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Abstract. For each positive integer k, we consider five well-studied posets defined on the set of
Dyck paths of semilength k. We establish bijections between uniquely sorted permutations that
avoid various patterns and intervals in these posets. We end with several conjectures.

1. Introduction

A Dyck path of semilength k is a lattice path in the plane consisting of k (1, 1) steps (also called
up steps) and k (1,−1) steps (also called down steps) that starts at the origin and never passes
below the horizontal axis. Letting U and D denote up steps and down steps, respectively, we can
view a Dyck path of semilength k as a word over the alphabet {U,D} that contains k copies of each
letter and has the property that every prefix has at least as many U ’s as it has D’s. The number
of such paths is the kth Catalan number Ck = 1

k+1

(
2k
k

)
; this is just one of the overwhelmingly

abundant incarnations of these numbers.

Figure 1. The Dyck path UUDUUDDDUD of semilength 5.

Let Dk be the set of Dyck paths of semilength k. We obtain a natural partial order ≤S on Dk

by declaring that Λ ≤S Λ′ if Λ lies below or is equal to Λ′. Alternatively, we have Λ1 · · ·Λ2k ≤S
Λ′1 · · ·Λ′2k if and only if the number of U ’s in Λ1 · · ·Λi is at most the number of U ’s in Λ′1 · · ·Λ′i
for every i ∈ {1, . . . , 2k}. The poset (Dk,≤S) turns out to be a distributive lattice; it is known as
the kth Stanley lattice and is denoted by LSk [4]. The upper left image in Figure 2 shows the Hasse

diagram of LS3 .

The kth Tamari lattice is often defined on the set of binary plane trees with k vertices. However,
there are several equivalent definitions that allow one to define isomorphic lattices on other sets
of objects counted by the kth Catalan number. Because the Tamari lattices are so multifaceted,
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2 CATALAN INTERVALS AND UNIQUELY SORTED PERMUTATIONS

Figure 2. The Hasse diagrams of our Catalan posets for k = 3.

they have been extensively studied in combinatorics, group theory, theoretical computer science,
algebraic geometry, and algebraic topology [4, 16, 20, 35, 37, 39, 42, 46, 49, 54]. In particular, Tamari
lattices arise as the 1-skeletons of associahedra [46]. If ≤1 and ≤2 are two partial orders on the
same set X, then we say the poset (X,≤1) is an extension of the poset (X,≤2) if x ≤2 y implies
x ≤1 y for all x, y ∈ X. Bernardi and Bonichon [4] described how to define LTk , the kth Tamari

lattice, so that its underlying set is Dk; they proved that the Stanley lattice LSk is an extension of

LTk . We define LTk in Section 2.

In a now-classical paper, Kreweras [43] investigated the poset NCk of all noncrossing partitions of
the set [k] ordered by refinement, showing, in particular, that this poset is a lattice. It is difficult to
overstate the importance and ubiquity of noncrossing partitions and these lattices in mathematics
[1, 4, 42, 43, 47, 51–53]. Using a bijection between Dyck paths and noncrossing partitions, Bernardi
and Bonichon [4] defined an isomorphic copy of NCk, denoted LKk , so that its underlying set is

Dk. They also showed that LTk is an extension of LKk . We call LKk the kth Kreweras lattice.1 We
will find it more convenient to work with the noncrossing partition lattices instead of the Kreweras
lattices, so we refer the interested reader to [4] for the definition of LKk .

Bernardi and Bonichon used the name “Catalan lattices” to refer to LSk , LTk , and LKk . Building
off of earlier work of Bonichon [10], they gave unified bijections between intervals in these lattices

1We use the names “Kreweras lattice” and “noncrossing partition lattice” to distinguish the underlying sets, even
though the lattices themselves are isomorphic.
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and certain types of triangulations and realizers of triangulations. We find it appropriate to add
two additional families of posets to this Catalan clan. The first is the family of Pallo comb posets,
a relatively new family of posets introduced by Pallo in [50] as natural subposets of the Tamari
lattices and studied afterward in [2, 20]. We let PCk denote the kth Pallo comb poset. These were
defined on sets of binary trees in [20,50] and on sets of triangulations in [2]; in Section 2, we define
the Pallo comb posets on sets of Dyck paths. The second family of posets we add to the clan is
the family of Catalan antichains. That is, we let Ak denote the antichain (poset with no order
relations) defined on the set Dk.

An interval in a poset P is a pair (x, y) of elements of P such that x ≤ y. Let Int(P ) be the set
of all intervals of P . It is often interesting to count the intervals in combinatorial classes of posets,
and the Catalan posets defined above are no exceptions. De Sainte-Catherine and Viennot [21]
proved that

(1) | Int(LSk )| = CkCk+2 − C2
k+1 =

6

(k + 1)(k + 2)2(k + 3)

(
2k

k

)(
2k + 2

k + 1

)
.

