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1 Propositio

1.1 The general problem of cutting regular GML bodies

Given that: a) the cross section of a Generalised Mobius-Listing body GML}, (Figure 1)
is a disk with regular polygons as boundary with m-symmetry, or m-vertices and m-
sides, and b) full cutting along the complete structure is performed with a knife
perpendicular to the cross section, dividing the convex polygon or disk in precisely two
parts, c) with knives that cut from vertex to vertex (VV), vertex to side (VS) or side to
side (SS), then determine 1) in how many ways can a GML}, body be cut, and 2) the
ways in which resulting shapes are linked.

a) Cylinder PR, b) Cylinder PR,

ALA

i .l

’\ "\u)

¢ GML)? dGML', e) GMLE,

Figure 1: Identification of vertices of prisms (a. PRg and b. PR; with x starlike), leading to
GML surfaces with twists (c,d,e). The number of twists relative to the symmetry of the
cross sections is indicated by the superscript.

Solutions for this problem have been obtained for GML surfaces and bodies with
m = 2,3,4,5,6 [1-6] and revealed connections with the field of knots and links,
depending on the number of twists of the original cylinder or prism with m-symmetrical
cross section, given by the superscript n in GML},. The method of study was the full
cutting of GM L}, surfaces and bodies with a moving knife in 3D. More general solutions
were obtained when the cross section of the GML}, surface or body is a Gielis curve,
describing the boundary of the cross section as well as the disk [4-7]. Gielis curves can
transform the cross section of the GML}, from a circle to a regular polygon and vice
versa, and to many other concave or convex curves. Hence using regular polygons
allows for generalizing results to other convex figures.

Instead of a moving knife and fixed GMLY,, an equivalent approach is a fixed knife and a



moving GMLY, surface or body. Furthermore, using a fixed knife it is shown that the
solution for the general problem of cutting regular GML}, surfaces and bodies can be
obtained by studying the problem of cutting regular m-polygons in the plane, with d;
knives, where i is the ordinal number of the divisor and d; is the divisor or m.

For example, considering VV cuts, a cut with a single knife d, is made from vertex V to

any other vertex V dividing the polygon into two distinct parts. This can be repeated

from vertex V; to V;, from V;, to Vj,, etc..., giving m possible cuts. A d; knife withi =m

on the other hand is a knife with m blades, achieving the same result as for d; but in one
cut.

The focus is on GMLY}, bodies since the cutting problem will lead to separate sectors in
the cross sections, and to separate bodies in one or more resulting GML’s. This problem
has both a geometrical and a topological solution. In the former case, the number and
the precise shape of the resulting bodies is counted, while in the topological case, only
the number of sides and vertices of the resulting bodies is counted. For example, when
the resulting shape is a quadrilateral, in the topological solution all quadrilaterals are
treated as one solution, whereas in the geometrical solution the precise shape of the
quadrilateral is important, e.g. a square. The topological solution is a subset of the
geometrical solution.

1.2 The geometrical solution

VV,VS,SS
N

Defining as the number of ways of cutting an m-gon for a given divisor of m,

whereby the superscript details whether this cut is a VV, VS or SS cut, giving NV, NVS,

.....

i =1,..,mblades is the sum of all possible cuts multiplied by the number of divisors.

The solution can be expressed as a recurrence relation in number of side-to-side cuts.
Defining N,,, as the number of ways of cutting an m-gon for a divisor equal to one, and
N33 as the number of SS cuts for m and N33, for the number of SS cuts for the polygon
with (m — 2) symmetry, then for the geometrical solution the number of different ways
of cutting an m-polygon with a d,,, knife is:

e Forevenm (= 2k): Npeork = m+1+N33, (la)
e Foroddm (=2k+1): Npepps1= m+2+Ns>, (1b)

The total number is then the number of different ways in (1a) and (1b) multiplied by the
number of divisors. In regular polygons the cuts N7V, NYS, N335 have to be made from
Vi = Viyq, from V; = S; 4, or from S; — S;,4 respectively. V; - V;,V; = S;,orS; = S; do
not divide the regular m-polygons into two distinct parts. As a corollary, in a convex
polygon or a circle with equally spaced points however, such cuts are possible and the
total number of cuts then has to be augmented by m.

e Forevenm (= 2k): Np—pr = 2m+1+N5, (2a)
e Foroddm (= 2k +1): Npeopps1= 2m+2+ N33, (2b)



1.3 The topological solution

The topological solution is given by the following general formula:

e Ifm = 2k + 1and has N nontrivial divisorsd,,d; ...dysq1anddqy = 1,dy = dy, =
m, then the number of all possible variants of cutting of GM L}, bodies is

~t k
B9 = 8k + 1+ 3Nk + X4 [d—] + 2N (3a)

e Ifm = 2k and has N nontrivial divisors d,,d3 ...dy;1and dq = 1,dyys = dipy =M,
then the number of all possible variants of cutting of GML}, bodies is

ELP = 8k — 5 4 3Nk + X! [kd__ll] (b)

The general formula can be expressed in the variables k and N, whereby m = 2k for
even or m = 2k + 1 for odd numbers. d; is the i-th (i = 2,3, ... N + 1) non-trivial divisor
of the number m, so N equals the number of divisors of m minus 2 (excluding the trivial
divisors dyy, = dpy, =m, anddy = 1). N[}, = N + 2is the total number of divisors
(including the trivial divisors m and 1) and square brackets [..] indicate the integer part
of the fraction. Also in this case the remark on convex polygons and circles is valid: the
number of possible cuts has to be increased by m.

1.4 The occurrence of Mobius phenomena

The Mobius phenomenon, which led to the discovery of non-orientable surfaces for
classical ribbons or strips, also occurs in GML surfaces and bodies. Mdbius phenomena
result in only one body or surface after full process of cutting when a) m = even and b)
the knife passes through the centre of the cross section of GML bodies. The knives used
in making VV,VS or SS cuts are chordal knives, dividing the m-polygon into two distinct
parts and cutting the boundary of the m-polygon in exactly two points.

When using radial knives, which start from the centre of the polygon and cut the
boundary of the m-polygon in exactly one point, it turns out that Mobius phenomena can
occur both for m even and odd.

1.5 Generalizations and interrelations

This paper is organized in the traditional Greek geometrical way, with Propositio,
Expositio, Determinatio, Constructio, Demonstratio and Conclusio. In the Expositio and
Determinatio sections the focus is on paths towards generalizations and links to various
well-studied problems in mathematics.

Generalizations include the circle or convex polygons, whereby V; = V4, V; = S;, or
S; = S; cuts are possible. Furthermore, it is by no means necessary to use straight
(chordal or radial) knives as long as the knife-curve is wholly contained within the
original domain. The precise shape of the knife can be the solution to some optimization



problem. One generalization is cutting of concave polygons, whereby the knife is part of
a “more-concave” polygon.

In cutting the polygon or convex shape, the resulting domains can be separated.
However, the process of the knives is completely equivalent to connecting vertices and
sides via drawing diagonals or connecting equally spaced points on a circle. Hence the
problem of using m-knives to cut regular m-gons has a direct relation to other well
studied problems in geometry, such as:

e The problem of dividing m-polygons with non-crossing diagonals

e Number of separate parts in a circle when connecting all equally distributed
points on a circle with straight lines.

The former problem was studied first by Euler and later by Segner, Lamé and Catalan.
The solution of the problem is combinatorial and the results are the Catalan numbers.
The combination of geometric and combinatorial problems (linked directly to
permutations or identification of corresponding vertices (Figure 1) in the problem of
cutting GML) is very fruitful. Solutions to the second and related problems are other
series of integer numbers, many of which are found in the Online Encyclopedia of
Integer Sequences OEIS. There are other relationships and many applications in physics
and biology, and it opens a way forward to bridge topology and geometry within maths
on the one hand, and mathematics and the natural sciences on the other.



2 Expositio
2.1 GML surfaces and bodies

GMLY, are torus-like surfaces or bodies, whereby the cross sections of the GM L}, bodies
are closed planar curves with symmetry m, and which are constructed by identifying
opposite sides of a cylinder or prisms (Figure 1) [1-4]. The planar curves with symmetry
m can be regular polygons or any closed plane curve, including circles. GML surfaces are
generated when only the curve itself, as boundary of a region is considered (Figure 2 for
GMLY), or bodies when also the disk enclosed by the curve is considered. For the
classical cylinder or Mobius band, the cross section is a line, swept along a path forming
a ribbon and twisted an even or odd number of times respectively. Whereas the lower
index m determines the symmetry of the cross section, the upper index n describes the
number of twists. GML surfaces or bodies can either be closed (Figure 1) or not (Figure
2). In the latter case they can be either sections of closed GML surfaces or bodies, or
complete. They are called Generalized Rotating and Twisting surfaces and bodies GRT.

H e
— @

Figure 2: GRT surfaces and bodies

2.1.1 Analytic definition of GML surfaces and bodies

Generalized Mobius-Listing Bodies GM LY, are defined by the analytic representation:

X(t,y,0) = (R(B) + p(t,y) cos ( ) q(t,y) sin ( )) cos(8)
Y(r,¢,0) = (R(B) + p(1,Y) COS( ) q(t,Y) sm( )) sin(9) 4
Z(t,y,0) = K(6) + (p(‘r 1,l))sm( )+q(r w)cos( 9))

or, alternatively,

X(t,y,0) = (R(B) + p(z,y) cos (1,[) + ?n—e)) cos(8)
Y(z,1,8) = (R(8) + p(z,¥) cos (1 + 7)) sin(6) (5)
Z(z,1,6) = K(8) + p(z,1) sin (¢ +2)

where p(t,9) and q(t,y) are given functions which can define surfaces of the radial
cross section of bodies (Figure 3), with:



e a planar curve or disc as basic cross section (this can be a very general section,
esp. Gielis curves or discs), which

e can be swept around a closed or open path along a basic line (e.g surfaces of
revolution, or Monge surfaces), and which

® can be given twists and turns as desired.

2.1.2 Permutations and Colours
Each Generalized Maobius Listing's body GML}, can be considered as a geometric
representation of the element of the permutation group [8], in particular:

A, 4, A4, e A A o A .4, 4,4, _

[A;A,:H A;+1A;+2 A;’1+i71A:’1+i A;’1+m72A;+mfl A;+mlA;]=

3 A4, 4,4, RE A4 e A4, 4,4, _
_[A;);1+kA;m+k+l A;m+k+lA:an+k+2 A;m+k+i—1A(,/)n+k+i A;M1+k+m—2A;m+k+m—l A;mkw-lA;mk]:
[ 4,4 A4, - A4 - A,LA, 4,4,

‘[A;.A;H O SNV S A;+,,,1A;] ©)

The sub-indices change from 1 to m — 1 cyclically and the sides are identified by the
definition of GM L}, body. So it may be written as follows:

Ay 4, 4,4, e A A e A, 5,4, 4,4, | _
[A; A;+1 A;+1A;+2 A;H—IA;-H' A;+m72 A;+m71 A;+nz—l A; ]z
i (Agd, AA, e ALA e AL AL A A ) (7)
B [An Ay A4, A, Ay Ay A A4, j B

noi(] 2 i . m—1 m
Nk k+1 mod, (k+i) -+ mod,(k+m—1) mod, (k+m)

The first row shows the identifications of the original prism and the second row the
identifications after rotation and identification according to definition of GML},. These
are elements of a special subgroup of the group of permutations, in which the number
of elements of this subgroup equals m. The first row is always the usual sequence of
numbers from 1 to m, and the second row may start from any number from 1 to m and
then, given the cyclicity of the representation of numbers, their sequence is not changed.

Each element, except the neutral element, has a certain number of cycles, and
geometrically, this directly relates to how many different colors can be painted on the
surface of a given body, without lifting the brush and not passing the ribs. For example
form = 4 (Figure 3):

1 2 3
{2 3 - neutral 4-colored (m-colored, for any m), Figures 3 a. & d.
1 2 3 4 1 2 3 4
, and - one colored (Figures 3 c. & f.)
2 3 41 4 1 2 3



a) GAnS Wy GMLD aGart
‘ i i

\——y &b [

d) GMLS o o 0 GML;

Figure 3: GM LY surfaces with different values of twisting n, leading to one-, two-, or four
coloured surfaces.

Corollary: Each GML}, body has a j-colored surface where j = gcd(m,x) and
n = wm + k except when k = 0, in this case we have an m-colored GM L}, body [8].

2.1.3 From the original motivation to the general problem

The original motivation to study GML}, is rooted in the study of boundary value
problems and the geometrical description of natural shapes and phenomena [4]. The
current study was initiated by the question what happens if the GML surfaces and bodies
are cut along a certain line or surface, inspired by the cutting of the original Mdbius
band [2, 3]. For example, the result of cutting d., e. and f. in Figure 3 along lines
containing one vertex, will be very different.

Thus far, the classification of cutting of GML}, surfaces and bodies was achieved for
classic M6bius bands [3], and for GML} with m = 2, 3, 4, 5 and 6 [4-6]. A full
classification was achieved for cutting of classic Mébius bands with any k number of
knives [3]. These classifications revealed a close link between the cutting of GML bodies
and surfaces, the study of knots and links, and with the colouring of surfaces (Figure 3).
This can lead to intricate links of various separated GML surfaces and bodies (Figure 4).
In this case the cutting leads to ribbons, but if the GMLS Architon is a body the various
structures will have different cross-sections.

The challenge remains to classify the cutting of general GML bodies when the cross
section of the GML body is a regular m-polygon, for any value of m. This problem can be
studied from several points of view, and it will be shown in particular that cutting planar
regular m-polygons with a certain number of knives is an equivalent problem.

10



Figure 4 a. GMLY surface (Architon) with 6 different sectors in different colours and, b. the
result after separating the different sectors.

Demonstrations will be given for cutting with one knife or with m knives. Other ways of
cutting, based on the divisors of m, are investigated, and the equivalence of cutting of
GMLY,, the cutting of regular m-polygons, or in general Gielis curves and rotational
symmetries of the circle with inscribed m-polygons will be considered, and the relevant
connections to other fields of mathematics will be outlined. Using m-polygons does not
limit the generality of our results. More details are provided in Sections 2.2, 3.
Determinatio.

