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The goal of the paper is to automatize the selection of mechanisms
which are able to describe a set of measurements. In order to do
so first we construct a set of possible mechanism fulfilling chemically
reasonable requirements with a given number of species and reaction
steps. Then we try to fit all the mechanisms, and offer the best fitting
one to the chemist for further analysis. The method can also be used
to a kind of lumping: to reproduce the results of a big mechanism using
a smaller one, with less number of species. We show two applications:
one on an artificial example and another one on a small real life data.

KEYWORDS reaction networks, inverse problem of reaction kinetics, auto-
matically generated models, reduced models, model parametrization, fitting
rate coefficients

1 INTRODUCTION
Our goal is to help solve an inverse problem of reaction kinetics: we try to
build "reaction mechanism templates", candidate set of reactions which are
able to serve as models for given (measured or simulated with a detailed
model) concentration vs. time curves. This we do by constructing a large
set of reaction mechanisms then by discarding those which do not fulfil some
chemically relevant restrictions. To put it in another way, we provide a set
of possible models automatically for the chemist, and say, which of them
fits best to the measurements or the simulation measurements of a detailed
model. The approach of the Ref. [14] is quite similar, but (almost) all the
details are different. Their goal is to construct possible cellular reaction
networks.

Thus, given are: concentrations as functions of time, and our task is to
find a model, a reaction mechanism, i.e. a set of reaction steps (also called
complex chemical reaction, reaction network, or simply reaction), endowed
with mass action type kinetics and with appropriate reaction rate coefficients
from the set of all possible models. Concentrations used as reference are ei-
ther determined from measurements or from simulations of a detailed model.
Here we show how the method works by testing mainly on simulated data,
and also a set of real experimental data: measurements on the salicylic acid
transport under different conditions..

A related problem is to find good initial estimates of the parameters[13],
in order to accelerate parameter fitting, which needs to be done for a large
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number of candidate models.
The structure of our paper is as follows. Section 2 offers a possible scenario

to construct candidate sets of reactions which are to describe the concentra-
tion vs. time functions. Section 3 shows the applicability of the method on
two examples. In the first one, a specific model has been chosen from the set
of models constructed according to Section 2; reference data are generated
by its simulation. In the second one we use experimental data on salicylic
acid transport from the stomach to the intestine with or without addenda
measured at different pH values. Beyond the original model (the classical
irreversible consecutive reaction) other mechanisms are also tried. The last
Section is about possible extensions and formulates some open problems,
mainly in combinatorics.

2 A SET OF CHEMICALLY REASONABLE
RESTRICTIONS

Basic concepts of formal reaction kinetics are presented here shortly, for the
formal and detailed expansion we propose the use of e.g. Refs. [22] or [5].

2.1 Species

First, we have to fix the number of species M . In our illustrating examples
it will usually be 2 or 3; in applications this may be equal to the number of
measured concentrations.

2.2 Complexes

In formal reaction kinetics the linear combinations of species with stoichio-
metric coefficients on the sides of the reaction arrows are called complexes,
a slightly unfortunate name, because this word is used in chemistry with a
completely different meaning. Their number is usually denoted by N. The
stoichiometric coefficients of the mth species on the left side of the rth reac-
tion arrow is denoted by αmr, those on the right side by βmr, thus the general
form of our mechanism is

M∑
m=1

αmrX(m) 

M∑
m=1

βmrX(m). (1)
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Mass conservation In systems where chemical reactions significantly mod-
ify the mole fraction of species (e.g. the changes are larger than 1%), mass
conservation has to be strictly fulfilled. This is the case in combustion mod-
els, and we shall accept this view here. Whereas atmospheric chemistry
models usually contain steps from which major components of air (e.g. N2,
O2, CO2 in tropospheric chemistry models) are simply omitted if formed as
negligible change in their concentration is induced by the step. The number
of steps is less if only mass conserving reactions are allowed.

As a consequence of mass conservation M = 1 is immediately excluded,
because e.g. the reaction step X −−⇀↽−− 2X is not allowed. Also excluded is
the empty complex 0, as it immediately leads to mass destruction or mass
creation. Still, the empty complex may either be useful to describe the
sticking of a species to the wall or leave the reactor in any other way, or to
express an inflow or outflow in formal reactions, e.g. 0 −−→ X or X+Y −−→ 0.

