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Abstract

We consider a number νn of components in a random graph G(n, p)
with n vertices, where the probability of an edge is equal to p. By op-
erating with special generating functions we shows the next asymptotic
relation for factorial moments of νn:

E(νn − 1)s = (1 + o(1))

(

1

p

∞
∑

k=1

kk−2

k!
(npqn)k

)s

+ o(1)

as n tends to ∞ and q = 1− p. And the following inequations hold:

1− 2nqn−1
6 pn 6

1

nqn
,

1−
1

nqn
6 pin 6 nq

n−1
,

where pn is the probability that G(n, p) is connected and pin is the prob-
ability that G(n, p) has an isolated vertex.

1 Notations

Let Gn be a set of undirected graphs with n labeled vertices. For any graph
g ∈ Gn let C(g) be a number of connected components in the graph g and E(g)
be a number of edges in thr graph g. Besides we denote by Fs,n the number of all
forests in Gn, that contains exactly s trees. We also suppose that components
in Gn are not ordered.

Further, let An,k,s be a number of graphs in Gn, which contains n vertices, k
edges and s components, An,k be a number of graphs, which contains n vertices
and k edges, and Bn,k — a number of connected graphs with n vertices and k
edges. For definiteness we suppose that A0,k = A0,k,s = An,k,0 = 0 in all cases,
except n = k = s = 0, where we set by definition A0,0 = A0,0,0 = 1. Besides,
let B0,k = 0 for all k. It’s clear that An,k =

∑
s An,k,s, where index s runs on

all integer non-nagative numbers.
Let us consider the random graph G(n, p), which contains n labeled vertices,

where each of
(
n
2

)
edges is present with the probability p independently of other

edges. Each concrete realization of random graph G(n, p) is a graph from Gn.
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This model of random graphs was firstly described by Erdös and Rényi in [1,2]
and then has been well studied by Béla Bollobás [3], Valentin Kolchin [4] and
other authors.

It is easy to see that the parobability distribution of such random graph is
defined as follows:

P{G(n, p) = g} = (p/q)E(g)qn(n−1)/2,

where g ∈ Gn and q = 1− p.
Let denote by νn the number of connected components of G(n, p), i. e.

νn = C(G(n, p)), and let pn be the probability that random graph G(n, p)
is connected, thus pn = P{νn = 1}. It’s clear that

P{νn = s} =

∞∑

k=0

An,k,s(p/q)
kqn(n−1)/2 (1)

and

pn =
∞∑

k=0

Bn,k(p/q)
kqn(n−1)/2.

Froom the above agreements it follows that p0 = 0 and p1 = 1.
Below we’ll need the special generated function, which we define as follows:

for a sequence of functions {rn(q)} we put

R = R(x, q) =

∞∑

n=0

xn

n!qn(n−1)/2
rn(q),

where we often will skip arguments x and q, except such cases when we will
use special values of them. Below in this text we will call such functions as
SG-functions (SG = special generated).

It is easy to see that SG-functions are formal power series which are not
converges at all. But most of all usual operations with SG-functions (such as
adding, production, differentiation and integration on both arguments) does not
lead to conflicts when counting coefficients before xn.

Let denote

R̂ =

∞∑

n=0

xn

n!qn(n−1)/2

drn(q)

dq
,

i.e. the operator̂denotes SG-function for the sequence of derivatives of rn(q).
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Let also:

A =
∞∑

n=0

xn

n!qn(n−1)/2

B =

∞∑

n=0

xn

n!qn(n−1)/2
pn

E =
∞∑

n=0

xn

n!qn(n−1)/2
Eνn

Mk =

∞∑

n=0

xn

n!qn(n−1)/2
E(νn)

k

Mk =

∞∑

n=0

xn

n!qn(n−1)/2
E(νn − 1)k,

where zk = z(z− 1) . . . (z− k+1) denotes the factorial power k > 0. Therefore,
A is a SG-function of {1}, B is a SG-function of probabilies that graph is
connected, E is a SG-function of expectations of components quantity, Mk is a
SG-function of k-th factorial moments of νn, and Mk is a SG-function of k-th
factorial moments of (νn − 1). It’s easy to see that A converges only if q = 1.
Below we’ll see that all of theese series are converges in the same conditions.

2 Basical Relations

Lemma 1. If the relation n = k = s = 0 does not holds, then

An,k,s =
∑

n1+···+ns=n
k1+···+ks=k

n!

s!