2.2 Gielis curves, surfaces and transformations

2.2.1 Gielis curves and transformations

The theory of GML surfaces and bodies was greatly enriched when it was merged with
Gielis curves [7;9-11], a generalization of Lamé curves or superellipses
(A # B) or supercircles (A = B) for any symmetry, defined as:

1

" [5eos(26)] " £[zsin(Z0)[

0(9;A,B,ny,ny,n3) = (8)

The parameter m defines the symmetry and is thus related to the lower index of GMLY,.
The exponents ny , 3 are not related to the upper index n of GMLY,. Equation (8) can also
be considered as a generic and geometric transformation on all planar functions,
unifying a wide range of natural and abstract shapes [7]. Here we restrict the
transformation on a constant function or circle, with A = B. Gielis curves (1) can serve
both as cross section and as basic line around which the cross section is swept giving
rise to GML bodies (Figs 3 and 4). They can define:

e Boundaries and disks, using the zones enclosed by the curves, technically using
0(9) < whereby the = sign defines the boundary.

e Regular polygons with symmetry m are defined:

1

9)

o) =lim, -
\/|COS(

b3 b3
m )|2(1—n110g2cosm) | . (m )|2(1—n110g2cosm

e Regular Gielis polygons sensu Matsuura [12] are generated for G4 =

Gmnyz=pni=q; = Gm,1,(m/a)2- A 65'1% polygon is a very good approximation of a

11



regular pentagon withm =5,n,3 =p = 1 and q = p.(m/4)%. The difference
between regular polygons defined in this way is less than 1% for m = 5 and less
than 0.5% form > 11.

e Self-intersecting polygons (m-polygrams) for m a rational number, are known as
Rational Gielis Curves RGC [13]; for example for m = g , a pentagram is

generated. To complete the figure with 5 vertices, 2 rotations are needed,
corresponding to the numerator and denominator of m respectively. In general,

m can be rational (m = P/q with p, g relative prime), or irrational [7].

Furthermore, it is a continuous transformation, whereby any shape can be transformed
into a circle, and then into any other shape [11]. The transformation is equal to 1,
yielding the circle, for either m=0 or lim,,_,,, The former is a zero-gon (or zero-angle),
a figure without corners or vertices, while the latter is the classic notion of a circle as the
limiting case of a polygon with an infinite number of sides. But the value is also equal to
1, and thus a circle, for n, = n3= 2, for any integer value of m (given A = B = 1). So ifa
pentagon is transformed into a circle, this can be done by changing the values of n, = n;
for the pentagon to n, = n3= 2 (in a discrete or continuous way). However, even if this is
a circle, it is also a pentagon, with the original equi-spacing of the five points on the
circle still imprinted. The polygons can be transformed into circles, where the
equidistant points are the roots of unity.

2.2.2 Pythagorean compact

Gielis curves are generalizations of Lamé curves using polar coordinates, and for
Ny,3 = nandng,3 = 2 (given A = B,m = 4), we have Lamé curves and the classic
Euclidean circle, respectively. Hence, these transformations have been named
Pythagorean-compact. As all shapes are described in one Pythagorean compact
equation, all shapes are equally simple, differing in a few numbers at most. Within the
same Pythagorean structure, the arguments of the cosine and sine functions (in the
original form Z*9) may be arbitrary functions f(9), allowing for extremely compact form

descriptions [14].

Moreover, all shapes can be continuously (or discontinuously if one chooses discrete
steps) transformed into any other Gielis curve. The Lorentz transformation of Special
Relativity Theory is one special case [10-11]. There are deep connections to various
other parts of mathematics, including Riemann surfaces, approximation theory and
number theory. For the natural sciences, the main consequence is that the Gielis
Formula allows for a uniform description of a wide variety of natural shapes, and their
development [11].

2.2.3 Gielis surfaces and bodies

The two dimensional case can be generalized to [11]:

@) = 9 n2 : 9 n3 9
n1\/|sin(mi )cos(mf(p)| |sin(m41_ )sin(%ﬂ |cos(mi )|

[ O N B B

—.a(9,¢) (10)
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As transformations of functions, with a(9,¢) =1 the unit sphere, Gielis
transformations can be generalized immediately to any dimension [9]. Another way of
defining 3D shapes is parametrically using two Gielis curves p; (9), p2(¢):

x = 0,(9) cos?.o,(@)cos g
y=0,9) sind.g(p)cosp  (11)
z = 0,(¢p) sing

with a unit sphere for p; (9) = p,(@) = 1.

In this way a 3D Gielis surface or body can be defined on the basis of two perpendicular
Gielis curves 1(19), 02(¢). There are a variety of ways of defining surfaces and bodies,
with Figure 4 as one example. In Figure 5 other examples are shown, showing both the
equivalence with GML and special topological figures.

a. GML} body with one full rotation (circle as basis line)
b. GMLY with cross section a circle or zero-angle, and basic line a % angle, (m =

r/q =1/2).
c. GMLY with basic line a one-angle or monogon (m = 1), no twists.

=%

Figure 5 a. GM L, surface. b. Torus with a Gielis curve with m=1/2 as path. c. A torus with

path m=1, giving rise to a Klein bottle

Figure 5c. is a monogon with parameter m = 1, A = B and all exponents n in Eq.1 equal
to 1. When this 2D curve is transformed into a torus, it becomes the Klein bottle. It is
remarked that in all cases the cross sections are constant, but also they can be scaled or
morphed when swept along the basic line, resulting for example in vortices. In 3D a
sphere can be transformed into a torus in a purely geometrical way, since the 3D
parametric version is based on two perpendicular sections [11].

When transforming a sphere into a torus one of the cross sectional circles, increases in
. . . 1 .
size. In Figure 5b. a torus transforms into the half-angle shape (m = E)’ which leads to a

torus with two holes. Actually, by having value of m in the Gielis formula as 1/p with p
an integer, tori with any number of holes equal to p can be generated. The number of
holes corresponds to the genus of a surface. One example is the % angle torus in Figure
5b., which has two holes, or genus 2. In Figures 1, 3 4 and 7, the basic line of the GML
surfaces and bodies is a circle, but this can be any knot-like structure or RGC, such as a
pentagram.
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2.3 The equivalence of cutting GML bodies and m-polygons

2.3.1 GML meets Flatland

At the end of the 19t century E. Abbott wrote Flatland, a story of dimensions [15]. The
goal was to show how people could think about four-dimensional space, by considering
Flatland and its inhabitants. When a ball moves through Flatland, the inhabitants will
initially see a circle that starts as a point, increases in size, until the maximum size is
reached. Then it will decrease until it disappears again, leaving the Flatlanders in shock
and awe. Only when one of the Flatlanders travels into 3D space, (s)he realizes what
truly happened, but ultimately finds h{} self in great difficulty trying to explain this to
fellow inhabitants of Flatland.

®

Figure 6 a. Upper half of GML meeting Flatland, with the green and the red dot connected
via a rib. b. Architon (Figure 4) moving through a cone.

We can take the same approach. A GML body or surface is a 3D torus-like surface or
body, with certain symmetry. Fig. 6a. displays part of a GML body with square
symmetry. The GML surface or body crosses Flatland (Figure 6a.) and the yellow zones
are those observed by inhabitants of Flatland. However, they cannot discriminate
between the different orientations of the square, resulting from a twist in 3D and
indicated by red and green dots. Figure 6b. displays a snapshot of Architon (Figure 4)
moving through Coneland. To a Conelander various unconnected and mysterious shapes
are observed. Undoubtedly to a Flatlander or Conelander, a whole range of mysterious
things happens if such structures move through their territories. What the Flatlanders
or Conelanders will notice - a boundary or a disk - depends on whether GML is a surface
or a body. In advanced societies like Flatland and Coneland, its physicists may develop
methods to find out whether the shapes are boundaries or disks.

Figure 7a. displays part of a complete GML body with pentagonal cross-section, cut from
side to side, cutting the cross sections into two distinct parts. If the cutting process is
continued along the whole twisted GML body until the knife arrives at the very same
position as the initial one, eventually four different bodies will result, two triangular
ones in light blue and brown, and two pentagonal ones, in yellow and grey. Each body or
surface will be twisted in a certain way.
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Figure 7b. displays only one of these shapes, but in fact, after cutting, all four structures
are intertwined into one complex shape. An inhabitant of Flatland will only see the
overall pentagonal cross section as in Figure 7a., which is cut from side S;to S;.> with five
knives, showing the equivalence of cutting GML bodies and regular polygons.
Alternatively (s)he may see a number of disconnected shapes, one with a pentagonal
shape, ten shapes with one specific triangular shape (either blue as in Figure 7b or
brown) and five quandrangular shapes.

Figure 7 a. Pentagonal GML body. b. One of the resulting structures.

2.3.2 Cutting bamboo poles.

When cutting GML with one (or more) knives, one can consider the knife moving along a
rib on the GML body as in Fig 6a. In this case the knife corresponds to one of the
diagonals of the cross sections, keeping a constant orientation relative to the cross
section, e.g. along one rib of the GML body. Alternatively one can fix the knife and move
the body through the knife. A real life example of cutting with various knives is found in
hand tools or in machines used for splitting bamboo culms (Figure 8a and b). The
knives can be adjusted to split the bamboo in any number of pieces. These culms are
hollow, but one can easily imagine the same procedure for full prisms. In case the
prisms are twisted and closed in a GML fashion, the results with one knife or more
knives will be the same.

split a fixed culm. b. Bamboo splitting machine with fixed knife and moving culm.

2.4 Cutting regular m-polygons with one knife

Having established the equivalence of cutting GML and polygons with a moving or fixed
knife, now consider the regular m-polygon with rotational symmetry m € N, ie. a
regular polygon with m vertices and m sides connecting the vertices. There are three
ways of cutting a regular m-polygon. A cut, which divides the structure into two distinct
zones, can be made from:
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1. vertex to vertex VV, with notation VV;
2. vertex to side VS, with notation VS;
3. side to side SS, with notation SS;

j»acut from vertex i to vertex j

j»acut from vertex i to side j
j»acut from side i to side j

In the case of VI the first Vis labelled as V; so that a cut from the first vertex to the third
vertex, in clockwise direction is called VV; 3, which is for example the diagonal of a
j» VSijand, SS; ; refers to the first letter, and
the second index j refers to the second letter (V or S). In the case of vertices and sides,
the labelling both starts at 1, so atV; and S;. Then VS, ; defines a cut from V; to S,
which lies inbetween I/, and V5 (Figure 9b). If a cut passes through the centre of the
polygon, it is denoted as subscript C (Figure 9a,c), although this notation may be
dropped in obvious cases as in Figure 9a. In Annex 1 all possibilities are shown for
m =6, ...,10.

v & = o

Figure 9. Ways of cutting of a square, left to right: a: VV; 3¢, b: VS, 5, €: 5513 ,d: 551,

square (Figure 9a)!. The firstindexi of V'V;

Notes
1. A cutis similar to drawing a straight line connecting vertices to vertices or sides,
and sides to sides. Straight vertex-to-vertex lines are also known as diagonals.

2. A single cut divides the regular m-polygon into two distinct parts, i.e. the knife is
part of a line, which has exactly two points in common with the boundary of the
polygon. Such knife is called a chordal knife, analogous to the chord cutting a
circle, giving rise to definition of sines and cosine. In Figure 8a the bamboo knife
can be considered as three chordal knives through the centre.

3. Cuts, which are symmetrical with respect to clockwise or counter clockwise
rotations are counted as one. If clockwise rotation is indicated as + and counter
clockwise as -, then e.g. VS; _,=VS;,

4. VVii4q 0rVVi;_4 cuts are excluded as they coincide with a side and do no divide
the polygon into two distinct parts. When cutting convex polygons with curved
sides [4], or circles with equally spaced points VV; ;,, or VV;;_; are possible.

The number of ways the m-polygon can be cut with one knife is equivalent to drawing
one line. The total number of cuts is 3k — 2 for even numbers m = 2k, and 3k — 1 for odd
numbers m = 2k + 1 (Table 1). For increasing m this leads to the following:
e From m odd tom + 1 (even) the number of possible cuts increases with 2,
namely VV; ;m_z) and $S5; ;n—2). For example, in m = 6 the new possibilities are

VV; 4 and SS; 4, compared to m = 5.

1 Labelling is from 1 to m for both vertices and sides. In earlier publications [1-6] numbering
starts from 0 in the case of vertices.
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e From m even tom+ 1 (odd) the number of possible cuts increases with 1,
namely VS; im_2). For example, for m = 5 the new possible cut is VS, 3 compared

tom = 4.

Table 1: Possible cuts for m-polygons m = 3,4, ...,7 and the general case

3 VSi, AP 2
4 VV 3 VSi, AP 583 4
5 VV, 3 VSi, VSi3 AP 583 5
6 VV, 3 VVi, VSi, VSi3 AP 583 5814 7
7 VV, 3 VVi, VSi, VSi3 VSi4 AP 583 5814 8
Even k—1 k—1 k 3k—2
odd k-1 k k 3k—-1

This is equivalent to an increase with 3 possibilities going from m to m+2. From m odd
to m+2 (odd), or from m even to m+2 (even), the number of possible new cuts increases
with 3 in both cases. The number of possible cuts in Table 1, right column, is the
sequence 2, 4, 5, 7, 8, 10, 11, 13... and this sequence (from odd to even plus 2 and from
even to odd plus 1) will be continued for any increasing value of m. In the OEIS database
of integer sequences, this sequence of numbers is: numbers not divisible by 3.

2.5 Divisors and different ways of cutting

The cuts described above (Figure 9 and Table 1) are made with precisely one knife
corresponding to the smallest divisor of m, namely 1. The number of cuts with 1 knife is
equivalent to divisor d;. The results of cutting GML with regular polygons as cross-
section or cutting regular polygons, aligns with the number of divisors of m.

The number of divisors d of m > 2. The number of divisors is 2 if and only if m is a prime
number and the divisors are then d; and d;,,. The smallest divisor d; is always 1 and
the largest divisor d,, is always equal to m. For all values of m, the divisors are
designated dq, d>, ..., dpy,.

Cutting with m knives is equivalent to the largest divisor d,,. Using d; or one knife the
cut started either in V; for VV and VS cuts, and from S; for SS cuts. For divisor d,,, or m
knives, cuts start in all m vertices and on all m sides. The cuts are symmetrical to the
case d; of one knife.

The cuts are based on repetition of d; cuts, by rotation, for example for hexagons and VV
and VS cuts:

e VVcutsbasedonVV;3: VVi3, VVs4,VV35,VVie, VVsqand Vs,
e VV cutsbased on VVy4: VVy4, VVys, VV3¢, VVyq, VVs, and Vg
e VScutsbasedonVS;,: VS5, VS23,VS34, VSyss,VSs6and VSg 4
e VScutsbasedonVS;3: VS13,VS24, VS35, VSs6, VS5 and Vg,
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VViae VViz VS;3 VS, 5814 5813 5812

0 60 o @ @
@0 O S O 000

Figure 10a: Cutting a hexagon with 1 (dupper row) or 6 knives (dg lower row)

VV3 VSi3 VSi2 5813 5812

® & © ® ®
»*HPOerxardh o0®

Figure 10b: Cutting a pentagon with 1 (dyupper row) or 5 knives (d5 lower row)

VV and VS cuts result in four different figures for both d; and d,,, = 6 (Figure 10a), but
with a one-to-one inheritance from d; to dg (or vice versa) i.e. the same total number of
figures, namely 4. Additional possibilities will be created however, when m side-to-side
cuts are considered for d,,.

e SS cuts based on §S; 4: if the cut is made from the middle of 5; to the middle of
S4, the cuts cross the centre of the hexagon (Figure 10a, column SS; 4). In this
particular case m is even, and the line contains the centre of symmetry.

e For SS cuts based on SS; , or §S; 3 the result depends on whether the cuts are
made from

o The middle of S; to the middle of S, or to the middle of S3
o From side to side such that the cutting line is shorter or longer than the
cut from middle to middle.

