On some estimates for Erdös-Rényi random graph

Nikolay Kazimirow

8/31/2015

Abstract

We consider a number ν_{n} of components in a random graph $G(n, p)$ with n vertices, where the probability of an edge is equal to p. By operating with special generating functions we shows the next asymptotic relation for factorial moments of ν_{n} : $$
\mathrm{E}\left(\nu_{n}-1\right)^{\underline{s}}=(1+o(1))\left(\frac{1}{p} \sum_{k=1}^{\infty} \frac{k^{k-2}}{k!}\left(n p q^{n}\right)^{k}\right)^{s}+o(1)
$$

as n tends to ∞ and $q=1-p$. And the following inequations hold:

$$
\begin{aligned}
& 1-2 n q^{n-1} \leqslant p_{n} \leqslant \frac{1}{n q^{n}}, \\
& 1-\frac{1}{n q^{n}} \leqslant p i_{n} \leqslant n q^{n-1},
\end{aligned}
$$

where p_{n} is the probability that $G(n, p)$ is connected and $p i_{n}$ is the probability that $G(n, p)$ has an isolated vertex.

1 Notations

Let G_{n} be a set of undirected graphs with n labeled vertices. For any graph $g \in G_{n}$ let $C(g)$ be a number of connected components in the graph g and $E(g)$ be a number of edges in thr graph g. Besides we denote by $F_{s, n}$ the number of all forests in G_{n}, that contains exactly s trees. We also suppose that components in G_{n} are not ordered.

Further, let $A_{n, k, s}$ be a number of graphs in G_{n}, which contains n vertices, k edges and s components, $A_{n, k}$ be a number of graphs, which contains n vertices and k edges, and $B_{n, k}$ - a number of connected graphs with n vertices and k edges. For definiteness we suppose that $A_{0, k}=A_{0, k, s}=A_{n, k, 0}=0$ in all cases, except $n=k=s=0$, where we set by definition $A_{0,0}=A_{0,0,0}=1$. Besides, let $B_{0, k}=0$ for all k. It's clear that $A_{n, k}=\sum_{s} A_{n, k, s}$, where index s runs on all integer non-nagative numbers.

Let us consider the random graph $G(n, p)$, which contains n labeled vertices, where each of $\binom{n}{2}$ edges is present with the probability p independently of other edges. Each concrete realization of random graph $G(n, p)$ is a graph from G_{n}.

This model of random graphs was firstly described by Erdös and Rényi in [1, 2] and then has been well studied by Béla Bollobás [3], Valentin Kolchin [4] and other authors.

It is easy to see that the parobability distribution of such random graph is defined as follows:

$$
\mathrm{P}\{G(n, p)=g\}=(p / q)^{E(g)} q^{n(n-1) / 2}
$$

where $g \in G_{n}$ and $q=1-p$.
Let denote by ν_{n} the number of connected components of $G(n, p)$, i. e. $\nu_{n}=C(G(n, p))$, and let p_{n} be the probability that random graph $G(n, p)$ is connected, thus $p_{n}=\mathrm{P}\left\{\nu_{n}=1\right\}$. It's clear that

$$
\begin{equation*}
\mathrm{P}\left\{\nu_{n}=s\right\}=\sum_{k=0}^{\infty} A_{n, k, s}(p / q)^{k} q^{n(n-1) / 2} \tag{1}
\end{equation*}
$$

and

$$
p_{n}=\sum_{k=0}^{\infty} B_{n, k}(p / q)^{k} q^{n(n-1) / 2}
$$

Froom the above agreements it follows that $p_{0}=0$ and $p_{1}=1$.
Below we'll need the special generated function, which we define as follows: for a sequence of functions $\left\{r_{n}(q)\right\}$ we put

$$
R=R(x, q)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!q^{n(n-1) / 2}} r_{n}(q)
$$

where we often will skip arguments x and q, except such cases when we will use special values of them. Below in this text we will call such functions as SG-functions (SG $=$ special generated).

It is easy to see that SG-functions are formal power series which are not converges at all. But most of all usual operations with SG-functions (such as adding, production, differentiation and integration on both arguments) does not lead to conflicts when counting coefficients before x^{n}.

Let denote

$$
\widehat{R}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!q^{n(n-1) / 2}} \frac{d r_{n}(q)}{d q}
$$

i.e. the operator ${ }^{\wedge}$ denotes SG-function for the sequence of derivatives of $r_{n}(q)$.

Let also:

$$
\begin{aligned}
A & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!q^{n(n-1) / 2}} \\
B & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!q^{n(n-1) / 2}} p_{n} \\
E & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!q^{n(n-1) / 2}} \mathrm{E} \nu_{n} \\
M_{k} & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!q^{n(n-1) / 2}} \mathrm{E}\left(\nu_{n}\right)^{\underline{k}} \\
\mathcal{M}_{k} & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!q^{n(n-1) / 2}} \mathrm{E}\left(\nu_{n}-1\right)^{\underline{k}},
\end{aligned}
$$

where $z^{\underline{k}}=z(z-1) \ldots(z-k+1)$ denotes the factorial power $k \geqslant 0$. Therefore, A is a SG-function of $\{1\}, B$ is a SG-function of probabilies that graph is connected, E is a SG-function of expectations of components quantity, M_{k} is a SG-function of k-th factorial moments of ν_{n}, and \mathcal{M}_{k} is a SG-function of k-th factorial moments of $\left(\nu_{n}-1\right)$. It's easy to see that A converges only if $q=1$. Below we'll see that all of theese series are converges in the same conditions.

2 Basical Relations

Lemma 1. If the relation $n=k=s=0$ does not holds, then

$$
\begin{equation*}
A_{n, k, s}=\sum_{\substack{n_{1}+\cdots+n_{s}=n \\ k_{1}+\cdots+k_{s}=k}} \frac{n!}{s!} \frac{B_{n_{1}, k_{1}} \cdots B_{n_{s}, k_{s}}}{n_{1}!\cdots n_{s}!}, \tag{2}
\end{equation*}
$$

where the summation is over all integer non-negative n_{i}, k_{i}.
Proof. Let consider the set of graphs \bar{G}_{n} with n vertices, where the components are ordered. It is clear that the number $\bar{A}_{n, k, s}$ of such graphs with n vertices, k edges and s components is equal to $s!A_{n, k, s}$.

By the other side, any graph from \bar{G}_{n} with n vertices and s components we can make by getting some ordered partition of the set of n vertices with nonempty parts, which has the volumes n_{1}, \ldots, n_{s}. The number of such partitions is equal to $n!/\left(n_{1}!\cdots n_{s}!\right)$. For every set of vertices, included in connected components, we can find the number of connected graphs with n_{i} vertices and k_{i} edges. It is equal to $B_{n_{i}, k_{i}}$. By choosing k_{i} in such a way that $k_{1}+\cdots+k_{s}=k$, and summing over all partitions of n vertices, we get the equation:

$$
\bar{A}_{n, k, s}=\sum_{\substack{n_{1}+\cdots+n_{s}=n \\ k_{1}+\cdots+k_{s}=k}} \frac{n!B_{n_{1}, k_{1}} \cdots B_{n_{s}, k_{s}}}{n_{1}!\cdots n_{s}!}
$$

From this we get (2) for positive n, n_{i}, s and non-negative k. Extention of this relation for zero values of n, n_{i} and s follows from the previous agreements.

Now we consider the next generated functions, which are exponential by parameter x :

$$
A(x, y)=\sum_{n, k} \frac{A_{n, k}}{n!} x^{n} y^{k}, \quad B(x, y)=\sum_{n, k} \frac{B_{n, k}}{n!} x^{n} y^{k}
$$

The summation is over integer non-negative n, k.