Bn1,k1
· · ·Bns,ks

n1! · · ·ns!
, (2)

where the summation is over all integer non-negative ni, ki.

Proof. Let consider the set of graphs Ḡn with n vertices, where the components
are ordered. It is clear that the number Ān,k,s of such graphs with n vertices,
k edges and s components is equal to s!An,k,s.

By the other side, any graph from Ḡn with n vertices and s components we
can make by getting some ordered partition of the set of n vertices with non-
empty parts, which has the volumes n1, . . . , ns. The number of such partitions
is equal to n!/(n1! · · ·ns!). For every set of vertices, included in connected
components, we can find the number of connected graphs with ni vertices and
ki edges. It is equal to Bni,ki

. By choosing ki in such a way that k1+· · ·+ks = k,
and summing over all partitions of n vertices, we get the equation:

Ān,k,s =
∑

n1+···+ns=n
k1+···+ks=k

n!Bn1,k1
· · ·Bns,ks

n1! · · ·ns!
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From this we get (2) for positive n, ni, s and non-negative k. Extention of this
relation for zero values of n, ni and s follows from the previous agreements.

Now we consider the next generated functions, which are exponential by
parameter x:

A(x, y) =
∑

n,k

An,k

n!
xnyk, B(x, y) =

∑

n,k

Bn,k

n!
xnyk.

The summation is over integer non-negative n, k.

Lemma 2.

A(x, y) = eB(x,y) (3)

Proof. By multyplying the relation (2) by xnyk/n! we get:

An,k,s

n!
xnyk =

1

s!

∑

n1+···+ns=n
k1+···+ks=k

Bn1,k1
xn1yk1 · · ·Bns,ks

xnsyks

n1! · · ·ns!
= [xnyk]B(x, y)s.

The last notation denotes a coefficient before xnyk in the series B(x, y)s. Now,
by summing over integer non-negative n, k for s > 0 we get the following:

∑

n,k

An,k,s

n!
xnyk =

1

s!
B(x, y)s (4)

Note, that by virtue of the agreements this equation stays also true for s = 0.
Finally, by summing over integer non-negative s we get:

A(x, y) =

∞∑

s=0

B(x, y)s

s!
= eB(x,y).

From the relation (3) we can obtain any exact expressions for probabilities
of random graph G(n, p). First of all, it is clear that:

An,k =

(
n(n− 1)/2

k

)
,

where we suppose that
(
m
k

)
= 0 for k > m. It is easy to see that

∞∑

k=0

(
n(n− 1)/2

k

)
yk =

n(n−1)/2∑

k=0

(
n(n− 1)/2

k

)
yk = (1 + y)n(n−1)/2,

hence,

A(x, y) =
∞∑

n=0

(1 + y)n(n−1)/2x
n

n!
.
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From this and from (3) it follows that

B(x, y) = ln

∞∑

n=0

(1 + y)n(n−1)/2x
n

n!
. (5)

One can see that B(x, y) is the generated function for a sequence [5] where
the nulled element is equal to zero.

By putting y = p/q and from the obvious equtions

∑

k

An,k

(
p

q

)k

qn(n−1)/2 = 1,
∑

k

Bn,k

(
p

q

)k

qn(n−1)/2 = pn,

we get that for previously defined series A and B the next relations are true:

A

(
x,

p

q

)
=
∑

n,k

An,k

n!
xn(p/q)k =

∑

n

xn

qn(n−1)/2n!
= A,

(6)

B

(
x,

p

q

)
=
∑

n,k

Bn,k

n!
xn(p/q)k =

∑

n

pnx
n

qn(n−1)/2n!
= B.

Thus, we have

Lemma 3.

A = eB.

This proved equation is the base fact, which we will use anythere below without
a special link.

From (1) it follows that:

∞∑

n=0

P{νn = s}

qn(n−1)/2

xn

n!
=
∑

n,k

An,k,s

n!
xn(p/q)k,

and by (4), where we put y = p/q, we get following:

∞∑

n=0

xn

qn(n−1)/2n!
P{νn = s} =

1

s!
B(x, p/q)s =

1

s!
Bs, (7)

i.e. the formal series Bs/s! is SG-function of probabilities P{νn = s} for a fixed
number s of connected components.

Let us consider two SG-functions and their product:

R =
∞∑

n=0

rnx
n

n!qn(n−1)/2
, T =

∞∑

n=0

tnx
n

n!qn(n−1)/2
, RT =

∞∑

n=0

znx
n

n!qn(n−1)/2
.