This is shown in Figure 10a, columns SS; , and SS; 3. In total, 5 additional different ways
of cutting result for d,,, compared to d;. For the hexagon, for d; the total is 7, for
dpy = 6,itis 12.

The results for cutting a pentagon with 1 knife (d; = 1) and 5 knives (d,, = 5) are
shown in Figure 10b. For d, there are 5 possibilities. The additional VS, 3 ford,, =5
compared to a square, is generated when the cut is made through the centre of the
pentagon. For d,,, = 5 the total number is 12, as for d,, = 6 in a hexagon. For §S; 3 there

are 4 additional ways of cutting, compared to d; that fall into two categories.

e First, as in the case of the hexagon, the cut SS; 3 can be made parallel to the side
of the pentagon, again, from middle of S; to exact middle of S3, or shorter, or
longer, giving three extra possibilities as for the hexagon. The same for SS ,,

giving a total of extra 4 possibilities.
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e Second, the cut §S; , gives rise to an additional 2 possibilities, depending on the
cut made. From left of middle of S; to right of middle of S; or from right of
middle of S; to left of middle of S5

Going from a pentagon to a heptagon (Figure 11), the total number of ways of cutting for
dyn =7is 17. Two extra vertices and two extra sides generate additionally VS; 4
and SS; 4. The former generates one extra possibility of cutting (Figure 11 column VS, 4)
like VS, 3 in the pentagon, while the latter generates 5 extra possibilities (Figure 11
column SS,; 4), like §S; 3 in the pentagon, compared tod;. SS;3 and SS;, generate
three possibilities each, again dependent on where the cut is made (Figure 11 columns
§513 and SS; ). This pattern will always continue going from m to m+2 for m odd. A

similar reasoning leads to same conclusion for m even.

VVis VSi4 VSi3 5514 S513 551,
VVi, VS,

e & e¢ P © ®
POEFP RO ROODT OO OO0

Figure 11: Cutting a heptagon with 1 or 7 knives

For d,, the number of ways of cutting increases according the following rule: When m
increases from an even number m = 2k to the next odd number m = 2k + 1, the
number of possible cuttings increases by 5. When m increases to the next even number
m = 2k + 2 the number of possibilities does not change.

For m = 3,4,5,6,7,... the number of possible cuts d, is the monotonic sequence
7,7,12,12,17,17,22,22, ... or taken two by to 14, 24,34,44... In general, for couples
m = 2k —1land m + 1 = 2k this gives (k — 1) - 10 + 4.

2.6 Geometry versus topology

The main difference between d,,, and d; is that in d; certain cuts are not differentiated.
For example in SS; 4 in Figure 11, the line connecting sides 1 and 4, can lie anywhere on
both sides. For d,, however it is important where exactly sides 1 and 4 are cut. In Figure
9 column SS; 4 the cut can go either through or not through the centre of the regular
hexagon. When it does not go through the centre, various objects are generated,
indicated by different colours.

This is the difference between the geometrical and topological identification of the
solution, indicated in Propositio. In SS; 4 in Figure 11, any cut with one knife (upper
row) will generate two pieces, one with 5 vertices, one with 6 vertices (the topological
condition). If the cuts with one knife need to generate shapes, which are one to one
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congruent (the geometrical condition) to the d,, case, also the upper row will have 5
different variants.

In Table 2, the number of ways of cutting a regular polygons for smallest and largest
divisor is given, and the total ways of cutting in the topological sense, the sum d,+ d,, .

e From an even number m,, to the next even number my,,,, : di+d,, =+8
e From an odd number m,, ., to the next odd number m,,,.3 : d;+d,, =+8

The general rule is: The number of possibilities of cutting a regular m-polygon with one
or (m) knives (d{+d,,) is the number of possibilities of cutting a (m-2)-polygon
increased by 8. As a consequence of the number 8 increase, the sequence of numbers
9,11,17,19,25,27,33, 35, .....is (1,3) modulo 8, i.e. the numbers of d,+ d,, are divisible
by 8 with rest 1 or 3. In Table 2 the total number of possible cuttings for smallest and
largest divisor of an m-polygon is given up to m = 10. The value of d{+ d,, for odd m is
1 modulo 8 and the value of d,+ d,, for even m is 3 modulo 8.

Table 2: Number of cuts for smallest and largest divisors for m-polygons

‘ m d, d, dy+d,, ‘

3 2 7 9

4 4 7 11

5 5 12 17

6 7 12 19

7 8 17 25

8 10 17 27

9 11 22 33

10 13 22 35
m=2k+1 3k—1 5k + 2 8k +1=4m-—3
m =2k 3k —2 5k —3 8k—5=4m—5

The total number of possible cuttings for smallest and largest divisor of an m-polygon is
always an odd number. It is 4m-3 (or 1 mod 8) for odd values of m and 4m-5 (or 3 mod
8) for even values of m. The total number of ways of cutting an m-polygon for m =
primeis (dq+d;;) =4m-3 or 1 mod 8.

So we have the following:
Lemma 1: in the topological sense, the cutting with one knife (d;) gives the minimum
number of cuts, while cutting with m knives (d,,;) gives the maximum number of cutting

variants. In the geometrical sense, the minimum number of cutting variants (with a d4-
knife) equals the maximum number of cuts. (d,,-knife).
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2.7 GML versus polygon cutting with 1 or m knives

The original study is a moving knife cutting 3D-Generalized Mobius Listing bodies
(Figure 6) and continuing until the knife returns to the initial position (i.e. a complete
cut). In Table 3 the cutting using a largest and smallest number of knives, related to
smallest and largest divisors, is presented for GML cutting with moving knife. The
condition n = km corresponds to full rotation and d,, = 1, and the condition n = km +
j(ged(m,j) =1 tod,, = m.

Table 3: GML cutting with moving knives

n = km (full rotation) Smallest divisord,, = 1
m- All different variants of All different variants of All different variants of

odd cutting “SS” (side to side) cutting “VS” (vertex to side) cutting “VV” (vertex to
vertex)
3 1 1 0
5 2 2 1
7 3 3 2
9 4 4 3
11 5 5 4
2k+1 k k k-1

n=km+j(gcd(m,j) =1 - m-knife Largest divisord,, = m

m- All different variants of All different variants of All different variants of
odd cutting “SS” (side to side) cutting “VS” (vertex to cutting “VV” (vertex to
side) vertex)
3 5 1 1 0
5 3+5 2 1 1
7 3+3+5 3 1 2
9 3+3+3+ 5 4 1 3
11 3+3+3+3+5 5 1 4
2k+1 3:(k-1)+5 k 1 k-1
n = km (full rotation) Smallest divisord,, = 1
m- All different variants of All different variants of All different variants of
even cutting “SS” (side to side) cutting “VS” (vertex to side) cutting “VV” (vertex to
vertex)
2 “1” 0
4 2 1 1
6 3 2 2
8 4 3 3
10 5 4 4
2k k k-1 k-1

n=km+j(gcd(m,j) =1 (m-knife) Largest divisord,, = m
All different variants of All different variants of All different variants of

cutting “SS” (side to side) cutting “VS” (vertex to side) cutting “VV” (vertex to
vertex)
2 1 1 0 0
4 3+1 1 1 0 1
6 3+3+1 1 2 1 1
8 3+3+3+ 1 1 3 2 1
10 3+3+3+3+ 1 1 4 3 1
2k 3(k-1)+1 1 k-1 k-2 1
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Table 4 gives a summary. Comparison with Table 2 Totals shows that the
correspondence of GML cutting and regular polygons is indeed complete.

Table 4: Comparative table for GML and polygon cutting

GML in 3D di —Kknives SS-cuts VS-cuts VV-cuts
n=2k+1 n=km 1 k k k-1 3k-1
n=km+j(gcd(m,j)=1 m 3(k-1)+5 k+1 k-1 S5k+2
n=2k n=km 1 k k-1 k-1 3k-2
n=km+j(gcd(m,j)=1 m 3(k-1)+2 k-1 k-1 5k-3

2.8 Defining knives for all divisors

For d; cuts are made starting from V; or S;. For d,, this operation was repeated
every Zﬂ/m. For divisors other than d, or d,,, the operation has to be repeated less
than every Zﬂ/m. In Table 5 the rotations which have to be performed is indicated for
m-polygons with more than two divisors for m = 4, 6, 8, 9 and 10. The denomination
d; = 4 indicates that for m = 8 having four divisors 1, 2, 4 and 8, the third divisor is 4.
The denomination d,, always refers to the highest divisor, in this case equal to d,,, = 8
for the octagon. The rotations are k- Zn/m_ The value of k depends on the other
divisors. For example form = 10, k=5ford, =2,; k = 2 ford; =5,k = 1ford,, =
10 and k = 10 for d; . The results are shown in Figure 12 for m = 4.

Table 5: Traces of d-knives

dy d; d; dm
m=4 d =1 dy =2 dp = 4
4-2m/ or360° 2727/, or180° 2m/, or 90°
m=6 d =1 dy =2 d; =3 dp =6
621/ or360° 3-2m/ or180° 2-2m/ or120° L-2m/ or 60°
m= d =1 dy =2 ds =4 dp =8
8-2m/; or 360° 421/ or 180° 2-2m/g or 90° L-2m/ o or 45°
m=9 d =1 dy = dpy =
921/ or 360° 3:2m/y or270° 121/ or 40°
m=10 d =1 dy, =2 ds; =5 dp = 10
10-2m/, jor360° 527/ or180° 2-2mf nor72e  1°2m/ o ar3e°

This then leads to the following analytic definition of d;=; ,,-knife: the d;-knife is a

construction, with m straight lines [8]:
, 2, 2 . ;
sm(a+;z)xi+cos(a+zl)yi+5=O, i=01..m—-1, ——<a<-— (12)

Vi =tan(a+%i)xi+6[cos(a+%i)]_1, i=01..m—-1; —
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The parameter « is a rotation parameter and § is a dilation or zooming parameter. With
these parameters all possible ways of cutting can be described. In Figure 12 middle row
one can observe how the red square is dilated and rotated. Dilation can shrink the
square to a point as in the VV; 3 and SS; 3 cut through the centre. This will be used in
Demonstratio Section 4.3 since this is equivalent to projection. In evaluating other
divisors, the value of i should be amended, according to Table 5. For example, in the
octagon dz = 4 the cut is repeated every 90°, ori = 2: 2° 27T/g or 90°.

For d, =2 (equivalent to m = even) the number of possible ways of cutting in the
topological sense is the number of possibilities for d; +1. In evaluating the number of
divisors in relation to GML or regular polygon cuts, it is found that for VV and VS all
divisors are equal for even m. For odd m the same goes for VV cuts, but for VS cuts one
has to take into account whether or not the cut goes through the centre, at least in the
topological sense. The number of ways of cutting V'V or VS is in geometrical sense
inherited one-to-one from VS or VV cutting for smallest and largest divisors, basically
this number is constant for all VS, VV cuts for all divisors.

vé =

% 0H 6090
¢ E=

Figure 12: Ways of cutting for a square for all divisors d; (upper row),d, = 2 (lower

row) and d,, = 4 (central row).

The challenge will be determining the regularity for SS cuts. In enumerating the total
number of ways of cutting of m-polygons, we need to take into account the fact that we
do not know a priori how many divisors m has ( https://oeis.org/A000203).

The divisors of a number m may be numbered from minimum to maximum (min and
max) leading to the following sequence:
dminv dmin+1v e dmax—Zv dmax—lr dmax
where:
dmin 1s the smallest divisor (always equal to 1) and,
dmax 1s the largest divisor (always equal to m)

A number has either even or odd number of divisors e.g. (1,2,3,4,6,12) for 12 and
(1,3,9) for 9. If the number of divisors is odd, the sequence has a central value (e.g. 3 in
sequence for 9), but this may be used twice, so the sequence is (1,3,3,9) as in
(1,2,4,4,8,16), so that all numbers have an even number of divisors.
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The divisors can be grouped pairwise as:

(dmin' dmax)' (dmin+1: dmax—l): (dmin+2' dmax—z)' ren

e Form = 9 the pairsare (1,9); (3,3).
e Form = 12 the pairsare (1,12); (2,6); (3,4)
e Form = 16 the pairs are (1,16); (2,8); (4,4)

The products of these pairs are always equal to m. When relating this to rotational
symmetries C for m = 12, the pairs are (Cy,Cy3); (C3,Cg); (C3,C,) and these relate to
the spacing of equidistant points on the circle, and the angles between them. For
example, C,, C¢ points are spaced 180° and 60° apart, respectively, corresponding to the
rotation parameter for divisor 2 and 6.

2.9 Back to Flatland

The cutting of regular polygons is an equivalent method for demonstrating the general
cutting of GMLY,, with a one-to-one correspondence of the cutting of regular polygons
and the cross sections of GMLY,, bodies. As a consequence the problem may be reversed
as follows:
Given the possibility of cutting planar regular m-polygons (as discussed in Section 2)
obtained with a number of knives equal to dq, d, ....,d,,, can the same result be
obtained using only one knife?

The answer is affirmative, if the operation is carried out in 3D, via GML bodies with a
specific number of twists.

But what does an inhabitant of Flatland observe when operations with 3D GML?, bodies
or surfaces are carried out, in other words, when GML?}, bodies rotate through Flatland?
Or, when GML}, bodies do not rotate but the knives are moving? Or when we position
the fixed knife in Flatland with rotating GM L}, bodies?

An inhabitant of Flatland may observe at some instance in time what looks like a
pentagonal piece of paper lying on his/her desk, and may put with one knife across the
paper (VV, VS or SS direction). Next morning the Flatlander may wake up to see how the
whole situation is still the same. However, it might also be that the “pentagonal piece of
paper”, which is actually a planar section of a GML},, rotating through Flatland, is sliced
into different zones (Figures 7a and 10b); how many zones depends on the number of
twists of the GML?}, and the number of rotations through Flatland. The Flatlander may
also use more knives. He or she does not have to do anything at all; one dimension

higher a rotation of the GM L}, may have occurred.

Performing this with a square, somewhere else in Flatland a second, identical operation
has happened. If both Flatlanders come into contact with each other, they will find that
the square is somehow turned 90° (Figure 6a). In classic Euclidean geometry, one
cannot distinguish between two squares rotated 90° or a multiple thereof. If the GML},
bodies are twisted, experimental identification of differences may be performed on the
ground. In one case the diagonal runs “North to South”, in the other one “East to West".
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Without knowing the GML structure and number of knives, a Flatlander is bamboozled
by this spooky action at a distance. If the Flatlander tries to untangle the mystery, by
repeating or experimentally using other knives and positions, this will result in fully
predictable structures, and reproducible phenomena elsewhere in Flatland, for example
diagonals in the two squares in the same or different directions. The diagonal also has
direction, like a spin, and the one influences the other. This is reminiscent of quantum
entanglement, now via GML bodies and cutting.