Short complexes In most cases reaction steps containing complexes longer
than 2, are not accepted; here we accept this view. In other words, we only
allow short complexes, complexes of the form in which no more than two
species take part. In the case when M = 2 we have thus X,Y,2X,2Y,X+ Y
(zero complex excluded from the beginning). Their number in the general
case, as it can be immediately seen, is

N(M) =M +M +

(
M

2

)
=
M(M + 3)

2
. (2)

Let us mention in passing that the concept of short complexes proved to
be really useful when systematically investigating the dynamic behaviour of
small reaction mechanisms[12]. However, our present restriction does not
mean that termolecular reactions are unimportant. In gas phase reactions
like

2NO +O2 −−→ 2NO2 (3)

are quite common, see e.g. https://engineering.columbia.edu/news/
michael-burke-termolecular-reactions. To take into consideration these
one should also include 3X,2X+Y,. . . ,X+Y+Z, the total number of which
is

M +M(M − 1) +

(
M

3

)
=
M(M + 1)(M + 2)

6
=

(
M + 2

3

)
.
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2.3 Reaction steps

Reversibility All elementary reactions are strictly reversible due to mi-
croscopic reversibility. However, in some cases the rate of the forward or
backward reaction can be negligible for the concentrations and the condi-
tions (temperature and pressure) arising during in practical applications,
thus this direction can be omitted and the kept direction can be considered
as an irreversible step without inducing significant error.

Accordingly, in widely accepted combustion models irreversible steps are
used, nevertheless, during model construction we assume that the reaction
steps are reversible and the omission one of the directions can be investigated
a posteriori.

• Hydrogen combustion:[10]

H2O2 +O −−→ HO2 +OH. (4)

• Carbon monoxide combustion:[10]

HCO+HO2 −−→ CO2 +H+OH,H2O2 +O −−→ HO2 +OH. (5)

Further examples e.g. in methanol combustion ([1]) can also be found.

X −−−⇀↽−−− X, 2X −−−⇀↽−−− 2X, X+Y −−−⇀↽−−− X+Y Certainly there is no reason
to include reaction steps which do not affect concentrations (i.e. make no
macroscopic change) despite that they are taking place microscopically.

Mass conservation We discard steps like X −−⇀↽−− 2X, X −−⇀↽−− X + Y, as
they obviously violate the law of mass conservation. However, these kinds
of steps may be quite useful in model construction in chemical kinetics. E.g.
the Lotka–Volterra reaction which was proposed for approximately describing
oscillations in cold flames[7], contains steps like X −−→ 2X and Y −−→ 0.

2X −−−⇀↽−−− 2Y In models one can rarely see such a step. However, studying
the literature one can find similar steps: the self-reaction of peroxy radicals,
like

2CH3O2
−−⇀↽−− 2CH3O(+O2),

or
2CH3CH2O2

−−⇀↽−− 2CH3CH2O(+O2),
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Species X, Y M = 2

Complexes X, Y, 2X, 2Y, X+ Y N(2) = 5

Reaction steps X −−⇀↽−− Y, X −−⇀↽−− 2Y, Y −−⇀↽−− 2X, R(2) = 5
2X −−⇀↽−− X+ Y, 2Y −−⇀↽−− X+ Y

Table 1: Species, complexes and reaction steps in the case M = 2

see Refs. [11] and [16]. One can omit the forming O2 in atmospheric (e.g. tro-
pospheric) chemistry as it is a major constituent of air and its concentration
will be negligibly affected by this and similar transformations.

Both steps are of the form 2X −−⇀↽−− 2Y (+Z) (and are mass conserving—if
O2 is taken into consideration—as they fulfill the law of atomic balance).

Reactions passing all the criteria

M = 2 The species, complexes and reaction steps are shown in the Table
below.

M = 3 The species, complexes and reaction steps are shown in the Table
below.