One can easily proof the following
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Lemma 4 (Convolution Formula). For n > 0:

zn =

n∑

k=0

(
n

k

)
qk(n−k)rktn−k.

Further we will use this formula without a special link to it. The next recursion
formula for probabilities pn is an anlogue of a recursion formula for a number
of connected graphs, that was obtained in [6].

Lemma 5. For any n > 1

pn = 1−

n−1∑

k=1

(
n− 1

k

)
qk(n−k)pn−k. (8)

Proof. By differentiating the relation A = eB by the parameter x we get:

xA′ = xAB′,

hence, from the convolution formula it follows that

n =

n∑

k=0

(
n

k

)
qk(n−k)kpk (9)

Since p0 = 0 and k
n

(
n
k

)
=
(
n−1
k−1

)
follows

1− pn =

n−1∑

k=1

(
n− 1

k − 1

)
qk(n−k)pk,

and by replacing k by n− k we get the statement of Lemma.

By analogue we can get a recursive formula for probabilities P{νn = s}.

Lemma 6.

P{νn = s} =

n−1∑

k=s−1

(
n− 1

k

)
P{νk = s− 1}pn−kq

k(n−k) (10)

for n > s > 1.

Proof. Let us denote

Bs =

∞∑

n=0

xn

qn(n−1)/2n!
P{νn = s},

then by (7) we get:
s!Bs(x) = B(x)s,
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then by differentiating by x it follows that:

s!B′

s = sBs−1B′ = s(s− 1)!Bs−1B
′,

hence,
xB′

s = xBs−1B
′.

From this and according to P{νk = s − 1} = 0 as k < s − 1 we get Lemma
statement.

Lemma 7. The following relations hold:

pn+1 =

n∑

s=1

∑

k1+···+ks=n

n!(1− qk1) . . . (1− qks)

s!k1! . . . ks!
P{νn = s}, (11)

pn+1 > (1 − qn)pn. (12)

Proof. If we put x/q instead of x in the definition of series A, we get that
A′ = A(x/q) = eB(x/q). On the other side, A′ = B′eB. Therefore,

B′eB = eB(x/q), B′ = eB(x/q)−B(x),

hence,

B′ =

∞∑

s=0

1

s!

(
∞∑

n=0

pnx
n(1− qn)

n!qn(n−1)/2

)s

.

Now we take the corresponding coefficients before xn in theese series and get
the relation (11). The ineqution (12) follows from (11) if we left in this summa
only the summand with s = 1.

3 Several Equations

Lemma 8. For s > 0
Ms = ABs,

and in particulary, E = AB.

Proof. By definition,

E(νn)
s =

n∑

k=0

ksP{νn = k},

hence by (7) we get:

Ms =

∞∑

n=0

E(νn)
sxn

n!qn(n−1)/2
=

∞∑

k=0

ks
∞∑

n=0

P{νn = k}xn

n!qn(n−1)/2
=

=

∞∑

k=0

ksBs/s! = Bs
∞∑

k=s

Bk−s

(k − s)!
= ABs.

7



Now we consider the connection between moments of νn and νn − 1.

Lemma 9. For s > 1
Ms = Ms + sMs−1

(−1)s

s!
Ms =

s∑

k=0

(−1)k

k!
Mk

Proof. The first equation is follows from

E(νn − 1)s = E(νn − 1) . . . (νn − s) = E(νn)
s − sE(νn − 1)s−1,

and the second one not hard to proof by induction with the obvious start eqation
M0 = A = M0.

Lemma 10. For s > 1

M ′

s

s!
= B′

(
Ms

s!
+

Ms−1

(s− 1)!

)

M
′

s

s!
= B′

(
Ms

s!
+

Ms−1

(s− 1)!

)
= B′

Ms

s!

Now we ready to use the operator̂ for SG-functions of moments. First of
all, we get:

Lemma 11 (Derivative Relashionship Formula). If R is a SG-function, then:

R̂ = R′

q +
x2

2q
R′′

Here and below the single quote without a parameter notation denotes the
derivative by x, and the derivative by q is marked by index q.

The following equations hold.

Lemma 12.

M̂s

s!
=

x2

2q
(B′)2

(
Ms−1

(s− 1)!
+

Ms−2

(s− 2)!

)
=

x2

2q
B′

M ′

s−1

(s− 1)!