Figure 6a shows a GML touching Flatland as a plane. Only half of the GML is shown, and
the second half is beneath Flatland. But when the plane is folded, the complete GML
body or surface can become a generalized cylinder (Figure 13). This cylinder can be a
complete GML or it can be part of the GML. In the latter case the GML can be closed
either in 3D by a completed GML, not shown in the figure and not touching the Brane, or
by direct connections on one side of plane or brane (think streamlines, an electronic
circuit or graph). In addition, the width of the GML need not be constant, so it can be a
generalised cone, a generalized hyperboloid, twisted beams or wormholes instead of a
generalized cylinder. The brane in Figure 13b is a fold of the planar surface in Figure 6a,
and the grey surface of Figure 6a or the grey surfaces of Figures 13a and b themselves
can be folded topologically into a torus. The GML body then connects the surface of the
torus like a fistula within the torus (Figure 13), or a surface or body of genus 2 results,
whereby the upper half of the GML in Figure 6a is a handle.

a b
Figure 13: Partial or complete GML bodies, with cross sections in Braneland.

Actually, the cutting via divisors or via knives can also be considered as a process of
projection, whereby a certain shape is projected onto a basic shape. The rotation and
zoom parameters define the projection. In Figure 13 the upper yellow zone is projected
onto the lower part of the brane, along the GML. In Figure 12 middle row for example a
red square is projected on to a base square of fixed size (blue). This projection can be
performed with a square for d;;,,, = 4, with a line for d,,;;, = 1 or with a rectangle for
d, = 2. One can observe from Figure 12 that this gives similar results as cutting with d
knives and rotations. Projection may occur via a classic cone, a pyramid, a prism or via
any projective device, for example with varying width in the GML, even when the width
becomes small as in a vortex, or goes to zero.
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2.10 Chordal and Radial knives

In previous publications it was shown how in some cases the process of cutting leads to
the Mobius phenomenon. Based on the current method of cutting, the Mdbius
phenomenon only occurs for m-polygons under two conditions: 1) m is even, and 2) the
cut is made through the centre. It does not occur in any case of m odd, since the first and
foremost condition is a geometrical one: the shapes have to be congruent after rotation
to be able to form a single body! If m is odd there is no case in which cutting leads to a
single body for the pentagon.

Thus far only cuts were from perimeter to perimeter (including no, one or two vertices),
cutting the planar polygons into two different parts. These knives are chordal knives,
since it relates to a chord in the classical sense. However, one can consider also shorter
knives. A knife starting in the centre and passing through one vertex or side is called a
radial knife. The notion of m-knives, chordal or radial knives can be viewed in a broader
perspective. In this sense chords and radii are intervals of a line and half-line
respectively, falling wholly within the m-polygon or circle and having at least two points
in common or more for self-intersecting shapes (Figure 14). It is noted that curves are
defined in this case as regular Gielis polygons sensu Matsuura [12]. The pentagon is a

G 2 = G5 ) (5)2; the pentagram is Gs, 25 and the circumscribing circle is Gs 1.
»4\Z 2’7’16

o )

In a circle, the length of the radius is half the length of the longest chordal knife (Figure
14). The inspiration can be found in botany once more: when sawing wood, one can use
radial or tangential cuts. The latter is a chordal cut. When this cut is from vertex to
vertex, the chordal knife may also be called a diagonal knife.

A more refined definition is then:
d.. chordal knife, through the centre C (e.g. VS cutin odd m polygon)
d.s chordal knife, not through the centre
d,. radial knife originating at the center
d,s radial knife not through the centre

The d,z -knife is defined for completeness, but is a special case of a chordal knife with
length shorter than the chordal one). A radial cut d,. is also a half-line or ray.

Interestingly our knives, as part of lines and half-lines, can be considered in a very
classical way: When cutting a polygon, e.g. a pentagon (Figure 14), the circle
circumscribing the m-polygon, has the vertices in common (as roots of unity). A chordal
cut (the yellow line in Figure 14a is a VV; ., cut; the dotted lines are VV; ;1 cuts) then
connects two points on the circle, and defines the associated trigonometric function sine
(chord = 2.sine), which is maximal when the chordal cut is through the centre and
minimal when cutting only one vertex. In this case the chord, when prolonged, is the
tangent to a point on the circle. This chordal cut can be taken from any point to any
other point on the circle, and the perpendicular can be drawn, which defines the cosine.
Indeed, the cosine is defined by drawing the perpendicular to the chord through the
centre (Fig 14a. red). This divides the chord into two equal pieces.
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Prolonging the red perpendicular (the cosine) to both sides gives the diameter. The max
value of the cosine in a unit circle with radius R = 1 is also the magnitude or length of
the normal to the circle (radius of curvature). Hence tangent and curvature are defined
in the same setting. Figure 14b shows the relation with other classical trigonometric
functions. A radial knife has length 1, and is the sum of cosine OC and versinez CD, or
the sum of sine OG and coversine GH.

cscC

sin

. cos | versin| D Ei

|
|
|
|
| sec

.

B

Figure 14: a. Radial (red, dotted+solid) and chordal (yellow) knives.
b. Classical trigonometric functions

Using chordal or radial knives the results of cutting will be the same for GML surfaces
and bodies, but the distinction will become very important when discussing the
occurrence of the Mobius phenomenon. Chordal knives cut the boundary, but it is also
possible to define knives defined by a Jordan curve completely contained inside the
original boundary. In this way two zones are created. If the inner zone is then cut with
chordal or radial knives, similar results are obtained. If in Figure 14 a knife is used
corresponding to the thick pentagon inside, then the inner pentagon is separated from
the rest of the original GML}, body. When radial or chordal knives are used, the same
way of cutting gives the smaller pentagram. This can be continued ad infinitum3.

2 The versine was used to measure curvedness in railroad tracks, by spanning a chord AB and
measuring the distance CD from the chord to the track.

3 This argument can be used to proof the incommensurability between side and diagonal.
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3 Determinatio

In Expositio it was shown that the processes of cutting GML bodies or m-polygons are
equivalent and related to the divisors and the number of knives. This equivalence will
be used later for the demonstration and proof. In this Determinatio section, it is
investigated how the process of cutting is related to the theory of knots and links, the
distribution of points on the circle (roots of unity), the ways of cutting a polygon, graph
theory, the theory of numbers and primes, combinatorial aspects etc .... In this way
many viewpoints are combined from various areas (geometry and algebra), with a very
broad applicability for the general results of cutting of GML surfaces and bodies.

One crucial point of this solution with d-knives (radial or chordal), is that this solves a
problem concerning 3D shapes and bodies using 2D geometry. In Riemannian geometry
for example, one can determine the sectional curvature of an n-dimensional manifold, by
determining the curvatures of planar 2D-cross sections in the tangent spaces [17]. In
the same way, the current method would allow to solve problems in n-D GML bodies and
surfaces, by studying 2D sections and solutions.

3.1 GML bodies and relation to knots and links after cutting

The use of planar geometry and cutting aims at providing a proof/demonstration for the
cutting of GML bodies and surfaces. At first it makes abstraction of the intrinsic
complexity of the cutting process, namely the number of bodies that are generated, how
they are twisted and how they are interconnected. Indeed for 3D GML surfaces and
bodies, the shapes can be very complex, and a full classification has been achieved for
m=2,3,4,5, 6. The case 2 refers to ribbons, but can also be 2-angular figures [1-6].

We recall some results from [5]. In Figure 15a the results are shown for cutting a GM L}
body, which is twisted 4w times (e.g. a full rotation over 360°; compare Figure 3, but w
can be 0 for untwisted prism). For example the SS; , (A) generates both a triangular and
a pentagonal shape and depending on the initial value of w, the shapes are twisted 3 and
5 times respectively. The complete structure consists of the two shapes interlinked
(Link-2). This situation corresponds to cutting with 1 knife or d; (note that the §S; 3

and SS; 3 ¢ cut give the same result so that total number is four).

The SS; 3 ¢ cut of Figure 15b (BII) generates a single shape whereby the original shape is
twisted 8 times (8w + 8 for w =0,1,2,..). These situations correspond exactly to
cutting squares with two knives or d, = 2 in section 2.7, with 5 possibilities, one more
compared to one knife. In Figure 12 the same shapes are generated as cutting with four
knives or d,,, = 4. The essential aspect of cutting GML surfaces and bodies, and one of
the original motivations is that the result of cutting leads to linked bodies with a certain
link number (right columns). The surfaces or bodies may be knot like or display the
Mobius phenomenon, with one shape and Link number 1, and this occurs in BIl and D in
both Figures 15b and 15c¢ (for m even).
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Figure 15. Cutting a. GML5®, b.GML3“*? (v = 0,1,2,..), ¢. GMLY, with resulting

number, shape and twisting of resulting bodies and their link number [5]. The

independent objects and their shapes are given in different colours.
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Figure 16. Cutting a. GMLY®, b.GML?. Number, shape and twisting of resulting bodies
and their link number [5]. Different objects are given in different colours.

In Figure 16a, in the left column 8 ways of cutting are used, instead of the 5 ways in
Figure 10. These 8 ways however, can be reduced to 5 since in this way of cutting the
centre of the pentagon is not important:

e AllSS; 3 cuts (Ba,b,c) yield exactly the same results, namely four angular bodies
and five angular bodies with the same link-2 number.
e Both C Il cuts (Clla and CIIb), also yield the same result

Hence the number of ways reduces to 5 if we consider topological solution, taking into
account only the number of vertices and sides.

In Figure 16b in the left column we have 12 ways of cutting with one knife, instead of 5.
But here in all cuts except VV, 3 the position of the cut is important, depending on
whether it is made above, through or below the centre of gravity of the pentagon:

e 5S;, has 3 possible ways of cutting (Al, All, AIII)
e 55,3 has 5 possibilities (BI, BII, BIII, BIV and C)
e VS, 3 has 2 possibilities (E and F)

This explains the difference between 5 ways of cutting for d; and 12 ways for d,, giving
atotal of 17.
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3.2 Projecting and rotating shapes

The methodology used above refers to cutting or drawing lines, from side to side, vertex
to vertex, vertex to side, either containing or not, the centre of the shape. The shapes can
be considered as the result of projection. The transformations rotation and dilation or
scaling, show how all these shapes fit together. Focus is on two basic shapes, the
invariant one, and the projected one. In section 2.8 the analytic presentations
describing the knives (Eqgs. 12 and 13), have parameters a and §, dealing with rotation
and dilatation, respectively.

In Figure 12 onto a basic square, other shapes are projected (square, line or rectangle),
related to divisors. For d; aline is projected (upper row; imagine a line by a laser cut);
for d, = 2 a rectangle is projected (lower row; in case of VV; 3 or an SS cut through the
centre the rectangle reduces to a line); for d,,, = 4 a square is projected (middle row).
The line can be projected in any way, in any position. In Figure 15c¢ right column, a grey
rectangle is projected onto the yellow square. This rectangle can be narrowed and
rotated. In 15c (right column) a grey square is projected onto a yellow basic square
(AI) and scaled (Al — All — AlIl), then a rotation AIll - BI, a scaling BI — BI]I, a rotation
BI - C or a rotation BII = D. In Figure 17 this is shown as a projection along the ribs of a
pyramidal cone (see also Figure 12 central row).

g =
B 4

Figure 17: Projections along a pyramid. The solid blue lines are cutting lines.

For the pentagon (Figures 10 and 16) the same arguments can be made. In Figure 16b,
onto a yellow base pentagon, a grey pentagon is projected (Al) and scaled (Al - All -
Alll - G = BIV). The grey pentagon is rotated 36° compared to the yellow pentagon. It
can also have the same orientation as in Bl and BIl. Other instances are related to
orientation.

This connects to the classical theory of conic sections, albeit that the cones can have a
square cross section (a pyramid) or cross sections of any regular m-polygon, and this
cone can then be moved through a fixed m-polygon. In the broader setting of GM L}, and
Gielis curves there is no restriction to prisms. The base cross section, can be swept along
a central line, or diminish in size, as in a cone (Figure 17), and need not to be constant.
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3.3 Equidistant points on the circle

Since all Gielis curves, including self-intersecting curves, can be mapped onto the circle
by a continuous Gielis transform, all vertices of an m-polygon can be mapped onto the
circle. The vertices of a polygon are equispaced points on the circumscribing circle. The
inner and outer vertices from a self-intersecting regular polygram, will become equi-
spaced points on a circle, but they will be rotated relative to each other (Figure 18 for
m=23). They can also be coinciding points. In this way, the same phenomena can be
studied as points on a circle, using either algebraic approaches (groups and subgroups
of the circle) or using geometric-algebraic approaches (Fourier, Chebyshev, complex
numbers,....). All circles can be mapped onto one circle, or smaller and larger circles can
be used (Figure 18). The self-intersecting Gielis curves, giving rise to multivalued
functions, are directly related to Riemann surfaces. Note that a V'V, , cut is possible in
the circle, whereas in regular m-gons such cut coincides with a side (it does not cut of a
separate sector). VV; ;44 cuts (e.g. V1 — V2) do divide the circle into two distinct parts.

Figure 18: Connecting equally spaced points on a circle (the circle itself is not shown, only
connections; when m is even, connections pass through the center).

3.4 Shortest path and curvature

To go from one point to another point on the curve, if the curve is the only possible way
to go, one best follows the curve itself, and this then is the shortest path. Assume a
circle, a Lamé curve with exponent n = 2, and an inscribed square with n = 1. Then the
inscribed square, similar to the diagonals connecting four equally spaced points, or
using all possible VV;.;14 cuts, can be considered as the knives cutting the circle. The
straight cuts are the shortest possible ways, using the isotropy of the Euclidean plane.

However, if one considers Lamé curves with 1 <n < 2orn < 1, curves connecting the

points result. They are curved lines, but using a broader definition of curvature, they are
the shortest points to connect the two adjacent points on the circle.
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From another viewpoint, the outer curve can have one geometry/curvature, while
inside it can have another metric/measure/geometry/curvature, using another Lamé or
Gielis curve. Now consider the three Lamé curves in Figure 19a as separate curves, and
suppose that the red lines define a height function, e.g. they are elevated 1000m above
the plane.

Then the only way to travel along the circle or any of two other curves safely is to follow
precisely that curve. If the circle and the inside square are considered, the circle as the
outer curve and the inscribed square as the four knives, both at elevation of 1000
meters, with deep down active volcanoes, tigers, lions and snakes, then it is possible to
take different routes to travel from one point to the other, either via the square or along
the circle. Connecting two of the four points is equivalent to drawing or cutting with a
knife. In this case it is a straight knife, but if the curve is the one with n = 2/3, then both
the route and the knife are curved, and optimal; following the curved path 1000 m above
the plane will be the shortest and only possible path to stay alive anyway.