Lemma 2.

$$
\begin{equation*}
A(x, y)=e^{B(x, y)} \tag{3}
\end{equation*}
$$

Proof. By multyplying the relation (2) by $x^{n} y^{k} / n$! we get:

$$
\frac{A_{n, k, s}}{n!} x^{n} y^{k}=\frac{1}{s!} \sum_{\substack{n_{1}+\cdots+n_{s}=n \\ k_{1}+\cdots+k_{s}=k}} \frac{B_{n_{1}, k_{1}} x^{n_{1}} y^{k_{1}} \cdots B_{n_{s}, k_{s}} x^{n_{s}} y^{k_{s}}}{n_{1}!\cdots n_{s}!}=\left[x^{n} y^{k}\right] B(x, y)^{s} .
$$

The last notation denotes a coefficient before $x^{n} y^{k}$ in the series $B(x, y)^{s}$. Now, by summing over integer non-negative n, k for $s>0$ we get the following:

$$
\begin{equation*}
\sum_{n, k} \frac{A_{n, k, s}}{n!} x^{n} y^{k}=\frac{1}{s!} B(x, y)^{s} \tag{4}
\end{equation*}
$$

Note, that by virtue of the agreements this equation stays also true for $s=0$. Finally, by summing over integer non-negative s we get:

$$
A(x, y)=\sum_{s=0}^{\infty} \frac{B(x, y)^{s}}{s!}=e^{B(x, y)}
$$

From the relation (3) we can obtain any exact expressions for probabilities of random graph $G(n, p)$. First of all, it is clear that:

$$
A_{n, k}=\binom{n(n-1) / 2}{k}
$$

where we suppose that $\binom{m}{k}=0$ for $k>m$. It is easy to see that

$$
\sum_{k=0}^{\infty}\binom{n(n-1) / 2}{k} y^{k}=\sum_{k=0}^{n(n-1) / 2}\binom{n(n-1) / 2}{k} y^{k}=(1+y)^{n(n-1) / 2}
$$

hence,

$$
A(x, y)=\sum_{n=0}^{\infty}(1+y)^{n(n-1) / 2} \frac{x^{n}}{n!}
$$

From this and from (3) it follows that

$$
\begin{equation*}
B(x, y)=\ln \sum_{n=0}^{\infty}(1+y)^{n(n-1) / 2} \frac{x^{n}}{n!} \tag{5}
\end{equation*}
$$

One can see that $B(x, y)$ is the generated function for a sequence [5] where the nulled element is equal to zero.

By putting $y=p / q$ and from the obvious equtions

$$
\sum_{k} A_{n, k}\left(\frac{p}{q}\right)^{k} q^{n(n-1) / 2}=1, \quad \sum_{k} B_{n, k}\left(\frac{p}{q}\right)^{k} q^{n(n-1) / 2}=p_{n}
$$

we get that for previously defined series A and B the next relations are true:

$$
\begin{align*}
& A\left(x, \frac{p}{q}\right)=\sum_{n, k} \frac{A_{n, k}}{n!} x^{n}(p / q)^{k}=\sum_{n} \frac{x^{n}}{q^{n(n-1) / 2} n!}=A, \\
& B\left(x, \frac{p}{q}\right)=\sum_{n, k} \frac{B_{n, k}}{n!} x^{n}(p / q)^{k}=\sum_{n} \frac{p_{n} x^{n}}{q^{n(n-1) / 2} n!}=B . \tag{6}
\end{align*}
$$

Thus, we have

Lemma 3.

$$
A=e^{B}
$$

This proved equation is the base fact, which we will use anythere below without a special link.

From (11) it follows that:

$$
\sum_{n=0}^{\infty} \frac{\mathrm{P}\left\{\nu_{n}=s\right\}}{q^{n(n-1) / 2}} \frac{x^{n}}{n!}=\sum_{n, k} \frac{A_{n, k, s}}{n!} x^{n}(p / q)^{k}
$$

and by (4), where we put $y=p / q$, we get following:

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{x^{n}}{q^{n(n-1) / 2} n!} \mathrm{P}\left\{\nu_{n}=s\right\}=\frac{1}{s!} B(x, p / q)^{s}=\frac{1}{s!} B^{s} \tag{7}
\end{equation*}
$$

i.e. the formal series B^{s} / s ! is SG-function of probabilities $\mathrm{P}\left\{\nu_{n}=s\right\}$ for a fixed number s of connected components.

Let us consider two SG-functions and their product:

$$
R=\sum_{n=0}^{\infty} \frac{r_{n} x^{n}}{n!q^{n(n-1) / 2}}, \quad T=\sum_{n=0}^{\infty} \frac{t_{n} x^{n}}{n!q^{n(n-1) / 2}}, \quad R T=\sum_{n=0}^{\infty} \frac{z_{n} x^{n}}{n!q^{n(n-1) / 2}}
$$

One can easily proof the following

Lemma 4 (Convolution Formula). For $n \geqslant 0$:

$$
z_{n}=\sum_{k=0}^{n}\binom{n}{k} q^{k(n-k)} r_{k} t_{n-k}
$$

Further we will use this formula without a special link to it. The next recursion formula for probabilities p_{n} is an anlogue of a recursion formula for a number of connected graphs, that was obtained in [6].

Lemma 5. For any $n \geqslant 1$

$$
\begin{equation*}
p_{n}=1-\sum_{k=1}^{n-1}\binom{n-1}{k} q^{k(n-k)} p_{n-k} \tag{8}
\end{equation*}
$$

Proof. By differentiating the relation $A=e^{B}$ by the parameter x we get:

$$
x A^{\prime}=x A B^{\prime}
$$

hence, from the convolution formula it follows that

$$
\begin{equation*}
n=\sum_{k=0}^{n}\binom{n}{k} q^{k(n-k)} k p_{k} \tag{9}
\end{equation*}
$$

Since $p_{0}=0$ and $\frac{k}{n}\binom{n}{k}=\binom{n-1}{k-1}$ follows

$$
1-p_{n}=\sum_{k=1}^{n-1}\binom{n-1}{k-1} q^{k(n-k)} p_{k}
$$

and by replacing k by $n-k$ we get the statement of Lemma.
By analogue we can get a recursive formula for probabilities $\mathrm{P}\left\{\nu_{n}=s\right\}$.

Lemma 6.

$$
\begin{equation*}
\mathrm{P}\left\{\nu_{n}=s\right\}=\sum_{k=s-1}^{n-1}\binom{n-1}{k} \mathrm{P}\left\{\nu_{k}=s-1\right\} p_{n-k} q^{k(n-k)} \tag{10}
\end{equation*}
$$

for $n \geqslant s>1$.
Proof. Let us denote

$$
B_{s}=\sum_{n=0}^{\infty} \frac{x^{n}}{q^{n(n-1) / 2} n!} \mathrm{P}\left\{\nu_{n}=s\right\},
$$

then by (7) we get:

$$
s!B_{s}(x)=B(x)^{s}
$$

then by differentiating by x it follows that:

$$
s!B_{s}^{\prime}=s B^{s-1} B^{\prime}=s(s-1)!B_{s-1} B^{\prime}
$$

hence,

$$
x B_{s}^{\prime}=x B_{s-1} B^{\prime}
$$

From this and according to $\mathrm{P}\left\{\nu_{k}=s-1\right\}=0$ as $k<s-1$ we get Lemma statement.

Lemma 7. The following relations hold:

$$
\begin{gather*}
p_{n+1}=\sum_{s=1}^{n} \sum_{k_{1}+\cdots+k_{s}=n} \frac{n!\left(1-q^{k_{1}}\right) \ldots\left(1-q^{k_{s}}\right)}{s!k_{1}!\ldots k_{s}!} \mathrm{P}\left\{\nu_{n}=s\right\}, \tag{11}\\
p_{n+1} \geqslant\left(1-q^{n}\right) p_{n} . \tag{12}
\end{gather*}
$$

Proof. If we put x / q instead of x in the definition of series A, we get that $A^{\prime}=A(x / q)=e^{B(x / q)}$. On the other side, $A^{\prime}=B^{\prime} e^{B}$. Therefore,

$$
B^{\prime} e^{B}=e^{B(x / q)}, \quad B^{\prime}=e^{B(x / q)-B(x)}
$$

hence,

$$
B^{\prime}=\sum_{s=0}^{\infty} \frac{1}{s!}\left(\sum_{n=0}^{\infty} \frac{p_{n} x^{n}\left(1-q^{n}\right)}{n!q^{n(n-1) / 2}}\right)^{s} .
$$

Now we take the corresponding coefficients before x^{n} in theese series and get the relation (11). The ineqution (12) follows from (11) if we left in this summa only the summand with $s=1$.