M̂s

s!
=

x2

2q
(B′)2

(
Ms−1

(s− 1)!
+

Ms−2

(s− 2)!

)
=

x2

2q
(B′)2

Ms−1

(s− 1)!
=

x2

2q
B′

M
′

s−1

(s− 1)!

Proof. By the convolution formula and from Â = 0 we get:

A′

q = −
x2

2q
A′′.

From here it follows that:

(Ms)
′

q = (ABs)′q = A′

qB
s + sABs−1B′

q = A′

q(B
s + sBs−1) = −

x2

2q
A′′(Bs + sBs−1)

M ′′

s = (ABs)′′ = (A′Bs + sBs−1A′)′ = A′′(Bs + sBs−1) +A′B′(sBs−1 + s(s− 1)Bs−2)

8



Hence by Derivative Relashionship Formula we get that:

M̂s = (Ms)
′

q +
x2

2q
M ′′

s =
x2

2q
A′B′(sBs−1 + s(s− 1)Bs−2) =

=
x2

2q
(B′)2(sMs−1 + s(s− 1)Ms−2),

so we have the first equation of statement.
To get the equations for Ms it is sufficient to use Lemmas 9, 10 and previous

relation.

4 Several Inequations

Let denote by ≫ that the inequation > holds for all coefficient before xn in the
considering series. For example, the notation

∑
anx

x ≫
∑

bnx
n means that

for all n the inequation an > bn holds. It is easy to verify that:
if X ≫ Y and Z ≫ 0, then XZ ≫ Y Z;
if X ≫ Y and V ≫ W , then X + V ≫ Y +W .

Lemma 13. For n > 0

qn−1
E(νn−1)

s
6 E(νn − 1)s 6 E(νn−1)

s

Proof. Left inequation follows from:

M
′

s = B′Ms ≫ Ms

with help of convolution formula and because of B′ ≫ 1. Right inequation
follows from:

M
′

s = B′Ms = B′ABs = A′Bs = A(x/q)Bs ≪ A(x/q)B(x/q)s = Ms(x/q).

Lemma 14. For all n > 1 and s > 1 the following inequations hold:

(n− 1)s · q(n−1)s
6 E(νn − 1)s 6 2(n− 1)sq(n−1)(s+1)/2

Proof. Left inequation.

xM′

s

s!
=

xB′Ms

s!
= xA′

Bs

s!
= xA′Bs,

hence, by the convolution formula we get:

nE(νn − 1)s

s!
=

n∑

k=0

(
n

k

)
qk(n−k)kP{νn−k = s},

9



where the last summation we can estimate by the summand as k = n− s, and
therefore we have:

E(νn − 1)s >

(
n

n− s

)
s!qs(n−s)qs(s−1)/2 ·

n− s

n
= (n− 1)s · q(n−1)sq−s(s−1)/2,

here we get the left equation of Lemma statement.
Right inequation. Following relations one can get from the results that were

proved above.

x(M̂s)
′

s!
= x

(
x2

2q
(B′)2

Ms−1

(s− 1)!

)′

=
x2(B′)2 + x3B′B′′

q

Ms−1

(s− 1)!
+

x3(B′)2

2q

M ′

s−1

(s− 1)!
=

=
x2

q

(
(B′)2

Ms−1

(s− 1)!
+ xB′B′′

Ms−1

(s− 1)!
+

x

2
(B′)3

Ms−1

(s− 1)!
+

x

2
(B′)3

Ms−2

(s− 2)!

)

x2

qs!
M

′′

s =
x2

qs!
(B′Ms)

′ =
x2

q

(
B′′

Ms

s!
+ (B′)2

Ms

s!
+ (B′)2

Ms−1

(s− 1)!

)

x(M̂s)
′

s!
− s

x2

qs!
M

′′

s =
x2

q
(B′)2

Ms−1

(s− 1)!
(1− s) +

x2

q
B′′Ms−1

(
xB′

(s− 1)!
−

sB

s!

)

+
x2

q
(B′)2Ms−1

(
xB′

2(s− 1)!
−

sB

s!

)
+

x3

2q
(B′)3

Ms−2

(s− 2)!

x(M̂s)
′ −

sx2

q
M

′′

s =s
x2

q
B′′Ms−1(xB

′ −B) +
sx2

q
(B′)2Ms−1(xB

′/2−B)

+ s(s− 1)
x2

q
(B′)2Ms−2(xB

′/2−B) =

=s
x2

q
B′′Ms−1(xB

′ −B) +
s!x2

q
(B′)2

(
Ms−1

(s− 1)!
+

Ms−2

(s− 2)!

