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Abstract

We are concerned with counting self-conjugate (s, s+1, s+2)-core partitions. A Motzkin
path of length n is a path from (0, 0) to (n, 0) which stays above the x-axis and consists
of the up U = (1, 1), down D = (1,−1), and flat F = (1, 0) steps. We say that a Motzkin
path of length n is symmetric if its reflection about the line x = n/2 is itself. In this paper,
we show that the number of self-conjugate (s, s+ 1, s+ 2)-cores is equal to the number of
symmetric Motzkin paths of length s, and give a closed formula for this number.

1 Introduction

Let λ = (λ1, λ2, . . . , λℓ) be a partition of a positive integer n. The Young diagram of λ is a
collection of n boxes in ℓ rows with λi boxes in row i. For example, the Young diagram for
λ = (5, 4, 2) is below.

∗Supported by the National Research Foundation of Korea (NRF) NRF-2017R1A2B4009501.
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Let the leftmost column be column 1. The box in row i and column j is said to be in
position (i, j). For the Young diagram of λ, the partition λ′ = (λ′

1, λ
′
2, . . . , λ

′
λ1
) is called the

conjugate of λ, where λ′
j denotes the number of boxes in column j. A partition whose conjugate

is equal to itself is called self-conjugate. For each box in its Young diagram, we define its hook
length by counting the number of boxes directly to its right or below, including the box itself.
Equivalently, for the box in position (i, j), the hook length of λ is defined by

h(i, j) = λi + λ′
j − i− j + 1.

For a positive integer t, a partition λ is called a t-core if none of its hook lengths are multiples
of t. We use the notation of a (t1, ..., tp)-core if it is simultaneously a t1-core,. . . , and a tp-core.
See for details [1, 2, 3, 5, 6, 7, 10].

For a set S of positive integers, we say that a is generated by S if a can be written as a
non-negative linear combination of the elements of S. Let P = PS be the set of elements which
are not generated by S, and let (P,<P ) be a poset by defining the cover relation so that a
covers b if and only if a − b ∈ S. For example, see Figure 1 for the poset P{8,9,10}. For the
detailed explanation of poset, we refer the reader to [1, 9, 11].

1 2 3 4 5 6 7

11 12 13 14 15

21 22 23

31

Figure 1: The Hasse diagram of P{8,9,10}

For a poset (P,<P ), a set I ⊂ P is called a lower ideal of P if a <P b and b ∈ I implies
a ∈ I. In [2], Anderson gave a natural bijection between t-cores and lower ideals of a poset
P{t}. Moreover, she proved that for relatively prime positive integers s and t, the number of
(s, t)-cores has a nice closed formula by finding a bijection between (s, t)-cores and lattice paths
from (0, 0) to (s, t) consisting of north and east steps which stay above the diagonal.

Theorem 1.1. [2] For relatively prime positive integers s and t, the number of (s, t)-cores is

1

s+ t

(

s+ t

s

)

.

Since the work of Anderson, the topic counting simultaneous cores has received growing
attention. In [4], Ford, Mai, and Sze proved the following analog of Anderson’s work.
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Theorem 1.2. [4] For relatively prime positive integers s and t, the number of self-conjugate
(s, t)-cores is

(

⌊ s
2
⌋+ ⌊ t

2
⌋

⌊ s
2
⌋

)

.

An (s, k)-generalized Dyck path is a path from (0, 0) to (s, s) which stays above the diagonal
and consists of the steps Nk = (0, k), Ek = (k, 0), and Di = (i, i) for 1 ≤ i ≤ k − 1. For
example, an (s, 1)-generalized Dyck path is a (classical) Dyck path of order s. We say that an
(s, k)-generalized Dyck path is symmetric if its reflection about the line y = s − x is itself. It
is often observed that counting the number of simultaneous cores can sometimes be described
as counting the number of different paths.

Remark 1.3. Let s be a positive integer.

1. The number of (s, s+ 1)-cores is the sth Catalan number Cs =
1

s+1

(

2s
s

)

which counts the
number of Dyck paths of order s.

2. The number of self-conjugate (s, s + 1)-cores is
( s
⌊s/2⌋

)

which counts the number of sym-
metric Dyck paths of order s.