Chapoton [16] proved that

(2) | Int(LTk )| = 2

(3k + 1)(3k + 2)

(
4k + 1

k + 1

)
.

In his initial investigation of the noncrossing partition lattices, Kreweras [43] proved that

(3) | Int(LKk )| = | Int(NCk)| =
1

2k + 1

(
3k

k

)
.

Aval and Chapoton [2] proved that

(4)
∑
k≥0
| Int(PCk)|xk = C(xC(x)),

where C(x) =
1−
√

1− 4x

2x
is the generating function of the sequence of Catalan numbers. Of

course, we also have

(5) | Int(Ak)| = |Dk| = Ck.

The formulas in (1), (2), (3), (4), (5) give rise to the OEIS sequences A005700, A000260, A001764,
A127632, A000108, respectively [48].

Throughout this article, the word “permutation” refers to a permutation of a set of positive
integers, written in one-line notation. Let Sn denote the set of permutations of the set [n]. The
latter half of the present article’s title refers to a special collection of permutations that arise in
the study of West’s stack-sorting map. This map, denoted by s, sends permutations of length
n to permutations of length n. It is a slight variant of the stack-sorting algorithm that Knuth
introduced in [41]. The map s was studied extensively in West’s 1990 Ph.D. thesis [58] and has
received a considerable amount of attention ever since [5–9,11–15,18,19,22–34,36,38,55,58,59]. We
give necessary background results concerning the stack-sorting map in Section 3, but the reader
seeking additional historical motivation should consult one of the references [5,8,22–32]. There are
multiple ways to define s, but the simplest is probably the following recursive definition. First, s
sends the empty permutation to itself. If π is a permutation whose largest entry is n, then we can
write π = LnR. We then define s(π) = s(L)s(R)n. For example,

s(35241) = s(3) s(241) 5 = 3 s(2) s(1) 45 = 32145.
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One of the central definitions concerning the stack-sorting map is that of the fertility of a per-
mutation π; this is simply |s−1(π)|, the number of preimages of π under s. Bousquet-Mélou called
a permutation sorted if its fertility is positive. The following much more recent definition appeared
first in [31].

Definition 1.1. We say a permutation is uniquely sorted if its fertility is 1. Let Un denote the set
of uniquely sorted permutations in Sn.

The following theorem from [31] characterizes uniquely sorted permutations. Recall that a de-
scent of a permutation π = π1 · · ·πn is an index i ∈ [n − 1] such that πi > πi+1. We let Des(π)
denote the set of descents of the permutation π and let des(π) = |Des(π)|.

Theorem 1.1 ([31]). A permutation of length n is uniquely sorted if and only if it is sorted and

has exactly
n− 1

2
descents.

Uniquely sorted permutations contain a huge amount of interesting hidden structure. The results
in [31] hint that, in some loose sense, uniquely sorted permutations are to general permutations2

what matchings are to general set partitions. For example, one immediate consequence of Theorem
1.1 is that there are no uniquely sorted permutations of even length (just as there are no matchings
of a set of odd size). The authors of [31] defined a bijection between new combinatorial objects called
“valid hook configurations” and certain weighted set partitions that Josuat-Vergès [40] studied in
the context of free probability theory. They then showed that restricting this bijection to the set
of valid hook configurations of uniquely sorted permutations induces a bijection between uniquely
sorted permutations and those weighted set partitions that are matchings. This allowed them to
prove that |U2k+1| = Ak+1, where (Am)m≥1 is OEIS sequence A180874 and is known as Lassalle’s
sequence. This fascinating new sequence first appeared in [45], where Lassalle proved a conjecture
of Zeilberger by showing that the sequence is increasing. In fact, the bijection established in [31]
produced three new combinatorial interpretations of Lassalle’s sequence; the only combinatorial
interpretation known prior involved the weighted matchings that Josuat-Vergès had examined.
The article [31] also proves that the sequences (Ak+1(`))

2k+1
`=1 are symmetric, where Ak+1(`) is the

number of elements of U2k+1 with first entry `.

