = (2λ)2Â† g−1
z,z Gg−1(z), the three types of contributions in

the boundary creation operator act as follows:

(2λ)4Â† g−1
z′,z′ Gg−1(z′) =

(2λ)4g

%2g−2
0

3g−5∑
k=0

( 3g−5−k∑
l=0

( %l+1

%0(z′)3
+

1

(z′)5+2l

)P3g−5−k−l(%)

(z′)2k+3
+

1

(z′)4

P3g−5−k(%)

(z′)2k+4

)
=

(2λ)4g

%2g−2
0

3g−5∑
k=0

(P3g−4−k(%)

(z′)2k+6
+
P3g−5−k(%)

(z′)2k+8

)
,

which has the same structure as Gh(z′)Gg−h(z′). Application of (4.12) yields

1

z
Res
z′→0

[
K(z, z′)dz′(z′)2(2λ)4g

3g−4∑
k=0

P3g−4−k(%)

%2g−2
0 (z′)2k+6

]
= (2λ)4g

3g−4∑
k=0

k+2∑
j=0

P3g−4−k(%)Sj(%)

%2g−1
0 z2k+7−2j

= (2λ)4g

3g−2∑
k=0

P3g−2−k(%)

%2g−1
0 z2k+3

,

because Sj(%) is also a j-weighted polynomial by (4.10).

In particular, this proves the assumption of Theorem 4.6, namely that Gg(z) depends only
on {%0, . . . , %3g−2}. To be precise, we reciprocally increase the genus in Theorem 4.6 and
Proposition 4.13.
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4.4. Remarks on topological recursion

A (1+1+ ...+1)-point function of genus g with B boundary components fulfils a universal
structure called topological recursion. To introduce it here we have to define the following
functions:

Definition 4.14. The function ωg,B is defined by

ωg,B(z1, ..., zB) :=

(
B∏
i=1

zi

)(
Gg(z1|...|zB) + 16λ2 δg,0δ2,B

(z2
1 − z2

2)2

)
, B > 1

ωg,1(z) :=
zGg(z)

2λ

and the spectral curve y(x) by x(z) = z2 and

y(z) :=
G0(z)

2λ
=

z

2λ
√
Z
− ν

2
+

1

4λ

∫ √1+Λ2

√
1+c

dt
%̃(t)

t(t+ z)
.

It can be checked that with these definitions, up to trivial redefinitions by powers of 2λ,
the theorems proved in topological recursion [Eyn16] apply. These determine all ωg,B with
2− 2g −B < 0 out of the initial data y(z) and ω0,2:

Theorem 4.15 ([Eyn16, Thm. 6.4.4]). For 2− 2g − (1 + B) < 0 and J = {1, ..., B} the
function ωg,B+1(z0, ..., zB) is given by topological recursion

ωg,B+1(z0, ..., zB)

= Res
z→0

[
K(z0, z) dz

(
ωg−1,B+2(z,−z, z/J) +

′∑
h+h′=g
I]I′=J

ωh,|I|+1(z, z/I)ωh′,|I′|+1(−z, z/I′)
)]
,

where K(z0, z) = 1
(z2−z20)(y(z)−y(−z)) and the sum

∑′ excludes (h, I) = (0, ∅) and (h, I) =

(g, J).

This theorem motivated our ansatz for an inverse of K̂z as the residue involving K(z, z′).
The case J = ∅ of Theorem 4.15 is essentially the same as Theorem 4.11. Both proofs
are of comparable difficulty and length. For us there is no need to prove the general case
because higher ω(z/J) can be obtained from Theorem 4.6.

5. A Laplacian to compute intersection numbers

5.1. Free energy and boundary annihilation operator

Definition 5.1. We introduce the operators

Â†z :=
∞∑
l=0

(
− (3 + 2l)%l+1

%0z3
+

3 + 2l

z5+2l

) ∂

∂%l
, N̂ = −

∞∑
l=0

%l
∂

∂%l
,

Âžf(•) := −
∞∑
l=0

Res
z→0

[z4+2l%l
3 + 2l

f(z)dz
]
. (5.1)

We call Âž a boundary annihilation operator acting on Laurent polynomials f .
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Proposition 5.2. There is a unique function Fg of {%l} satisfying Gg(z) = (2λ)4Â†zFg,

F1 = − 1

24
log %0, Fg =

1

(2g − 2)(2λ)4
ÂžGg(•) for g ≥ 1.

The Fg have for g > 1 a presentation as

Fg = (2λ)4g−4P3g−3(%)

%2g−2
0

, (5.2)

where P3g−3(%) is a (3g − 3)-weighted polynomial in {%1
%0
, . . . , %3g−3

%0
}.

Proof. The case g = 1 is checked by direct comparison with (4.1). From Proposition 4.13
we conclude

1

(2λ)4
ÂžGg(•) = −(2λ)4g−4 Res

z→0

[ ∞∑
l=0

%lz
4+2l

(3 + 2l)

3g−2∑
k=0

P3g−2−k(%)

%2g−1
0 z2k+3

dz
]

= (2λ)4g−4

3g−2∑
k=1

%k−1

%0
· P3g−2−k(%)

%2g−2
0

= (2λ)4g−4P3g−3(%)

%2g−2
0

,

which confirms (5.2). Observe that the total %-counting operator N̂ applied to any poly-
nomial in {%1

%0
, %2
%0
, . . . } is zero. Therefore, for g > 1,

N̂
( 1

(2λ)4
ÂžGg(•)

)
= (2g − 2) ·

( 1

(2λ)4
ÂžGg(•)

)
.