Now the interesting (from the combinatorial point of view) question arises:
What is the number of reactions fulfilling the requirements formulated above?
Beyond combinatorics, formulae to give those numbers is of practical rele-
vance too: it gives us a hint if it is possible to deal with all the systems
constructed in this way within a tolerable time. We enumerated the steps
from M = 2 up to M = 20 an have found the following cardinalities:
5, 24, 69, 155, 300, 525, 854 . . . . How to learn if there is a certain regularity
in the sequence? The best way is to go to the Online Encyclopedia of Integer
Sequences (https://oeis.org/) initiated by Neil James Alexander Sloane,
and ask if it contains our sequence. In this case the answer was yes, and
the formula (M − 1)M(M2 + 7M + 2)/8 is provided to give the number of
reaction steps of the given type. From the strict mathematical point of view
now we had this statement as a conjecture, but it can rigorously be proved,
as well.
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Species X, Y, Z M = 3

Complexes X, Y, Z, 2X, 2Y, 2 Z, N(3) = 9
X+ Y, Y+ Z, Z+ X

Reaction X −−⇀↽−− Y, X −−⇀↽−− Z, Y −−⇀↽−− Z, R(3) = 24
steps X −−⇀↽−− 2Y, X −−⇀↽−− 2Z, Y −−⇀↽−− 2X,

Y −−⇀↽−− 2Z, Z −−⇀↽−− 2X, Z −−⇀↽−− 2Y,
X −−⇀↽−− Y+ Z,Y −−⇀↽−− X+ Z,
Z −−⇀↽−− X+ Y,2X −−⇀↽−− X+ Y,
2X −−⇀↽−− X+ Z, 2X −−⇀↽−− Y+ Z,
2Y −−⇀↽−− X+ Y, 2Y −−⇀↽−− X+ Z,
2Y −−⇀↽−− Y+ Z,2Z −−⇀↽−− X+ Y,
2Z −−⇀↽−− X+ Z, 2Z −−⇀↽−− Y+ Z,
X+ Y −−⇀↽−− X+ Z, X+ Y −−⇀↽−− Y+ Z,
X+ Z −−⇀↽−− Y+ Z

Table 2: Species, complexes and reaction steps in the case M = 3

Statement 1 Suppose the number of species is M ∈ N. Then, the number
of reversible, mass conserving reaction steps excluding steps of the form

X −−⇀↽−− X, 2X −−⇀↽−− 2X and 2X −−⇀↽−− 2Y

is
R(M) := (M − 1)M(M2 + 7M + 2)/8,M = 2, 3, . . . . (6)

Proof. The table below shows how many steps of the different types we
have. Below we will have other sequences of numbers to be studied.

2.4 Reaction mechanisms

A set of reaction steps is usually called a (kinetic reaction) mechanism. In
formal reaction kinetics alternative names (complex chemical) reaction, or
reaction network are also used.

The actual number of species is M We may start from three species
and arrive at a mechanism with two species, as e.g.

X −−⇀↽−− Y,X −−⇀↽−− 2Y,Y −−⇀↽−− 2X
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Type of step M = 2 3 4
X −−⇀↽−− Y M(M−1)

2
1 3 6

X −−⇀↽−− 2Y M(M − 1) 2 6 12
2X −−⇀↽−− X+ Y M(M − 1) 2 6 12
X+ Y −−⇀↽−− Z M(M−1)

2
(M − 2) 0 3 12

X+ Y −−⇀↽−− 2 Z M(M−1)
2

(M − 2) 0 3 12
X+ Y −−⇀↽−− X+ Z M(M−1)

2
(M − 2) 0 3 12

X+ Y −−⇀↽−− Z+ A 1
2
M(M−1)

2
(M−2)(M−3)

2
0 0 3

Total R(M) 5 24 69

Table 3: Number of reaction steps of different type

Number of steps 1 2 3 4 5 6 ≥ 6

M = 3 9 246 1994 10611 42501 134596 R̃(3)

M ≤ 3 24 276 2024 10626 42504 134596
(
R(3)
R

)
Table 4: Number of mechanisms containing different number of reaction steps

may be obtained as one of the mechanisms with three species, but it actually
contains only two species. It would be desirable to exclude such cases.

Suppose we have M = 3 species, then the number of mechanisms R(3)
with not more than three species, and also the number of mechanisms R̃(3)
with exactly three species are shown in the Table below.

In the case when we have at most three species it may happen that we only
have 2, thus the mechanisms with exactly 3 species is R̃(3) =

(
R(3)
R

)
−
(
R(2)
R

)(
3
2

)
because of the three species one can select any two in

(
3
2

)
different ways. As

R(2) = 5, last (and following) elements in the two rows of the table coincide,
as one can only have 5 reaction steps with two species, see Table 1. Let us
formulate the corresponding—obvious—general statement.