W

Figure 19 a. Lamé curves for n=2/3, 1 and 2. b. Gielis curves form =1, 2, 5, 6. Each
figure shows various curves for different exponents [18].

Whether we speak of drawing lines to connect points, using knives to cut bodies or m-
polygons, considering paths at 1000 m of height as the only way to avoid falling into
volcano craters, they are all the same. To travel along the curves for m= 2 in figure 19b,
from one antipodal point to the other, the paths will curved and cannot pass through the
centre. Yet these are the shortest possible ways, in the same way as a ray of light follows
a path around a gravitational body, which seems curved to us, but is the shortest path or
geodesic anyway for the photons.

This inner curve is contained wholly inside the outer curve, but in this way one can
define paths connecting two maximal or optimal distances in Gielis curves (Figure 19b).
Consider a pentagon then one can find infinitely many curves inside the pentagon, which
provide paths or curved knives. The same can be done for non-convex curves. In the
classical view, a starfish is not a convex curve, but in our view this is less important,
since the starfish can be mapped to a regular pentagon or a circle, two convex curves,
and inner curves for optimal paths can always be found or defined. All in all, the precise
shape of the knives may also be the result of some optimization problem.
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Using a curved knife, the cutting can also be applied to concave Lamé-Gielis curves, in
the following way: In Figure 20 supercurves were plotted with a HP7475A from the
1980’s [19], for given m (e.g. for m = 4.3 in Figure 20). The results correspond to self-
intersecting Rational Gielis curves, withm = p/q, with p a prime number; e.g. p = 43
providing curves withm = 43/10 = 4.3 with a central hole. The curved lines are
now considered as curved knives, following the curvature of the space, thus generating
the shortest possible path to connect two points on a circle with equally space points. It
is a small step to see how cutting with curved knives corresponds to curved chords and
chord diagrams*.

=T X B 6. 3AE bt
PEA L] e 1.80
fan B =4 ) nIsg. 2l A 3=1.8 ’ ) \ i .
£ %, | . \
Ean & = o - ! o e
P & =0 Rk e ifesing
Fuy =i [ - | T

Figure 20: Gielis curves created With an HP7475A plotter [19]. a. details for a polygon
with m = 43/10 with different colours for different exponents. b. the complete curves.

Having a Pythagorean compact analytic description for both shape and curvature for a
wide range of shapes allows for a generalization of the notion of curvature. In [11] a
new measure of curvature was introduced, directly related to the shape itself, using
Gielis curves as osculating curves, as a generalization of studying curvature with circles.

3.5 Rational Gielis curves, R-functions and Flat tori

3.5.1 Rational Gielis Curves

The self-intersecting curves for any rational m lead to various sectors in the polygons or
cross sections of the GML body (Figure 21). Figures 21a,c have three zones, while
Figure 21b has four different zones of different shapes indicated with 4 different
colours. In GML bodies, when cut and separated, these zones represent different bodies.

a b c
Figure 21: Cutting pentagons from side to side

4 Or straight lines in a Poincaré disk.
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Self-intersecting Gielis curves can represent the same for planar graphs [20]. For
rational m = p/q, the number of zones created in Gielis curves is determined by g, and
the symmetry of the polygons/polygrams is determined by p. In Figure 22a, a 7/5 RGC
or polygram is shown, having 7-symmetry, closing after 5 rotations if drawn in one line.

In Figure 22a five different layers or zones can be defined in different shades of blue.
Layers Ly to L4 are defined as a combination of layers from inside to outside and all
layers have 7 maxima and 7 minima. A ray drawn from the centre 0 in any direction has
multiple values indicated by Iy to I4 (red dots). When rotating the ray around the centre,
the values of Iy defines the boundaries of Ly and the ray then sweeps the full area of Lo.
Values of Iy and I; define the boundaries of L;, and here Iy and I; coincide at maxima for
Lo and at minima for L;. In the same way, values of I; and I;.; define layer Li.1.

Figure 22 a. Different layers in Rational Gielis curves. b. RGC for p=5 and q=4 with
different zones defined [20]

The regular polygons and polygrams in the regular polygon and GML cutting can be
considered as Gielis curves and can be transformed into the shapes in Figure 22b. Now,
zones can be defined, not only as stacked layers L in Figure 22a, but as separate layers or
combinations of layers. We define /; as separate zones based on the different tones of
blue zones in Ly 4 in Figure 22a. Examples of separate zones or combinations are
given in Figure 22b; clockwise, from upper left (with Ly = [):

o I is L, —Lg
o I, is Ly—1L;
o Iy is L;—L,
o L+l is L,—Lg

The zones and the independent domains separated by lines correspond to self-
intersecting Gielis curves. In Table 6 the results of cutting GML’s is compared with self-
intersecting Gielis curves for symmetry m = 5 (Figure 14).

The order of cutting of GML or polygons is rearranged, showing the correspondence
with self-intersecting curves. The number of independent figures and link number
aligns with q and the number independent shapes that can be counted (separated by
lines) is a function f of p.
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In Figure 22b Layer L; has 5 independent shapes, plus the central pentagon. Layer L;
has11 (=5 + 5 + 1) independent shapes or 2p+1. In general f(p) = ap + 1, with
a=0,1,2,3anda+ 1 = q. Fora = 0,q = 1, and the shapes close in one rotation, for all
regular polygons. For g # 1 the number of rotations to close the shapes is g and the
shapes are then 2qm-periodic. The zones I shown in Figure 22b, align with the self-
intersecting curves in Table 6 with the pentagram m = 5/2 and the polygrams m = 5/3
and m = 5/4.

Table 6: GML versus Rational Gielis Curves RGC withm = p/q

ir:\::ll:er:::;::t Number of Number of q & number
Figure 16b Cut figures in sh?pes in Link shrj\pes in p=5 of layers in p/q
GML figure figure RGC
Al SS1, 2 6 L2 6 p+1 2 5/2
All SS1, 2 6 L2 6 p+1 2 5/2
Al SS1, 3 11 L3 11 2p+l 3 5/3
B I SSi3 3 11 L3 11 2p+1 3 5/3
B Il SS13 3 11 L3 11 2p+l 3 5/3
D VS, 3 11 L3 11 2p+l 3 5/3
G VWV, 3 11 L3 11 2p+l 3 5/3
B Il SSi1s 4 16 L4 16 3p+1 4 5/4
B IV SSi3 4 16 L4 16 3p+1 4 5/4
E VS, 4 16 L4 16 3p+1 4 5/4

3.5.2 Boolean operations and R-functions

The number of independent shapes in Table 6 results from counting the isolated zones
after cutting, delineated by lines. From a GML point of view, they are not independent,
but are connected as sectors of a cut GML, according to a certain cutting process (Figures
15 and 16 with link numbers). In Gielis curves, these independent figures can be
connected into layers or zones (Figure 22a,b) using R-functions [21-23]. This is a
method to translate Boolean operations into geometrical figures, and allows for,
amongst others, for blending or ensuring differentiability up to some order [20-23].
Basic Boolean operations can be used to define the different layers and separate sectors
as in Figure 22 and these can be translated into geometric language [11; 20]..

In Table 7 the most commonly used Boolean and associated R-functions are shown. The
relationship to Lamé curves (from which the Gielis curves were derived) is clear via
xP + x? (and special cases of Lamé curves; the superellipses |x,|P + |x,|? and circle for

p=2): The use of exponents m/2 and 1/p converts Lamé curves into distances. In table
7 we find ((x* + x2)%) or, a special Lamé curve ((x? + x2), raised to exponent?. This
1
is the Pythagorean part distance (x? + x5)2 raised to power m. The function Ryhas
1
([1x1IP + |x,|P]P). Originally p is a positive integer but can now be any positive number

p > 1[20].

This leads to the remarkable fact that separated regions in RGC (and in polygrams in
general) can be defined as coherent structures. Using R-functions, these operations are
translated into geometry, whereby the different layers (Figure 22a in blue) or different
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sectors (the red zones in Figure 22b) are defined as single geometrical domains or
combinations of single domains [20].

Table 7: Examples of R-functions for the most common Boolean functions.

m 1
Y, =x, Al'x, = (x1 +x, — |x3 +x§>(x§ +x5)2 |y, = A%, = a2, [|x, P + 1%, P

m 1
Y, =X,V x, = (x1 +x, + [x3 +x§)(x§ +x3)2 |y, =x,V,x, = x, +x,+ |x,]” + %, P

— — xle
Vs = XX, Ys =X ~p X = 1
(P[P + e Pl

m 1
Ve =X, ON X, = <x2 —x, + /xﬁ +x§> (+23) | yo=x -, %, =%, —x, + [0, 7 + |2, "]

m 1
Y, =X /0%, = (1’7‘% +x5 - x _xz) (2 +x3)> Y, Ex,/p%, = = — X, + [ [P+ |x, P]P

p>1

3.5.3 Knots and Graphs

In this way we can connect seemingly unconnected zones in self-intersecting graphs in
the very same way as the zones are connected when executing the cutting in 3D. Using
R-functions the zones can be defined in planar graphs, which are connected as in 3D
GML bodies. In GML bodies the resulting figures form separate bodies and in cross
sections they show up as differently coloured, separated zones. In planar polygons, they
can be connected via R-functions, but also by drawing graphs occurring in the cut
polygons. Consider for example Figure 23. The boundaries of the yellow zones are
defined by the circumscribing pentagon and by the inscribed pentagram (enclosing the
brown and grey zone). Connecting the yellow zones, by using the boundaries of the
innermost pentagram in grey, and considering only the boundaries, a graph is obtained.

The boundaries of zones 1, 2, 3, 4 and 5 (individual zones separated by small
perpendicular blue lines), and connected by green highlighted lines, form a graph. This
graph can be also obtained starting from the uppermost vertex of the inner pentagon
with green highlighted sides, going around sector S;, then continuing along the green
line to enclose S5, then to Sy then S3, and S, ending this graph exactly at the upper vertex
where the trajectory started. The same can be done for the brown sectors, and for the
grey pentagon.
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The boundary of graph enclosing the inner pentagon closes in one rotation, while the
other two graphs self-intersect. These graphs are homeomorphic to the planar projection
of a 51 knot (or RGC with m=5/2) figure 23b, or to Figure 23c.

Figure 23 a. cross section of GMLY for SS; 3 cut, case BII b. generation of graphs for case
BII. .c. 5/2 knot, d. graph with loops corresponding to sectors 1-5 in 23b.

15w +3q + 12
51 A X | omL; {0+02q}

GMIZ0® 4416 (1 00q) link-3

BIL bi+bh=A 4
Q GMLzss(» +j

Figure 24. Resulting structures and bodies from BlI cut of GMLs [5]

These graphs also relate to the process of cutting GML in the following way. When
cutting GML with a pentagonal cross section (as example), according to S; 3 cut, case BII,
the result is a Link-3 of three separate bodies. The inner body is pentagonal, the second
body has a triangular cross section and the outer one has a quadrangular cross section.
In Figure 24 it is indicated how these bodies GML;, GML, and GMLs are twisted. For
w = 1andj = 0 = q the result is that the GMLg body is twisted 25 times (five full
rotations), the GML; body is twisted 27 times (9 full rotations), and the GML, body is
twisted 36 times (also 9 full rotations). The overall structure is a link of 3 bodies, one of
which (GMLs) is the unknot with circle as basic line, while GML3, is a 5;knot, with the
pentagram (or RGC with m = 5/2) as basic line.

The study of GML bodies and surfaces revealed complicated structures on interlinked
bodies with knot structures, in particular the simplest knots k/2 (with k integer) or
torus knots. These results also appear in the methodology of cutting planar regular m-
polygons and in the methodology of self-intersecting Gielis curves and graphs (at least
forw = 1and j = 0 = q as in the B Il case in Figure 24).

As a consequence, when cutting m-regular polygons, the link number and knot
characteristics of the original GML from which they were cut can be found, counting the
number of independent sectors, their shape and coherence as layers. Their coherence is
established via R-functions, named after the Ukranian mathematician V.L. Ravchev
(1926-2005).
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3.6 Galilei, Euler, Catalan and Cayley

3.6.1 The problem of dividing m-polygons with non-crossing diagonals

Euler considered the following problem: in how many ways can one divide a polygon
into triangles, in such a way that diagonals do not cross, i.e. similar to cutting with non-
crossing knives [24]. For a pentagon using two diagonals this gives a total of 5
possibilities (Figure 25). For a square, only two diagonals are possible.

In the case of a pentagon, the cuts that are allowed are symmetric ones, VV; , and V'V, 3.
Using diagonals means vertex-to-vertex cuts and using the same notation as before
these cuts are VV; 3 and VV,,in the square, giving 2 possibilities (Figure 26a). The
upper square gives VV; 3 (or VV,,) while the lower one gives both possibilities in
superposition. In the case of a pentagon, VV; 3 and VV; 4, diagonal knives (Section 2.10)
can be used. For the GML case they are symmetrical, but for the Euler problem, they are
different (Figure 25). In Figure 26b, in the lower pentagon, all possible cuts are given
with VV; 3 and VV, 4, starting from all five vertices. So the number of possible ways of
cutting is 5. The lower pentagonal figure in Figure 26b can be considered as a
composition of all VV;;., and VV; ;3 cuts of Figure 25.
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Figure 25: Five ways of cutting a pentagon, with diagonal knives

In the hexagon (Figure 26¢) the possible cuts are also related to VV; ;;, and VV; ;3 cuts,
and the total number of possibilities, is obtained when superposing the two lower
hexagons. Possible cuts with VV;;.3 and VV;;,, give the lower left and lower right
hexagon, respectively. The number of possible cuts is 14 and the superposition of the
lower two hexagons gives all possibilities. In other words, by superposition of the two
hexagons, all possible individual paths for the Euler problem can be traced.

>
4

a b c
Figure 26: Cutting square, pentagon and hexagon with diagonal knives

If one observes the upper row Fig26b, a division by aVV; 3 cut (divisor 1) gives a

triangle and a pentagon. The latter can be divided then into triangles, by VV; 4 and
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VV; s cuts. In Figure 26¢, aVV, 4 divides the hexagon into 2 quadrilaterals, which can
further be cut along their diagonals. Or one can start from VV;, cuts, giving two
triangles and one rectangle. This shows that this can be considered as a recursive
procedure.

In heptagons VV; ;;, and VV; ;3 cuts are possible, and again, the superposition of the
two lower figures in Figure 28 left, would give all possibilities. = For octagons,
VViis2,VViiy3 and VV; ;14 are possible diagonals. Overlaying all three lower octagons
would give all possible solutions. In figure 28 this is shown for the octagon, leading to
132 different possibilities.

