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Abstract. Let s denote West’s stack-sorting map. A permutation is called t-sorted if it is of the
form st(µ) for some permutation µ. We prove that the maximum number of descents that a t-sorted
permutation of length n can have is

⌊
n−t
2

⌋
. When n and t have the same parity and t ≥ 2, we

give a simple characterization of those t-sorted permutations in Sn that attain this maximum. In
particular, the number of such permutations is (n− t− 1)!!.

1. Introduction

In this paper, a “permutation” is a permutation of a finite set of positive integers, written in
one-line notation. Let Sn denote the set of all permutations of the set [n]. In his Ph.D. dissertation,
West [36] introduced a function s, called the stack-sorting map, that sends permutations through
a vertical “stack” as follows. Suppose we are given an input permutation π = π1 · · ·πn. At any
point in time during the procedure, if the next entry in the input permutation is smaller than the
entry at the top of the stack or if the stack is empty, the next entry in the input permutation is
placed at the top of the stack. Otherwise, the entry at the top of the stack is annexed to the end
of the growing output permutation. This process terminates when the output permutation has
length n, and s(π) is defined to be this output permutation. The following illustration shows that
s(4162) = 1426.
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West’s stack-sorting map was actually defined as a deterministic variant of a “stack-sorting
algorithm” that Knuth introduced in [32]. In fact, Knuth’s analysis of his stack-sorting algorithm
initiated the investigation of permutation patterns, which is now a major area of research [2, 31].
It was also the first appearance of the so-called “kernel method,” which is now an indispensable
tool in enumerative and analytic combinatorics [1, 7]. The stack-sorting map has received a huge
amount of attention since its introduction in West’s dissertation [2–6,8–29,35–37]. We will mention
just a few results in this line of work, referring the reader to [2, 5, 15–25] for more details.

E-mail address: cdefant@princeton.edu.
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DESCENTS IN t-SORTED PERMUTATIONS

Bousquet-Mélou defined a permutation to be sorted if it is in the image of s, and she described a
method that allows one to determine whether or not a given permutation is sorted. She also found
a bivariate generating function equation that specifies sorted permutations, but she was unable to
remove the additional “catalytic variable.” In short, this means that counting sorted permutations
explicitly (or even obtaining asymptotic information) is hard.

In recent years, the current author [15–19, 21–25] has introduced objects called “valid hook
configurations” in order to reprove and generalize old results and to prove new results concerning
the map s. These objects allow one to compute the fertility of a permutation, which is the number
of preimages of the permutation under s. In particular, they give a method, which we describe
in Section 2, for determining if a permutation is sorted. This method and Bousquet-Mélou’s have
some similarities, but the former is better suited for our purposes (this is only an opinion).

A descent of a permutation π = π1 · · ·πn is an index i ∈ [n − 1] such that πi > πi+1. Let
des(π) denote the number of descents of π. It is known (see either [24] or Exercise 18 in Chapter
8 of [2]) that every sorted permutation of length n has at most n−1

2 descents. The authors of [24]
studied those permutations that attain this maximum, which turn out to have several interesting
properties. The exploration of those permutations began with the following characterization. Let
us say a permutation is uniquely sorted if it has exactly one preimage under s.

Theorem 1.1 ([24]). A permutation of length n is uniquely sorted if and only if it is sorted and
has exactly n−1

2 descents.

The previous theorem implies that every uniquely sorted permutation has odd length. The
authors of [24] defined a bijection between uniquely sorted permutations and certain weighted
matchings that Josuat-Vergès [30] studied in the context of free probability theory. From this,
they deduced that the number of uniquely sorted permutations in S2k+1 is Ak+1, where (Am)m≥1
is sequence A180874 in the OEIS and is known as Lassalle’s sequence [34]. This exciting new
sequence first appeared in [33], where Lassalle proved a conjecture of Zeilberger by showing that
it is increasing. In fact, the bijection established in [24] produced three new combinatorial inter-
pretations of Lassalle’s sequence; the only combinatorial interpretation known beforehand involved
the weighted matchings that Josuat-Vergès examined. The authors of [24] also showed that the

sequences (Ak+1(`))
2k+1
`=1 are symmetric, where Ak+1(`) is the number of uniquely sorted permu-

tations in S2k+1 that start with the number `. One can define the hotspot of a uniquely sorted
permutation π1 · · ·πn to be πr+1, where r is the largest element of [n − 1] such that π has n−r

2
descents in {r, . . . , n− 1}. This somewhat strange definition is justified by the surprising fact that
Ak+1(`) is the number of uniquely sorted permutations in S2k+1 with hotspot `− 1. More recently,
the current author [17] has found several bijections between sets of uniquely sorted permutations
avoiding various patterns and intervals in posets of Dyck paths.