)
(xB′/2−B) =

=s
x2

q
B′′Ms−1(xB

′ −B) + 2M̂s(xB
′/2−B). (13)

Since n− 1 > 0, n/2− 1 > 0 for n > 2, n/2− 1 > −1/2 for n = 1 it follows
that

xB′ −B ≫ 0;
xB′

2
−B ≫ −

x

2
,

and from the equations (13) we get the next inequation:

x(M̂s)
′ + xM̂s ≫

sx2

q
M

′′

s .

Now we get coefficients before xn:

n(E(νn − 1)s)′q + nqn−1(E(νn−1)
s)′q >

sn(n− 1)

q
E(νn − 1)s.

10



Dividing by n we get:

(E(νn − 1)s)′q + qn−1(E(νn−1)
s)′q >

s(n− 1)

q
E(νn − 1)s as n > 0. (14)

It is esy to see that

qn−1(E(νn−1)
s)′q = (qn−1

E(νn−1)
s)′q −

(n− 1)

q
qn−1

E(νn−1)
s,

where we use derivative of product. Therefore from this and (14) we get

(E(νn−1)s+qn−1
E(νn−1)

s)′q >
s(n− 1)

q
E(νn−1)s+

(n− 1)

q
qn−1

E(νn−1)
s (15)

Hence, dividing by E(νn − 1)s + qn−1
E(νn−1)

s we find the inequation

(E(νn − 1)s + qn−1
E(νn−1)

s)′q
E(νn − 1)s + qn−1E(νn−1)s

>
n− 1

q
·
sE(νn − 1)s + qn−1

E(νn−1)
s

E(νn − 1)s + qn−1E(νn−1)s
(16)

Note, that the function f(t) = (s + t)/(1 + t) not increases as t increases, if
s > 1 and t > 0. From Lemma 13 it follows that:

E(νn − 1)s > qn−1
E(νn−1)

s as n > 0

Therefore from this and (16) we get:

(E(νn − 1)s + qn−1
E(νn−1)

s)′q
E(νn − 1)s + qn−1E(νn−1)s

>
(s+ 1)(n− 1)

2q
(17)

Let q 6 q1 6 1, and let E1 = E|q=q1 . By integrating (17) on the interval
[q; q1] we get follows:

ln
(
E(νn − 1)s + qn−1

E(νn−1)
s
) ∣∣∣

q1

q
>

(s+ 1)(n− 1)

2
ln q
∣∣∣
q1

q

Then we put both sides of this inequation into the argument of function ex, and
get:

E(νn − 1)s + qn−1
E(νn−1)

s
6
(
E1(νn − 1)s + qn−1

1 E1(νn−1)
s
)(qn−1

qn−1
1

)(s+1)/2

or

E(νn − 1)s 6
(
E1(νn − 1)s + qn−1

1 E1(νn−1)
s
)(qn−1

qn−1
1

)(s+1)/2

.

Then we set q1 = 1 and finally find that

E(νn − 1)s 6 2(n− 1)sq(n−1)(s+1)/2,

because as q1 = 1 we have E1(νn − 1)s = (n− 1)s.
This proofs the right inequation of Lemma.

Note, that if we put s = n− 1, then we have an equation

E(νn − 1)n−1 = (n− 1)!qn(n−1)/2 = (n− 1)n−1qn(n−1)/2,

where the right hand side is equal to half of the just proved estimation.

11



5 Asymptotic behavior of νn

In this section we consider an asymptotics of moments E(νn − 1)s as s is fixed
and positive. We will study a behavior of moments in the following zones of
parameters:

1. p → 0, n = const;

2. qn → e−α, where fixed α > 0 and n → ∞;

3. qn → 0 as n → ∞

3.1 nqn → ∞,

3.2 nqn → α > 0,

3.3 nqn → 0 (in this case p can be a positive constant < 1).

5.1 Asymptotics for n = const

It is easy to prove the following Lemma, besause the minimal graph with n
vertices and s components is a forest with s trees.

Lemma 15. If p → 0 and n = const, then for any s 6 n the following equation
holds: P{νn = s} = Fs,np

n−s + O(pn−s+1). In particular, pn = nn−2pn−1 +
O(pn).