Statement 2 Suppose the number of species is M ∈ N. Then, the number of
reversible, mass conserving mechanisms excluding steps of the form X −−⇀↽−−
X, 2X −−⇀↽−− 2X and 2X −−⇀↽−− 2Y which do contain M species and consist of
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Figure 1: The Wegscheider mechanism

R reactions is

R̃(M) :=

(
R(M)

R

)
−
(
R(M − 1)

R

)(
M

M − 1

)
. (7)

Consequently, in case R > R(M − 1) one only has the first term.

Mass conservation Even if the steps are mass conserving the mechanism
may not be as the example {X −−⇀↽−− Y,Y −−⇀↽−− 2X} shows. To check this prop-
erty is not a trivial problem, we do this using our program ReactionKinetics
described in Chapter 4 of Ref [22], where the reader can also find relevant
references, as well.

Detailed balancing Following Section 7.8 of Ref. [22] we review the his-
tory of detailed balancing shortly.

After such men as Maxwell and Boltzmann, and before Einstein (see the
references here: https://en.wikipedia.org/wiki/Detailed_balance), at
the beginning of the twentieth century, it was Wegscheider[26] who con-
structed the reaction mechanism in Fig. 1 to show that in some cases the
existence of a positive stationary state alone does not imply the equality
of all the individual forward and backward reaction rates in equilibrium: A
relation (in this case k−1k2 = k−2k1) should hold between the reaction rate
coefficients to ensure this. Equalities of this kind will be called (and later
exactly defined) as spanning forest conditions below. Let us emphasize that
violation of this equality between the reaction rate coefficients does not ex-
clude the existence of a positive stationary state; it can be shown to exist
and unique for all values of the reaction rate coefficients. (Problem 7.12 of
Ref. [22] proves both statements.)

9
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Figure 2: The reversible triangle reaction

Here we mention that Figs. 1–3. show the Feinberg–Horn–Jackson graph
of the mechanism which is a directed graph with the complexes as vertices and
with the reaction step arrows as directed edges. The number of complexes is
denoted by N, the number of connected components of the Feinberg–Horn–
Jackson graph is L, whereas the number of independent reaction steps (the
rank of γ) is S.

A similar statement holds for the reversible triangle reaction in Fig. 2.
The necessary and sufficient condition for the existence of such a positive
stationary state for which all the reaction steps have the same rate in the
forward and backward direction (a detailed balanced stationary state) is now
that the product of the reaction rate coefficients is the same if taken in
either direction: k1k2k3 = k−1k−2k−3. Equalities of this kind will be called as
circuit conditions below. Again, violation of this equality does not exclude
the existence of a positive stationary state; it can again be shown to exist
and be unique for all values of the reaction rate coefficients. (Problem 7.11
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of the reference mentioned shows both statements.)
These examples are qualitatively different from, e.g., the simple one-step

mechanism X+Y
k1−−⇀↽−−
k−1

Z which has the same stationary reaction rate in both

directions no matter what the values of the reaction rate coefficients are, see
Problem 7.10. To put it another way, this mechanism is unconditionally
detailed balanced while the previous examples (being detailed balanced only
if come equalities are fulfilled) were conditionally detailed balanced. To show
a less trivial example, have a look at Fig. 3.

A quarter of a century after Wegscheider, the authors Fowler and Milne[6]
formulated in a very vague form a general principle called the principle of
detailed balance stating that in real thermodynamic equilibrium, all the sub-
processes should be in dynamic equilibrium separately in such a way that
they do not stop but proceed with the same velocity in both directions. Ob-
viously, this also means that time is reversible at equilibrium; that is why
this property may also be called microscopic reversibility, although it may be
appropriate to reserve this expression for a similar property of the stochastic
model (see Chap. 10 of Ref. [22]). A relatively complete summary of the
early developments was given by Tolman[20]. The modern formulation of
the principle accepted by IUPAC[8] essentially means the same (given that
the principle of charity is applied when reading): “The principle of micro-
scopic reversibility at equilibrium states that, in a system at equilibrium, any
molecular process and the reverse of that process occur, on the average, at
the same rate.”

Now we give a precise formulation of the concept in such a way that at
a detailed balanced stationary point (which can only exist in a reversible
reaction), all pairs of reaction–antireaction step pairs proceed with the same
rate in both directions.