It is typical to think of the stack-sorting map s as producing a dynamical system on Sn. Thus,
we let st denote the composition of s with itself t times. It is straightforward to check that
sn−1(π) = 123 · · ·n for every π ∈ Sn. Consequently, we can endow Sn with the structure of a rooted
tree (the “stack-sorting tree on Sn”) by letting 123 · · ·n be the root and declaring that a nonidentity
permutation σ is a child of π if s(σ) = π. One of the most well-studied notions concerning the
stack-sorting map is that of a t-stack-sortable permutation [2–6,8,9, 11,12,14,16,22,26–29,36,37],
which is a permutation π such that st(π) is increasing. When we restrict attention to Sn, we see
that these are the permutations of depth at most t in the stack-sorting tree on Sn. The definition
of a sorted permutation is in some sense dual to that of a 1-stack-sortable permutation. Indeed,
a permutation in Sn is sorted if and only if it has height at least 1 in the stack-sorting tree on
Sn. In this article, we consider permutations of height at least t in this stack-sorting tree. This

2



DESCENTS IN t-SORTED PERMUTATIONS

naturally generalizes the definition of a sorted permutation, providing a dual to the notion of a
t-stack-sortable permutation.

Definition 1.1. A permutation is called t-sorted if it is of the form st(µ) for some permutation µ.

Our main results are as follows. We phrase these results for permutations in Sn, but the analogous
statements for permutations of arbitrary finite sets of positive integers hold as well. Recall that a
left-to-right maximum of a permutation is an entry that is larger than everything to its left.

Theorem 1.2. If n ≥ t ≥ 1, then the maximum number of descents that a t-sorted permutation in
Sn can have is

⌊
n−t
2

⌋
.

Theorem 1.3. Suppose that n ≥ t ≥ 2 and that n ≡ t (mod 2). A permutation π = π1 · · ·πn ∈ Sn
is t-sorted and has n−t

2 descents if and only if its left-to-right maxima are

π1, π3, π5, . . . , πn−t+1, πn−t+2, πn−t+3, . . . , πn.

In particular, the number of such permutations is (n− t− 1)!!.

The quantity max{des(st(µ)) : µ ∈ Sn} drops by roughly a factor of 2 when t changes from 0 to
1. One might expect this quantity to drop by another constant factor when t changes from 1 to 2
or from 2 to 3. However, Theorem 1.2 tells us that this is not actually the case; when t ≥ 1 and
we increment t by 1, this maximum decreases by at most 1.

A general rule of thumb for dynamical systems is that things get much more complicated as
one considers higher and higher iterates. This is certainly true in the context of t-stack-sortable
permutations. It follows from Knuth’s analysis [32] that a permutation is 1-stack-sortable if and only
if it avoids the pattern 231, so the number of such permutations in Sn is simply the nth Catalan
number Cn = 1

n+1

(
2n
n

)
. West [36] gave a more complicated characterization of 2-stack-sortable

permutations and conjectured that the number of such permutations in Sn is 2
(n+1)(2n+1)

(
3n
n

)
. This

was proven by Zeilberger [37], and other proofs emerged later [14, 16, 26, 27, 29]. There is a much

more complicated characterization of 3-stack-sortable permutations due to Úlfarsson involving so-
called “decorated patterns,” and only very recently has a (very complicated) recurrence for these
numbers emerged [16]. Morally speaking, the article [16] tells us that 3-stack-sortable permutations
fail to conform to some of the nice patterns that 1-stack-sortable permutations and 2-stack-sortable
permutations obey. We do not even have a characterization of 4-stack-sortable permutations.