Figure 27: 14 ways of cutting a hexagon, with non-crossing diagonals

o0 000
@ @5 @

Figure 28: Cutting heptagons and octagons with diagonal knives

With superposition of the figures, diagonal knives seem to cross, but this is only
superficially so, since the operations are carried out independently in GML rotating
through one fixed knife. The question or problem that could be asked is the following:

Describe all possible ways of cutting m-polygons into triangles by using the allowed V'V
cuts. This can be carried out in 3D by using one knife each to cut the bodies. Each of the
cuts corresponds to d-knives. The result will be the lower set of hexagons.
Superposition of figures will give all possible paths.

The solution will be obtained in one operation if the process is executed in 3D by using
three fixed knives simultaneously (example for the hexagon) if one moves a GML body
through the knives.
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3.6.2 Euler, Segner, Lamé and Catalan

The total number of possible cuttings with non-crossing knives of an m-gon, the
problem originally studied by Euler [24; 25] is given in Table 8 form = 5,...10. The
number r in the second row gives with the number of vertices r + 2, starting from r = 3,
for a pentagon. This sequence of numbers, starting 1, 2, 5 14, 42,... are Catalan
numbers, which play a very important role in many fields of mathematics. The number r
in Table 8 is the position in the row of Catalan numbers that start with 1 and 2.

Table 8: Possible cuts for m-gons

m-gon 5 6 7 8 9 10
r=m-2 3 4 5 6 7 8
Total N° 5 14 42 132 429 1430

Euler found a solution to the problem in 1751. Euler’s number of possibilities E},:

_2.6.10..(4m—10)
En = T (14)

In 1758 the Hungarian mathematician Segner found a recursive formula. Let the vertices
of any convex m-gon be 1, 2, 3,.., m. The triangle Alrm divides the polygons into an r-

gonand anm + 1 —r gon (Figure 29). From this Segner’s recursive formula follows for
(EZ = 1)

Em = EZEm—l + E3Em_2 + -+ Em_1E2 (15)

Figure 29: Dividing an m-gon into a triangle, r-gon and (m + 1 — r)-gon

For his newly established journal Joseph Liouville in 1838 asked proofs to combine the
solution of Euler and the recursive one of Segner. Liouville published the geometric
proof of Gabriel Lamé as the most elegant [26]. Later the same journal published
solutions of Olinde Rodrigues and Eugene Catalan. They linked the sequence of numbers
more to combinatorial problems, for example the way in which a sequence of operations
can be carried out using brackets. A recent book collects over 200 problems and
questions in which Catalan numbers appear [27].
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3.6.3 Euler, Liouville and Cayley

This is related to many other problems, which has involved many important
mathematicians, such as Euler, Liouville and Cayley. One example: For m equally
spaced points and all possible connections / diagonals drawn how many separate parts
result? Examples are given in Figure 30 and the answer is OEIS A006533. The drawings
once more correspond to our overlayed figures. It is possible to draw figures for any m
via https://oeis.orq/A006561/a006561.html.

3 Q ’
/ \ /1 :.‘l / ¢l \‘;

[ ! L : ' t'\ T
\ % 7 N\
'.\ H 5 o S

A=l " :
P
/ 12 N\
AT ' Y
AL S |
| \ ‘7' T ] “ I . X 5 X |
Tl \ . } o
—~n \ " ‘ ';
.4 .

Figure 30: Original drawings of Jos Meeus (https://oeis.org/A006561/a006561.html). For
m = n = 5 the original Pythagorean pentagon and pentagram result.

For even m, diagonals of opposite points cross in the centre, while for odd m a central m
-polygon is created, with the same shape as the original polygon, but rotated relative to
the original polygon (Figure 31). In GML/planar polygon strategy, diagonals through the
centre can be created for odd m, by using a vertex to side cut, in particular a vertex to
the middle of the opposite side, as for example in a pentagon. This is directly related to
Table 6 and the sectors and layers in Rational Gielis Curves RGC (Section 3.5).

&% 000 000
@0 o0 6690

a. m=6 b. m=8 c. m=10

Figure 31: Diagonals through centre for (VVy,in42)/2 cuts) and central m-polygons created
for all other VV cuts. For m = 6,8,10
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3.6.4 Cayley’s coloured partitions

A more general question on coloured partitions of a convex polygon by non-crossing
diagonals was initiated by Cayley. For any positive integers a and b, all coloured
partitions made by non-crossing diagonals of a convex polygons into polygons, whose
number of sides is congruent to a modulo b can be obtained by recurrence relations and
an explicit representation in terms of partial Bell polynomials [28]. Other relations can
be found with Motzkin numbers and Dyke paths. This is very much related to the Euler
problem in 3.6.1 and Figure 27, whereby the inscribed convex polygons reduce the
number of vertices on the original polygons. In Figure 32 all paths of such inscribed
polygons can be traced.

®EQ SHLO

Figure 32: Rational Gielis Curves with m=8/2, 8/3 and m=10/2,10/3,10/4,10/1

3.6.5 G@alilei, cycloids and clams

The non-crossing diagonals also appear in a problem of rolling polygons. If a polygon is
rolled on a line the vertices form a polygonal arch. If one wants to compute the area
under the polygonal arch this can be done by forming sets of blue, green and pink
triangles in Figure 33. These can be arranged in the original polygon and this proves
that the area under the polygonal arch is three times the area of the generating polygon
[29]. The arrangement of the triangles in the polygons is one of the solutions of the
Euler problem of cutting a polygon with non-crossing diagonals.

Figure 33: Determining the area under a polygonal arch

As a corollary, the area under a cycloid, generated by a fixed point on the circle as the
rolling curve is three times the area of the circle. This corollary implicitly assumes that
the number of sides of the polygon increases to infinity, with the circle as the limiting
case.
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With Gielis transformations however, we can keep the symmetry of the polygons fixed
and morph them into circles by changing the exponents in order to have the
transformation equal 1, i.e. exponents n are 2, the Pythagorean case. Piecewise linear
and continuous are seamlessly combined.

If one considers the diagonals starting from the top in the blue polygon in Figure 33, the
vertices represent the points reached by a ball, either dropped (central diagonal) or
rolling off an inclined plane, in a fixed amount of time t;. Figure 34a is a figure from
Galileo Galilei’s famous book, in which he discusses the phenomenon of a ball under
friction and the force of gravitation [30]. Points E, G and I are points reached after a
time t;. The greater circle, with points B, H and F is the locus for all points that are
reached by a ball at a time t, > t;. In nature such phenomena are observed in growth
patterns in bivalve mollusks (Figures 34b,c), and plant leaves as already observed in the
original book Inventing the Circle [10]. So in some sense, we have come full circle after
almost two decades.

=1 |

Ay wa
Figure 34: a. Galilei’s original figure, b,c. Growth rings in shells

3.7 GML and Gielis curves as connectors

The theory of Generalized Mobius-Listing surfaces and bodies had been merged earlier
with Gielis curves, either as cross section or as basic line. In the sections Expositio and
Determinatio, it is shown that the connection between GML and planar Gielis curves runs
much deeper, unveiling the relation between planar geometry, conic sections, GML
surfaces and bodies, torus knots and planar knot projection, Flatland and branes, and
more, and a wide range of methods and problems based on groups and equidistant
points on a circle, revealing deep connections and equivalency of geometrical,
arithmetical, logical, geometric-logical, combinatorial and algebraic methods.

In particular, a 3D problem can be solved by planar geometry but the problem of cutting
GML bodies and surfaces is more general than related problems of non-crossing
diagonals, or the number of sectors when connecting equally spaced points on a circle.
Rotation allows for starting with one cut only and repeating this procedure, to find all
possibilities of cutting. With rotation and scaling, VV cuts (classical diagonals) can
become VS and SS cuts, or any possible cut dividing the m-polygon in exactly two parts
with one knife. Solving the general case will allow to consider many other mathematical
problems as parts of the general solution.
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4 Constructio
4.1 Cutting a regular polygon

Consider a regular m-polygon. Vertices and sides are numbered from 1 to m. In Figure

35 the example of a pentagon is shown.

Figure 35: Numbering of pentagon, vertices in blue, sides in red

A regular m-polygon can be cut in various ways, from vertex to vertex (notation V'V, e.g.

V'V, 3 from vertex 1 to vertex 3), from vertex to side (notation VS, e.g. VS, 3 from vertex

1 to side 3), or from side to side (notation SSy;, e.g. SS;3 from side 1 to side 3).

VVinax» VSmax and  SS;q4, are the cuts from and to vertices or sides with maximal

separation (max is not necessarily the longest length). For example in Figure 35
VVinax = VVi3 = VVi4; VSpax = VS 3 through the centre, and §5,,4, = §S;3.  If the

line in SS,,4, cuts side 3 in the middle, and the cut of side 1 is moved to vertex 1, then

SSmax can be made arbitrarily close to VS;,4, = VS 3.

The following general facts can be observed in Figure 36:

In a polygon for even m, V'V, 4, goes through the centre of the polygon (m = 6),
and in a polygon for odd m, VS, goes through the centre, crossing the side
opposite the vertex in the middle (m=7).

Going from a regular m-polygon to a (m+1)-polygon introduces one extra vertex
and one extra side. From m =4 tom =5 a line converts into a wedge of
VVi3 = VVj,4, giving one extra vertex and one extra side. Considering VS, a
wedge is created in m = even polygons (m = 8), and one line (through the
centre) in m = odd polygons (m = 7,m = 9)

Inm = 10, all cuts or diagonals are drawn from one vertex. Besides the V'V,
the other VV cuts are two by two symmetrical (solid and dashed lines). In the
case of m = odd, the same can be said for VS cuts (m = 7).

A single cut divides an m-polygon into two parts, which are defined by their
shape and number of vertices and sides. In m = 4 the square is divided by the
red diagonal into two triangles. In m = 6 the hexagon is divided into two equal
quadrilaterals or trapezoids. In m = 11 the polygons is divided into an
octagonal shape with 8 vertices, and a pentagonal shape with 5 vertices.
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m=5 m=6
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Figure 36: Understanding modes of cutting

4.2 Cutting and divisors of m

There is a definite relation between the ways of cutting and the number of divisors of m.

In Figure 36, m = 11,aVV; 5 cut is related to the smallest divisor of m, d;,;;,=1. For
m=12:

VV; 4 cut (dark blue dashed line), is repeated as VV,; and as VV; 19 and VVjg ;.
In fact, the latter cuts are obtained from the original V; 4 cut (blue dashed line)
by a rotation by %’T This gives a square, related to divisor 4.

VVy 5 cut (blue solid line), is repeated as VVsqand as VVy;. In fact, the latter
cuts are obtained from the original V; 5 cut (blue solid line) by a rotation by 2?"

This gives a triangle, related to divisor 3.

VV; 3 cut will give a hexagon. If this is cut is repeated 6 times over an angle of 2?",
related to divisor 6.
VV;, cut does not divide the polygon, but coincides with the original side 1.

Rotation this byzl—’zrwill give the original dodecagon. An inscribed dodecagon is

obtained via a §5; , cut, rotated twelve times by 21—’; Both cases are related to
dmax = 12.

In m = 4 the upper blue line is a SS; ; cut from side 1 to side 2. When rotated by 180°
the lower blue line is obtained, for the second smallest divisor d, = 2.
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The inscribed figures (triangle and square in m = 12) close in one rotation but this can
be generalized, for m = %With p, q rational numbers and relative prime. .

e Inm =5 the sequence VV;3,VV3.5,VVs,,VV, 4, VV, 1 will generate a pentagram
in the pentagon, i.e. a figure that closes in 2 rotations, having 5 angles that are
spaced 4?" = 144° apart. This generates the classic Pythagorean pentagram that
led to the discovery of irrational numbers and the golden ratio, corresponding to
a RGCwithm = 5/2.

e In m =7 the sequence VVy3,VV35,VVs,,VV;5, VV;4,VVy46,VVs, generates a
heptagram, closing in 2 rotations, corresponding to a RGC with m = %

e Alsoinm = 7 the sequence VV; 4, VV, 7, VV;3,VV34,VVs,VV,5,VVs 1 generates a

heptagram, closing in 3 rotations, corresponding to a RGC withm = Z.
3

4.3 Rotations and scaling

For m = 16 results of cutting with d. knives for divisors 2, 4, 8 and 16 are shown in
Figure 37. They are rotations of the d; knife.

O QO
® O =

Figure 37: Cutting with d; knives (dz =2, d3 =4, d4 =8, d5 = 16) and the resulting sectors

The relation of divisors and rotations show that VV and SS cuts can be transformed into
each other by rotations:

e Inm =6, theVV,,, =VV;, cut or diagonal can be rotated every 60° and all
diagonals meet in the centre (Result is 6 diagonals that coincide 2 by 2)

e This shape can then be rotated by 30°, resulting in SS,,,,. The rotation can in
fact be done for any angle.

Figure 38: Converting VV,,,, into SS cut through centre of the sides by rotation
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There are many ways in which the figures can be transformed into the other figures,

using rotation and scaling. A first example sequence of rotations and scaling could be:

If the red square in Figure 39f is rotated by 45° the result is ¢,
If the red square in c is scaled to size zero, d results.
If the cross in d is rotated by 45° the result is a.

A second example in Figure 39:

If the red square in f is scaled to a larger size, e results; when it is scaled to a
smaller size g results.

When the inscribed figure in g is rotated so that one of the sides of the small
yellow triangles ends in a vertex, we obtain b.

boamooe

Figure 39: Ways of cutting square

This shows that all figures can be considered as transformations of an inscribed square

(and in general the inscribed m-polygon inside an m-polygon). The analytic

representation of the d; -knife was given in section 2.7 (Equations 12 and 13) [8].

4.4 The way of cutting determines the final result

In Figure 39 from left to right, all possible cuts are shown for a square

a. One case of V'V cut, with two VV,,,, diagonals
b. One case of VS cut, with a V'S; , cut and its rotations over %T. It total 3 different

shapes are created. Four green triangles, four blue quadrilaterals and one red
square. The smaller red square can be considered as the inscribed square
rotated and scaled to smaller size.

c and d. Two cases of SS5;,,4, = SS; 3 cuts and rotations. One SS cut does not pass
through the centre (c.) and the other one passes through the centre (d). The
former creates 3 different sets of quadrilaterals indicated by different colours.
The latter creates four different squares. (In GML in d. these four different
squares form one body, and in c. each of the coloured zones creates 3 separated
bodies)

Three cases of §S; , cuts (e, f, g). Itis clear that the result depends on where the
cut is made. The middle figure f. is the inscribed square, while e. and g. are
scaled version (larger and smaller, without rotation).

This also generates different shapes. In e. four triangles and one octagon; in f.
four triangles and one square and in g. one set of 4 triangles, one set of 4
pentagons and a central square. Again in GML and in rational Gielis curves RGC
they will form different bodies or layers.
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The same logic is applied to hexagons in Figure 40, with more possibilities of cutting,

namely two V'V cuts, two VS cuts and eight SS cuts.