3 Several Equations

Lemma 8. For $s \geqslant 0$

$$
M_{s}=A B^{s},
$$

and in particulary, $E=A B$.
Proof. By definition,

$$
\mathrm{E}\left(\nu_{n}\right)^{\underline{s}}=\sum_{k=0}^{n} k^{\underline{s}} \mathrm{P}\left\{\nu_{n}=k\right\},
$$

hence by (7) we get:

$$
\begin{aligned}
M_{s} & =\sum_{n=0}^{\infty} \frac{\mathrm{E}\left(\nu_{n}\right) \underline{s} x^{n}}{n!q^{n(n-1) / 2}}=\sum_{k=0}^{\infty} k^{\underline{s}} \sum_{n=0}^{\infty} \frac{\mathrm{P}\left\{\nu_{n}=k\right\} x^{n}}{n!q^{n(n-1) / 2}}= \\
& =\sum_{k=0}^{\infty} k^{\underline{s}} B^{s} / s!=B^{s} \sum_{k=s}^{\infty} \frac{B^{k-s}}{(k-s)!}=A B^{s} .
\end{aligned}
$$

Now we consider the connection between moments of ν_{n} and $\nu_{n}-1$.
Lemma 9. For $s \geqslant 1$

$$
\begin{gathered}
M_{s}=\mathcal{M}_{s}+s \mathcal{M}_{s-1} \\
\frac{(-1)^{s}}{s!} \mathcal{M}_{s}=\sum_{k=0}^{s} \frac{(-1)^{k}}{k!} M_{k}
\end{gathered}
$$

Proof. The first equation is follows from

$$
\mathrm{E}\left(\nu_{n}-1\right)^{\underline{s}}=\mathrm{E}\left(\nu_{n}-1\right) \ldots\left(\nu_{n}-s\right)=\mathrm{E}\left(\nu_{n}\right)^{s}-s \mathrm{E}\left(\nu_{n}-1\right)^{s-1},
$$

and the second one not hard to proof by induction with the obvious start eqation $\mathcal{M}_{0}=A=M_{0}$.

Lemma 10. For $s \geqslant 1$

$$
\begin{aligned}
\frac{M_{s}^{\prime}}{s!} & =B^{\prime}\left(\frac{M_{s}}{s!}+\frac{M_{s-1}}{(s-1)!}\right) \\
\frac{\mathcal{M}_{s}^{\prime}}{s!} & =B^{\prime}\left(\frac{\mathcal{M}_{s}}{s!}+\frac{\mathcal{M}_{s-1}}{(s-1)!}\right)=B^{\prime} \frac{M_{s}}{s!}
\end{aligned}
$$

Now we ready to use the operator ${ }^{\wedge}$ for SG-functions of moments. First of all, we get:
Lemma 11 (Derivative Relashionship Formula). If R is a $S G$-function, then:

$$
\widehat{R}=R_{q}^{\prime}+\frac{x^{2}}{2 q} R^{\prime \prime}
$$

Here and below the single quote without a parameter notation denotes the derivative by x, and the derivative by q is marked by index q.

The following equations hold.

Lemma 12.

$$
\begin{aligned}
\frac{\widehat{M}_{s}}{s!} & =\frac{x^{2}}{2 q}\left(B^{\prime}\right)^{2}\left(\frac{M_{s-1}}{(s-1)!}+\frac{M_{s-2}}{(s-2)!}\right)=\frac{x^{2}}{2 q} B^{\prime} \frac{M_{s-1}^{\prime}}{(s-1)!} \\
\frac{\widehat{\mathcal{M}}_{s}}{s!} & =\frac{x^{2}}{2 q}\left(B^{\prime}\right)^{2}\left(\frac{\mathcal{M}_{s-1}}{(s-1)!}+\frac{\mathcal{M}_{s-2}}{(s-2)!}\right)=\frac{x^{2}}{2 q}\left(B^{\prime}\right)^{2} \frac{M_{s-1}}{(s-1)!}=\frac{x^{2}}{2 q} B^{\prime} \frac{\mathcal{M}_{s-1}^{\prime}}{(s-1)!}
\end{aligned}
$$

Proof. By the convolution formula and from $\widehat{A}=0$ we get:

$$
A_{q}^{\prime}=-\frac{x^{2}}{2 q} A^{\prime \prime}
$$

From here it follows that:

$$
\begin{aligned}
\left(M_{s}\right)_{q}^{\prime} & =\left(A B^{s}\right)_{q}^{\prime}=A_{q}^{\prime} B^{s}+s A B^{s-1} B_{q}^{\prime}=A_{q}^{\prime}\left(B^{s}+s B^{s-1}\right)=-\frac{x^{2}}{2 q} A^{\prime \prime}\left(B^{s}+s B^{s-1}\right) \\
M_{s}^{\prime \prime} & =\left(A B^{s}\right)^{\prime \prime}=\left(A^{\prime} B^{s}+s B^{s-1} A^{\prime}\right)^{\prime}=A^{\prime \prime}\left(B^{s}+s B^{s-1}\right)+A^{\prime} B^{\prime}\left(s B^{s-1}+s(s-1) B^{s-2}\right)
\end{aligned}
$$

Hence by Derivative Relashionship Formula we get that:

$$
\begin{aligned}
\widehat{M}_{s} & =\left(M_{s}\right)_{q}^{\prime}+\frac{x^{2}}{2 q} M_{s}^{\prime \prime}=\frac{x^{2}}{2 q} A^{\prime} B^{\prime}\left(s B^{s-1}+s(s-1) B^{s-2}\right)= \\
& =\frac{x^{2}}{2 q}\left(B^{\prime}\right)^{2}\left(s M_{s-1}+s(s-1) M_{s-2}\right)
\end{aligned}
$$

so we have the first equation of statement.
To get the equations for \mathcal{M}_{s} it is sufficient to use Lemmas 9,10 and previous relation.

4 Several Inequations

Let denote by \gg that the inequation \geqslant holds for all coefficient before x^{n} in the considering series. For example, the notation $\sum a_{n} x^{x} \gg \sum b_{n} x^{n}$ means that for all n the inequation $a_{n} \geqslant b_{n}$ holds. It is easy to verify that:
if $X \gg Y$ and $Z \gg 0$, then $X Z \gg Y$;
if $X \gg Y$ and $V \gg W$, then $X+V \gg Y+W$.
Lemma 13. For $n>0$

$$
q^{n-1} \mathrm{E}\left(\nu_{n-1}\right)^{\underline{s}} \leqslant \mathrm{E}\left(\nu_{n}-1\right)^{\underline{s}} \leqslant \mathrm{E}\left(\nu_{n-1}\right)^{\underline{s}}
$$

Proof. Left inequation follows from:

$$
\mathcal{N}_{s}^{\prime}=B^{\prime} M_{s} \gg M_{s}
$$

with help of convolution formula and because of $B^{\prime} \gg 1$. Right inequation follows from:

$$
\mathcal{M}_{s}^{\prime}=B^{\prime} M_{s}=B^{\prime} A B^{s}=A^{\prime} B^{s}=A(x / q) B^{s} \ll A(x / q) B(x / q)^{s}=M_{s}(x / q) .
$$