In [1], Amdeberhan and Leven expand Anderson’s result to (s, s+ 1, . . . , s+ k)-cores.

Theorem 1.4. [1] The followings are equinumerous:

(a) The number of (s, s+ 1, . . . , s+ k)-cores.

(b) The number of (s, k)-generalized Dyck paths.

(c) The number of lower ideals in P{s,s+1,...,s+k}.

We note that (s, 2)-generalized Dyck paths are equivalent to Motzkin paths of length s.
From Theorem 1.4, one can obtain the following corollary.

Corollary 1.5. For a positive integer s, the number of (s, s+ 1, s + 2)-cores is

Ms =
∑

i=0

1

i+ 1

(

s

2i

)(

2i

i

)

,

the sth Motzkin number which counts the number of Motzkin paths of length s.

We note that Yang, Zhong, and Zhou [11] proved Corollary 1.5 independently.

It is natural to ask whether the number of self-conjugate (s, s+1, s+2)-cores and the number
of symmetric Motzkin paths of length s are equinumerous from Remark 1.3 and Corollary 1.5.
In this paper, we prove that these two quantities are equal by showing that they satisfy the
same recurrence relation which will be proved in Seciton 3. Furthermore, we give a closed
formula for these numbers.
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2 Poset structure for self-conjugate (s, s+ 1, s+ 2)-cores

In this section, we construct a poset whose lower ideals with some restrictions are correspond-
ing to self-conjugate (s, s+1, s+2)-cores, and then give a simple diagram to visualize that poset.

For a partition λ, let MD(λ) denote the set of main diagonal hook lengths. Therefore,
MD(λ) is a set of distinct odds when λ is self-conjugate. In [4], authors gave a useful result for
determining self-conjugate t-cores.

Proposition 2.1. [4] Let λ be a self-conjugate partition. Then λ is a t-core partition if and
only if both of the following hold:

(a) If h ∈ MD(λ) with h > 2t, then h− 2t ∈ MD(λ).

(b) If h1, h2 ∈ MD(λ), then h1 + h2 6≡ 0 (mod 2t).

For a positive integer s, we consider an induced subposet of P = P{2s,2s+1,...,2s+4},

P̃{s,s+1,s+2} = {h ∈ P : s 6<P h, s+ 1 6<P h, s+ 2 6<P h, and h is odd}.

We note that the poset P̃{s,s+1,s+2} is the disjoint union of two posets, say Q and R, where Q
is the maximal induced subposet of P of which minimal elements are odd integers less than
s, and R is the maximal induced subposet of P of which minimal elements are odd integers x
such that s+ 2 < x < 2s. See Figures 2 and 3 for example.

1 3 5 7 11 13 152 4 6 8 9 10 12 14

22 24 25 26 27 28 29 3021 23 31

41 42 43 44 45 46 47

61 62 63

Figure 2: The Hasse diagram of the induced subposet P̃{8,9,10} of P{16,17,18,19,20}

Now, we restate Proposition 2.1 by using the poset we constructed.

Proposition 2.2. Let λ be a self-conjugate partition. Then λ is an (s, s+1, s+2)-core partition
if and only if the set MD(λ) is a lower ideal of P̃{s,s+1,s+2} with no elements h1, h2 such that
h1 + h2 ∈ {2s, 2s + 2, 2s + 4}.
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1 3 5 7 13 15 172 4 6 8 9 10 11 12 14 16

24 26 27 28 29 30 31 32 33 3423 25 35

45 46 47 48 49 50 51 52 53

67 68 69 70 71

Figure 3: The Hasse diagram of the induced subposet P̃{9,10,11} of P{18,19,20,21,22}

Example 2.3. For a self-conjugate (8, 9, 10)-core partition λ = (6, 3, 3, 1, 1, 1), the set MD(λ) =
{11, 3, 1} of main diagonal hook lengths is a lower ideal of P̃{8,9,10} with no elements h1, h2 such
that h1 + h2 ∈ {16, 18, 20}.