The present article is meant to link uniquely sorted permutations that avoid certain patterns with
intervals in the Catalan posets discussed above. Let Un(τ (1), . . . , τ (r)) denote the set of uniquely

sorted permutations in Sn that avoid the patterns τ (1), . . . , τ (r) (see the beginning of Section 3 for
the definition of pattern avoidance). In Section 2, we define the Tamari lattices and Pallo comb
posets. Section 3 reviews relevant background concerning the stack-sorting map and permutation
patterns. Section 4 introduces new operators that act on permutations. We prove several properties
of these operators that are used heavily in the remainder of the paper and in [26]. In Section 5,
we find a bijection U2k+1(312)→ Int(LSk ), showing that 312-avoiding uniquely sorted permutations
are counted by the numbers in (1). The proof that this map is surjective actually relies on a fun
“energy argument” similar to the one used in the solution of the game “Conway’s Soldiers.” In
Section 6, we find bijections U2k+1(231) → U2k+1(132) and U2k+1(132) → Int(LTk ), showing that
the permutations in U2k+1(231) and the permutations in U2k+1(132) are counted by the numbers
in (2). In Section 7, we use generating trees to exhibit a bijection U2k+1(312, 1342) → Int(LKk ),
proving that the permutations in U2k+1(312, 1342) are counted by the numbers in (3). In Section 8,
we show that the permutations in U2k+1(231, 4132) are in bijection with the intervals in Int(PCk).

2One could also substitute “general sorted permutations” for “general permutations” in this analogy.
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In Section 9, we give bijections demonstrating that

|U2k+1(321)| = |U2k+1(132, 231)| = |U2k+1(132, 312)| = |U2k+1(231, 312)| = Ck.

Thus, these sets of permutations are in bijection with intervals of the antichain Ak. In fact, the
bijection U2k+1(312) → Int(LSk ) from Section 5 restricts to a bijection U2k+1(312, 231) → Int(Ak).
In Section 10, we quickly complete the enumeration of sets of the form U2k+1(τ

(1), . . . , τ (r)) when

τ (1), . . . , τ (r) ∈ S3. We also formulate eighteen enumerative conjectures about sets of the form
U2k+1(τ

(1), τ (2)) with τ (1) ∈ S3 and τ (2) ∈ S4.

2. Tamari Lattices and Pallo Comb Posets

In this brief section, we define the Tamari lattices and Pallo comb posets. We will not actually
need the definition of the Pallo comb posets in the rest of the article, but we include it here for the
sake of completeness.

Definition 2.1. Given Λ ∈ Dk, we can write Λ = UDγ1UDγ2 · · ·UDγk for some nonnegative
integers γ1, . . . , γk. Let longj(Λ) be the smallest nonnegative integer t such that

γj + γj+1 + · · ·+ γj+t > t.

We call longj(Λ) the longevity of the jth up step of Λ. The longevity sequence of Λ is the tuple
(long1(Λ), . . . , longk(Λ)).

Geometrically, longj(Λ) is the semilength of the longest Dyck path that we can obtain by starting

where the jth up step of Λ ends and following Λ. For instance, the longevity sequence of the Dyck
path in Figure 1 is (3, 0, 1, 0, 0). Theorem 2 in [49] and Theorem 1 in [50] characterize the Tamari
lattices and Pallo comb posets (defined on sets of binary trees) in terms of “weight sequences”
of binary trees. There is a bijection between Dyck paths and binary trees such that the weight
sequence of the tree corresponding to Λ ∈ Dk is (longk(Λ) + 1, . . . , long1(Λ) + 1). We have used
this correspondence to arrive at the following two definitions.

Definition 2.2. Given Λ,Λ′ ∈ Dk, we write Λ ≤T Λ′ if longj(Λ) ≤ longj(Λ
′) for all j ∈ [k]. The

kth Tamari lattice is the poset LTk = (Dk,≤T ).

Definition 2.3. Given Λ,Λ′ ∈ Dk, we write Λ ≤Pallo Λ′ if Λ ≤T Λ′ and if for every j ∈ [k] such
that longj(Λ) < longj(Λ

′), we have long`(Λ) ≤ j − ` − 1 for all ` ∈ [j − 1]. The kth Pallo comb
poset is PCk = (Dk,≤Pallo).

3. Stack-Sorting Background

Recall that Sn is the set of permutations of [n] and that Un is the set of uniquely sorted per-
mutations in Sn (see Definition 1.1). The normalization of a permutation π = π1 · · ·πn is the
permutation in Sn obtained from π by replacing the ith-smallest entry of π by i for all i ∈ [n]. We
say two permutations have the same relative order if their normalizations are equal. A permutation
is called normalized if it is in Sn for some n. If σ = σ1 · · ·σn and τ = τ1 · · · τm are permutations, then
we say σ contains the pattern τ if there are indices i1 < · · · < im such that σi1 · · ·σim has the same

relative order as τ . Otherwise, we say σ avoids τ . Let Av(τ (1), τ (2), . . .) be the set of normalized

permutations that avoid the patterns τ (1), τ (2), . . . (this sequence of patterns could be finite or infi-

nite). Let Avn(τ (1), τ (2), . . .) = Av(τ (1), τ (2), . . .)∩Sn and Un(τ (1), τ (2), . . .) = Av(τ (1), τ (2), . . .)∩Un.