In light of this rule of thumb for dynamical systems, the utter simplicity of the characterization
in Theorem 1.3 is shocking. This theorem tells us that the set of extremal permutations attain-
ing the maximum number of descents actually becomes much simpler when we consider t-sorted
permutations for t ≥ 2 instead of sorted permutations. Indeed, recall from Theorem 1.1 that the
sorted permutations in Sn with exactly n−1

2 descents are precisely the uniquely sorted permutations
in Sn. These permutations are counted by Lassalle’s sequence, which is quite complicated (and
intriguing!). This sequence did not even appear in the literature until 2012. By contrast, when
t ≥ 2, the extremal permutations are counted by double factorials, which were understood well
before 2012. It is also interesting that when t ≥ 2, the number of such permutations only depends
on the difference n− t, which is also twice the number of descents in these permutations.

For emphasis, let us reiterate that the analogue of the characterization in Theorem 1.3 for t = 1
is false. One direction is true. If n is odd and π = π1 · · ·πn ∈ Sn has π1, π3, π5, . . . , πn as its left-to-
right maxima, then π is sorted and has n−1

2 descents (equivalently, it is uniquely sorted). However,
when n ≥ 5 is odd, there are uniquely sorted permutations of length n whose left-to-right maxima

3
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are not the entries in odd-indexed positions. For example, the uniquely sorted permutations in S5
are 21435, 31425, 32145, 32415, 42135.

2. Valid Hook Configurations

We now define valid hook configurations and state how to use them to determine if a permutation
is sorted. Let us remark that we only need valid hook configurations in order to prove Corollary
2.1 below. Therefore, the reader wishing to skip this discussion can simply accept Corollary 2.1 on
the basis of faith and proceed to Section 3.

The plot of a permutation π = π1 · · ·πn is the graph displaying the points (i, πi) for all i ∈ [n].
The left image in Figure 1 shows the plot of 3142567. A hook of π is drawn by starting at a
point (i, πi) in the plot of π, moving vertically upward, and then moving to the right until reaching
another point (j, πj). In order for this to make sense, we must have i < j and πi < πj . The point
(i, πi) is called the southwest endpoint of the hook, while (j, πj) is called the northeast endpoint. The
right image in Figure 1 shows the plot of 3142567 along with a hook that has southwest endpoint
(3, 4) and northeast endpoint (6, 6).

2
3

5

6

1

7

4

(a)

2
3

5

6

1

7

4

(b)

Figure 1. The left image is the plot of 3142567. The right image shows this plot
along with a single hook.

Definition 2.1. Let π = π1 · · ·πn be a permutation whose descents are d1 < · · · < dk. Let
H = (H1, . . . ,Hk) be a tuple of hooks of π. Let (iu, πiu) and (ju, πju) be the southwest endpoint
and the northeast endpoint of Hu, respectively. We say H is a valid hook configuration of π if the
following conditions are satisfied:

1. We have iu = du for every u ∈ {1, . . . , k}.
2. No point in the plot of π lies directly above a hook in H.
3. The hooks in H do not intersect each other except in the case that the northeast endpoint of

one hook is the southwest endpoint of another.

Figure 2 shows arrangements of hooks that are forbidden from appearing in a valid hook config-
uration by Conditions 2 and 3 in Definition 2.1. Figure 3 shows all of the valid hook configurations
of 3142567. Observe that the total number of hooks in a valid hook configuration of π is exactly k,
the number of descents of π.

The following theorem tells us how to use valid hook configurations to determine whether or not
a given permutation is sorted. It is a special consequence of Theorem 5.1 in [21].1

1The article [21] from 2017 is slightly outdated. We refer the reader to [23] (specifically, Theorem 2.1 in that article)
for a more modern treatment of valid hook configurations.
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Figure 2. Four arrangements of hooks that are forbidden in a valid hook configuration.
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Figure 3. The valid hook configurations of 3142567.

Theorem 2.1 ([21]). A permutation is sorted if and only if it has a valid hook configuration.

We can now combine Theorems 1.1 and 2.1 to prove the following corollary. This proof is the
only place where we explicitly use valid hook configurations. However, we will continue to rely
heavily on Theorem 1.1, whose proof also uses valid hook configurations.

Corollary 2.1. Let π = π1 · · ·πn be a permutation. If there is an index ` ∈ [n − 2] such that
π`+1 < π`+2 < π`, then π is not uniquely sorted.

