Verifying the Firoozbakht, Nicholson, and Farhadian conjectures up to the 81^{st} maximal prime gap.

Matt Visser ®

School of Mathematics and Statistics, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand

E-mail: matt.visser@sms.vuw.ac.nz

ABSTRACT: The Firoozbakht, Nicholoson, and Farhadian conjectures can be phrased in terms of increasingly powerful conjectured bounds on the prime gaps $g_n := p_{n+1} - p_n$.

$$g_n \le p_n \left(p_n^{1/n} - 1 \right)$$
 $(n \ge 1; Firoozbakht).$

$$g_n \le p_n \left((n \ln n)^{1/n} - 1 \right)$$
 $(n > 4; Nicholson).$

$$g_n \le p_n \left(\left(p_n \frac{\ln n}{\ln p_n} \right)^{1/n} - 1 \right)$$
 $(n > 4; Farhadian).$

While a general proof of any of these conjectures is far out of reach I shall show that all three of these conjectures are unconditionally and explicitly verified for all primes below the location of the 81^{st} maximal prime gap, certainly for all primes $p < 2^{64}$. For the Firoozbakht conjecture this is a very minor improvement on currently known results, for the Nicholson and Farhadian conjectures this may be more interesting.

Date: 1 April 2019; 8 April 2019; LATEX-ed April 9, 2019

ARXIV: 1904.00499

KEYWORDS: primes; prime gaps; Firoozbakht conjecture; Nicholson conjecture; Farhadian conjecture.

MSC: 11A41 (Primes); 11N05 (Distribution of primes).

SEQUENCES: A005250 A002386 A005669 A000101 A107578 A246777 A246776

1 Introduction

The Firozbakht, Nicholson, and Farhadian conjectures would, if proved to be true, impose increasingly strong constraints on the distribution of the primes; this distribution being a fascinating topic that continues to provide many subtle and significant open questions [1–23]. The Firozbakht conjecture [24–28] is normally phrased as follows.

Conjecture 1. (Firoozbakht conjecture, two most common versions)

$$(p_{n+1})^{\frac{1}{n+1}} \le (p_n)^{\frac{1}{n}}; \quad equivalently \quad \frac{\ln p_{n+1}}{n+1} \le \frac{\ln p_n}{n}; \quad (n \ge 1).$$
 (1.1)

To see why this conjecture might be somewhat plausible, use the standard inequalities $n \ln n < p_n < n \ln p_n$, which hold for $n \ge 1$ and $n \ge 4$ respectively, and observe that

$$\frac{\ln(n\ln n)}{n} \le \frac{\ln p_n}{n} \le \frac{\ln^2 p_n}{p_n}; \qquad (n \ge 1; n \ge 4). \tag{1.2}$$

Now $\frac{\ln(n \ln n)}{n}$ is monotone decreasing for $n \geq 5$, and $\frac{\ln^2 p_n}{p_n}$ is monotone decreasing for $p_n > 7$. So for $n \geq 5$, corresponding to $p_n \geq 11$, the function $\frac{\ln p_n}{n}$ is certainly bounded between two monotone decreasing functions; the overall trend is monotone decreasing. The stronger conjecture that $\frac{\ln p_n}{n}$ is itself monotone decreasing depends on fluctuations in the distribution of the primes p_n ; fluctuations which can be rephrased in terms of the prime gaps $g_n := p_{n+1} - p_n$.