Hence we have the following

Theorem 1. If p → 0 and n = const, then for any s 6 n:

Eνsn = ns(1 + o(1)), E(νn − 1)s → ns.

5.2 Asymptotics for q
n → e

−α

Let

β(x) =
∞∑

k=1

kk−2

k!
xk.

This series converges as |x| 6 e−1 and this is a generated function for sequence
of numbers of labelled trees [4].

Theorem 2. If qn → e−α as n → ∞, where α > 0, then for s > 0

E(νn − 1)s =
(n
α
β(αe−α)

)s
(1 + o(1)).

In particular, for α = 0 we have the relation E(νn − 1)s ∼ ns.

12



Proof. We will use a mathematical induction on the parameter s. It is clear
that the statement of Theorem holds for s = 0. Let us suppose that it holds for
s− 1 and will show it for s > 1.

From the relation xM′

s = xB′Ms = xB′BMs−1 = BxM′

s−1 (see Lemma 10)
and from the convolution formula we get:

nE(νn − 1)s =

n∑

k=0

(
n

k

)
qk(n−k)pk(n− k)E(νn−k − 1)s−1 =

= n

n−1∑

k=0

(
n− 1

k

)
qk(n−k)pkE(νn−k − 1)s−1 = n(S1 + S2),

where

S1 =

k0∑

k=0

(
n− 1

k

)
qk(n−k)pkE(νn−k − 1)s−1,

S2 =

n−1∑

k=k0+1

(
n− 1

k

)
qk(n−k)pkE(νn−k − 1)s−1

As k is fixed, one can get next relations:
(
n−1
k

)
qk(n−k) ∼ (nqn)k/k!, pk ∼

kk−2pk−1 (Lemma 15). And from the induction hypothesis we get: E(νn−k)
s−1 ∼(

n
αβ(αe

−α
)s−1

. Hence:

S1 =

k0∑

k=0

(npqn)k

pk!
kk−2

(n
α
β(αe−α)

)s−1

(1+o(1)) =

k0∑

k=0

n

α

kk−2

k!
(αe−α)k

(n
α
β(αe−α)

)s−1

(1+o(1)),

where we use the asymptotics np → α and npqn → αe−α, which is follows from
Theorem conditions.

So, it is easy to see that S1/
(
n
αβ(αe

−α)
)s

as closed to 1 as k0 is bigger,
because of the convergence of the series β(x) for x = αe−α.

Let we estimate S2. It is clear that E(νn−k − 1)s−1 6 ns−1. From this and
from the equation (9) we get

1 >

n−1∑

k=k0+1

(
n− 1

k

)
qk(n−1−k)pk

k

n− 1
>

k0
n− 1

n∑

k=k0+1

(
n− 1

k

)
qk(n−k)pk >

>
k0
ns

n−1∑

k=k0+1

(
n− 1

k

)
qk(n−k)pkE(νn−k − 1)s−1 =

k0
ns

S2.

Therefore,

S2 =
1

k0
O (ns) =

1

k0
O
(n
α
β(αe−α)

)s
,

i.e. the ratio S2/
(
n
αβ(αe

−α)
)s

tends to 0 as k0 → ∞.

13



Thus, E(νn − 1)s =
(
n
αβ(αe

−α)
)s

(1 + o(1)).
In the case of α = 0 the proof of Theorem is similary, but instead of

β(αe−α)/α we should write 1 at all places.

5.3 Asymptotics for q
n → 0

Theorem 3. Let qn → 0 and nqn > C as n → ∞, where fixed C > 0, then

E(νn − 1)s = (nqn)s(1 + o(1)).

Proof. We will use an induction by s. It is clear that the statement of Theorem
holds for s = 0. Let us suppose that it holds for s− 1 and will show it for s > 1.

The following relations hold:

∞∑

n=0

(E(νn)
s − E(νn+1 − 1)s)xn

n!qn(n−1)/2
= Ms −M

′

s(xq) = Ms −B′(xq)Ms(xq) =

= ABs −A′(xq)Bs(xq) = A(Bs −Bs(xq)) = A(s!Bs − s!Bs(xq)) =

= A
∞∑

n=0

(1 − qn)
xn

P{νn = s}s!

n!qn(n−1)/2
≪ A

∞∑

n=0

np
xn

P{νn = s}s!

n!qn(n−1)/2
=

= Apx(Bs)′ = spxAB′Bs−1 = spxB′Ms−1 = spxM′

s−1 = sp

∞∑

n=0

E(νn − 1)s−1nxn

n!qn(n−1)/2
,

where we use the fact, that (1− qn) 6 n(1− q) = np. Therefore we get that

E(νn)
s − E(νn+1 − 1)s 6 spnE(νn − 1)s−1

or
E(νn−1)

s
6 E(νn − 1)s + spnE(νn−1 − 1)s−1.