Proof. Suppose instead that such an index ` exists and that π is uniquely sorted. Let k = des(π).
According to Theorem 1.1, n = 2k+ 1. Because π is sorted, Theorem 2.1 tells us that it has a valid
hook configuration H. It follows from Condition 3 in Definition 2.1 that the northeast endpoints of
the hooks in H are distinct. There are k hooks in H, so there are k northeast endpoints of hooks
in H. Let us say a point (i, πi) in the plot of π is a descent bottom of the plot of π if i − 1 is a
descent of π. Note that π has exactly k descent bottoms. It follows from Condition 2 in Definition
2.1 that a descent bottom cannot be the northeast endpoint of a hook in H. Since n = 2k+ 1, this
implies that the set of descent bottoms of the plot of π and the set of northeast endpoints of hooks
in H form a partition of {(i, πi) : 2 ≤ i ≤ n} into two sets of size k.

Now consider the point (` + 2, π`+2). This point is not a descent bottom of the plot of π, so it
follows from the previous paragraph that it is the northeast endpoint of a hook H in H. According
to Condition 2 in Definition 2.1, H cannot pass below the point (`, π`). This means that the
southwest endpoint of H must be (`+ 1, π`+1). However, this contradicts Condition 1 in Definition
2.1 because `+ 1 is not a descent of π. �
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3. Proofs of Main Results

The purpose of this section is to prove Theorems 1.2 and 1.3. Theorem 1.2 is already known
when t = 1, and Theorem 1.3 is only stated for t ≥ 2. Therefore, we may assume n ≥ t ≥ 2. Let
us begin by proving that every t-sorted permutation in Sn has at most n−t

2 descents.

Observe that a t-sorted permutation in Sn must end in the entries n− t+ 1, n− t+ 2, . . . , n, in
that order. This is a simple consequence of the definition of the stack-sorting map, and it is the
reason why sn−1(π) = 123 · · ·n for every π ∈ Sn. Now suppose π ∈ Sn is t-sorted. We can write
π = π′(n− t+ 2)(n− t+ 3) · · ·n for some permutation π′ ∈ Sn−t+1 that ends in the entry n− t+ 1.
There is a (t − 1)-sorted permutation σ such that s(σ) = π. Because σ is (t − 1)-sorted, we have
σ = σ′(n − t + 2)(n − t + 3) · · ·n for some σ′ ∈ Sn−t+1. By applying the stack-sorting procedure
to σ, we find that π = s(σ′(n − t + 2)(n − t + 3) · · ·n) = s(σ′)(n − t + 2)(n − t + 3) · · ·n. Thus,
π′ = s(σ′). This means that π′ is a sorted permutation in Sn−t+1, so it has at most n−t

2 descents.

Hence, π also has at most n−t
2 descents.

For our next point of business, we assume n ≡ t (mod 2) and consider a permutation π =
π1 · · ·πn ∈ Sn whose left-to-right maxima are π1, π3, π5, . . . , πn−t+1, πn−t+2, πn−t+3, . . . , πn. This
permutation has exactly n−t

2 descents, which are precisely the elements of {1, 3, 5, . . . , n − t − 1}.
We wish to show that π is t-sorted. Let π(0) = π. Let π(1) be the permutation obtained from
π(0) by sliding each of the entries π2, π4, π6, . . . , πn−t to the right by 1 position. For example, if
t = 3, n = 11, and π = π(0) = 5 1 6 2 7 3 8 4 9 10 11, then π(1) = 5 6 1 7 2 8 3 9 4 10 11. Now let π(2)

be the permutation obtained from π(1) by sliding each of the entries π2, π4, π6, . . . , πn−t (the same

entries as before) to the right by 1 position. In the above example, π(2) = 5 6 7 1 8 2 9 3 10 4 11.

Continue in this fashion to construct the permutations π(1), π(2), . . . , π(t). In the above example,
π(t) = π(3) = 5 6 7 8 1 9 2 10 3 11 4. It is straightforward to check that s(π(i)) = π(i−1) for every

i ∈ {1, . . . , t}. This shows that π = st(π(t)), so π is t-sorted.

The previous two paragraphs prove Theorem 1.2 when n and t have the same parity. In order to
complete the proof, we need to show that there is a t-sorted permutation in Sn with n−t−1

2 descents
when n 6≡ t (mod 2). In this case, we know already that there is a t-sorted permutation λ ∈ Sn−1
with n−t−1

2 descents. Let µ ∈ Sn−1 be such that st(µ) = λ. Let λ̃ ∈ Sn be the permutation
obtained by incrementing each entry in λ by 1 and then appending a 1 to the beginning of the

resulting permutation. For example, if λ = 324156, then λ̃ = 1435267. Similarly, let µ̃ ∈ Sn be
the permutation obtained by incrementing each entry in µ by 1 and then appending a 1 to the

beginning of the resulting permutation. It is straightforward to check that st(µ̃) = λ̃, so λ̃ is a
t-sorted permutation in Sn with n−t−1

2 descents.