Indeed, Kourbatov [26] using results on first occurrence prime gaps has recently verified Firoozbakht's conjecture to hold for all primes $p < 4 \times 10^{18}$. Furthermore Kourbatov [27] has also derived a *sufficient* condition for the Firoozbakht conjecture to hold:

$$g_n \le \ln^2 p_n - \ln p_n - 1.17; \qquad (n \ge 10; \ p_n \ge 29).$$
 (1.3)

Using tables of first occurrence prime gaps and maximal prime gaps Kourbatov has now extended this discussion [28], and subsequently verified that Firoozbakht's conjecture holds for all primes $p < 1 \times 10^{19}$. More recently (2018), two additional maximal prime gaps have been found [30], so that Kourbatov's arguments now certainly verify the Firoozbakht conjecture up to the 80^{th} maximal prime gap — more precisely, for all primes below currently unknown location of the 81^{st} maximal prime gap — though we do now know (September 2018) that $p_{81}^* > 2^{64}$ [29], see also [28]. So certainly the Firoozbakht conjecture holds for all primes $p < 2^{64} = 18,446,744,073,709,551,616 \approx 1.844 \times 10^{19}$. Note that this automatically verifies a strong form of Cramér's conjecture

$$g_n \le \ln^2 p_n; \qquad (n \ge 5; \ p_n \ge 11),$$
 (1.4)

at least for all primes $p < 2^{64} \approx 1.844 \times 10^{19}$.

What is trickier with Kourbatov's techniques is to say anything useful about the slightly stronger Nicholson [33] and Farhadian [34, 35] conjectures, and it is this issue we shall address below.

2 Firoozbakht, Nicholson, and Farhadian

When comparing the Firoozbakht conjecture with the slightly stronger Nicholson and Farhadian conjectures it is useful to work with the ratio of successive primes, p_{n+1}/p_n .

Conjecture 2. (Firoozbakht/Nicholson/Farhadian conjectures; successive primes)

$$(p_{n+1}/p_n)^n \le p_n \qquad (n \ge 1; Firoozbakht). \tag{2.1}$$

$$(p_{n+1}/p_n)^n \le n \ln n \qquad (n > 4; Nicholson). \tag{2.2}$$

$$(p_{n+1}/p_n)^n \le p_n \frac{\ln n}{\ln p_n} \qquad (n > 4; Farhadian). \tag{2.3}$$

When phrased in this way the standard inequalities $n \ln n < p_n < n \ln p_n$ show that Farhadian \Longrightarrow Nicholson \Longrightarrow Firoozbakht. To study the numerical evidence in favour of these conjectures it is useful to convert them into statements about the prime gaps $g_n := p_{n+1} - p_n$.

Conjecture 3. (Firoozbakht/Nicholson/Farhadian conjectures; prime gap version)

$$g_n \le p_n \left(p_n^{1/n} - 1 \right) \qquad (n \ge 1; Firoozbakht). \tag{2.4}$$

$$g_n \le p_n \left((n \ln n)^{1/n} - 1 \right) \qquad (n > 4; Nicholson). \tag{2.5}$$

$$g_n \le p_n \left(\left(p_n \frac{\ln n}{\ln p_n} \right)^{1/n} - 1 \right)$$
 $(n > 4; Farhadian).$ (2.6)

This can further be rephrased as:

$$g_n \le p_n \left(\exp\left(\frac{\ln p_n}{n}\right) - 1 \right)$$
 $(n \ge 1; Firoozbakht).$ (2.7)

$$g_n \le p_n \left(\exp\left(\frac{\ln(n\ln n)}{n}\right) - 1 \right)$$
 $(n > 4; Nicholson).$ (2.8)

$$g_n \le p_n \left(\exp\left(\frac{1}{n} \ln\left(p_n \frac{\ln n}{\ln p_n}\right)\right) - 1 \right)$$
 $(n > 4; Farhadian).$ (2.9)

These inequalities are all of the form $g_n \leq f(p_n, n)$, with $f(p_n, n)$ a function of both p_n and n.

While p_n and n are both monotone increasing, unfortunately $f(p_n, n)$ is not guaranteed to be monotone increasing, so one would have to check each individual n independently. So our strategy will be to seek to find suitable *sufficient* conditions for the Firoozbakht/Nicholson/Farhadian conjectures of the form $g_n \leq f(n)$, with the function f(n) being some monotone function of its argument. Once this has been achieved we can develop an argument using maximal prime gaps.