Lemma 14. For all $n \geqslant 1$ and $s \geqslant 1$ the following inequations hold:

$$
(n-1)^{\underline{s}} \cdot q^{(n-1) s} \leqslant \mathrm{E}\left(\nu_{n}-1\right)^{\underline{s}} \leqslant 2(n-1)^{s} q^{(n-1)(s+1) / 2}
$$

Proof. Left inequation.

$$
\frac{x \mathcal{M}_{s}^{\prime}}{s!}=\frac{x B^{\prime} M_{s}}{s!}=x A^{\prime} \frac{B^{s}}{s!}=x A^{\prime} B_{s}
$$

hence, by the convolution formula we get:

$$
\frac{n \mathrm{E}\left(\nu_{n}-1\right)^{s}}{s!}=\sum_{k=0}^{n}\binom{n}{k} q^{k(n-k)} k \mathrm{P}\left\{\nu_{n-k}=s\right\}
$$

where the last summation we can estimate by the summand as $k=n-s$, and therefore we have:

$$
\mathrm{E}\left(\nu_{n}-1\right)^{\underline{s}} \geqslant\binom{ n}{n-s} s!q^{s(n-s)} q^{s(s-1) / 2} \cdot \frac{n-s}{n}=(n-1)^{\underline{s}} \cdot q^{(n-1) s} q^{-s(s-1) / 2}
$$

here we get the left equation of Lemma statement.
Right inequation. Following relations one can get from the results that were proved above.

$$
\begin{align*}
& \frac{x\left(\widehat{\mathcal{M}}_{s}\right)^{\prime}}{s!}=x\left(\frac{x^{2}}{2 q}\left(B^{\prime}\right)^{2} \frac{M_{s-1}}{(s-1)!}\right)^{\prime}=\frac{x^{2}\left(B^{\prime}\right)^{2}+x^{3} B^{\prime} B^{\prime \prime}}{q} \frac{M_{s-1}}{(s-1)!}+\frac{x^{3}\left(B^{\prime}\right)^{2}}{2 q} \frac{M_{s-1}^{\prime}}{(s-1)!}= \\
& =\frac{x^{2}}{q}\left(\left(B^{\prime}\right)^{2} \frac{M_{s-1}}{(s-1)!}+x B^{\prime} B^{\prime \prime} \frac{M_{s-1}}{(s-1)!}+\frac{x}{2}\left(B^{\prime}\right)^{3} \frac{M_{s-1}}{(s-1)!}+\frac{x}{2}\left(B^{\prime}\right)^{3} \frac{M_{s-2}}{(s-2)!}\right) \\
& \frac{x^{2}}{q s!} \mathcal{M}_{s}^{\prime \prime}=\frac{x^{2}}{q s!}\left(B^{\prime} M_{s}\right)^{\prime}=\frac{x^{2}}{q}\left(B^{\prime \prime} \frac{M_{s}}{s!}+\left(B^{\prime}\right)^{2} \frac{M_{s}}{s!}+\left(B^{\prime}\right)^{2} \frac{M_{s-1}}{(s-1)!}\right) \\
& \frac{x\left(\widehat{\mathcal{M}}_{s}\right)^{\prime}}{s!}-s \frac{x^{2}}{q s!} \mathcal{M}_{s}^{\prime \prime}=\frac{x^{2}}{q}\left(B^{\prime}\right)^{2} \frac{M_{s-1}}{(s-1)!}(1-s)+\frac{x^{2}}{q} B^{\prime \prime} M_{s-1}\left(\frac{x B^{\prime}}{(s-1)!}-\frac{s B}{s!}\right) \\
& +\frac{x^{2}}{q}\left(B^{\prime}\right)^{2} M_{s-1}\left(\frac{x B^{\prime}}{2(s-1)!}-\frac{s B}{s!}\right)+\frac{x^{3}}{2 q}\left(B^{\prime}\right)^{3} \frac{M_{s-2}}{(s-2)!} \\
& x\left(\widehat{\mathcal{M}}_{s}\right)^{\prime}-\frac{s x^{2}}{q} \mathcal{M}_{s}^{\prime \prime}=s \frac{x^{2}}{q} B^{\prime \prime} M_{s-1}\left(x B^{\prime}-B\right)+\frac{s x^{2}}{q}\left(B^{\prime}\right)^{2} M_{s-1}\left(x B^{\prime} / 2-B\right) \\
& +s(s-1) \frac{x^{2}}{q}\left(B^{\prime}\right)^{2} M_{s-2}\left(x B^{\prime} / 2-B\right)= \\
& =s \frac{x^{2}}{q} B^{\prime \prime} M_{s-1}\left(x B^{\prime}-B\right)+\frac{s!x^{2}}{q}\left(B^{\prime}\right)^{2}\left(\frac{M_{s-1}}{(s-1)!}+\frac{M_{s-2}}{(s-2)!}\right)\left(x B^{\prime} / 2-B\right)= \\
& =s \frac{x^{2}}{q} B^{\prime \prime} M_{s-1}\left(x B^{\prime}-B\right)+2 \widehat{M}_{s}\left(x B^{\prime} / 2-B\right) . \tag{13}
\end{align*}
$$

Since $n-1 \geqslant 0, n / 2-1 \geqslant 0$ for $n \geqslant 2, n / 2-1 \geqslant-1 / 2$ for $n=1$ it follows that

$$
x B^{\prime}-B \gg 0 ; \quad \frac{x B^{\prime}}{2}-B \gg-\frac{x}{2}
$$

and from the equations (13) we get the next inequation:

$$
x\left(\widehat{\mathcal{M}}_{s}\right)^{\prime}+x \widehat{M}_{s} \gg \frac{s x^{2}}{q} \mathcal{M}_{s}^{\prime \prime}
$$

Now we get coefficients before x^{n} :

$$
n\left(\mathrm{E}\left(\nu_{n}-1\right)^{\underline{s}}\right)_{q}^{\prime}+n q^{n-1}\left(\mathrm{E}\left(\nu_{n-1}\right)^{\underline{s}}\right)_{q}^{\prime} \geqslant \frac{s n(n-1)}{q} \mathrm{E}\left(\nu_{n}-1\right)^{\underline{s}} .
$$

Dividing by n we get:

$$
\begin{equation*}
\left(\mathrm{E}\left(\nu_{n}-1\right)^{s}\right)_{q}^{\prime}+q^{n-1}\left(\mathrm{E}\left(\nu_{n-1}\right)^{\underline{s}}\right)_{q}^{\prime} \geqslant \frac{s(n-1)}{q} \mathrm{E}\left(\nu_{n}-1\right)^{\underline{s}} \quad \text { as } n>0 \tag{14}
\end{equation*}
$$

It is esy to see that

$$
q^{n-1}\left(\mathrm{E}\left(\nu_{n-1}\right)^{\underline{s}}\right)_{q}^{\prime}=\left(q^{n-1} \mathrm{E}\left(\nu_{n-1}\right)^{\underline{s}}\right)_{q}^{\prime}-\frac{(n-1)}{q} q^{n-1} \mathrm{E}\left(\nu_{n-1}\right)^{\underline{s}},
$$

where we use derivative of product. Therefore from this and (14) we get

$$
\begin{equation*}
\left(\mathrm{E}\left(\nu_{n}-1\right)^{\underline{s}}+q^{n-1} \mathrm{E}\left(\nu_{n-1}\right)^{\underline{s}}\right)_{q}^{\prime} \geqslant \frac{s(n-1)}{q} \mathrm{E}\left(\nu_{n}-1\right)^{\underline{s}}+\frac{(n-1)}{q} q^{n-1} \mathrm{E}\left(\nu_{n-1}\right)^{s} \tag{15}
\end{equation*}
$$