The reaction we study here consists of reversible pairs of reaction steps
like

M∑
m=1

αmrXm 

M∑
m=1

βmrXm (r = 1, 2, . . . , R)

and their usual induced kinetic differential equations assuming mass action
type kinetics (and disregarding the change of temperature, pressure and re-
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action volume) is

ċm =
P∑
r=1

(βmr − αmr)(k+r
M∏
p=1

cαpr
p − k−r

M∏
p=1

cβprp ),

where cm(t) := [Xm](t) is the concentration of species Xm. (Note that here R
denotes the half of the number of reaction steps, or the number of reversible
pairs; we reserve the notation P for the total number of reaction steps. Thus,
in the case of reversible steps P = 2R.) Shortly,

ċ = γ(k+ � cα − k− � cβ)

with α := (αmr),β := (βmr),γ := β − α, cα :=
∏M

m=1 c
αmr
m , and with the

componentwise (or Schur) product � of vectors. Here the positive numbers
k±r are the reaction rate coefficients, the vectors formed from them are k±.
The reaction is detailed balanced at the positive stationary concentration c∗
if all the steps proceed with the same rate in both directions, or, to put it
another way

DB: γ(k+ � cα∗ − k− � cβ∗ ) = 0 implies

k+ � cα∗ = k− � cβ∗ or γ> log(c∗) = log(K),

where K := k+

k− .
Detailed balance may hold

• at any (positive) values of the reaction rate coefficients (unconditionally
detailed balanced), or

• only if the values of the rate coefficients fulfil certain conditions—e.g.
circuit or spanning tree conditions—(conditionally detailed balanced).

What are the necessary and sufficient conditions of this property? First
we give an algebraic characterization that can be proved using Fredholm’s
alternative theorem.

Theorem 1 (See Refs. [22, 25]) The reaction is detailed balanced, if and
only if for all nonzero vector solutions to the system of linear equations γa =
0 one has

Ka = 1. (8)
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Figure 3: No matter what the values of the reaction rate coefficients are, this
is detailed balanced.

As the elements of γ are integers and the vectors a are solutions of a homo-
geneous linear equations, their coordinates can supposed to be integers.

Next we cite a pair of structural criteria showing what the reasons of
detailed balancing are. To formulate this, we need a few concept and also a
few formal definitions.

Definition 1 The circuit conditions are that the product of reaction rate
coefficients along any set of independent cycles is the same in both directions.

Definition 2 Let us take a spanning forest of the Feinberg–Horn–Jackson
graph, and let the corresponding reaction step vectors be γ .,u (u = 1, 2, . . . , N−
L). Then,

∑N−L
u auγ .,u = 0 has N−L−S independent solutions. With these∏

k+u
k−u

au
= 1 should hold: these are the spanning forest conditions.

Note that the number of the edges of the spanning tree is L less than the
number of its vertices, if again L is the number of the connected components
of the Feinberg–Horn–Jackson graph.

Theorem 2 (Ref. [4]) The mechanism is detailed balanced, if and only if
the circuit conditions and the spanning forest conditions hold.

An application of Feinberg’s theorem (and also the detailed description
with examples of the concepts) can be found in Ref. [15].

Example 1 An unconditionally detailed balanced reaction can be seen in
Figure 3. The reason is that both structural conditions are empty:

1. It does not contain cycles.

2. Its deficiency (:= N − L − S = 3 − 1 − 2) is zero, thus no spanning
forest conditions are to be considered.

With the approach of applying Theorem 1 one sees that γa = 0 has no
nonzero solutions, or the kernel of the linear map γ only contains the zero
vector.
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Example 2 A conditionally detailed balanced mechanism is shown in Figure
4. Here the spanning forest conditions (their number is N−L−S = 5−2−1 =
2) are as follows.

k2−1k3 = k−3k
2
1, k−1k2 = k−2k1. (9)

We also have the circuit conditions:

k−4k−2k3 = k−3k2k4. (10)

Let us try to discuss unconditionally and conditionally detailed balanced
reactions in a more systematic way.

If M = 2, R = 2 , then the following three mass conserving mechanisms
remain.

X
k1−−⇀↽−−
k−1

Y, 2X
k2−−⇀↽−−
k−2

X+Y, k−2 =
k−1k2
k1

(11)

X
k1−−⇀↽−−
k−1

Y, 2Y
k2−−⇀↽−−
k−2

X+Y, k−2 =
k1k2
k−1

(12)

2X
k1−−⇀↽−−
k−1

X+Y, 2Y
k2−−⇀↽−−
k−2

X+Y k−2 =
k1k2
k−1

. (13)

They are all conditionally detailed balanced. (One can easily show that
with M = 2 and 2 reversible steps there are no unconditionally detailed
balanced mechanisms.) They contain no circles, thus only the spanning forest
conditions should hold, and these are shown in the second column above.