3 Sufficient condition for the Nicholson/Firoozbakht conjectures

Using the fact that $e^x - 1 > x$ we deduce a sufficient condition for the Nicholson conjecture (which is then automatically also sufficient for the Firoozbakht conjecture).

Sufficient condition 1. (Nicholson/Firoozbakht)

$$g_n < \frac{p_n \ln(n \ln n)}{n};$$
 $(n > 4; n \ge 1).$ (3.1)

Now use Dusart's result [14] that for $n \ge 2$ we have $p_n > n(\ln(n \ln n) - 1)$ to deduce the stronger sufficient condition

Sufficient condition 2. (Nicholson/Firoozbakht)

$$g_n < f(n) = (\ln(n \ln n) - 1) \ln(n \ln n); \qquad (n > 4; \ n \ge 2).$$
 (3.2)

A posteriori we shall verify that this last condition is strong enough to be useful, and weak enough to be true over the domain of interest.

4 Verifying the Firoozbakht and Nicholson conjectures for all primes $p < 2^{64}$

This is a variant of the argument given for the Andrica conjecture in references [22, 23]. Consider the maximal prime gaps: Following a minor modification of the notation of references [22, 23], let the quartet (i, g_i^*, p_i^*, n_i^*) denote the i^{th} maximal prime gap; of width g_i^* , starting at the n_i^* th prime $p_i^* = p_{n_i^*}$. (See see the sequences A005250, A002386, A005669, A000101, A107578.) As of April 2019, some 80 such maximal prime gaps are known [30–32], up to $g_{80}^* = 1550$ and

$$p_{80}^* = 18,361,375,334,787,046,697 > 1.836 \times 10^{19},$$
 (4.1)

which occurs at

$$n_{80}^* = 423,731,791,997,205,041 \approx 423 \times 10^{15}.$$
 (4.2)

One now considers the interval $[p_i^*, p_{i+1}^* - 1]$, from the lower end of the i^{th} maximal prime gap to just below the beginning of the $(i+1)^{th}$ maximal prime gap. Then everywhere in this interval

$$\forall p_n \in [p_i^*, p_{i+1}^* - 1] \qquad g_n \le g_i^*; \qquad f(n_i^*) \le f(n). \tag{4.3}$$

Therefore, if the sufficient condition for the Nicholson/Firoozbakht conjectures holds at the beginning of the interval $p_n \in [p_i^*, p_{i+1}^* - 1]$, then it certainly holds on the entire interval. (Note that for the Nicholson/Firoozbakht conjectures, in addition to knowing the p_i^* , it is also essential to know all the $n_i^* = \pi(p_i^*)$ in order for this particular verification procedure to work; for the Andrica conjecture one can quietly discard the $n_i^* = \pi(p_i^*)$ and only work with the p_i^* [22, 23].)

Explicitly checking a table of maximal prime gaps [30–32], both of the Nicholson and Firoozbakht conjectures certainly hold on the interval $[p_5^*, p_{81}^* - 1]$, from $p_5^* = 89$ up to just before the beginning of the 81^{st} maximal prime gap, $p_{81}^* - 1$, even if we do not yet know the value of p_{81}^* . Then explicitly checking the primes below 89 the Firoozbakht conjecture holds for all primes p less than p_{81}^* , while the Nicholson conjecture holds for all primes p less than p_{81}^* , except $p \in \{2, 3, 5, 7\}$. Since we do not explicitly know p_{81}^* , (though an exhaustive search has now verified that $p_{81}^* > 2^{64}$ [29], see also [28]), a safe fully explicit statement is that both the Firoozbakht and Nicholson conjectures are verified for all primes $p < 2^{64} \approx 1.844 \times 10^{19}$.

5 Sufficient condition for the Farhadian conjecture

The Farhadian conjecture is a little trickier to deal with. Again using the fact that $e^x - 1 > x$ we can deduce a sufficient condition.