Having completed the proof of Theorem 1.2, we proceed to prove Theorem 1.3. Let us first prove
the characterization stated in this theorem in the case in which t = 2. We are given that n ≥ 2
is even. We saw above that every permutation π = π1 · · ·πn ∈ Sn whose left-to-right maxima are
π1, π3, π5, . . . , πn−1, πn is 2-sorted and has n−2

2 descents. We need to prove the converse, which is
the statement of the following proposition.

Proposition 3.1. Let n ≥ 2 be even. Let π = π1 · · ·πn ∈ Sn be a 2-sorted permutation with n−2
2

descents. The left-to-right maxima of π are π1, π3, π5, . . . , πn−1, πn.

Proof. Because π is 2-sorted, there are permutations σ = σ1 · · ·σn and µ = µ1 · · ·µn in Sn such that
s(µ) = σ and s(σ) = π. Since π and σ are sorted, we have πn = σn = n. Thus, we can write π = π′n
and σ = σ′n, where π′ = π1 · · ·πn−1 and σ′ = σ1 · · ·σn−1. We have π = s(σ) = s(σ′n) = s(σ′)n, so

6
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s(σ′) = π′. This shows that π′ is a sorted permutation in Sn−1 with n−2
2 descents, so it is uniquely

sorted by Theorem 1.1. We now prove a sequence of claims regarding the permutation σ. Recall
that a point (u, λu) in the plot of a permutation λ = λ1 · · ·λn is called a descent bottom of the plot
of λ if u− 1 is a descent of λ. In this case, we also say that the entry λu is a descent bottom of λ.
For example, the descent bottoms of 5346127 are 1 and 3. We say an index i ∈ {2, . . . , n− 1} is a
double descent of λ if λi−1 > λi > λi+1.

Claim 1: The permutation σ has no double descents.

From the definition of the stack-sorting map, it is straightforward to verify that every descent
bottom of the permutation π = s(σ) is also a descent bottom of σ. This implies that des(σ) ≥
des(π) = n−2

2 . Now, σ is a sorted permutation in Sn, so des(σ) ≤
⌊
n−1
2

⌋
= n−2

2 . It follows that

des(σ) = des(π) = n−2
2 . Since every descent bottom of π is a descent bottom of σ, we now know

that every descent bottom of σ is a descent bottom of π. Suppose i is a double descent of σ. When
we apply the stack-sorting procedure to σ, there will be a point in time when the entry σi+1 sits on
top of σi in the stack. This prohibits σi from being a descent bottom of π, which is a contradiction
since it is a descent bottom of σ. This proves Claim 1.

Claim 2: We have σ1 < σ2.

Suppose instead that σ1 > σ2. Since σ has no double descents by Claim 1, we must have σ2 < σ3.
Let σ′′ = σ2σ1σ3σ4 · · ·σn−1 ∈ Sn−1 be the permutation obtained from σ′ by switching the positions
of its first two entries. Consider sending σ′ and σ′′ through different stacks simultaneously. When
stack-sorting σ′, the first step is to push σ1 into the stack. Next, we push σ2 into the stack.
The third step is to pop σ2 out of the stack (because σ2 < σ3). When stack-sorting σ′′, the first
step is to push σ2 into the stack. Next, we pop σ2 out of the stack (because σ2 < σ1). The
third step is to push σ1 into the stack. Thus, after taking three steps each, the two stack-sorting
procedures are in identical configurations. Indeed, in both procedures, σ2 is the only entry that
has left the stack, σ1 is the only entry in the stack, and σ3σ4 · · ·σn−1 is the remainder of the input
permutation consisting of those entries that have not yet entered the stack. From this, it follows
that s(σ′) = s(σ′′). However, this is a contradiction because s(σ′) is π′, which we previously showed
is uniquely sorted. This proves Claim 2.

Claim 3: There is a permutation λ = λ1 · · ·λn ∈ Sn such that s(λ) = σ and λ1 = σ1.