The boundary annihilation operator is designed to satisfy Âž ◦ Â†• = N̂. Dividing the
previous equation by (2g − 2) and inserting the ansatz for Fg given in the Proposition,
we have

0 = N̂Fg −
1

(2λ)4
ÂžGg(•) = Âž

(
Â†•Fg −

1

(2λ)4
Gg(•)

)
.

Since f(z) := Â†zFg − 1
(2λ)4
Gg(z) is by (5.2) and Proposition 4.13 a Laurent polynomial

bounded at ∞, application of Âž can only vanish if f(z) ≡ 0. This finishes the proof.

Remark 5.3. Proposition 5.2 shows that the Fg provide the most condensed way to de-
scribe the non-planar sector of the Φ3-matricial QFT model. All information about the
genus-g sector is encoded in the p(3g− 3) rational numbers which form the coefficients in
the (3g − 3)-weighted polynomial in {%1

%0
, %2
%0
, . . . }. From these polynomials we obtain the

(1 + · · ·+ 1)-point function with B boundary components via Gg(z) = (2λ)4Â†zFg followed
by Theorem 4.6.

Lemma 5.4. Whenever (2g +B − 2) > 0, the operator N̂ measures the Euler character-
istics,

N̂Gg(z1| . . . |zB) = (2g +B − 2)Gg(z1| . . . |zB).
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Proof. Both cases with (2g+B−2) = 1 are directly checked. The general case follows by
induction from [N̂, Â†gzJ ,z] = Â†gzJ ,z in combination with Theorem 4.6 and N̂Fg = (2g− 2)Fg
for g ≥ 2.

Corollary 5.5.

ÂžGg(•|z2| . . . |zB) = (2λ)3+δB,1(2g +B − 3)Gg(z2| . . . |zB)

whenever (2g +B − 3) > 0.

Hence, up to a rescaling, Âž indeed removes the boundary component previously located
at z. We also have ÂžFg = 0 for all g ≥ 1 so that the Fg play the rôle of a vacuum. Note
that G0(z) cannot be produced by whatever F0.

5.2. The Laplacian

We express in (4.2) Gg(z) = (2λ)4Â†zFg and Gg(z|z) = (2λ)2(Â†z + 1
%0z4

∂
∂z

)(Gg(z)) and

multiply by 2V 4−2g

(2λ)8
ZnpV . Summation over g ≥ 1 gives

0 =
( 2V 2

(2λ)4
K̂zÂ

†
z +

(
Â†z +

1

%0z4

∂

∂z

)
Â†z +

V 2

4(2λ)4z4

)
ZnpV , ZnpV := exp

( ∞∑
g=1

V 2−2gFg

)
.

(5.3)

We invert K̂z via Proposition 4.10 and apply Âž given by the residue in Proposition 5.2:

2V 2

(2λ)4
N̂ZnpV

= −
∞∑
`=0

Res
z→0

[
dz

z3+2`%`
(3 + 2`)

Res
z′→0

[
dz′(z′)2K(z, z′)

((
Â†z′+

1

%0(z′)4

∂

∂z′

)
Â†z′+

V 2

4(2λ)4(z′)4

)]]
ZnpV .

We insert K(z, z′) from Proposition 4.10, expand only the geometric series about z′ = 0
while keeping (4.9). Then the outer residue in z is immediate

2V 2

(2λ)4
N̂ZnpV = Res

z′→0

[
(z′)3 dz′

∑∞
`=0

(z′)2`%`
(3+2`)∑∞

j=0 %j(z
′)2j

((
Â†z′ +

1

%0(z′)4

∂

∂z′

)
Â†z′ +

V 2

4(2λ)4(z′)4

)]]
ZnpV .

We rename z′ to z and introduce the function

R(z) =

∑∞
`=0

%`z
2`

(3+2`)∑∞
j=0 %jz

2j
=

∞∑
m=0

Rm(%) z2m.

The denominator is given by (4.10), without the 1
z′%0

prefactor. It combines with the
numerator to

Rm(%) =
Sm(%)

3m!
−

m∑
k=1

%k
(3 + 2k)%0

Sm−k(%)

(m− k)!
= −2

3

m∑
k=1

k%k
(3 + 2k)%0

Sm−k(%)

(m− k)!
, (5.4)
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where we have used (4.14) for the first Sm(%) to achieve better control of signs.
The residue of V 2

4(2λ)4z4
is immediate and can be moved to the lhs:

2V 2

(2λ)4

(
N̂− 1

24

)
ZnpV =

∞∑
m=0

Rm(%) Res
z→0

[
z3+2m dz

((
Â†z +

1

%0z4

∂

∂z

)
Â†z

]]
ZnpV

=
[ ∞∑
k=0

(
− 3(3 + 2k)%1%k+1R1(%)

%3
0

+
3(3 + 2k)%k+1R2(%)

%2
0

) ∂

∂%k

+
∞∑

k,l=0

(3 + 2k)(3 + 2l)R1(%)

%2
0

%l+1
∂

∂%l
%k+1

∂

∂%k

−
∞∑

k,l=0

(3 + 2k)(3 + 2l)Rl+2(%)

%0

(
%k+1

∂

∂%k

∂

∂%l
+

∂

∂%l
%k+1

∂

∂%k

)
+

∞∑
k,l=0

(3 + 2k)(3 + 2l)Rk+l+3(%)
∂

∂%k

∂

∂%l

+
∞∑
k=0

3(3+2k)%k+1R2(%)

%2
0

∂

∂%k
−
∞∑
k=0

(3+2k)(5+2k)Rk+3(%)

%0

∂

∂%k

]
ZnpV .