Sufficient condition 3. (Farhadian)

$$g_n < \frac{p_n \ln \left(p_n \frac{\ln n}{\ln p_n} \right)}{n} = \frac{p_n \left(\ln p_n + \ln \ln n - \ln \ln p_n \right)}{n}; \qquad (n > 4). \tag{5.1}$$

Now inside the brackets use the lower bound $p_n \ge n \ln n$ (valid for $n \ge 1$), and the upper bound $p_n \le n \ln(n \ln n)$ (valid for $n \ge 6$). This gives a new slightly stronger sufficient condition.

Sufficient condition 4. (Farhadian)

$$g_n < \frac{p_n (\ln(n \ln n) + \ln \ln n - \ln \ln(n \ln(n \ln n)))}{n}; \qquad (n > 6).$$
 (5.2)

Now use Dusart's result [14] that for $n \ge 2$ we have $p_n > n(\ln(n \ln n) - 1)$ to deduce another yet even slightly stronger sufficient condition.

Sufficient condition 5. (Farhadian)

$$g_n < f(n) = (\ln(n \ln n) - 1) (\ln(n \ln n) + \ln \ln n - \ln \ln(n \ln n)); \quad (n > 6). \quad (5.3)$$

It is now a somewhat tedious exercise in elementary calculus to verify that this function f(n) is indeed monotone increasing as a function of n. A posteriori we shall verify that this last sufficient condition is strong enough to be useful, and weak enough to be true over the domain of interest.

6 Verifying the Farhadian conjecture for all primes $p < 2^{64}$

The logic is the same as for the Firoozbakht and Nicholson conjectures. If the sufficient condition for the Farhadian conjecture holds at the beginning of the interval $p_n \in [p_i^*, p_{i+1}^* - 1]$, then it certainly holds on the entire interval. Explicitly checking a table of maximal prime gaps [30–32], the Farhadian conjecture certainly holds on the interval $[p_5^*, p_{81}^* - 1]$, from $p_5^* = 89$ up to just before the beginning of the 81^{st} maximal prime gap, $p_{81}^* - 1$, even if we do not yet know the value of p_{81}^* . Then explicitly checking the primes below $p_5^* = 89$ the Farhadian conjecture is verified to hold for all primes p less than p_{81} , except $p \in \{2, 3, 5, 7\}$. Since we do not explicitly know p_{81}^* , (though an exhaustive search has now verified that $p_{81}^* > 2^{64}$ [29], see also [28]), a safe fully explicit statement is that the Farhadian conjecture is verified for all primes $p < 2^{64} \approx 1.844 \times 10^{19}$.

7 Discussion

While Kourbatov's recent work [26–28] yields a useful and explicit domain of validity for the Firoozbakht conjecture, (ultimately, see [29] and [28], for all primes $p < 2^{64}$), the present article first slightly extends this domain of validity (all primes $p < p_{81}^*$), and second and more significantly obtains identical domains of validity for the related but slightly stronger Nicholson and Farhadian conjectures. The analysis has been presented in such a way that it can now be semi-automated.

Upon discovery, every new maximal prime gap g_i^* can, as long as one can also calculate the corresponding $n_i^* = \pi(p_i^*)$, see for instance [36], be used to push the domain of validity a little further.

Some cautionary comments are in order: Verification of these conjectures up to some maximal prime, however large, does not guarantee validity for all primes. Note that by the prime number theorem $\pi(n) \sim \text{li}(n)$ so

$$\frac{\ln(p_n)}{n} = \frac{\ln(p_n)}{\pi(p_n)} \sim \frac{\ln(p_n)}{\ln(p_n)}.$$
(7.1)

Now certainly $\ln(p)/\text{li}(p)$ is monotone decreasing, which is good. On the other hand $\pi(x) - \text{li}(x)$ changes sign infinitely often, (this is the Skewes phenomenon [37–40]), so that the monotone decreasing function $\ln(p_n)/\text{li}(p_n)$ both over-estimates and underestimates the quantity of interest $\ln(p_n)/n$, which is not so good. Now this observation does not disprove the Firoozbakht conjecture, but it does indicate where there might be some potential difficulty.