From the equation (16) it follows that

(E(νn − 1)s + qn−1
E(νn−1)

s)′q
E(νn − 1)s + qn−1E(νn−1)s

>
n− 1

q
·
sE(νn − 1)s + qn−1

E(νn−1)
s

E(νn − 1)s + qn−1E(νn−1)s
>

n− 1

q
·
sE(νn − 1)s + qn−1(E(νn − 1)s + snpE(νn−1 − 1)s−1)

E(νn − 1)s + qn−1(E(νn − 1)s + snpE(νn−1 − 1)s−1)
=

=
n− 1

q
·
s+ qn−1 + snpqn−1

E(νn−1 − 1)s−1/E(νn − 1)s

1 + qn−1 + snpqn−1E(νn−1 − 1)s−1/E(νn − 1)s
. (18)

By the induction hypothesis and from Lemma 14 we get that

E(νn−1 − 1)s−1

E(νn − 1)s
6 C1

(nqn)s−1

(n− 1)sq(n−1)s
6

C2

nqn
,

14



where the positive constants Ck, generally speaking, are depends on the param-
eter s. By putting this inequation into (18) we get:

(E(νn − 1)s + qn−1
E(νn−1)

s)′q
E(νn − 1)s + qn−1E(νn−1)s

>
n− 1

q
·
s+ qn−1 + C4npq

n−1/(nqn)

1 + qn−1 + C4npqn−1/(nqn)
>

>
n− 1

q
(s− sqn−1 − C5npq

n−1/(nqn)) >
n− 1

q
(s− sqn−1 − C6p) >

> (n− 1)sq−1 − C7(n− 1)qn−2 − C8np. (19)

Let q1 = ε1/(n−1), where ε is an arbitrary small positive number, hence
qn−1
1 = ε and q < q1 (it follows from qn → 0). Besides let denote E1 = E|q=q1

as it was above.
Now, we integrate the inequation (19) on the interval [q; q1] and get that

ln
(
E(νn − 1)s + qn−1

E(νn−1)
s
) ∣∣∣

q1

q
> s(n−1) ln q

∣∣∣
q1

q
−(n−1)C7

qn−1

n− 1

∣∣∣
q1

q
−C8n(q−q2/2)

∣∣∣
q1

q

or

E(νn − 1)s + qn−1
E(νn−1)

s
6

6
(
E1(νn − 1)s + qn−1

1 E1(νn−1)
s
)( q

q1

)s(n−1)

eC7(q
n−1

1
−qn−1)eC8n(q1−q+q2/2−q2

1
/2)

6

6
E1(νn − 1)s + qn−1

1 E1(νn−1)
s

εs
qs(n−1)eC9ε, (20)

because qn−1
1 = ε and n(q1 − q + q2/2 − q21/2) = n(q1 − q)(1 − q/2 − q1/2) =

n(p−p1)(p/2+p1/2) 6 np2 → 0. The last expression is follows from np2 ·nqn =
(np)2en ln q → 0 and from the conditions of Theorem.

By Theorem 2 we get that

E1(νn − 1)s =
(n
α
β(αe−α)

)s
(1 + o(1)) = nsβ(αε)s/αs(1 + o(1)).

where α = − ln ε.
Besides that,

qn−1
1 E1(νn−1)

s = ε(E1(νn−1 − 1)s + sE1(νn−1 − 1)s−1) =

= ε(nsβ(αε)s/αs + sns−1β(αε)s−1/αs−1)(1 + o(1)),

because qn−1
1 = ε and again from Theorem 2. From this and from (20) it follows

that

E(νn − 1)s 6
(1 + ε)β(αε)s/αs + εsβ(αε)s−1/αs−1

εs
nsqsneC10ε(1 + o(1)).
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Therefore, by choosing an arbitrary small ε > 0 and using the relationship
β(x) ∼ x as x → 0 we get the relation:

lim sup
n→∞

E(νn − 1)s

(nqn)s
6 lim

ε→0

(1 + ε)β(αε)s + sεαβ(αε)s−1

αsεs
eC10ε = 1.