PRFODIPIORTO0O

Figure 40: Hexagon cutting

4.5 Inheritance of possible cuts for different divisors

In figure 41 VV and VS cuts are shown form = 4,6. A square has three divisors, so 3

rows; for the hexagon there are four rows corresponding to 4 divisors. For m prime

only 2 rows result, for divisors m and 1.

For even m the vertical columns of square and hexagon in Figure 41 show that
the possible cuts are the same for all divisors, as the result of rotating cut 1 over
the relevant angle, related to divisor. The identification of vertices and of the
knife (e.g. for d, =2 lower row Figure 41) links the cutting of m-polygons to
cutting of GM LY, bodies

For odd m (in case of pentagon in Figure 42), the VV cuts are inherited from cut 1
via rotations. This is not the case for the VS cuts of the pentagon in Figure 42.
However, one figure is missing in the upper row, namely the VS cut not through
the centre. If this figure is also considered, then also for the pentagon the
number of cuts is fully inherited for the two divisors, as in the case of the even m.

L A 4
L 2 £
L A 4

Figure 41: VV and VS cuts of square and hexagon
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The reason why in Figure 42 for the pentagon (and in general for any odd m)
only one figure is shown for VS (the cut through the centre) is that the number of
sectors and the number of vertices and sides of the resulting polygons remains
the same. In the case of the pentagon and VS;3 = VS5, two quadrilateral
figures are created, whether or not the cut goes through the centre. The
quadrilateral shapes share the topological characteristic of four vertices and
four sides.

In case of the VS; 3 = VSy,4x cut going through the centre, the two quadrilateral

shapes have also the exactly same shape, a geometrical characteristic.  If
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VS13 # VSmax i.€. not going through the centre, then the geometrical shapes of
the two quadrilaterals is different.

So, if this geometrical characteristic is considered, also for divisor 1 or one cut, two
different shapes need to be considered, whereby the two shapes are different or the
same. In the topological case, these two shapes reduce to one shape as in Figure 42.
The same line of reasoning can be considered for SS cuts, where in Figure 42 there are 2
line cuts in upper row versus 8 in the lower row.

0 0 >
A EREA M A R

Figure 42: All possible cuttings of a pentagon via VV, VS and SS cuts

In general, starting from the maximum divisor, or max cuts equal to m, for other divisors
the number of possibilities is inherited precisely, in the geometrical sense.

4.6 d-knives and projective geometry

The analytic definition of d-knife is a construction, with m straight lines ([8], section 2.8)

sin(a+%ﬂi)x,-+cos(a+%i)yi+6= 0, i=01,..m—-1; <ac<

S|=l
ERE]

The precise cutting with a d; —knife can also be considered as a projection of a shape
with symmetry m or one of the divisors of m, onto the basic shape of the cross section of
the GML with symmetry m, along a cone with the same cross section (Figure 43). Cutting
with a d,,, —knife is equivalent to projecting an m-regular polygon onto an m-regular
polygon with zooming parameter §. In Figure 43 the projection of a red square onto a
green square (the basic one) is shown. At the top of the pyramid, the red square reduces
to one point and the blue zone narrows to lines, as in Figures 39c and 39d.

Figure 43: Projective equivalence with cutting with d;knife for squares d,,, = 4
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For the smallest divisor 1 the cut is with one knife, and this cut can be repeated by
rotation as in Figure 37 for other divisors. For even numbers the second smallest divisor
d, = 2 (a rectangle is projected which at the top of the pyramid also reduces to a line
(compare Figure 41 lower row), and so on. This projection corresponds to the dilation
parameter 6. Rotation parameter a corresponds to a rotation of the prismatic pyramid
relative to the base polygon.

4.7 The number of independent objects after cutting

When cutting m-regular polygons, GML bodies (or more generally Generalized Rotating
and Twisting GRTy, surfaces and bodies, whereby the basic line is a Gielis curve with m
rational), this leads to a number of independent sectors in the plane cross-sections.
Tables 9 and 10 give for even and odd values of m all possibilities:
e d;,i=1,2,..,m are different divisors of the number m. N is the number of
different nontrivial ( d; # 1,m) divisors of the number m.
e ifm =2k + 1thenalldivisorsd;,i = 1,2, ..., N of m are odd numbers.
e ifm = 2k some of its divisors d; ,i = 1,2, ..., N may be odd.

Table 9: Example cuts of GRT, bodies for oddm = 3,5,9,27

di-knives SSc - VS -cuts VSc-cuts VV- cuts VVc-
cuts cuts

2:2+1

‘ m= di-knives

d,.= 5-knives
5

d, = 1-knife 0
1

d,=  9-knives 18 10 . 0 k=4
9 10 % 19 , % 19%
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d, =  3-knives @ 0 k=1
2.1+1 6

d, = 1-knife 2 0

1

di-knives

d,= 27- 28,55, 82, 109, 54 55,82,109,13 54 55,82,1009, 0 k=13
27 knives 136,163,190,217 6,163,190, 136,163,190,2
, 244,271,298, 217, 17,
325, 351, 379 244,271,298, 244,271,298,
325,351,379 325,351

d; = 9-knives 10,19,28,37,46 18 10,19,28,37,4 18 10,19,28,37,46 0 ki=4

2:4+1 6

d, = 3-knives 4,7 6 4,7 6 4,7 0 k=1

2:1+1
di=1 1-knife 2 2 2 2 2 except m=3 0

Remark: For odd m a complete correspondence is found with Rational Gielis Curves for

p 555

VV-cuts. For example for m = 5 (Section 3.5 and Table 6): if m = =731 the number

of independent shapes are 6,11 and 16 (forp = 5,resp.p + 1,2p + 1 and 3p + 1).

Table 10: Example cuts of GRT}, bodies for even m = 4,6,8,10,24

di-knives

d,=  4-knives 0 A 0 0 0 m=2k

2:2 9

d,=  2-knives ’ 0 0 4% dy is

21 3 . even and
k1=1

d; = 1l-knives 2 2 2 2 2

1

di-knives

6-knives ‘ 0 . 0 . 0 k=3
2.3 7 13 13
Ko &
N
d;=  3-knives . 0 6 d, is odd
m/2 4 6L ky=1
2:1+ 7 ‘
1
d,= 2-knives 6 2% 0 . 2% d, is
2-1 3 3 even k=1
dy = 1-knives 2 2 2 2 2
1
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di-knives

d,= 8knives ' 0 ‘ 0 k=4
41 9 17
), ®
25
- 3
LR
ds=2  4-knives ' 8 ' ' 8 dy is
-2 5 ' 5 5 ' even k;=2
X K S
dy=  2-knives ' 4% ' ‘ 4% d, is
2-1 3 - 3 3 even ky=1
5, :
dy = 1-knives 2 2 2 2 2
1

d,,= 10- j-10+1 0 -10+1 +10+1 0 k=5
2.5 knives =1,2,3,4,5 i=2,3,4,5 i=2,3,4
(11,21,31,41,51) (21,31,41,51) (21,31,41)
dsz= 5-knives j-5+1 10 j-5+1 j-5+1 10 ki=2
.2+1 i=1,2,3 i=1,2,3 =1,2
(6,11,16) (6,11,16) (6,11)
d, = 2-knives j- 2i#1 4* - 2i#1 - 2i#1 4* d; is
2:1 j=1(3) j=1(3) =1 (3) even
ko=1
dy = li-knives 2 2 2 2 2
1

di-knives

d,= 24- j-24+1 where 0 j-24+1 j-10+1 where 0 k=12
2:12 knives j=1,2,...,12 where j=2,3,...,11
j=2,3,...,12
d,=2 12- j-12+1 where 2:12 j12+1 j-12+1 where  2:12 k=6
-6 knives j=1,2,...,.6 where j=1,2,...,6
=1,2,..,6
dg= 8-knives j- 8+1 where 2.4% j- 8+1 where j- 8+1 where 2:-4% k=4
-4 j=1,23,4 j=1,2,3,4 j=1,2,3,4
ds= 6-knives j- 6+1 where 2.3% j- 6+1 where j- 6+1 where 2.3* ks=3
-3 j=1,2,3 j=1,2,3 j=1,2,3
d4=2  4-knives j- 4+1 where 2:4* j- 4+1 where j- 4+1 where  2:4* ka=2
-2 j=1,2 j=1,2 j=1,2
d;= 3-knives j- 3+1 where 23 j- 3+1 where j- 3+1 where 23 ks=2
-1+1 j=1,2 j=1,2 j=1,2
d, = 2-knives j- 2+1 where 4* j- 2+1 where j- 2+1 where 4* k=1
2:1 =1 =1 j=1
d; = 1i-knives 2 2 2 2 2
1
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4.8 Using radial knives

The Mobius phenomenon only occurs for m even, when the knife cuts through the
centre, since only then congruent figures are obtained through cutting that can be
connected throughout with a twist. Going through the centre is an important condition,
but whether the cuts are VV, VS or SS is less important: Mobius phenomena can occur in
all cases. This Mobius phenomenon never occurs for m=odd; while then congruent
figures may be obtained, they only have mirror symmetry, not rotational.

The main condition, congruent figures and rotational symmetry, is achieved when using
radial knives (see section 2.10), emanating from the centre C of the figure, to the
perimeter, so CV or CS cuts result with the length of the knife half compared to the
previous knives. In this case the Mdbius phenomenon can be achieved in all cases,
irrespective whether m is odd or even- The word knife can be substituted by other
words, like secants, diagonals, rays and chords, but has the advantage that the separated
zones can actually be separated.
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5 Demonstratio
5.1 The geometrical solution

The total number of ways of cutting an m-polygon according to the rules described
above with d-knives for the geometrical case, for m = even and m= odd respectively is as
follows: VV, VS and SS cuts increase from by 1, 1 and 3 respectively from a given even or
odd number to the next even or odd number. As a result, the total number of ways of
cutting using a d,, knife increases by 5 to each subsequent even or odd number (Table
11, Subtotal), which gives the sequence (2),2, 7,7,12,12,22,22,27,27,32,32,37,37 ...
form = 2,3,4,5...15. Taking sums the sequence 4, 14, 24, 34, 44, 54, 64, 74.... results,
which is monotonically increasing.

Table 11: Number of possible cuts for even and odd m

| m=even Cut type p) 4 6 8 10 12 14
(m-2)/2 vV 0 1 2 3 4 5 6
(m-2)/2 VS 0 1 2 3 4 5 6
Step +3 SS 2 5 8 11 14 17 20

Subtotal 2 7 12 17 22 27 32
Divisors 2 3 4 4 4 6 4
TOTAL 4 21 48 68 88 162 128

‘ m = odd Cut type 3 5 7 9 11 13 15
(m-3)/2 wW 0 1 2 3 4 5 6
(m+1)/2 VS 2 3 4 5 6 7 8
Step +3 SS 5 8 11 14 17 20 23

Subtotal 7 12 17 22 27 32 37
Divisors 2 2 2 3 2 2 4
TOTAL 14 24 34 66 54 64 148

Since the number of possibilities is determined by d; and d,, and is inherited by the
other divisors given identification of vertices and knives (Figure 44 for divisors 1, 2 and
6 in a hexagon), the total number is then the subtotal times the number of divisors. The
identification links planar geometry to 3D GML}, bodies. If one follows the d;-knife
along the basic line of the GMLE body, the different positions of the knives indicated by
arrows in Figure 44 for d, function as a clock, relative to the torus circumscribing the
GMLS body. For other knives the clock arithmetic is the same, albeit with more hands.

q, TN T TN
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Figure 44: Inheritance from dq by all d-knives through identification.

Table 12 gives the product of the subtotals with positive integers. Entries in rows can be
computed as u, = Up_q + Up_p —U,_3, With ug =2 for even and uy =3 for odd
numbers. In bold red are the totals of Table 11 for m odd and in green for m even.

Table 12: Product of subtotals of Table 11 and number of divisors.

N°Divisors

2 14 24 34 44 54 64 74
3 21 36 51 66 81 96 111
4 28 48 68 88 108 128 148
5 10 35 60 85 110 135 160 185
6 12 42 72 102 132 162 192 222

The number of possible cuts can be given by a recurrence formula. For N,,, the
number of ways of cutting an m-gon for one divisor, whereby N,3° stands for the number
of SS cuts for m and N,;>_, for the number of SS cuts for the polygon with (m — 2) (i.e. the
previous odd or even number) and with k a natural number.

e Forevenm (=2k): Np—zx = m+1+N35, (la)
e Foroddm (=2k+1): Npy—pps1= m+2+N5>, (1b)

If the number of SS cuts is kept separate, taking into account the step +3, this part of the
general formula is recursive. Since N3,= (N;fl_z + 3), it follows that N335, + 6 = N33 o +
9-=..
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Because of the exact inheritance for the geometrical case the total number of ways of
cutting for all divisors is then the above formula times the number of divisors NZ% of a
number m.

Theorem 1 (the geometrical solution):

The total number of different ways of cutting an m-polygon Eﬂfu is the number of 1 or

m cuts, times the number of divisors of m.
e Forevenm (= 2k): EJ7° = N,‘,ili”(m +1+ N;fl_z)

e Foroddm (=2k+1): E2°= NE(m+2+N5_,)

When considering polygons with convex sides, VV;;,, are possible, so the number of
cuts increases by m. When knives are used to cut a circle from equally spaced points,
the VV; ;41 cuts need to be added, in particular m cuts.

e Forevenm (= 2k): Np—or = 2m+1+N32, (2a)
e Foroddm (=2k +1): Npepps1= 2m+2+ N33, (2b)

5.2 The topological solution

The number of ways of cutting an m-polygon according to the rules for the topological
solutions is given in Table 13 for form = 3,4,...,16. Annex 1 graphically shows all
possibilities for for m =6,7,8,9,10. From this follows Theorem 2 (the topological
solution).

Table 13: All possible cuttings for m-regular polygons form = 3,4, ...,16

SS — cuts VS cuts  VV-cuts Total

3 1+5= 6 3 0 9

4 1+2+1+3 +2+1= 3+4 +3=10 3 3 16
5 1+5+1+3 = 6+4 =10 5 2 17
6 1+2+1+3 +1+43 +2+3+1+2+1+1= 11+6 +4=21 8 8 37
7 1+5+1+3 +1+3 = 6 +4+4 =14 7 4 25
8 1+241+3 +1+3 +1+3 +2+ 1+ 3+1+2+1+1+1= 15+7 12 12 51

+5=27
9 1+5+1+43 +1+43 +1+43 +3+3+1+1 = 6 +4+4 +4 +8= 26 14 9 49
10 1+2+1+3 +1+3 +1+43 +1+3 16 16 67
+2+3+143+1+2+1+1+1+1=19 +10+6=35
11 145+1+3 +1+3+1+3 +1+3 = 6 +4+4 +4+4 = 22 11 8 41
12 59 30 30 119
13 1+5+1+3 +1+3+1+3 +1+3+1+3 = 6 +4+4 +4+4 +4= 13 10 49
26

14 49 24 24 97
15 54 31 24 109
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Theorem 2 (the topological solution)

If m = 2k + 1 and has N nontrivial divisors d,,d3 ...dy;1 and dq = 1,dy4p = dyy, = m,

then the number of all possible variants of cutting of GML}, bodies is
N+1

"“”’_8k+1+31vk+2[ ]+2N

If m = 2k and has N nontrivial divisors d,, ds ...dN+1 andd; = 1,dyyy =dy, =m,

then the number of all possible variants of cutting of GML}, bodies is
N+1

2P = 8k — 5+3Nk+2[

]_N

This is in a slightly different form compared to Theorem 1: } .1 qiv(Nm=2r) =

Efﬁpdepending on whether the total number of variants is expressed in terms of total
number of divisors or total number of non-trivial divisors N (excluding d; and d.,).