On a more positive note, the Firoozbakht conjecture most certainly must hold when averaged over suitably long intervals. It is an elementary consequence of the Chebyshev theorems that $p_m p_n > p_{m+n}$, see [1–3]. But then $p_n^2 > p_{2n}$, and $p_n^3 > p_n p_{2n} > p_{3n}$. In general $(p_n)^m > p_{nm}$ and so $\ln p_n > \ln p_{nm}/m$. Consequently

$$\frac{\ln(p_n)}{n} > \frac{\ln(p_{nm})}{nm}. (7.2)$$

This is much weaker than the usual Firoozbakht conjecture, but enjoys the merit of being unassailably true.

Acknowledgments

This research was supported by the Marsden Fund, administered by the Royal Society of New Zealand. I particularly wish to thank Alexei Kourbatov for useful comments.

References

- [1] Paulo Ribenboim, The Little Book of Big Primes, (Springer-Verlag, New York, 1991).
- [2] Paulo Ribenboim, *The New Book of Prime Number Records*, (Springer-Verlag, New York, 1996).
- [3] Paulo Ribenboim, The Little Book of Bigger Primes, (Springer, New York, 2004).
- [4] David Wells, *Prime numbers: the most mysterious figures in math*, (John Wiley, Hoboken, 2005).
- [5] Harald Cramér, "Some theorems concerning prime numbers", Ark. Mat. Astron. Phys. 15 (1920) 5.
- [6] Harald Cramér, "On the order of magnitude of the difference between consecutive prime numbers", Acta Arithmetica 2 (1936) 23–46.
- [7] Daniel Alan Goldston, "On a result of Littlewood concerning prime numbers", Acta Arithmetica XL 3 (1982) 263–271.
- [8] J. Barkley Rosser, "The n'th Prime is Greater than $n \ln n$ ", Proc. London Math. Soc. **45** (1938) 21–44.
- [9] J. Barkley Rosser, "Explicit Bounds for some functions of prime numbers", American Journal of Mathematics, **63** (1941) 211–232.
- [10] Ernest Cesàro. "Sur une formule empirique de M. Pervouchine", Comptes Rendus 119 (1894) 848–849. (French)
- [11] M. Cipolla, "La determinazione assintotica dell' n^{imo} numero primo", Matematiche Napoli, **3** (1902) 132–166. (Italian)
- [12] J. Barkley Rosser and Lowell Schoenfeld, "Approximate Formulas for Some Functions of Prime Numbers", Illinois J. Math. 6 (1962) 64–97.
- [13] Jószsef Sándor, "On certain sequences and series with applications in prime number theory", Gaz. Mat. Met. Inf, 6 (1985) 1–2.
- [14] Pierre Dusart, "The k^{th} prime is greater than $k(\ln k + \ln \ln k 1)$ for $k \ge 2$ ", Mathematics of Computation **68** (1999) 411–415.
- [15] David Lowry-Duda, "A Short Note on Gaps between Powers of Consecutive Primes", arXiv:1709.07847 [math.NT]
- [16] Pierre Dusart, "Estimates of some functions over primes without RH", arXiv:1002.0442 [math.NT] https://arxiv.org/abs/1002.0442
- [17] Tim Trudgian, "Updating the error term in the prime number theorem", Ramanujan J **39** (2016) 225. https://doi.org/10.1007/s11139-014-9656-6 [arXiv:1401.2689 [math.NT]].