Hence, dividing by $\mathrm{E}\left(\nu_{n}-1\right)^{s}+q^{n-1} \mathrm{E}\left(\nu_{n-1}\right)^{s}$ we find the inequation

$$
\begin{equation*}
\frac{\left(\mathrm{E}\left(\nu_{n}-1\right)^{\underline{s}}+q^{n-1} \mathrm{E}\left(\nu_{n-1}\right)^{\underline{s}}\right)_{q}^{\prime}}{\mathrm{E}\left(\nu_{n}-1\right)^{\underline{s}}+q^{n-1} \mathrm{E}\left(\nu_{n-1}\right)^{\underline{s}}} \geqslant \frac{n-1}{q} \cdot \frac{s \mathrm{E}\left(\nu_{n}-1\right)^{\underline{s}}+q^{n-1} \mathrm{E}\left(\nu_{n-1}\right)^{\underline{s}}}{\mathrm{E}\left(\nu_{n}-1\right)^{s}+q^{n-1} \mathrm{E}\left(\nu_{n-1}\right)^{\underline{s}}} \tag{16}
\end{equation*}
$$

Note, that the function $f(t)=(s+t) /(1+t)$ not increases as t increases, if $s \geqslant 1$ and $t>0$. From Lemma 13 it follows that:

$$
\mathrm{E}\left(\nu_{n}-1\right)^{s} \geqslant q^{n-1} \mathrm{E}\left(\nu_{n-1}\right)^{\underline{s}} \quad \text { as } n>0
$$

Therefore from this and (16) we get:

$$
\begin{equation*}
\frac{\left(\mathrm{E}\left(\nu_{n}-1\right)^{\underline{s}}+q^{n-1} \mathrm{E}\left(\nu_{n-1}\right)^{\underline{s}}\right)_{q}^{\prime}}{\mathrm{E}\left(\nu_{n}-1\right)^{\underline{s}}+q^{n-1} \mathrm{E}\left(\nu_{n-1}\right)^{\underline{s}}} \geqslant \frac{(s+1)(n-1)}{2 q} \tag{17}
\end{equation*}
$$

Let $q \leqslant q_{1} \leqslant 1$, and let $\mathrm{E}_{1}=\left.\mathrm{E}\right|_{q=q_{1}}$. By integrating (17) on the interval [$\left.q ; q_{1}\right]$ we get follows:

$$
\left.\ln \left(\mathrm{E}\left(\nu_{n}-1\right)^{\underline{s}}+q^{n-1} \mathrm{E}\left(\nu_{n-1}\right)^{\underline{s}}\right)\right|_{q} ^{q_{1}} \geqslant\left.\frac{(s+1)(n-1)}{2} \ln q\right|_{q} ^{q_{1}}
$$

Then we put both sides of this inequation into the argument of function e^{x}, and get:

$$
\mathrm{E}\left(\nu_{n}-1\right)^{\underline{s}}+q^{n-1} \mathrm{E}\left(\nu_{n-1}\right)^{\underline{s}} \leqslant\left(\mathrm{E}_{1}\left(\nu_{n}-1\right)^{\underline{s}}+q_{1}^{n-1} \mathrm{E}_{1}\left(\nu_{n-1}\right)^{\underline{s}}\right)\left(\frac{q^{n-1}}{q_{1}^{n-1}}\right)^{(s+1) / 2}
$$

or

$$
\mathrm{E}\left(\nu_{n}-1\right)^{\underline{s}} \leqslant\left(\mathrm{E}_{1}\left(\nu_{n}-1\right)^{\underline{s}}+q_{1}^{n-1} \mathrm{E}_{1}\left(\nu_{n-1}\right)^{\underline{s}}\right)\left(\frac{q^{n-1}}{q_{1}^{n-1}}\right)^{(s+1) / 2}
$$

Then we set $q_{1}=1$ and finally find that

$$
\mathrm{E}\left(\nu_{n}-1\right)^{s} \leqslant 2(n-1)^{\underline{s}} q^{(n-1)(s+1) / 2}
$$

because as $q_{1}=1$ we have $\mathrm{E}_{1}\left(\nu_{n}-1\right)^{\underline{s}}=(n-1)^{\underline{s}}$.
This proofs the right inequation of Lemma.
Note, that if we put $s=n-1$, then we have an equation

$$
\mathrm{E}\left(\nu_{n}-1\right) \frac{n-1}{}=(n-1)!q^{n(n-1) / 2}=(n-1) \frac{n-1}{} q^{n(n-1) / 2}
$$

where the right hand side is equal to half of the just proved estimation.

5 Asymptotic behavior of ν_{n}

In this section we consider an asymptotics of moments $\mathrm{E}\left(\nu_{n}-1\right)^{\underline{s}}$ as s is fixed and positive. We will study a behavior of moments in the following zones of parameters:

1. $p \rightarrow 0, n=$ const;
2. $q^{n} \rightarrow e^{-\alpha}$, where fixed $\alpha \geqslant 0$ and $n \rightarrow \infty$;
3. $q^{n} \rightarrow 0$ as $n \rightarrow \infty$
$3.1 n q^{n} \rightarrow \infty$,
$3.2 n q^{n} \rightarrow \alpha>0$,
$3.3 n q^{n} \rightarrow 0$ (in this case p can be a positive constant <1).

5.1 Asymptotics for $n=$ const

It is easy to prove the following Lemma, besause the minimal graph with n vertices and s components is a forest with s trees.

Lemma 15. If $p \rightarrow 0$ and $n=\mathrm{const}$, then for any $s \leqslant n$ the following equation holds: $\mathrm{P}\left\{\nu_{n}=s\right\}=F_{s, n} p^{n-s}+O\left(p^{n-s+1}\right)$. In particular, $p_{n}=n^{n-2} p^{n-1}+$ $O\left(p^{n}\right)$.

Hence we have the following
Theorem 1. If $p \rightarrow 0$ and $n=\mathrm{const}$, then for any $s \leqslant n$:

$$
\mathrm{E} \nu_{n}^{s}=n^{s}(1+o(1)), \quad \mathrm{E}\left(\nu_{n}-1\right)^{\underline{s}} \rightarrow n \underline{s} .
$$

5.2 Asymptotics for $q^{n} \rightarrow e^{-\alpha}$

Let

$$
\beta(x)=\sum_{k=1}^{\infty} \frac{k^{k-2}}{k!} x^{k}
$$

This series converges as $|x| \leqslant e^{-1}$ and this is a generated function for sequence of numbers of labelled trees (4).

Theorem 2. If $q^{n} \rightarrow e^{-\alpha}$ as $n \rightarrow \infty$, where $\alpha \geqslant 0$, then for $s \geqslant 0$

$$
\mathrm{E}\left(\nu_{n}-1\right)^{\underline{s}}=\left(\frac{n}{\alpha} \beta\left(\alpha e^{-\alpha}\right)\right)^{s}(1+o(1))
$$

In particular, for $\alpha=0$ we have the relation $\mathrm{E}\left(\nu_{n}-1\right)^{s} \sim n^{s}$.

Proof. We will use a mathematical induction on the parameter s. It is clear that the statement of Theorem holds for $s=0$. Let us suppose that it holds for $s-1$ and will show it for $s \geqslant 1$.