Next we separate the %0-derivatives:

2V 2

(2λ)4

(
N̂− 1

24

)
ZnpV

=
[(9R1(%)%2

1

%2
0

− 18R2(%)%1

%0

+ 9R3(%)
) ∂2

∂%2
0

+
(
− 9%2

1R1(%)

%3
0

+
18%1R2(%)

%2
0

+
15R1(%)%2

%2
0

− 30R3(%)

%0

) ∂

∂%0

+
∞∑
k=1

6(3 + 2k)
(
Rk+3(%)− R2(%)%k+1

%0

− Rk+2(%)%1

%0

+
R1(%)%k+1%1

%2
0

) ∂

∂%k

∂

∂%0

+
∞∑

k,l=1

(3 + 2k)(3 + 2l)
(%l+1%k+1R1(%)

%2
0

+Rk+l+3(%)− 2%k+1Rl+2(%)

%0

) ∂

∂%k

∂

∂%l

+
∞∑
k=1

(3k + 2)
(
− 3%1%k+1R1(%)

%3
0

+
6%k+1R2(%)

%2
0

+
(5 + 2k)%k+2R1(%)

%2
0

− 2(5 + 2k)Rk+3(%)

%0

) ∂

∂%k

]
ZnpV .

We isolate F1, i.e. ZnpV = %
− 1

24
0 ZstableV , where ZstableV = 1 +

∑∞
g=2 V

2−2gZg. We commute

the factor %
− 1

24
0 in front of [ ] and move it to the other side:

2V 2

(2λ)4
N̂ZstableV =

[(49%2
1R1(%)

64%4
0

− 49%1R2(%)

32%3
0

− 5R1(%)%2

8%3
0

+
105R3(%)

64%2
0

)
+
(9R1(%)%2

1

%2
0

− 18R2(%)%1

%0

+ 9R3(%)
) ∂2

∂%2
0
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+
(
− 39%2

1R1(%)

4%3
0

+
39%1R2(%)

2%2
0

+
15R1(%)%2

%2
0

− 123R3(%)

4%0

) ∂

∂%0

+
∞∑
k=1

6(3+2k)
(
Rk+3(%)− R2(%)%k+1

%0

− Rk+2(%)%1

%0

+
R1(%)%k+1%1

%2
0

) ∂

∂%k

∂

∂%0

+
∞∑

k,l=1

(3+2k)(3+2l)
(%l+1%k+1R1(%)

%2
0

+Rk+l+3(%)− 2%k+1Rl+2(%)

%0

) ∂

∂%k

∂

∂%l

+
∞∑
k=1

(3+2k)
(
− Rk+3(%)

4%0

+
25%k+1R2(%)

4%2
0

+
Rk+2(%)%1

4%2
0

− 13%1%k+1R1(%)

4%3
0

+
(5+2k)%k+2R1(%)

%2
0

− 2(5+2k)Rk+3(%)

%0

) ∂

∂%k

]
ZstableV .

Next observe

N̂ZstableV =
∞∑
g=2

(V −2)g−1(2g − 2)Zg = 2V −2 d

dV −2

∞∑
g=2

(V −2)g−1Zg = 2V −2 d

dV −2
ZstableV .

Consequently, we obtain a parabolic differential equation in V −2 which is easily solved.
Inserting

R1(%) = − 2

15

%1

%0

, R2(%) =
2

15

%2
1

%2
0

− 4

21

%2

%0

, R3(%) = − 2

15

%3
1

%3
0

+
34

105

%1%2

%2
0

− 2

9

%3

%0

,

we have:

Theorem 5.6. When expressed in terms of the moments of the measure %, the stable
partition function is given by

ZstableV := exp
( ∞∑
g=2

V 2−2gFg(%)
)

= exp
(
− (2λ)4

V 2
∆% + F2(ρ)

)
1,

where

F2 =
(2λ)4

V 2

(
− 21%3

1

160%5
0

+
29

128

%1%2

%4
0

− 35

384

%3

%3
0

)
, (5.5)

∆% := −
(
− 6%3

1

5%3
0

+
111%1%2

70%2
0

− %3

2%0

) ∂2

∂%2
0

−
(2%3

1

%4
0

− 1097%1%2

280%3
0

+
41%3

24%2
0

) ∂

∂%0

−
∞∑
k=1

(3 + 2k)
((
− 2%2

1

5%3
0

+
2%2

7%2
0

)
%k+1 −

3Rk+2(%)%1

2%0

+
3Rk+3(%)

2

) ∂2

∂%k∂%0

−
∞∑

k,l=1

(3+2k)(3+2l)
(
−%1%l+1%k+1

30%2
0

− %k+1Rl+2(%)

4%0

− %l+1Rk+2(%)

4%0

+
Rk+l+3(%)

4

) ∂2

∂%k∂%l

−
∞∑
k=1

(3 + 2k)
((19%2

1

60%4
0

− 25%2

84%3
0

)
%k+1 +

%1Rk+2(%)

16%2
0

− Rk+3(%)

16%0

− (5 + 2k)%1%k+2

30%3
0

− (5 + 2k)Rk+3(%)

2%0

) ∂

∂%k
(5.6)

and Rm(%) given by (5.4).
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Because we are essentially treating the Kontsevich model [Kon92], our Fg are nothing
else than the generators of intersection numbers on the moduli space of complex curves
[Wit91, Kon92, IZ92, Eyn16]. These free energies are listed in different conventions in the
literature. The translation to e.g. [IZ92, Eyn16] is as follows:

[IZ92] : (1− I1) = %0, Ik+1 = −(2k + 1)!!%k for k ≥ 1,

[Eyn16] : (2− t3) = %0, t2k+3 = −%k, for k ≥ 1.