The permutation µ ∈ Sn satisfies s(µ) = σ, so we are done if σ1 = µ1. Thus, we may assume
σ1 = µj for some j ∈ {2, . . . , n}. When we send µ through the stack-sorting procedure, µj is the
first entry to leave the stack (because it is σ1). This forces µ1 > · · · > µj and µj+1 > µj . Let
λ = λ1 · · ·λn = µjµ1µ2 · · ·µj−1µj+1µj+2 · · ·µn be the permutation obtained from µ by moving the
entry µj to the beginning of the permutation and keeping all other entries in the same relative
order. Consider sending µ and λ through different stacks simultaneously. When stack-sorting µ,
the first step is to push µ1 into the stack. The second step is to push µ2 into the stack. We continue
until pushing µj into the stack in the jth step. The (j + 1)st step is to pop µj out of the stack
(because µj < µj+1). When stack-sorting λ, the first step is to push µj into the stack. The second
step is to pop µj out of the stack (because µj < µ1). The third step is to push µ1 into the stack.
We then continue until pushing µj−1 into the stack in the (j + 1)st step. Thus, after taking j + 1
steps each, the two sorting procedures are in identical configurations. Indeed, in both procedures,
µj is the only entry that has left the stack, µ1, µ2, . . . , µj−1 are the entries in the stack (listed here
from bottom to top), and µj+1µj+2 · · ·µn is the remainder of the input permutation consisting of
those entries that have not yet entered the stack. This shows that s(λ) = s(µ) = σ, so this choice
of λ has the properties needed to prove Claim 3.

7
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Claim 4: The permutation ζ = σ2σ3 · · ·σn is uniquely sorted.

Let λ be the permutation that is guaranteed to exist by Claim 3. When we send λ through
the stack-sorting procedure, λ1 is the first entry to leave the stack (because it is σ1). This means
that nothing can ever sit on top of λ1 in the stack, so λ1 < λ2. It follows that σ1ζ = σ =
s(λ) = λ1s(λ2λ3 · · ·λn) = σ1s(λ2λ3 · · ·λn), so ζ is sorted. We saw in the proof of Claim 1 that
des(σ) = n−2

2 . Claim 2 tells us that 1 is not a descent of σ, so ζ must have n−2
2 descents. Since ζ

is a sorted permutation of length n− 1, it follows from Theorem 1.1 that ζ is uniquely sorted.

Claim 5: For every descent i of σ, we have σi < σi+2.

Suppose i is a descent of σ. Note that i 6= n − 1 since σn = n (σ is sorted). This means that
it makes sense to talk about the entry σi+2. Claim 2 tells us that i ≥ 2, so i is a descent of the
permutation ζ = σ2σ3 · · ·σn. Claim 4 tells us that ζ is uniquely sorted, so it follows from Corollary
2.1 that we do not have σi+1 < σi+2 < σi. Claim 1 tells us that i+ 1 is not a double descent of σ,
so we do not have σi+2 < σi+1 < σi. The only remaining possibility is that σi+1 < σi < σi+2.

Claim 6: The descents of σ are 2, 4, 6, . . . , n−2, and the left-to-right maxima of σ are σ1, σ2, σ4, σ6,
. . . , σn.

We saw in the proof of Claim 1 that σ has n−2
2 descents, and Claim 1 itself guarantees that no

two of these descents are consecutive integers. We also know by Claim 2 that 1 is not a descent of σ.
Furthermore, since σn = n (σ is sorted), the index n− 1 is not a descent of σ. Put together, these
facts force the descents of σ to be 2, 4, 6, . . . , n− 2. Now, σ1 is obviously a left-to-right maximum
of σ. We also know that σ2 is a left-to-right maximum by Claim 2. Since 2 is a descent of σ, we
know by Claim 5 that σ3 < σ2 < σ4. This shows that σ3 is not a left-to-right maximum and that
σ4 is a left-to-right maximum. Since 4 is a descent of σ, we know by Claim 5 that σ5 < σ4 < σ6.
This shows that σ5 is not a left-to-right maximum and that σ6 is. Continuing in this fashion, we
find that the left-to-right maxima of σ are σ1, σ2, σ4, σ6, . . . , σn.