From the relation $x \mathcal{M}_{s}^{\prime}=x B^{\prime} M_{s}=x B^{\prime} B M_{s-1}=B x \mathcal{M}_{s-1}^{\prime}$ (see Lemma 10) and from the convolution formula we get:

$$
\begin{aligned}
n \mathrm{E}\left(\nu_{n}-1\right)^{\underline{s}}=\sum_{k=0}^{n} & \binom{n}{k} q^{k(n-k)} p_{k}(n-k) \mathrm{E}\left(\nu_{n-k}-1\right)^{\frac{s-1}{}}= \\
& =n \sum_{k=0}^{n-1}\binom{n-1}{k} q^{k(n-k)} p_{k} \mathrm{E}\left(\nu_{n-k}-1\right) \frac{s-1}{}=n\left(S_{1}+S_{2}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& S_{1}=\sum_{k=0}^{k_{0}}\binom{n-1}{k} q^{k(n-k)} p_{k} \mathrm{E}\left(\nu_{n-k}-1\right) \frac{s-1}{}, \\
& S_{2}=\sum_{k=k_{0}+1}^{n-1}\binom{n-1}{k} q^{k(n-k)} p_{k} \mathrm{E}\left(\nu_{n-k}-1\right) \frac{s-1}{}
\end{aligned}
$$

As k is fixed, one can get next relations: $\binom{n-1}{k} q^{k(n-k)} \sim\left(n q^{n}\right)^{k} / k!, p_{k} \sim$ $k^{k-2} p^{k-1}$ (Lemma 15). And from the induction hypothesis we get: $\mathrm{E}\left(\nu_{n-k}\right) \frac{s-1}{\sim}$ $\left(\frac{n}{\alpha} \beta\left(\alpha e^{-\alpha}\right)^{s-1}\right.$. Hence:
$S_{1}=\sum_{k=0}^{k_{0}} \frac{\left(n p q^{n}\right)^{k}}{p k!} k^{k-2}\left(\frac{n}{\alpha} \beta\left(\alpha e^{-\alpha}\right)\right)^{s-1}(1+o(1))=\sum_{k=0}^{k_{0}} \frac{n}{\alpha} \frac{k^{k-2}}{k!}\left(\alpha e^{-\alpha}\right)^{k}\left(\frac{n}{\alpha} \beta\left(\alpha e^{-\alpha}\right)\right)^{s-1}(1+o(1))$,
where we use the asymptotics $n p \rightarrow \alpha$ and $n p q^{n} \rightarrow \alpha e^{-\alpha}$, which is follows from Theorem conditions.

So, it is easy to see that $S_{1} /\left(\frac{n}{\alpha} \beta\left(\alpha e^{-\alpha}\right)\right)^{s}$ as closed to 1 as k_{0} is bigger, because of the convergence of the series $\beta(x)$ for $x=\alpha e^{-\alpha}$.

Let we estimate S_{2}. It is clear that $\mathrm{E}\left(\nu_{n-k}-1\right) \underline{s-1} \leqslant n^{s-1}$. From this and from the equation (9) we get

$$
\begin{aligned}
& 1 \geqslant \sum_{k=k_{0}+1}^{n-1}\binom{n-1}{k} q^{k(n-1-k)} p_{k} \frac{k}{n-1} \geqslant \frac{k_{0}}{n-1} \sum_{k=k_{0}+1}^{n}\binom{n-1}{k} q^{k(n-k)} p_{k} \geqslant \\
& \geqslant \frac{k_{0}}{n^{s}} \sum_{k=k_{0}+1}^{n-1}\binom{n-1}{k} q^{k(n-k)} p_{k} \mathrm{E}\left(\nu_{n-k}-1\right) \frac{s-1}{}=\frac{k_{0}}{n^{s}} S_{2}
\end{aligned}
$$

Therefore,

$$
S_{2}=\frac{1}{k_{0}} O\left(n^{s}\right)=\frac{1}{k_{0}} O\left(\frac{n}{\alpha} \beta\left(\alpha e^{-\alpha}\right)\right)^{s}
$$

i.e. the ratio $S_{2} /\left(\frac{n}{\alpha} \beta\left(\alpha e^{-\alpha}\right)\right)^{s}$ tends to 0 as $k_{0} \rightarrow \infty$.

Thus, $\mathrm{E}\left(\nu_{n}-1\right) \underline{s}=\left(\frac{n}{\alpha} \beta\left(\alpha e^{-\alpha}\right)\right)^{s}(1+o(1))$.
In the case of $\alpha=0$ the proof of Theorem is similary, but instead of $\beta\left(\alpha e^{-\alpha}\right) / \alpha$ we should write 1 at all places.

5.3 Asymptotics for $q^{n} \rightarrow 0$

Theorem 3. Let $q^{n} \rightarrow 0$ and $n q^{n} \geqslant C$ as $n \rightarrow \infty$, where fixed $C>0$, then

$$
\mathrm{E}\left(\nu_{n}-1\right)^{s}=\left(n q^{n}\right)^{s}(1+o(1))
$$

Proof. We will use an induction by s. It is clear that the statement of Theorem holds for $s=0$. Let us suppose that it holds for $s-1$ and will show it for $s \geqslant 1$.

The following relations hold:

$$
\begin{gathered}
\sum_{n=0}^{\infty} \frac{\left.\left(\mathrm{E}\left(\nu_{n}\right)\right)^{s}-\mathrm{E}\left(\nu_{n+1}-1\right) \underline{s}\right) x^{n}}{n!q^{n(n-1) / 2}}=M_{s}-\mathcal{M}_{s}^{\prime}(x q)=M_{s}-B^{\prime}(x q) M_{s}(x q)= \\
=A B^{s}-A^{\prime}(x q) B^{s}(x q)=A\left(B^{s}-B^{s}(x q)\right)=A\left(s!B_{s}-s!B_{s}(x q)\right)= \\
=A \sum_{n=0}^{\infty}\left(1-q^{n}\right) \frac{x^{n} \mathrm{P}\left\{\nu_{n}=s\right\} s!}{n!q^{n(n-1) / 2}} \ll A \sum_{n=0}^{\infty} n p \frac{x^{n} \mathrm{P}\left\{\nu_{n}=s\right\} s!}{n!q^{n(n-1) / 2}}= \\
=A p x\left(B^{s}\right)^{\prime}=s p x A B^{\prime} B^{s-1}=s p x B^{\prime} M_{s-1}=s p x \mathcal{M}_{s-1}^{\prime}=s p \sum_{n=0}^{\infty} \frac{\mathrm{E}\left(\nu_{n}-1\right) \frac{s-1}{n} n x^{n}}{n!q^{n(n-1) / 2}}
\end{gathered}
$$

where we use the fact, that $\left(1-q^{n}\right) \leqslant n(1-q)=n p$. Therefore we get that

$$
\mathrm{E}\left(\nu_{n}\right)^{\underline{s}}-\mathrm{E}\left(\nu_{n+1}-1\right)^{\underline{s}} \leqslant s p n \mathrm{E}\left(\nu_{n}-1\right) \underline{s-1}
$$

or

$$
\mathrm{E}\left(\nu_{n-1}\right)^{s} \leqslant \mathrm{E}\left(\nu_{n}-1\right)^{\underline{s}}+\operatorname{spn} \mathrm{E}\left(\nu_{n-1}-1\right) \frac{s-1}{}
$$

From the equation (16) it follows that

$$
\begin{gather*}
\frac{\left(\mathrm{E}\left(\nu_{n}-1\right)^{\underline{s}}+q^{n-1} \mathrm{E}\left(\nu_{n-1}\right)^{\underline{s}}\right)_{q}^{\prime}}{\mathrm{E}\left(\nu_{n}-1\right)^{s}+q^{n-1} \mathrm{E}\left(\nu_{n-1}\right)^{\underline{s}}} \geqslant \frac{n-1}{q} \cdot \frac{s \mathrm{E}\left(\nu_{n}-1\right)^{\underline{s}}+q^{n-1} \mathrm{E}\left(\nu_{n-1}\right)^{\underline{s}}}{\mathrm{E}\left(\nu_{n}-1\right) \underline{s}+q^{n-1} \mathrm{E}\left(\nu_{n-1}\right) \underline{s}} \geqslant \\
\frac{n-1}{q} \cdot \frac{s \mathrm{E}\left(\nu_{n}-1\right)^{\underline{s}}+q^{n-1}\left(\mathrm{E}\left(\nu_{n}-1\right)^{\underline{s}}+s n p \mathrm{E}\left(\nu_{n-1}-1\right) \frac{s-1}{}\right)}{\mathrm{E}\left(\nu_{n}-1\right)^{\underline{s}}+q^{n-1}\left(\mathrm{E}\left(\nu_{n}-1\right) \underline{s}+\operatorname{snp} \mathrm{E}\left(\nu_{n-1}-1\right) \underline{s-1}\right)}= \\
=\frac{n-1}{q} \cdot \frac{\left.s+q^{n-1}+s n p q^{n-1} \mathrm{E}\left(\nu_{n-1}-1\right) \frac{s-1}{1+q^{n-1}+} / \nu_{n}-1\right)^{n-1} \mathrm{E}\left(\nu_{n-1}-1\right) \frac{s-1}{} / \mathrm{E}\left(\nu_{n}-1\right) \underline{s}}{} . \tag{18}
\end{gather*}
$$