It is clear that Theorem 5.6 translates into the same statement for the generating function
of intersection numbers. We have given this formulation in the very beginning in Theo-
rem 1.1. There we adopt the conventions in [IZ92] but rename Ik ≡ tk and T0 ≡ (1− I1).
The formula can easily be implemented in computer algebra3 and quickly computes the
free energies Fg(t) to moderately large g. Several other implementations exist. We are
aware of an implementation [Xu07] (up to g = 10) in Maple and a powerful implementa-
tion [DSvZ18] in Sage which performs many more natural operations in the tautological
ring. These were an important consistency check for us. Algorithms to compute κ, δ, λ-
classes from ψ-classes are given in [Fab99]. For convenience we list

F3 =
1225

144
· t62
6!T 10

0

+
193

288
· t

4
2t3

4!T 9
0

+
205

3456
· t

2
2t

2
3

2!2!T 8
0

+
53

1152
· t

3
2t4

3!T 8
0

+
583

96768
· t

3
3

3!T 7
0

+
1121

241920
·t2t3t4
T 7

0

+
17

5760
· t

2
2t5

2!T 7
0

+
607

1451520
· t

2
4

2!T 6
0

+
503

1451520
·t3t5
T 6

0

+
77

414720
·t2t6
T 6

0

+
1

82944
· t7
T 5

0

(already given in [IZ92, eq. (5.30)]) and

F4 =
1816871

48
· t92
9!T 15

0

+
3326267

1728
· t

7
2t3

7!T 14
0

+
728465

6912
· t52t

2
3

5!2!T 13
0

+
43201

6912
· t32t

3
3

3!3!T 12
0

+
134233

331776
· t2t

4
3

4!T 11
0

+
70735

864
· t

6
2t4

6!T 13
0

+
83851

17280
·t

4
2t3t4

4!T 12
0

+
26017

82944
· t

2
2t

2
3t4

2!2!T 11
0

+
185251

8294400
· t

3
3t4

3!T 10
0

+
5609

23040
· t32t

2
4

3!2!T 11
0

+
177

10240
·t2t3t

2
4

2!T 10
0

+
175

165888
· t

3
4

3!T 9
0

+
21329

6912
· t

5
2t5

5!T 12
0

+
13783

69120
·t

3
2t3t5

3!T 11
0

+
1837

129600
·t2t

2
3t5

2!T 10
0

+
7597

691200
·t

2
2t4t5

2!T 10
0

+
719

829440
·t3t4t5
T 9

0

+
533

967680
· t2t

2
5

2!T 9
0

+
2471

23040
· t

4
2t6

4!T 11
0

+
7897

1036800
·t

2
2t3t6

2!T 10
0

+
1997

3317760
· t

2
3t6

2!T 9
0

+
1081

2322432
·t2t4t6
T 9

0

+
487

18579456
·t5t6
T 8

0

+
4907

1382400
· t

3
2t7

3!T 10
0

+
16243

58060800
·t2t3t7
T 9

0

+
1781

92897280
·t4t7
T 8

0

+
53

460800
· t

2
2t8

2!T 9
0

+
947

92897280
·t3t8
T 8

0

+
149

39813120
·t2t9
T 8

0

+
1

7962624
·t10

T 7
0

.

The first line agrees with [IZ92, Table II]. The notation is such that the intersection
numbers are easily identified, e.g. 〈τ2τ

4
3 〉 = 134233

331776
or 〈τ 2

2 τ4τ5〉 = 7597
691200

. The very last
number is 〈τ3g−2〉 = 1

24g ·g! for g = 4, in agreement with [IZ92, eq. (5.31)]. The arXiv
version v1 of this paper also gave F5 and F6 in an appendix, but there is not really a need
for them.
3 A first implementation in Mathematica is provided via the arXiv page of this paper or via http:

//wwwmath.uni-muenster.de/u/raimar/files/IntersectionNumbers.nb

It takes less than 35 seconds on an office desktop to compute all intersection numbers up to g = 10.
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5.3. A deformed Virasoro algebra

We return to (5.3), but instead of applying the inverse of K̂z we directly take the residue

L̃n := Resz→0

[
z3+2n

( 2V 2

(2λ)4
K̂zÂ

†
z + (Â†z)

2 +
1

%0z4

∂Â†z
∂z

+
V 2

4(2λ)4z4

)
dz
]
.

By construction, L̃nZnpV = 0. Recall that in the Kontsevich model one has LnZ for the
full partition function and generators Ln of a Virasoro algebra (or rather a Witt algebra).
Surprisingly, our L̃n do not satisfy the commutataion relations of the Virasoro algebra
exactly. An explicit expression is obtained from

K̂zÂ
†
z =

∞∑
l=0

l∑
j=0

(3 + 2l)%l−j
z4+2j

∂

∂%l
,

1

%0z4

∂

∂z
Â†z =

∞∑
l=0

(3(3 + 2l)%l+1

%2
0z

8
− (3 + 2l)(5 + 2l)

%0z10+2l

) ∂

∂%l
,

Â†zÂ
†
z =

∞∑
k=0

((5 + 2k)%k+2

%0z3
− 5 + 2k

z7+2k

)(3 + 2k)

%0z3

∂

∂%k

+
∞∑
k=0

(
− 3%1

%0z3
+

3

z5

)((3+2k)%k+1

%2
0z

3

) ∂

∂%k
+

∞∑
l,k=0

(3+2l)(3+2k)%k+1%l+1

%2
0z

6

∂2

∂%l∂%k

−
∞∑

l,k=0

2(3 + 2l)(3 + 2k)%l+1

%0z8+2k

∂2

∂%l∂%k
+

∞∑
l,k=0

(3 + 2l)(3 + 2k)

z10+2l+2k

∂2

∂%l∂%k
.