For convenience, we add dotted edges connecting elements h1, h2 in the Hasse diagram of
P̃{s,s+1,s+2} with h1 + h2 ∈ {2s, 2s + 2, 2s + 4} so that at most one end point of each dotted
edge can be selected for the lower ideal corresponding to an (s, s+1, s+2)-core. From now on,
we use the modified diagram for P̃{s,s+1,s+2} as in Figure 4.

1 3 5 7

111315

21 23

31

1 3 5 7

131517

23 25

35

Figure 4: The modified diagrams of P̃{8,9,10} and P̃{9,10,11}

We note that

Q ∼= P{⌊ s

2
⌋+1,⌊ s

2
⌋+2,⌊ s

2
⌋+3} and R ∼= P{⌊ s

2
⌋,⌊ s

2
⌋+1,⌊ s

2
⌋+2},

and therefore, P̃{2s,2s+1,2s+2} is equivalent to P̃{2s+1,2s+2,2s+3}. Moreover, it is not hard to notice

that the modified diagrams of P̃{2s,2s+1,2s+2} and P̃{2s+1,2s+2,2s+2} are also equivalent. Thus,
we have the following proposition.

Proposition 2.4. For a positive integer s, the number of self-conjugate (2s, 2s+1, 2s+2)-cores
are equal to the number of self-conjugate (2s+ 1, 2s + 2, 2s + 3)-cores.
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3 Counting self-conjugate simultaneous core partitions

In this section, we give a formula for the number of symmetric Motzkin paths, and then show
that the number of self-conjugate (2s, 2s+1, 2s+2)-cores and the number of symmetric Motzkin
paths of length s satisfy the same recurrence relation.

3.1 Counting symmetric Motzkin paths

For a fixed i, there are Ci

(n
2i

)

Motzkin paths with exactly i up steps since there are Ci Dyck
paths and there are

(n
2i

)

ways to insert n − 2i flat steps into a Dyck path with i up steps.
We say that a Motzkin path of length n is symmetric if its reflection about the line x = n

2

is itself. Let Sn denote the number of symmetric Motzkin paths of length n. For exmaple,
S0 = 1, S1 = 1, S2 = 2, S3 = 2, S4 = 5.

Figure 5: Symmetric Motzkin paths of length 4

We note that the (n+1)st step of any symmetric Motzkin path of length 2n+1 must be a
flat step, and therefore, there is a natural bijection between symmetric Motzkin paths of length
2n+ 1 and that of length 2n so that S2n+1 = S2n.

Now, we count the number of symmetric Motzkin paths.

Proposition 3.1. The number of symmetric Motzkin paths of length n is

Sn =
∑

i≥0

(

⌊n
2
⌋

i

)(

i

⌊ i
2
⌋

)

.

Proof. It is enough to enumerate symmetric Motzkin paths of length 2n. Suppose we are
given a symmetric Dyck path with i up steps, so that it has 2n − 2i flat steps. To obtain a
symmetric Motzkin path of length 2n with i up steps, it is enough to consider inserting n − i
flat steps into the first half of the given symmetric Dyck path. Since there are

( i
⌊i/2⌋

)

symmetric

Dyck paths with i up steps as in Remark 1.3, and there are
(

n
i

)

ways to insert flat steps,

the number of symmetric Motzkin paths of length 2n with i up steps is
(n
i

)( i
⌊i/2⌋

)

. Therefore,

S2n = S2n+1 =
∑

i≥0

(

n
i

)(

i
⌊i/2⌋

)

.

Now, we consider a recurrence relation of S2n involving Mn. For a symmetric Motzkin
path P = P1P2 · · ·P2n of length 2n, where Pi denotes the ith step, let k ≤ n be the largest
number such that P meets x-axis at (k, 0). We note that if k = n, then both of P1P2 · · ·Pn

and Pn+1Pn+2 · · ·P2n are Motzkin paths of length n which are symmetric to each other. On
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the other hand, if k < n, then Pk+1 = U , P2n−k = D, the subpath Pk+2Pk+3 · · ·P2n−k−1

is a symmetric Motzkin path of length 2n − 2k − 2, and both of two subpaths P1P2 · · ·Pk

and P2n−k+1P2n−k+2 · · ·P2n are Motzkin paths of length k which are symmetric to each other.
Hence, we have a relation between S2n and Mn:

S2n = Mn +
n−1
∑

k=0

S2n−2k−2Mk. (1)

Equation (1) and a closed formula for S2n can also be found in the OEIS as A005773 [8].