By the induction hypothesis and from Lemma 14 we get that

$$
\frac{\mathrm{E}\left(\nu_{n-1}-1\right) \frac{s-1}{\mathrm{E}}\left(\nu_{n}-1\right)^{\underline{s}}}{\leqslant} \leqslant C_{1} \frac{\left(n q^{n}\right)^{s-1}}{(n-1)^{s} q^{(n-1) s}} \leqslant \frac{C_{2}}{n q^{n}}
$$

where the positive constants C_{k}, generally speaking, are depends on the parameter s. By putting this inequation into (18) we get:

$$
\begin{align*}
& \frac{\left(\mathrm{E}\left(\nu_{n}-1\right)^{\underline{s}}+q^{n-1} \mathrm{E}\left(\nu_{n-1}\right)^{\underline{s}}\right)_{q}^{\prime}}{\mathrm{E}\left(\nu_{n}-1\right) \underline{s}+q^{n-1} \mathrm{E}\left(\nu_{n-1}\right)^{\underline{s}}} \geqslant \frac{n-1}{q} \cdot \frac{s+q^{n-1}+C_{4} n p q^{n-1} /\left(n q^{n}\right)}{1+q^{n-1}+C_{4} n p q^{n-1} /\left(n q^{n}\right)} \geqslant \\
& \geqslant \frac{n-1}{q}\left(s-s q^{n-1}-C_{5} n p q^{n-1} /\left(n q^{n}\right)\right) \geqslant \frac{n-1}{q}\left(s-s q^{n-1}-C_{6} p\right) \geqslant \\
& \geqslant(n-1) s q^{-1}-C_{7}(n-1) q^{n-2}-C_{8} n p \tag{19}
\end{align*}
$$

Let $q_{1}=\varepsilon^{1 /(n-1)}$, where ε is an arbitrary small positive number, hence $q_{1}^{n-1}=\varepsilon$ and $q<q_{1}$ (it follows from $q^{n} \rightarrow 0$). Besides let denote $\mathrm{E}_{1}=\left.\mathrm{E}\right|_{q=q_{1}}$ as it was above.

Now, we integrate the inequation (19) on the interval $\left[q ; q_{1}\right]$ and get that
$\left.\ln \left(\mathrm{E}\left(\nu_{n}-1\right)^{s}+q^{n-1} \mathrm{E}\left(\nu_{n-1}\right)^{\underline{s}}\right)\right|_{q} ^{q_{1}} \geqslant\left. s(n-1) \ln q\right|_{q} ^{q_{1}}-\left.(n-1) C_{7} \frac{q^{n-1}}{n-1}\right|_{q} ^{q_{1}}-\left.C_{8} n\left(q-q^{2} / 2\right)\right|_{q} ^{q_{1}}$
or

$$
\begin{align*}
& \mathrm{E}\left(\nu_{n}-1\right)^{\underline{s}}+q^{n-1} \mathrm{E}\left(\nu_{n-1}\right)^{\underline{s}}
\end{aligned} \leqslant \begin{aligned}
& \leqslant\left(\mathrm{E}_{1}\left(\nu_{n}-1\right)^{\underline{s}}+q_{1}^{n-1} \mathrm{E}_{1}\left(\nu_{n-1}\right)^{\underline{s}}\right)\left(\frac{q}{q_{1}}\right)^{s(n-1)} e^{C_{7}\left(q_{1}^{n-1}-q^{n-1}\right)} e^{C_{8} n\left(q_{1}-q+q^{2} / 2-q_{1}^{2} / 2\right)} \leqslant \\
& \leqslant \frac{\mathrm{E}_{1}\left(\nu_{n}-1\right)^{\underline{s}}+q_{1}^{n-1} \mathrm{E}_{1}\left(\nu_{n-1}\right)^{\underline{s}}}{\varepsilon^{s}} q^{s(n-1)} e^{C_{9} \varepsilon}, \quad \text { (20) }
\end{align*}
$$

because $q_{1}^{n-1}=\varepsilon$ and $n\left(q_{1}-q+q^{2} / 2-q_{1}^{2} / 2\right)=n\left(q_{1}-q\right)\left(1-q / 2-q_{1} / 2\right)=$ $n\left(p-p_{1}\right)\left(p / 2+p_{1} / 2\right) \leqslant n p^{2} \rightarrow 0$. The last expression is follows from $n p^{2} \cdot n q^{n}=$ $(n p)^{2} e^{n \ln q} \rightarrow 0$ and from the conditions of Theorem.

By Theorem 2 we get that

$$
\mathrm{E}_{1}\left(\nu_{n}-1\right)^{\underline{s}}=\left(\frac{n}{\alpha} \beta\left(\alpha e^{-\alpha}\right)\right)^{s}(1+o(1))=n^{s} \beta(\alpha \varepsilon)^{s} / \alpha^{s}(1+o(1))
$$

where $\alpha=-\ln \varepsilon$.
Besides that,

$$
\begin{aligned}
& q_{1}^{n-1} \mathrm{E}_{1}\left(\nu_{n-1}\right)^{s}=\varepsilon\left(\mathrm{E}_{1}\left(\nu_{n-1}-1\right)^{\underline{s}}+s \mathrm{E}_{1}\left(\nu_{n-1}-1\right) \underline{s-1}\right)= \\
& \quad=\varepsilon\left(n^{s} \beta(\alpha \varepsilon)^{s} / \alpha^{s}+s n^{s-1} \beta(\alpha \varepsilon)^{s-1} / \alpha^{s-1}\right)(1+o(1))
\end{aligned}
$$

because $q_{1}^{n-1}=\varepsilon$ and again from Theorem2, From this and from (20) it follows that

$$
\mathrm{E}\left(\nu_{n}-1\right)^{\underline{s}} \leqslant \frac{(1+\varepsilon) \beta(\alpha \varepsilon)^{s} / \alpha^{s}+\varepsilon s \beta(\alpha \varepsilon)^{s-1} / \alpha^{s-1}}{\varepsilon^{s}} n^{s} q^{s n} e^{C_{10} \varepsilon}(1+o(1))
$$

Therefore, by choosing an arbitrary small $\varepsilon>0$ and using the relationship $\beta(x) \sim x$ as $x \rightarrow 0$ we get the relation:

$$
\limsup _{n \rightarrow \infty} \frac{\mathrm{E}\left(\nu_{n}-1\right)^{s}}{\left(n q^{n}\right)^{s}} \leqslant \lim _{\varepsilon \rightarrow 0} \frac{(1+\varepsilon) \beta(\alpha \varepsilon)^{s}+s \varepsilon \alpha \beta(\alpha \varepsilon)^{s-1}}{\alpha^{s} \varepsilon^{s}} e^{C_{10} \varepsilon}=1
$$

From Lemma 14 we have $\mathrm{E}\left(\nu_{n}-1\right)^{s} \geqslant(n-1)^{s} q^{s(n-1)}=\left(n q^{n}\right)^{s}(1+o(1))$. Now we see that Theorem follows from theese both equations.

Let $n q^{n} \rightarrow \alpha$, where α is a positive constant. From Theorem 3 we see that $\mathrm{E}\left(\nu_{n}-1\right)^{\underline{s}} \rightarrow \alpha^{s}$.

It is known that in this case random variable $\left(\nu_{n}-1\right)$ tends to Poisson distribution with the parameter α.