Evaluating the residues gives

L̃0 =
2V 2

(2λ)4

( ∞∑
l=0

(3 + 2l)%l
∂

∂%l
+

1

8

)
,

L̃1 =
2V 2

(2λ)4

∞∑
l=0

(5 + 2l)%l
∂

∂%l+1

+
( ∞∑
k=0

(3 + 2k)

%2
0

%k+1
∂

∂%k
− 3%1

%3
0

) ∞∑
l=0

(3 + 2l)%l+1
∂

∂%l

and for n ≥ 2:

L̃n =
2V 2

(2λ)4

∞∑
l=0

(3+2n+2l)%l
∂

∂%n+l

+ δn,2

∞∑
l=0

6(3 + 2l)%l+1

%2
0

∂

∂%l
− 2(2n−3)(2n−1)

%0

∂

∂%n−3

+
n−3∑
l=0

(3 + 2l)(2n− 2l − 3)
∂2

∂%l∂%n−3−l
−
∞∑
l=0

2(3 + 2l)(2n− 1)%l+1

%0

∂2

∂%n−2∂%l
.

It is convenient to commute the factor exp(F1) = %
− 1

24
0 through the L̃n and to pass to

Ln :=
(2λ)4

4V 2
%

1
24
0 L̃n%

− 1
24

0

The result is:
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Lemma 5.7. The stable partition ZstableV = 1 +
∑∞

g=2 V
2−2gZg satisfies the constraints

LnZstableV = 0 for all n ∈ N, where

L0 =
∞∑
l=0

(3 + 2l)

2
%l
∂

∂%l
,

L1 =
∞∑
l=0

(5 + 2l)

2
%l

∂

∂%l+1

+
(2λ)4

4V 2

{ ∞∑
k,l=0

(3 + 2k)(3 + 2l)%k+1%l+1

%2
0

∂2

∂%k∂%l

+
∞∑
k=0

(3 + 2k)
(
− 13%1%k+1

4%3
0

+
(5 + 2k)%k+2

%2
0

) ∂

∂%k
+

49%2
1

64%4
0

− 5%2

%3
0

}
L2 =

∞∑
l=0

(7 + 2l)

2
%l

∂

∂%l+2

+
(2λ)4

4V 2

{
−
∞∑
k=0

6(3 + 2k)%k+1

%0

∂2

∂%k∂%0

+
∞∑
k=1

25(3 + 2k)%k+1

4%2
0

∂

∂%k
+

39%1

2%2
0

∂

∂%0

− 49%1

32%3
0

}
L3 =

∞∑
l=0

(9 + 2l)

2
%l

∂

∂%l+3

+
(2λ)4

4V 2

{
9
∂2

∂%2
0

−
∞∑
k=0

10(3 + 2k)%k+1

%0

∂2

∂%k∂%1

+
5%1

4%2
0

∂

∂%1

− 123

4%0

∂

∂%0

+
105

64%2
0

}
and for n ≥ 4

Ln =
∞∑
l=0

(3+2n+2l)

2
%l

∂

∂%n+l

+
(2λ)4

4V 2

{ n−3∑
l=0

(3 + 2l)(2n− 2l − 3)
∂2

∂%l∂%n−3−l

−
∞∑
l=0

2(3+2l)(2n−1)%l+1

%0

∂2

∂%n−2∂%l
− (2n−3)(16n−7)

4%0

∂

∂%n−3

+
(2n−1)%1

4%2
0

∂

∂%n−2

}
.

We have [Lm, Ln] = (m − n)Lm+n + Cm,n for a nonvanishing differential operator Cm,n
which, by construction, also annihilates the ZstableV . It will be studied elsewhere.

6. Summary

The construction of the renormalised Φ3
D-QFT model on noncommutative geometries of

dimension D ≤ 6 is now complete. After the previous solution of the planar sector in
[GSW17, GSW18] we establish in this paper an algorithm to compute any correlation

function G
(g)

|p11...p1N1
|...|pB1 ...pBNB |

of genus g ≥ 1:

1. Compute the free energy Fg(t) via Theorem 1.1 and the note thereafter. It encodes
the p(3g−3) intersection numbers of ψ-classes on the moduli space of complex curves
of genus g. Take F1 = − 1

24
log T0 for g = 1. Alternatively, start from intersection

numbers obtained by other methods (e.g. [DSvZ18]).

2. Change variables to %0 = 1− t0 and %l = − tl+1
(2l+1)!!

, where %l are given by (3.16) for

the measure (3.9) and with c implicitly defined by (3.12).
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3. Apply to the resulting Fg(%) according to Proposition 5.2 and Theorem 4.6 the

boundary creation operators Â†gz1,...,zB ◦ . . . Â
†g
z1,z2
◦ Â†gz1 defined in Definition 4.14.

Multiply by (2λ)4g+3B−4+δB,1 to obtain Gg(z1| · · · |zB).

4. Pass to Gg(z1
1 ...z

1
N1
|...|zB1 ...zBNB) via difference quotients similar to (3.13) [Xβ

kβ
stands

for (zβkβ)2 − c].