- [18] Pierre Dusart, "Explicit estimates of some functions over primes", Ramanujan J 45 (2018) 227. https://doi.org/10.1007/s11139-016-9839-4
- [19] Christian Axler, "New estimates for some functions defined over primes", arXiv:1703.08032 [math.NT] https://arxiv.org/abs/1703.08032
- [20] Matt Visser, "Primes and the Lambert W function", Mathematics 6 #4 (2018) 56; https://doi.org/10.3390/math6040056 [arXiv: 1311.2324 [math.NT]]
- [21] Dorin Andrica, "Note on a conjecture in prime number theory", Studia Univ. Babes-Bolyai Math. **31** # **4** (1986) 44-48. ISSN 0252-1938. https://zbmath.org/an:0623.10030
- [22] Matt Visser, "Variants on Andrica's conjecture with and without the Riemann hypothesis", Mathematics 6 #12 (2018) 289; https://doi.org/10.3390/math6120289 [arXiv: 1804.02500 [math.NT]]
- [23] Matt Visser, "Strong version of Andrica's conjecture", arXiv:1812.02762 [math.NT].
- [24] Faride Firoozbakht, (1982), unpublished. https://www.primepuzzles.net/thepuzzlers/Firoozbakht.htm
- [25] Carlos Rivera (ed.), Conjecture 30. The Firoozbakht Conjecture, 2002. http://www.primepuzzles.net/conjectures/ https://www.primepuzzles.net/conjectures/conj_030.htm
- [26] Alexei Kourbatov, "Verification of the Firoozbakht conjecture for primes up to four quintillion", International Mathematical Forum, 10 # 6 (2015) 283-288 http://arxiv.org/pdf/1503.01744v2.pdf
- [27] Alexei Kourbatov, "Upper bounds for prime gaps related to Firoozbakht's conjecture", Journal of Integer Sequences 18 (2015), 15.11.2 https://arxiv.org/pdf/1506.03042.pdf
- [28] Alexei Kourbatov, "Prime Gaps: Firoozbakht Conjecture", (updated March 2019), http://www.javascripter.net/math/primes/firoozbakhtconjecture.htm
- [29] Thomas R. Nicely, "First occurrence prime gaps", (updated March 2019), http://www.trnicely.net/gaps/gaplist.html
- [30] For all of the maximal prime gaps up to $(80, g_{80}^*, n_{80}^*, p_{80}^*)$ see (as of 1 April 2019): https://en.wikipedia.org/wiki/Prime_gap http://trnicely.net/#Maximal
- [31] For all of the maximal prime gaps up to $(75, g_{75}^*, p_{75}^*)$ see (as of 1 April 2019): http://primerecords.dk/primegaps/maximal.htm https://primes.utm.edu/notes/GapsTable.html

- [32] Sloane, N. J. A. Sequences A005250, A002386, A005669, A000101, A107578 in "The On-Line Encyclopedia of Integer Sequences."
- [33] John Nicholson (2013) unpublished.
 See Sloane, N. J. A. Sequence A182514
 in "The On-Line Encyclopedia of Integer Sequences." https://oeis.org/A182514.
- [34] Reza Farhadian, "A new conjecture on the primes", https://www.primepuzzles.net/conjectures/Reza%20Faradian%20Conjecture.pdf
- [35] Reza Farhadian and Rafael Jakimczuk, "On a new conjecture of prime numbers", International Mathematical Forum, **12** # **12** (2017), 559 564.
- [36] J. C. Lagarias, V. S. Miller, and A. M. Odlyzko, "Computing $\pi(x)$: The Meissel-Lehmer Method", Mathematics of Computation **44** # **170** (1985) 537–560. https://www.jstor.org/stable/2007973
- [37] Skewes, S. "On the Difference $\pi(x) \text{li}(x)$ ", J. London Math. Soc. 8 (1933) 277–283.
- [38] Skewes, S. "On the Difference $\pi(x) \text{li}(x)$. II", Proc. London Math. Soc. 5 (1955) 48–70.
- [39] Lehman, R. S. "On the Difference $\pi(x) \text{li}(x)$ ", Acta Arith. **11** (1966) 397–410.
- [40] te Riele, H. J. J. "On the Sign of the Difference $\pi(x) \operatorname{li}(x)$ ", Math. Comput. 48 (1987) 323–328.