Thus we have
Theorem 4. If $n q^{n} \rightarrow \alpha$ as $n \rightarrow \infty$ and α is a fixed positive constant, then for any fixed integer $k \geqslant 1$:

$$
\mathrm{P}\left\{\nu_{n}=k\right\} \rightarrow \frac{\alpha^{k-1}}{(k-1)!} e^{-\alpha}
$$

From Lemma 14 it follows that if $n q^{n} \rightarrow 0$, then $\mathrm{E}\left(\nu_{n}-1\right) \asymp n q^{n-1}$. So we can conclude that ν_{n} tends to 1 . Below we'll show an estimation of p_{n} in this case.

6 Several Consequences

Generally, we can conclude that in all zones of parameters p and n

$$
\mathrm{E}\left(\nu_{n}-1\right)^{\underline{s}} \sim\left(\beta\left(n p q^{n}\right) / p\right)^{s} \quad \text { as } n q^{n} \rightarrow \infty
$$

and

$$
\mathrm{E}\left(\nu_{n}-1\right)^{\underline{s}}=\left(\beta\left(n p q^{n}\right) / p\right)^{s}+o(1) \quad \text { as } n q^{n}=O(1)
$$

It is easy to verify, because if $n p \rightarrow \infty$ or $n p \rightarrow 0$, then it follows that $n p q^{n} \rightarrow 0$ and $\beta\left(n p q^{n}\right) / p \sim n q^{n}$.

Now we can estimate the probability p_{n} that graph $G(n, p)$ is connected.

$$
\begin{equation*}
p_{n}=\mathrm{P}\left\{\nu_{n}<2-1 / n\right\}=1-\mathrm{P}\left\{\nu_{n}-1 \geqslant 1-1 / n\right\} \geqslant 1-\mathrm{E}\left(\nu_{n}-1\right) \frac{n}{n-1} \tag{21}
\end{equation*}
$$

and from Lemma 14 we get:

$$
\begin{equation*}
p_{n} \geqslant 1-2 n q^{n-1} . \tag{22}
\end{equation*}
$$

If we put $p=\frac{c \ln n}{n}$ and $c>1$, then we have $n q^{n-1}=n \exp \{-c \ln n+$ $\left.O\left(\ln ^{2} n\right) / n\right\}=n^{1-c}\left(1+O\left(\ln ^{2} n\right) / n\right)$. Therefore we finally get:

$$
\begin{equation*}
p_{n} \geqslant 1-\frac{2}{n^{c-1}}\left(1+O\left(\ln ^{2} n\right) / n\right) \tag{23}
\end{equation*}
$$

If $n q^{n} \rightarrow \alpha$ (for example, $p=(\ln n+c+o(1)) / n$, where $\alpha=e^{-c}$), then from Theorem 4 we get that:

$$
p_{n} \rightarrow e^{-\alpha}
$$

To estimate p_{n} as $n q^{n} \rightarrow \infty$ we now consider the isolating probability. Let $p i_{n}$ be a probability that $G(n, p)$ has an isolated vertex. Let A_{i} be an event that i-th vertex is isolated, then from the Inclusion-exclusion principle we get:
$p i_{n}=\mathrm{P}\left\{A_{1} \cup \cdots \cup A_{n}\right\}=\sum_{k=1}^{n}(-1)^{k-1} \sum_{1 \leqslant i_{1}<\cdots<i_{k} \leqslant n} \mathrm{P}\left\{A_{i_{1}} \ldots A_{i_{k}}\right\}=\sum_{k=1}^{n}(-1)^{k-1}\binom{n}{k} \mathrm{P}\left\{A_{1} \ldots A_{k}\right\}$.
It is easy to see that $\mathrm{P}\left\{A_{1} \ldots A_{k}\right\}=q^{k(k-1) / 2} q^{k(n-k)}$, so

$$
p i_{n}=\sum_{k=0}^{n}(-1)^{k-1}\binom{n}{k} q^{k(n-k)} q^{k(k-1) / 2}+1
$$

According to convolution formula we can find that SG-function $P I$ of $\left\{p i_{n}\right\}$ is equal to $R T+A$, where R and T are SG-functions of the corresponding sequences $\left\{r_{n}\right\}$ and $\left\{t_{n}\right\}$, which are defined as follows: $r_{n}=(-1)^{n-1} q^{n(n-1) / 2}$ and $t_{n}=1$.

Hence we have

$$
R=\sum_{n=0}^{\infty} \frac{r_{n} x^{n}}{n!q^{n(n-1) / 2}}=-e^{-x} ; \quad T=A
$$

Thus $P I=A-e^{-x} A=A\left(1-e^{-x}\right)$.
Since $\left(1-e^{-x}\right) \leqslant x$ it follows that $P I \ll A x$, and from the convolution formula we obtain

$$
\begin{equation*}
p i_{n} \leqslant n q^{n-1} \tag{24}
\end{equation*}
$$

It is easy to see that $P I^{\prime}=A^{\prime}\left(1-e^{-x}\right)+A e^{-x}=P I \cdot B^{\prime}+A-P I \gg P I \cdot B^{\prime}$, because $A-P I \gg 0$, and from the convolution formula we get:

$$
n p i_{n} \geqslant \sum_{k=1}^{n}\binom{n}{k} q^{k(n-k)} p i_{n-k} k p_{k} \geqslant n(n-1) q^{n-1} p_{n-1}
$$

or

$$
\begin{equation*}
p i_{n+1} \geqslant n q^{n} p_{n} \tag{25}
\end{equation*}
$$

So, if $n q^{n} \rightarrow \alpha>0$, then $p i_{n} \geqslant \alpha e^{-\alpha}+o(1)$.
And also we have

$$
\begin{equation*}
p_{n} \leqslant p i_{n+1} /\left(n q^{n}\right) \leqslant 1 /\left(n q^{n}\right) \tag{26}
\end{equation*}
$$

Since $P I=A\left(1-e^{-x}\right)$ it follows that $P I e^{x}=A e^{x}-A$ and, therefore, $(P I-$ $A)\left(e^{x}-1\right)=-P I$. From the relation $e^{x}-1>x$ we get that $P I \gg(A-P I) x$, therefore from the convolution formula we find that $p i_{n} \geqslant\left(1-p i_{n}\right) n q^{n-1}$, then $\left(1-p i_{n}\right) \leqslant 1 /\left(n q^{n-1}\right)$ and we get finally

$$
\begin{equation*}
p i_{n} \geqslant 1-\frac{1}{n q^{n-1}} \tag{27}
\end{equation*}
$$

Now we can combine all obtained results (22), (26), (25), (24) and (27) in the following

Theorem 5. For all $n \geqslant 1$

$$
\begin{aligned}
1-2 n q^{n-1} & \leqslant p_{n} \leqslant \frac{1}{n q^{n}} \\
1-\frac{1}{n q^{n}} & \leqslant p i_{n} \leqslant n q^{n-1} \\
n q^{n} p_{n} & \leqslant p i_{n+1}
\end{aligned}
$$

And if $n q^{n} \geqslant C>0$ as $n \rightarrow \infty$, then we can substitute nq ${ }^{n}$ by $\mathrm{E}\left(\nu_{n}-1\right)(1+o(1))$ in theese relations.

References

[1] Erdös, P. and Rényi, A. (1959). "On Random Graphs." Publicationes Mathematicae 6: 290-297.
[2] Erdös, P. and Rényi, A. (1960) "On the Evolution of Random Graphs." Publ. Math. Inst. Hungar. Acad. Sci. 5, 17-61.
[3] Bollobás, B. (2001) Random Graphs (2nd ed.). Cambridge University Press.
[4] Kolchin, V. F. Random Graphs. New York: Cambridge University Press, 1998.
[5] Sloane, N. J. A. Sequence A062734 in "The On-Line Encyclopedia of Integer Sequences."
[6] Harary, Frank; Palmer, Edgar M. (1973). Graphical Enumeration.