5. Specify to zβkβ 7→ (4F 2

pβkβ

+ c)1/2 to obtain G
(g)

|p11...p1N1
|...|pB1 ...pBNB |

, where Fp arises by

mass-renormalisation from the Ep in the initial action (3.1) of the model.

Our work was essentially a reverse engineering in opposite order. The last step 5. was
given to us by the formal partition function of the model. From there we had to climb up
to the formula for the intersection numbers.

We remark that, in spite of the relation to the integrable Kontsevich model, this Φ3
D-

model provides a fascinating toy model for a quantum field theory which shows many
facets of renormalisation. Our exact formulae can be expanded about λ = 0 via (3.12) and
agree with the usual perturbative renormalisation which in D = 6 needs Zimmermann’s
forest formula [Zim69] (see [GSW18]). Also note that at fixed genus g one expects O(n!)
graphs with n vertices so that a convergent summation at fixed g cannot be expected a
priori. Moreover, in D = 6 the β-function of the coupling constant is positive for real λ,
which in this particular case poses not the slightest problem for summation.

What remains to understand is the resummation in the genus, i.e.
∑∞

g=2 V
2−2gGg(z) or∑∞

g=2 N
2−2gFg(t). All intersection numbers are positive for tl > 0, which corresponds to

%l < 0 for l ≥ 1. Because of the λ2-prefactor in front of (3.9) and the definition (3.16)
of the %l, we have tl > 0 for real λ. Therefore, the sum over the genus must diverge for
λ ∈ R, which is not surprising because in this case the action (3.1) is unbounded from
below. In contrast, it was observed in [GSW18] that for the planar sector it is better
to take λ ∈ R. The final challenge of this model is to establish that

∑∞
g=2 N

2−2gFg(t) is
Borel summable for tl < 0, which would achieve convergence of the genus expansion in
two disks in the complex λ-plane tangent from above and below the real axis at λ = 0.

The deformed Virasoro algebra also deserves investigation.
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A. Lemmata relevant for Theorem 4.6

Assumption A.1. We assume that Gg(z) is, for g ≥ 1, a function of z and of %0, . . . , %3g−2

(true for g = 1). We take eq. (4.7) and in particular Gg(z|z/J) := (2λ)3Â†gzJ ,zGg(z/J) as a
definition of a family of functions Gg(z1|zJ) and derive equations for that family.

Lemma A.2. Let J = {2, ..., B}. Then under Assumption A.1 and with Definition 4.1
of the operator K̂z1 one has

K̂z1Gg(z1|z/J) =
8λ3

z2
1

( 3g−3+|J |∑
l=0

(3 + 2l)
∂Gg(z/J)

∂%l

l∑
k=0

%k

z2+2l−2k
1

+
∑
β∈J

1

zβ

∂

∂zβ
Gg(z/J)

)
.

Proof. Take Definition 4.4 for Â†gzJ ,zGg(z/J) and apply Lemma 4.2.

Lemma A.3. Let J = {2, ..., B}. Then under Assumption A.1 one has

8λ3

zβ

∂

∂zβ

Gg(z1|z/J\{β})− Gg(zβ|z/J\{β})
z2

1 − z2
β

+ 2λG0(z1|zβ)Gg(z1|z/J\{β})

= (2λ)6

[
3g−4+|J |∑

l=0

(
−

1∑
n=0

(3 + 2l)(1 + 2n)%l+1

%0z
4−2n
1 z3+2n

β

+
l+2∑
n=0

(3 + 2l)(1 + 2n)

z6+2l−2n
1 z3+2n

β

)
∂Gg(z/J\{β})

∂%l

+
∑

i∈J\{β}

1∑
n=0

1 + 2n

%0ziz
4−2n
1 z3+2n

β

∂Gg(z/J\{β})
∂zi

]
.

Proof. Definition 4.4 gives with

1

z
3+2j
1

− 1

y3+2j

z21−y2
= −

∑2j+2
l=0

zl1y
2j+2−l

z3+2j
1 y3+2j(z+y)

for the first term

Gg(z1|z/J\{β})− Gg(zβ|z/J\{β})
(2λ)3(z2

1 − z2
β)

=

3g−4+|J |∑
l=0

−(3 + 2l)%l+1

%0

( 1
z31
− 1

z3β

z2
1 − z2

β

)
+ (3 + 2l)

( 1

z5+2l
1

− 1

z5+2l
β

z2
1 − z2

β

) ∂Gg(z/J\{β})
∂%l

+
∑

i∈J\{β}

1

%0zi

( 1
z31
− 1

z3β

z2
1 − z2

β

)
∂Gg(z/J\{β})

∂zi

=

3g−4+|J |∑
l=0

(
(3 + 2l)%l+1

%0

∑2
n=0 z

n
1 z

2−n
β

z3
1z

3
β(z1 + zβ)

− (3 + 2l)

∑2l+4
n=0 z

n
1 z

2l+4−n
β

z5+2l
1 z5+2l

β (z1 + zβ)

)
∂Gg(z/J\{β})

∂%l

−
∑

i∈J\{β}

1

%0zi

∑2
n=0 z

n
1 z

2−n
β

z3
1z

3
β(z1 + zβ)

∂Gg(z/J\{β})
∂zi

.
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The second term reads

1

(2λ)3
G0(z1|zβ)Gg(z1|z/J\{β})

= − 4λ2

z1zβ

∂

∂zβ

1

(z1 + zβ)

[
3g−4+|J |∑

l=0

(
−(3 + 2l)%l+1

%0z3
1

+
(3 + 2l)

z5+2l
1

)
∂Gg(z/J\{β})

∂%l

+
∑

i∈J\{β}

1

%0ziz3
1

∂Gg(z/J\{β})
∂zi

]
.