The complete proof of Theorem 2 will be given in a separate paper. It is based on the
fundamental facts from the theory of cyclic groups with a finite number of elements (m);

1. The number of cyclic subgroups is the number (N) of nontrivial divisors of m.
2. The number of elements in each subgroup is the number of transactions and
equal to the gcd(m, i)

3. The number of cuts is either 3 or 1, (3 or 1 mod8) and this is determined by
the property of the subgroup and the property of the cut line - i.e. when the
number of cuts is three, then the ends of the survey line lie on the same strings

of the initial polygon, except for the case when k = [m/z] +1

4. Ifk = [m/z] + 1 and for an odd number m the number of cuts is 5, and for

even m the number of cuts is 2. This is determined by the property of the
subgroup and the property of the cut line. In the latter case m = 2k an important
role is played by the rotational symmetry.

5.3 Number of independent bodies or zones

Theorem 3: The number of independent objects depends on 1) the type of cut, 2) the
divisor or d;-knife, and 3) the parity of m and its divisors. For odd or even m the number
of possible independent objects appearing after different cuts of m-polygons and GRT}y,
bodies with d; —knives is given in Table 14 for odd and even m.
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Table 14

m= di-knives SS SSc VS VSc vV VV¢
2k +1

dn= m-knives j-m+1 where 2'm jm+1 2m jm+1 0
2k+1 j=1,2,...,k+1 where where

j=2,..,k+1 j=2,...,k

d;= d; - j- di+1 where 2-d; j-di+l 2-d; jodi+l 0 i=1,2,...,N

2ki+1 knives i=1,2,...ki+1 where where
i=1,2,... ki+1 i=1,2,.. ki+1
d, =1 1-knife 2 2 2 2 2, except 2
m=3

di-knives

remarks

dn,= m-knives  j-m+1 where 0 j-m+1 where 0 j-m+1 where 0
2k i=1,2,...k j=2,...,k =2,..k-1
d;=m/2 m/2- j-di+1where  2:d;=  j di+1 where 2-dy= jrdi+1 0 m/2 is
2k +1 knives i=1,2,...k+1 m j=1,2,...,k1+1 m where odd
i=1,2,....kq
d;=m/2=2 j- di+1 where j- di+1 where j- di+1 where m/2 is
ky i=1,2,....k i=1,2,....k i=1,2,....k even
d;= d;- j- di+1 where 2-d; j- di+1 where j-di+l where  2.d; d; is odd
2ki+1 knives j=1,2,...ki+1 j=1,2,...ki+1 j=1,2,...ki+1
d;= j- di+1 where 2-d;* j- di+1 where j-di+1 where 2.d; d;iseven
2k, i=1,2,...ki i=1,2,...ki i=1,2,...ki *
d, =1 1-knives 2 2 2 2 2 2

. . . d; .
2-d;i* - When di* is an even number, the d; -knives turn into ;L - knives and therefore the

. o o diy .
result is as if it were acting similar to the ?‘ knives.

5.4 Mobius phenomena

Theorem 4: In the cutting of GML bodies with chordal knives, the Mobius
phenomenon with one resulting body and link number 1 can appear only for m even
and when the knife cuts through the centre. In the cutting of GML bodies the Mdbius
phenomenon can appear for both m odd and m, when the knife is a radial knife, a ray

starting at the centre of the polygon.

The radial knife is actually the position vector. This acts as the hand of a clock with
discrete ticks (Figure 45) but with continuous movement within a GML}, body, keeping
a fixed direction from centre to the vertex. During this continuous movement, the
various vertices of the polygon coincide with the upper circle in a torus in discrete steps.
The tip of the position vector traces out a toroidal line, wound around the torus, now in
a continuous way.
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Figure 45: Radial knife or position vector
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6 Conclusio
6.1 Mobius before and after Mobius

The Mobius strip is an icon of mathematics. It was named after the German
mathematician Mébius, but known already 2 millenia ago (Figure 46). This “twisted
cylinder” is obtained by giving one end of a rectangular strip of paper a twist before
joining both ends. Simple as this may seem Mdobius strips are one-sided, non-orientable
surfaces with some counterintuitive properties. Tracing out a path on a Mébius strip will
show that it has only one side and the whole strip can be painted in one color without
lifting the paint brush. If some form of identification is done along the central line before
joining, one will find that orientations are reversed after rejoining. Johann-Benedict
Listing (1808-1882) and August Ferdinand Mébius (1790-1868) discovered these
remarkable objects in the mid-nineteenth century. The name Topology - the study of
shape characteristics independent of measuring - was used first by Listing. While
topology is a branch of geometry, Listing chose the name topology to avoid reference to
measurements and referred to “Modalitit und Quantitit” (modality and quantity) to
distinguish between shape and magnitude.

A
s

Figure 46: a. Mébius before Mébius [31] and b. GML’s before the present

In On Growth and Form, D’Arcy Thompson [32] summarized the field and its initial
historical development: “..in this study of a segmenting egg we are on the verge of a
subject adumbrated by Leibniz, studied more deeply by Euler, and greatly developed of
recent years. It is the Geometria situs of Gauss, the Analysis situs of Riemann, the Theory
of Partitions of Cayley, of Spatial Complexes or Topology of Johann Benedict Listing...
Leibniz has pointed out there was room for an analysis of mere position, apart from
magnitude: “Je croy qu’il nous faut encor une autre analyse, qui nous exprime
directement situm, comme I’Algébre exprime magnitudinem”. .. Leibniz used it to explain
the game of solitaire, Euler to explain the knight’s move on the chessboard or the routes
over the bridges of a town. Vandermonde created a géometrie de tissage, which Leibniz
himself had foreseen, to describe the intricate complexity of interwoven threads in a satin
or brocade. Listing, in a famous paper, admired by Maxwell, Cayley and Tait, gave a new
name to this new “algorithm”, and shewed its application to the curvature of a twining
stem or tendril, the aestivation of a flower, the spiral of a snail-shell, the scales on a fir-
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cone, and many common things. The theory of “spatial complexes”, as illustrated especially
by knots, is a large part of the subject”. There are many things to which the new
Geometria Situs could be applied.

6.2 Geometrical topology

Analysis situs or topology developed over many centuries, and has developed into highly
abstract mathematics at one extreme and into various educational tools for displaying
the magic of mathematics at the other. Mobius bands are icons of mathematics [33], and
so are knots and links. It is also linked to geometry, in particular, the inner geometry of
surfaces, starting with Gauss’ Theorema Egregium. Indeed, a torus can be constructed
topologically by folding a piece of paper into a cylinder and connecting the ends. For
this reason the intrinsic geometry of the torus and the piece of paper (exemplifying part
of the plane) is the same, and hence the torus is considered as a flat surface (in contrast
to a sphere). In similar ways Mo6bius bands, Klein Bottles and Projective planes can be
constructed by taking a piece of paper, identifying opposite sides and connecting those
in the appropriate way. The projective plane is a disk to which a Mébius band is glued.

Nevertheless, these are recipes or instructions to generate surfaces, and one of the main
lacunae in the geometry / topology distinction is the absence of general but simple
analytic representations. Even the whole field of knots still only leads to tabulations, not
classifications. Our analytic representations or equations substitute for “recipes” or
“(computer) algorithms” to “generate” Mobius strips, tori, helices or more complex
shapes. We no longer need all types of different parametrizations for different shapes,
but we can combine these shapes now into single equations, allowing for continuous
transformations from circle or sphere into any other shape, including knots and certain
polyhedrons, irrespective of topological constraints.

In this sense transformations from sphere to torus e.g. with intermediates as ring, horn
and spindle tori, or to knots are very natural, and continuous. The definition of a torus as
S1xS?t, or fibre bundles with unit intervals as fibre over manifolds [34], or processes
such as making holes and using surgery or pinching, can be approached from another,
continuous geometric perspective. In this perspective shapes can be transformed into
each other and cut into predictable substructures. The reduction of “recipes” to
equations, with a concomitant reduction of shape complexity, has always led to progress
in science. This “old kind of science” has been extremely valuable for mankind, from
Greek mathematics to the present day. By focusing on some very elementary ideas, such
as the Pythagorean structure of Gielis curves and Gaspard Monge’s idea of describing
complex movements as superpositions of elementary ones for GML [35], highly complex
structures and very many of the well-known shapes in mathematics can be described in
very simple analytic representations. There are one-to-one mappings from one shape to
the other, and these mappings are geometrical, at times violating the rules of topology,
but at the same time bridging topology and geometry.

In our work we focused so far on the ‘forward’ approach, but we believe that uniqueness

results can be proven, so that from observing and counting complex structures it should
be possible to reconstruct the original GML body or surfaces from which it was derived.
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6.3 The general case of cutting GML

The generalization of Mdbius ribbons to Generalized Mobius-Listing bodies and surfaces
was initiated in the late nineties of last century [1]. The motivation was the fact that the
solution of partial differential equations strongly depends on the topological properties
of the domain on which the problem is considered. The first results were obtained on
Mobius strips, giving a general solution for cutting of ribbons for any number of twisting
and for any number of cuttings. Consequently the description was broadened to include
surfaces and bodies and in the recent decade, classifications were also obtained for GML
bodies and surfaces with convex cross-sections for symmetries m = 2,3,4,5, 6.

These developments became possible by integrating GML and Gielis curves and bodies, a
geometric transformation describing a very wide range of abstract and natural shapes.
This integration made it possible to develop strategies to achieve a general classification
for cutting of GML bodies of any symmetry, starting from cross sections that are m-
regular polygons. The original problem could be reduced to the problem of cutting m-
regular polygons with crossing diagonals or knives. With the proposed methods even
the topological characteristics of the resulting bodies and surfaces and their link number
can be found with the 2D strategy of cutting polygons.

Determining the number of variants after cutting has both geometrical and topological
solutions, resulting in Theorems 1 and 2. These theorems not only give the precise
number of variants after cutting, but also allow for determining the precise shape of the
resulting bodies and their topology. Annex 1 gives all relevant graphics fromm = 6 to
m = 10. Theorem 3 gives the number of different objects resulting from specific ways of
cutting, and from this one can count the connected zones in polygons or the link number
after cutting of GTRy}, bodies. It generalizes the cutting of polygons and partitions in the
sense of Euler and Cayley, with V'V cuts and diagonals. Because of these connections,
combinatorial or other approaches could have been used, but the strategy of using
planar geometry (as a reduction of a 3D problem), has the advantage of revealing many
connections and a broad scope of applications, and the additional advantage of having a
strong educational component.

Theorem 4 gives the precise conditions under which the Mébius phenomenon will occur
for regular polygons with both odd and even symmetry m, when using radial knives.
The radial knife is nothing but the position vector, which is static if defined as m-
polygons, but dynamic using Gielis transformations, allowing to morph the polygon into
circles, starfish and so on. The tip of the knife traces out a toroidal line on the
circumscribing torus, whereas the knife itself describes a surface. When the GML?, body
is not closed, a generalized cylinder results. The generalized cylinder can also be a
generalized cone. The tip of the arrow traces out a helix, but with m-symmetry. The
arrow itself than traces out a surface, in particular a Riemann surface. If the arrow has a
given depth (thickness in the direction of the cylinder), it will trace out a body or helical
shell. If the arrow has a given depth in this case, it will trace out a shell body as observed
in mollusc shells.
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6.4 Future work

The results are obtained for regular polygons, but can easily be generalized. First, using
Gielis curves and curved knives greatly generalize these results, for convex and concave
domains. Second, knives can be the result of some optimization problem in convex
geometry. Third, only one knife in one direction was used, but k-knives [3] with
multiple parallel blades can be used to make multiple parallel cuts at once; in the
extreme the knife can be a Cantor-knife, such that the resulting cut gives in cross section
the Cantor continuum. Fourth, the definition of d;-knives starts from d,-knife by i
rotations with the centre of the polygon as centre of rotation, but different movements
of d,-knives will give other results. One example is the Cremona construction of the
cardioid, as envelope of a pencil of lines. This is realized with V'V cuts of the type
VV; »; connecting n equally spaced points on the circle.

These results open up many new possible areas of research, in particular for a unified
and general geometric framework for the study of natural phenomena in biology,
chemistry and physics, both in the small and in the large. It also opens up many
challenges.

In physical realisations Moébius bands will take on shapes, which are physically
dependent, among others, on width, length and material [36]. Within the more general
framework of GMLY, or cylinders with non-circular cross sections, the situation is very
different. In the case of cylinders subjected to torsion, the cross sections are known to
remain planar. The research of Adhémar Jean Claude Barré de Saint-Venant (1797-
1886) on the torsion of prisms and non-circular rods [37] showed how the internal body
is subjected to stress resulting in distorted, anticlastic cross sections (Figure 47a,b). The
lines that remain in-plane are VVand SS; cuts perpendicular to the sides for the square
or VS¢ cuts for the triangle. This phenomenon was observed in the horns of rams
(Figure 47c) [32]. The stresses and strains and the displacements (Figure 47) connect
shape and differential equations. Elasticity theory then enters the field, a wide research
domain of elastic and prismatic cusped shells, plates and beams [38], (Figure 1).

Figure 47: Torsion of prisms with square (a) and triangular (b) cross-sections. Dotted
lines are depressed regions and full lines are elevated parts of the cross sections. c.
Anticlastic surfaces in the horns of rams [32]
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Precise knowledge of the domains is essential for solving boundary value problems and
this was precisely the motivation for the study of GML}, surfaces and bodies (in
particular, the starting point was the study of Saint-Venant’s Principle on complex
domains). The same motivation underlies the development of R-functions [11; 22].

Our methods allow for the precise description of a wide variety of domains in a uniform
geometric way, based on GML/GTR and plane geometry. With Gielis transformations
continuous transformations among domains are added. This leads to naturally adapted
coordinate systems on which boundary value problems can be solved, which is the
essence of mathematical physics, according to Gabriel Lamé, who was also one of the
main contributors to elasticity theory [37].
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