3.2 Counting self-conjugate (2s, 2s+ 1, 2s+ 2)-cores

The following lemma plays an important role to obtain a recurrence relation for the number of
self-conjugate (2s, 2s + 1, 2s + 2)-cores.

Lemma 3.2. Let s be a positive integer. The number of self-conjugate (2s, 2s+1, 2s+2)-cores
λ with 2s− 1 ∈ MD(λ) is equal to the number of self-conjugate (2s− 2, 2s − 1, 2s)-cores.

Proof. By Proposition 2.2, there is a bijection between (2s, 2s+1, 2s+2)-cores λ with 2s−1 ∈
MD(λ) and lower ideals I of P̃{2s,2s+1,2s+2} containing 2s− 1 and no elements h1, h2 such that
h1 + h2 ∈ {4s, 4s + 2, 4s + 4}. Thus, it is enough to consider lower ideals of the first diagram
in Figure 6.

To prove the lemma, we construct a bijection φ between lower ideals I of the first diagram
and lower ideals J of the second diagram in Figure 6, since the second diagram is equivalent
to the modified diagram of P̃{2s−2,2s−1,2s}.

1 3 · · · · · · 2s − 3 2s− 1

4s + 5 · · · · · · 6s − 1

· · · · · ·

4s − 1 · · · 2s + 7 2s + 5 2s + 3

· · ·

∼= 1 3 · · · · · · 2s− 3

4s+ 5 · · · · · · 6s− 1

· · · · · ·

4s− 13 · · · 2s+ 7

· · ·

Figure 6: The modified diagram of P̃{2s,2s+1,2s+2} for ideals having 2s − 1

If I is a lower ideal of the first diagram, then I satisfies the following:

• I contains 2s − 1.
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• For 4s + 5 ≤ h ≤ 6s− 1, h ∈ I implies h− 4s− 4, h − 4s− 2, h− 4s ∈ I.

• For 2s + 7 ≤ h ≤ 4s− 1, h ∈ I implies 4s− h, 4s − h+ 2, 4s − h+ 4 6∈ I.

Now, we construct a corresponding set φ(I) from I as follows.

• For each h ∈ I with 4s+ 5 ≤ h ≤ 6s − 1, delete h− 4s− 4, h− 4s− 2, h − 4s from I.

• For each h ∈ I with 2s+ 7 ≤ h ≤ 4s − 1, add 4s − h, 4s − h+ 2, 4s − h+ 4 to I.

• Delete 2s− 1 from the set.

Then φ(I) is a lower ideal of the poset structure defined by the second diagram in Figure
6 and it is easy to check that φ is a bijection.

Example 3.3. For self-conjugate (8, 9, 10)-cores λ such that 7 ∈ MD(λ), let I1, I2, . . . , I13 be
their corresponding lower ideals of P̃{8,9,10}. Now, we list Ii and Ji = φ(Ii) for i = 1, 2, . . . , 13,
where φ is the bijection defined in the proof of Lemma 3.2.

I1 = {7}
I3 = {3, 7}
I5 = {1, 3, 7}
I7 = {3, 5, 7}
I9 = {1, 3, 5, 7, 21}
I11 = {3, 5, 7, 23}
I13 = {7, 15}

J1 = ∅
J3 = {3}
J5 = {1, 3}
J7 = {3, 5}
J9 = {21}
J11 = {23}
J13 = {1, 3, 5, 15}

I2 = {1, 7}
I4 = {5, 7}
I6 = {1, 5, 7}
I8 = {1, 3, 5, 7}
I10 = {1, 3, 5, 7, 21, 13}
I12 = {1, 3, 5, 7, 23}

J2 = {1}
J4 = {5}
J6 = {1, 5}
J8 = {1, 3, 5}
J10 = {21, 23}
J12 = {1, 23}

We note that for each i, Ii is an ideal of the first diagram and Ji is an ideal of the second
diagram of the following figure.