The denominator (z1 + zβ) cancels in the combination of interest:

8λ3

zβ

∂

∂zβ

Gg(z1|z/J\{β})− Gg(zβ|z/J\{β})
z2

1 − z2
β

+ 2λG0(z1|zβ)Gg(z1|z/J\{β})

=
(2λ)6

zβ

∂

∂zβ

[
3g−4+|J |∑

l=0

(
(3 + 2l)%l+1

%0

z2
1 + z2

β

z4
1z

3
β

− (3 + 2l)

∑l+2
n=0 z

2n
1 z2l+4−2n

β

z6+2l
1 z5+2l

β

)
∂Gg(z/J\{β})

∂%l

−
∑

i∈J\{β}

1

%0zi

z2
1 + z2

β

z4
1z

3
β

∂Gg(z/J\{β})
∂zi

]
.

The remaining zβ-derivative confirms the assertion.

Lemma A.4. Let J = {2, ..., B}. Then under Assumption A.1 one has

g∑
h=1

Gh(z1|z/J)Gg−h(z1) + λ

g−1∑
h=1

∑
I⊂J

1≤|I|<|J |

Gh(z1|z/I)Gg−h(z1|z/J\I) + λGg−1(z1|z1|z/J)

= −(2λ)3B−4Â†gz1,...,zB ...Â
†g
z1,z2

K̂z1Gg(z1).

Proof. Equation (4.2) can be rewritten as

−K̂z1Gg(z1) =
1

2

g−1∑
h=1

Gh(z1)Gg−h(z1) + 2λ2Gg−1(z1|z1).

Operating with −(2λ)3B−4Â†gz1,...,zB ...Â
†g
z1,z2

and taking the Leibniz rule into account, the
assertion follows.

Lemma A.5. Let J = {2, ..., B}. Then under Assumption A.1 one has

(2λ)3[K̂z1 , Â
†g
z1,...,zB

]Gg(z1|z/J\B)

= (2λ)6

[
3g−4+|J |∑

l=0

3 + 2l

z2
1z

3
B

(
%l+1

%0z2
1

+
3%l+1

%0z2
B

− 1

z4+2l
1

− (5 + 2l)

z4+2l
B

)
∂

∂%l

−
3g−4+|J |∑

l=0

l∑
k=0

(3 + 2l)(3 + 2k)

z4+2l−2k
1 z5+2k

B

∂

∂%l
−

∑
i∈J\{B}

1

%0z2
1ziz

3
B

( 1

z2
1

+
3

z2
B

) ∂

∂zi

]
Gg(z/J\{B}).
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Proof. The first term of the lhs, K̂z1Â
†g
z1,...,zB

Gg(z1|z/J\B), is given by Lemma A.2 and

Gg(z/J) = (2λ)3Â†gz2,...,zBGg(z/J\{B}) to

K̂z1(Gg(z1|z/J))

=
(2λ)6

z2
1

[
3g−3+|J |∑

l=0

(3 + 2l)
l∑

k=0

%k

z2+2l−2k
1

× ∂

∂%l

(
3g−4+|J |∑
l′=0

(
−(3+2l′)%l′+1

%0z3
B

+
3+2l′

z5+2l′

B

) ∂

∂%l′
+
∑

i∈J\{B}

1

%0ziz3
B

∂

∂zi

)(
Gg(z/J\{B})

)
+
∑
β∈J

1

zβ

∂

∂zβ

(
3g−4+|J |∑
l′=0

(
−(3+2l′)%l′+1

%0z3
B

+
3+2l′

z5+2l′

B

) ∂

∂%l′
+
∑

i∈J\{B}

1

%0ziz3
B

∂

∂zi

)(
Gg(z/J\{B})

)]

=
(2λ)6

z2
1

[
3g−4+|J |∑

l=0

l+1∑
k=0

−(5 + 2l)(3 + 2l)%k

%0z
4+2l−2k
1 z3

B

∂

∂%l
+

3g−4+|J |∑
l′=0

3(3 + 2l′)%0%l′+1

%2
0z

2
1z

3
B

∂

∂%l′

−
∑

i∈J\{B}

3%0

%2
0z

2
1ziz

3
B

∂

∂zi
+

3g−4+|J |∑
l,l′=0

l∑
k=0

(3+2l)%k

z2+2l−2k
1

(
−(3+2l′)%l′+1

%0z3
B

+
3+2l′

z5+2l′

B

) ∂2

∂%l∂%l′

+

3g−4+|J |∑
l=0

l∑
k=0

∑
i∈J\{B}

(3 + 2l)%k

%0z
2+2l−2k
1 ziz3

B

∂2

∂%l∂zi

+
∑

β∈J\{B}

(
3g−4+|J |∑
l′=0

(
− (3 + 2l′)%l′+1

%0zβz3
B

+
3 + 2l′

zβz
5+2l′

B

) ∂2

∂zβ∂%l′
+

∑
i∈J\{B}

1

%0zβz3
B

∂

∂zβ

1

zi

∂

∂zi

)

−
3g−4+|J |∑
l′=0

(
− 3(3 + 2l′)%l′+1

%0z5
B

+
(3 + 2l′)(5 + 2l′)

z7+2l′

B

) ∂

∂%l′
−
∑

i∈J\{B}

3

%0ziz5
B

∂

∂zi

]
Gg(z/J\{B}).