If M = 3, R = 2 , there are 18 conditionally detailed balanced, 189 un-
conditionally detailed balanced mechanisms. Let us calculate the number of
conditionally and unconditionally detailed balanced reactions for the cases
M = 3, 4. Then, the following table results, where MC denotes the total
number of mass conserving mechanisms, UDB is for unconditionally detailed
balanced mechanisms, and CDB stands for conditionally detailed balanced
mechanisms: MC=UDB+CDB

How to use detailed balance in our calculations? We have two choices.
One can either fit using independent reaction rate coefficients and check de-
tailed balance later, or use detailed balance as a condition when fitting. In our
calculations we have used the second alternative. Let us mention that our
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Figure 4: Detailed balanced, if the system of equalities (9) and (10) holds.

R = 1 2 3
M = 3 24 24=24+0 276 207=189+18 2024 602=0+602

4 69 69=69+0 2346 2064=2004+60 52394 30768=2478+5898

Table 5: The number of not mass conserving and of mass conserving and
either unconditionally detailed balanced or conditionally detailed balanced
mechanisms

15



calculations heavily rely on the program package ReactionKinetics writ-
ten in Wolfram language (Mathematica) and downloadable from extras.
springer.com using the ISBN number 978-1-4939-8641-5. This package is
aimed at helping the chemist to do many kinds of symbolic and numerical
investigations of reaction mechanisms including solving the induced kinetic
differential equations or simulating the usual stochastic model, but exclud-
ing parameter estimation. The codes written to the present paper will be
provided to the reader upon request.

3 APPLICATIONS OF THE METHOD
Although to illustrate the method we use toy models, we think the results
are promising. Two applications of the method will be shown.

1. Of the three reversible mechanisms constructed with M = 2 species
and R = 2 pairs of reaction steps above we simulated data for one
of them, and the program fitted all three candidate mechanisms and
identified the best of them. As they are inherently conditionally de-
tailed balanced, detailed balance was used as a constraint, a prescribed
relationship between the reaction rate coefficients during fitting.

2. Real experimental data: reliable old measurements[17] on the transport
of salicylic acid with or without different additives under different pH
values could be explained by the simple consecutive mechanism: X −−→
Y −−→ Z. Note that there are no chemical reactions involved, and the
same species in different compartments are denoted as different species
and their transport is described as formal reactions.

Now we tried to fit all the six models X −−→ Y −−→ Z, X −−→ Z −−→
Y, etc. generated by permuting the order of the compartments.

3.1 Simulated data in the M = 2, R = 2 case

We solved the deterministic model

x′(t) =
k−1k1
k2

x(t)y(t)− k2x(t)2 − k1x(t) + k−1y(t),

y′(t) = −k−1k1
k2

x(t)y(t) + k2x(t)
2 + k1x(t)− k−1y(t)

16
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Figure 5: The original model: X
k1−−⇀↽−−
k−1

Y, 2X
k2−−⇀↽−−
k−2

X+ Y

of the reaction X
0.1−−⇀↽−−
0.1

Y, 2X
1−−⇀↽−−
k−2

X + Y with the given reaction rate

coefficients and k−2 calculated from the condition of detailed balance (11).
The initial concentrations were x(0) = 2, y(0) = 3. Then, we took a sample
from the concentrations at equidistant discrete times with a sampling step
size 0.1 and added a 2% relative error. Next, we tried to fit the model of the
reaction from which we started. We have chosen the initial estimates of the
parameters to be 0.5, 0.5, 0.5. the estimated parameters became

k1 = 0.0971753, k−1 = 0.0971771, k2 = 0.999665.