1 3 5 7

21 23

15 13 11

∼= 1 3 5

21 23

15

Figure 7: The modified diagram of P̃{8,9,10} for ideals I with 7 ∈ I

The following proposition is a generalization of Lemma 3.2.

Proposition 3.4. Let s and k be positive integers such that k ≤ s.
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(a) The number of self-conjugate (2s, 2s + 1, 2s + 2)-cores λ satisfies that

2k − 1 ∈ MD(λ) and 2k + 1, 2k + 3, . . . , 2s − 1 6∈ MD(λ)

is the number of self-conjugate (2k − 2, 2k − 1, 2k)-cores multiplied by Ms−k.

(b) The number of self-conjugate (2s, 2s+1, 2s+2)-cores λ with 1, 3, . . . , 2s− 1 6∈ MD(λ) is
Ms.

Proof. We consider the modified diagram of P̃{2s,2s+1,2s+2} with restrictions in Figure 8.

1 3 · · · · · · 2k − 3 2k− 1 2k + 1 2k + 3 · · · 2s− 3 2s− 1

4s+ 5 · · · · · · 4s+ 2k − 1

· · · · · ·

4s− 1 · · · 4s− 2k + 7 4s− 2k − 1 · · · 2s+ 3

· · · · · ·

Figure 8: The modified diagram of P̃{2s,2s+1,2s+2} with restrictions

(a) On the modified diagram with restrictions, the left-hand side of 2k−1 is equivalent to the
modified diagram of P̃{2k−2,2k−1,2k} as we showed in Lemma 3.2, and the right-hand side
of 2k− 1 is equivalent to the Hasse diagram of the poset P{2s−2k−2,2s−2k−1,2s−2k}. Hence,
by Corollary 1.5, the number of lower ideals I satisfying 2k − 1 ∈ I and 2k + 1, 2k +
3, . . . , 2s − 1 6∈ I is Ms−k times the number of self-conjugate (2k − 2, 2k − 1, 2k)-cores.

(b) If 1, 3, . . . , 2s − 1 6∈ I, then I is a lower ideal of a subposet of P̃{2s,2s+1,2s+2} which is
equivalent to P{s,s+1,s+2}. Hence, by Corollary 1.5, the number of lower ideals I with
1, 3, . . . , 2s − 1 6∈ I is Ms.

Now, we are ready to prove our main theorem.

Theorem 3.5. For a positive integer s, the number of self-conjugate (s, s+ 1, s + 2)-cores is

∑

i≥0

(

⌊ s
2
⌋

i

)(

i

⌊ i
2
⌋

)

,

which counts the number of symmetric Motzkin paths of length s.
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Proof. Let as denote the number of self-conjugate (s, s+1, s+2)-cores. From Proposition 2.4,
we have a2s+1 = a2s. Hence, it is enough to show that a2s = S2s.

For 1 ≤ k ≤ s, let Ak be the set of self-conjugate (2s, 2s + 1, 2s + 2)-cores λ that satisfies

2k − 1 ∈ MD(λ) and 2k + 1, 2k + 3, . . . , 2s − 1 6∈ MD(λ),

and let A0 be the set of self-conjugate (2s, 2s + 1, 2s + 2)-cores λ with 2i − 1 6∈ MD(λ) for
1 ≤ i ≤ s. Then, A0 ∪A1 ∪ · · · ∪As is the set of self-conjugate (2s, 2s + 1, 2s + 1)-cores and

a2s = |A0|+ |A1|+ · · ·+ |As|.

From Proposition 3.4, we have |A0| = Ms and |Ak| = a2k−2Ms−k for 1 ≤ k ≤ s, and therefore,

a2s = Ms +

s
∑

k=1

a2k−2Ms−k = Ms +

s−1
∑

k=0

a2s−2k−2Mk.

Since the relation between a2s and Ms is equivalent to (1) and a0 = S0 = 1, we have come to
a conclusion that a2s = S2s =

∑
(s
i

)( i
⌊i/2⌋

)

by Proposition 3.1.

Encouraged by this success, we offer the following generalized conjecture.

Conjecture 3.6. For given positive integers s and k, the number of self-conjugate (s, s +
1, . . . , s+ k)-cores is equal to the number of symmetric (s, k)-generalized Dyck paths.
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