We have used that Gg(z/J\{B}) can only depend on %l for l ≤ 3g− 4 + |J |. For the second

term of the lhs, Â†gz1,...,zBK̂z1Gg(z1|z/J\B), Lemma A.2 can also be used with B− 1 instead
of B:

(2λ)3Â†gz1,...,zBK̂z1Gg(z1|z/J\B)

= (2λ)6

(
3g−3+|J |∑
l′=0

(
−(3 + 2l′)%l′+1

%0z3
B

+
3 + 2l′

z5+2l′

B

) ∂

∂%l′
+

∑
i∈J\{B}

1

%0ziz3
B

∂

∂zi
+

1

%0z1z3
B

∂

∂z1

)

× 1

z2
1

[
3g−4−|J |∑

l=0

(3 + 2l)
l∑

k=0

%k

z2+2l−2k
1

∂

∂%l
+

∑
β∈J\{B}

1

zβ

∂

∂zβ

]
Gg(z/J\{B})

= (2λ)6

[
3g−4+|J |∑

l=0

l∑
k=0

(3 + 2l)

z4+2l−2k
1

(
−(3 + 2k)%k+1

%0z3
B

+
3 + 2k

z5+2k
B

) ∂

∂%l

+

3g−4−|J |∑
l,l′=0

l∑
k=0

(3 + 2l)%k

z4+2l−2k
1

(
−(3 + 2l′)%l′+1

%0z3
B

+
3 + 2l′

z5+2l′

B

) ∂2

∂%l∂%l′
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+
∑

i∈J\{B}

( 3g−4+|J |∑
l=0

l∑
k=0

(3 + 2l)%k

%0z
4+2l−2k
1 ziz3

B

∂2

∂%l∂zi
+

∑
β∈J\{B}

1

%0z2
1ziz

3
B

∂

∂zi

1

zβ

∂

∂zβ

)

+

3g−4+|J |∑
l′=0

∑
β∈J\{B}

(
−(3 + 2l′)%l′+1

%0z2
1zβz

3
B

+
3 + 2l′

z2
1zβz

5+2l′

B

) ∂2

∂%l′∂zβ

− 2

%0z4
1z

3
B

( 3g−4+|J |∑
l=0

l∑
k=0

(3 + 2l)%k

z2+2l−2k
1

∂

∂%l
+

∑
β∈J\{B}

1

zβ

∂

∂zβ

)

− 1

%0z2
1z

3
B

3g−4+|J |∑
l=0

l∑
k=0

(3 + 2l)(2 + 2l − 2k)%k

z4+2l−2k
1

∂

∂%l

]
Gg(z/J\{B}).

Subtracting the second from the first expression proves the Lemma.

Lemma A.6. Let J = {2, ..., B}.The linear integral equation (4.4) is under Assumption
A.1 and with Definition 4.4 equivalent to the expression

0 =(2λ)3[K̂z1 , Â
†g
z1,...,zB

]Gg(z1|z/J\{B}) + 2λG0(z1|zB)Gg(z1|z/J\{B})

+ (2λ)3 1

zB

∂

∂zB

Gg(z1|z/J\{B})− Gg(zB|z/J\{B})
z2

1 − z2
B

.

Proof. With Lemma A.4 we can rewrite the linear integral equation (4.4) in the form

0 =(2λ)3B−4K̂z1Â
†g
z1,...,zB

. . . Â†gz1,z2Gg(z1)− (2λ)3B−4Â†gz1,...,zB . . . Â
†g
z1,z2

K̂z1Gg(z1)

+ Gg(z1)G0(z1|z/J) + 2λ
∑
I⊂J

1≤|I|<|J |

G0(z1|z/I)Gg(z1|z/J\I)

+ (2λ)3
∑
β∈J

1

zβ

∂

∂zβ

Gg(z1|z/J\{β})− Gg(zβ|z/J\{β})
z2

1 − z2
β

. (A.1)

By using this formula for Â†gz1,...,zB−1
. . . Â†gz1,z2K̂z1Gg(z1) and inserting it back into (A.1)

gives

0 =(2λ)3B−4[K̂z1 , Â
†g
z1,...,zB

]Â†gz1,...,zB−1
. . . Â†gz1,z2Gg(z1)

+ Gg(z1)G0(z1|z/J)− (2λ)3Â†gz1,...,zB(Gg(z1)G0(z1|z/J\B))

+ 2λ
∑
I⊂J

1≤|I|<|J |

G0(z1|z/I)Gg(z1|z/J\I)− (2λ)4Â†gz1,...,zB

∑
I⊂J\{B}

1≤|I|<|J |−1

G0(z1|z/I)Gg(z1|z/J\{I,B})

+ (2λ)3
∑
β∈J

1

zβ

∂

∂zβ

Gg(z1|z/J\{β})− Gg(zβ|z/J\{β})
z2

1 − z2
β

− (2λ)6Â†gz1,...,zB

∑
β∈J\{B}

1

zβ

∂

∂zβ

Gg(z1|z/J\{β,B})− Gg(zβ|z/J\{β,B})
z2

1 − z2
β

.
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The second and third line break down to 2λG0(z1|zB)Gg(z1|z/J\{B}). Therefore, the asser-
tion follows if we can show that, in the fourth line, the part of the sum which excludes
β = B cancels with the fifth line. This is true because of[

Â†gz1,...,zB ,
1

zβ

∂

∂zβ

]
= 0 and Â†gz1,...,zB

1

z2
1 − z2

β

= 0.

Consequently, the linear integral equation can be written by operators of the form given
in this Lemma.
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