Figure 5 suggests a good fitting.
In the second case everything remained unchanged except that the reac-

tion to be fitted was 2X −−⇀↽−− X + Y, 2Y −−⇀↽−− X + Y. Note that condition
of detailed balance is different from the first case again, see (13). With the
same data neither the numerical result, nor the fitting seems to be too bad
(although slightly worse:

k1 = 0.0741455, k−1 = 0.0741468, k2 = 1.01966.

see also Figure 6.
Finally, the reaction to be fitted was X −−⇀↽−− Y, 2Y −−⇀↽−− X+Y. Note that

condition of detailed balance is different in this case, see (12). Again, with
the same data the fitting does not seem to be too bad, but the estimated
parameter values are unacceptable:

k1 = −0.357567, k−1 = −0.357585, k2 = 1.16416.

see also Figure 7. (One can force the program to provide positive reaction
rate coefficients only, but in the first two cases this was not needed.)
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Figure 6: A slightly worse model: 2X −−⇀↽−− X+ Y, 2Y −−⇀↽−− X+ Y

Figure 7: An unacceptable model: X −−⇀↽−− Y, 2Y −−⇀↽−− X+ Y

3.2 Salicylic acid transport with M = 3, R = 2 case

The concentrations of salicylic acid were measured in two compartments X
(gastric fluid) and Z (intestine fluid), assuming that the process is described
with the simple consecutive reaction X −−→ Y −−→ Z. The concentrations
measured in the different compartments can be seen in the Table.

ti (hours) x(ti) (M/l) ti (hours) z(ti) (M/l)
1 0.01579 0 0
2 0.01429 1 0.0003
3 0.01327 2 0.000614
4 0.01230 3 0.000917
5 0.01148 4 0.00143
6 0.01066 5 0.00201
7 0.00988 6 0.00269
8 0.00912 7 0.00338
9 0.00851 8 0.00402
10 0.00791 9 0.00473

Fitting the mechanism X k1−−→ Y k2−−→ Z gives nice results: starting from
the initial estimates (1, 1) for the reaction rate coefficients (more precisely,
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Figure 8: Fitting a bad model to real life data

Figure 9: Fitting to real life data

transport coefficients) gives the results with small standard error {k1− >
0.0786482±0.000812339, k2− > 0.181337±0.00527615}, a "good" correlation
matrix [

1. −0.499719
−0.499719 1.

]
.

The fitting can also be seen to be good, see Fig. 8.
However, if one wants to fit erroneously the model X −−→ Z −−→ Y, then

the Z species fits badly, as seen in Fig. 9. Let us remark, that the standard
errors are also larger than previously, which is not too interesting if one keeps
in mind that the transport coefficients of the bad model are meaningless.

4 CONCLUSIONS, OUTLOOK
At the end we make a few remarks on the restrictions used above, and also,
on the final use of the results obtained from the type of calculations we have
proposed.
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4.1 Restrictions

We have shown two sets of reactions, but fitting to the given problem one can
formulate specific sets of restrictions taking into consideration the chemical
nature of the problem and trying to reduce the number of possible candidate
models.

Mass action type kinetics We have almost always used it: especially in
connection with detailed balance.

Complex balancing It is quite natural to ask why do we not select com-
plex balanced reactions, because this concept turned out to be more funda-
mental during the development of formal reaction kinetics[5]. Because in the
case of mass action type kinetics we have a nice (structural) necessary and
sufficient condition (the reaction should be weakly reversible and should have
a zero deficiency δ := N−L−S = 0,) this property can also be simply tested.
(As far as the concept goes, but one may have combinatorial blow up again.)

Detailed balancing and complex balancing are not so far from each other
as they seem to be[3, 9, 24, 19].

Atomic structure In this paper we only used chemical species without
atomic structures. From the knowledge of the atomic structures further
restrictions are derived: it is natural to assume the law of atomic balance.

Combinatorial blow up. Still, it will work for systems with not so many
species. Many things should be calculated once, it is only the fitting what
takes time.

Our immediate goal is to extend and apply the method to multiple real
life data sets.

4.2 Final use of the the results

Present the best fitting reaction using AIC (Akaike Information Criterion),
BIC (Bayesian Information Criterion) etc. to the chemist for further investi-
gations and interpretation. Here we do not want to spend to much time with
the detailed statistical analysis of simulated data, see the following books on
this topics: [2, 18, 23, 27].

The method presented here can also applied as a special kind of lumping,[21].
Suppose a big kinetic model is given and we construct such small models in
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the way described above which are able to reproduce the measured or simu-
lated data obtained from the big one.

Carefully designed set of restrictions may decrease the number of candi-
date reactions, and increasing capacity of computers can do away with larger
numbers, too.

Our calculations and data can be requested from the authors.

NOTATIONS

Classical Notation in Meaning Unit?
notation formal kinetics Number of

L linkage classes
M species
N complexes
P reaction steps
R reversible pairs of reactions
S independent reactions

Table 6: Notations
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