From Lemma 14 we have E(νn − 1)s > (n− 1)sqs(n−1) = (nqn)s(1+ o(1)). Now
we see that Theorem follows from theese both equations.

Let nqn → α, where α is a positive constant. From Theorem 3 we see that
E(νn − 1)s → αs.

It is known that in this case random variable (νn − 1) tends to Poisson
distribution with the parameter α.

Thus we have

Theorem 4. If nqn → α as n → ∞ and α is a fixed positive constant, then for
any fixed integer k > 1:

P{νn = k} →
αk−1

(k − 1)!
e−α.

From Lemma 14 it follows that if nqn → 0, then E(νn − 1) ≍ nqn−1. So we
can conclude that νn tends to 1. Below we’ll show an estimation of pn in this
case.

6 Several Consequences

Generally, we can conclude that in all zones of parameters p and n

E(νn − 1)s ∼ (β(npqn)/p)s as nqn → ∞

and
E(νn − 1)s = (β(npqn)/p)s + o(1) as nqn = O(1)

It is easy to verify, because if np → ∞ or np → 0, then it follows that
npqn → 0 and β(npqn)/p ∼ nqn.

Now we can estimate the probability pn that graph G(n, p) is connected.

pn = P{νn < 2− 1/n} = 1− P{νn − 1 > 1− 1/n} > 1− E(νn − 1)
n

n− 1
, (21)

and from Lemma 14 we get:

pn > 1− 2nqn−1. (22)

If we put p = c lnn
n and c > 1, then we have nqn−1 = n exp{−c lnn +

O(ln2 n)/n} = n1−c(1 +O(ln2 n)/n). Therefore we finally get:

pn > 1−
2

nc−1
(1 +O(ln2 n)/n). (23)
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If nqn → α (for example, p = (lnn+ c+ o(1))/n, where α = e−c), then from
Theorem 4 we get that:

pn → e−α.

To estimate pn as nqn → ∞ we now consider the isolating probability. Let
pin be a probability that G(n, p) has an isolated vertex. Let Ai be an event
that i-th vertex is isolated, then from the Inclusion–exclusion principle we get:

pin = P{A1∪· · ·∪An} =

n∑

k=1

(−1)k−1
∑

16i1<···<ik6n

P{Ai1 . . . Aik} =

n∑

k=1

(−1)k−1

(
n

k

)
P{A1 . . . Ak}.

It is easy to see that P{A1 . . . Ak} = qk(k−1)/2qk(n−k), so

pin =

n∑

k=0

(−1)k−1

(
n

k

)
qk(n−k)qk(k−1)/2 + 1.

According to convolution formula we can find that SG-function PI of {pin} is
equal to RT+A, where R and T are SG-functions of the corresponding sequences
{rn} and {tn}, which are defined as follows: rn = (−1)n−1qn(n−1)/2 and tn = 1.

Hence we have

R =
∞∑

n=0

rnx
n

n!qn(n−1)/2
= −e−x; T = A.

Thus PI = A− e−xA = A(1− e−x).
Since (1−e−x) 6 x it follows that PI ≪ Ax, and from the convolution formula

we obtain
pin 6 nqn−1. (24)

It is easy to see that PI ′ = A′(1−e−x)+Ae−x = PI ·B′+A−PI ≫ PI ·B′,
because A− PI ≫ 0, and from the convolution formula we get:

npin >

n∑

k=1

(
n

k

)
qk(n−k)pin−kkpk > n(n− 1)qn−1pn−1

or
pin+1 > nqnpn (25)

So, if nqn → α > 0, then pin > αe−α + o(1).
And also we have

pn 6 pin+1/(nq
n) 6 1/(nqn) (26)

Since PI = A(1−e−x) it follows that PIex = Aex−A and, therefore, (PI−
A)(ex − 1) = −PI. From the relation ex − 1 > x we get that PI ≫ (A− PI)x,
therefore from the convolution formula we find that pin > (1− pin)nq

n−1, then
(1− pin) 6 1/(nqn−1) and we get finally

pin > 1−
1

nqn−1
(27)
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Now we can combine all obtained results (22), (26), (25), (24) and (27) in
the following

Theorem 5. For all n > 1

1− 2nqn−1
6 pn 6

1

nqn
,

1−
1

nqn
6 pin 6 nqn−1,

nqnpn 6 pin+1

And if nqn > C > 0 as n → ∞, then we can substitute nqn by E(νn−1)(1+o(1))
in theese relations.
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