We can now finally determine the left-to-right maxima of π. It follows from Claim 6 and the
definition of s that π = s(σ) = σ1σ3σ2σ5σ4σ7σ6 · · ·σn−1σn−2σn. Claim 6 also implies that the
entries σ1, σ2, σ4, σ6, . . . , σn, which are the same as the entries π1, π3, π5, . . . , πn−1, πn, are left-to-
right maxima of π. For example, to see that σ4 is a left-to-right maximum of π, we need to check
that σ4 is larger than the entries σ1, σ2, σ3, σ5. We know that σ4 is larger than σ1, σ2, σ3 because
σ4 is a left-to-right maximum of σ, and it is larger than σ5 because 4 is a descent of σ. No
descent bottom of π can be a left-to-right maximum of π. Since des(π) = n−2

2 , there are at most

n − n−2
2 = n+2

2 left-to-right maxima of π. Hence, π1, π3, π5, . . . , πn−1, πn are the only left-to-right
maxima of π. �

Proposition 3.1 completes the proof of the characterization in Theorem 1.3 when t = 2. Let
us now assume that n ≥ t ≥ 3 and that n and t have the same parity. We already saw at the
beginning of this section that every permutation π = π1 · · ·πn ∈ Sn whose left-to-right maxima are
π1, π3, π5, . . . , πn−t+1, πn−t+2, πn−t+3 . . . , πn is t-sorted and has n−t

2 descents; we need to prove the
converse.

Let π = π1 · · ·πn ∈ Sn be an arbitrary t-sorted permutation with n−t
2 descents. Because π is t-

sorted, it is certainly (t−2)-sorted. This means that it ends in the entries n− t+3, n− t+4, . . . , n,
so we can write π = π′(n − t + 3)(n − t + 4) · · ·n for some π′ ∈ Sn−t+2. There is a (t − 2)-
sorted permutation λ ∈ Sn such that s2(λ) = π. Since λ is (t − 2)-sorted, we can write λ =

8
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λ′(n− t+ 3)(n− t+ 4) · · ·n for some λ′ ∈ Sn−t+2. We now have

π′(n−t+3)(n−t+4) · · ·n = s2(λ) = s2(λ′(n−t+3)(n−t+4) · · ·n) = s2(λ′)(n−t+3)(n−t+4) · · ·n,
so π′ = s2(λ′). This shows that π′ is a 2-sorted permutation in Sn−t+2 with n−t

2 descents. According
to Proposition 3.1, the left-to-right maxima of π′ are π1, π3, π5, . . . , πn−t+1, πn−t+2. This proves that
the left-to-right maxima of π are π1, π3, π5, . . . , πn−t+1, πn−t+2, πn−t+3, . . . , πn, as desired.

To finally complete the proof of Theorem 1.3, we need to show that the number of permutations
π = π1 · · ·πn ∈ Sn whose left-to-right maxima are π1, π3, π5, . . . , πn−t+1, πn−t+2, πn−t+3, . . . , πn is
(n− t− 1)!! (assuming again that n ≥ t ≥ 2 and that n ≡ t (mod 2)). It is convenient to think of
constructing the plot of such a permutation, which we can imagine is just a collection of n points
in the plane such that no two points lie on a common vertical or horizontal line (without regarding
the specific coordinates of these points). We will build the plot by placing points one at a time from
left to right. We first place the first point, which will represent the first entry in the permutation.
There is 1 choice for the height of the second point relative to the first point. Namely, the second
point must be lower than the first. The third point must be higher than both the first and second
points. The fourth point must be lower than the third, but we can freely choose its height relative
to the first two points. Thus, there are 3 choices for the height of the fourth point relative to the
first three. The fifth point must be higher than all of the first four points. The sixth point must be
lower than the fifth, but we can freely choose its height relative to the first four points. Thus, there
are 5 choices for the height of the sixth point relative to the first five. Continuing in this manner,
we find that there are (n− t− 1)!! ways to choose the relative heights of the first n− t points. The
final t points must be higher than all of the first n− t points, and their heights must be increasing
from left to right. Therefore, the total number of ways to construct the plot of π is (n− t− 1)!!.

4. Future Work

We have given a characterization of the t-sorted permutations in Sn that have the maximum
possible number of descents when n ≥ t ≥ 2 and n ≡ t (mod 2). A natural next step would involve
trying to understand these extremal permutations when n 6≡ t (mod 2). For example, when t = 2
and n is odd, we would like to understand (or even just count) the 2-sorted permutations in Sn
with n−3

2 descents. This appears to be much more complicated than the case in which n and t have
the same parity; any significant progress would be very interesting.
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