Let U(τ (1), τ (2), . . .) denote the set of all uniquely sorted permutations in Av(τ (1), τ (2), . . .).
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The investigation of permutation patterns initiated with Knuth’s introduction of a certain “stack-
sorting algorithm” in [41]. West introduced the stack-sorting map s, which is a deterministic variant
of Knuth’s algorithm, in his dissertation [58]. Recall that the fertility of a permutation π is |s−1(π)|.
It follows from Knuth’s analysis that s−1(123 · · ·n) = Avn(231) and that |Avn(231)| = Cn, so the
fertilities of increasing permutations are Catalan numbers. West also went to great lengths to
calculate the fertilities of the permutations of the forms

23 · · · k1(k + 1) · · ·n, 12 · · · (k − 2)k(k − 1)(k + 1) · · ·n, and k12 · · · (k − 1)(k + 1) · · ·n.

The very particular forms of these permutations indicates that computing fertilities of permutations
is, a priori, a difficult task.

Bousquet-Mélou [12] provided an algorithm for determining whether or not a given permutation
is sorted (i.e., has positive fertility). She then asked for a general method for computing the
fertility of any given permutation. The present author accomplished this in much greater generality
in [28–30,32] ([32] is joint with Kravitz) by introducing new combinatorial objects called “valid hook
configurations.” He and his coauthors have since developed and applied the theory of valid hook
configurations in order to reprove several known results and establish many new results concerning
the stack-sorting map [22,23,25,26,28–32].

Bousquet-Mélou’s algorithm for determining if a permutation is sorted proceeds by describing
how to compute the so-called “canonical tree” of a permutation, which is unique if it exists. A
permutation is sorted if and only if it has a canonical tree. The current author [29] translated
this algorithm into the language of valid hook configurations, defining the “canonical valid hook
configuration” of a permutation. We are fortunate in this article that we do not need all of the
definitions and main theorems concerning valid hook configurations. In order to work with uniquely
sorted permutations, we will only need to define canonical valid hook configurations.

The plot of a permutation π = π1 · · ·πn is obtained by plotting the points (i, πi) for all i ∈ [n].
A hook H of π is drawn by starting at a point (i, πi) in the plot of π, moving vertically upward,
and then moving to the right to connect with a different point (j, πj). In order to do this, we must
have i < j and πi < πj . The point (i, πi) is called the southwest endpoint of H, while (j, πj) is
called the northeast endpoint of H. We say a point (r, πr) lies strictly below H if i < r < j and
πr < πj . We say (r, πr) lies weakly below H if it lies strictly below H or if r = j. The left image in
Figure 3 shows the plot of a permutation along with a single hook.

Canonical Valid Hook Configuration Construction

Recall that a descent of π = π1 · · ·πn is an index i ∈ [n−1] such that πi > πi+1. Let d1 < · · · < dk
be the descents of π. The canonical valid hook configuration of π is the tuple H = (H1, . . . ,Hk)
of hooks of π defined as follows. First, the southwest endpoint of the hook Hi is (di, πdi). We
let Ni denote the northeast endpoint of Hi. We determine these northeast endpoints in the order
Nk,Nk−1, . . . ,N1. First, Nk is the leftmost point lying above and to the right of (dk, πdk). Next,
Nk−1 is the leftmost point lying above and to the right of (dk−1, πdk−1

) that does not lie weakly
below Hk. In general, N` is the leftmost point lying above and to the right of (d`, πd`) that does
not lie weakly below any of the hooks Hk, Hk−1, . . . ,H`+1. If there is any time during this process
when the point N` does not exist, then π does not have a canonical valid hook configuration. See
the right part of Figure 3 for an example of this construction. ♦

The following useful proposition is a consequence of the discussion of canonical valid hook con-
figurations in [29], although it is essentially equivalent to Bousquet-Mélou’s algorithm in [12]. In
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Figure 3. On the left is the plot of 2 7 3 5 9 4 8 1 6 10 11 12 along with one hook
whose southwest endpoint is (5, 9) and whose northeast endpoint is (11, 11). The
points lying strictly below this hook are (6, 4), (7, 8), (8, 1), (9, 6), (10, 10). These five
points and (11, 11) are the points lying weakly below the hook. The right image
shows the canonical valid hook configuration of 2 7 3 5 9 4 8 1 6 10 11 12.

combination with Theorem 1.1, this proposition allows us to determine whether or not a given
permutation is uniquely sorted.

Proposition 3.1 ([29]). A permutation is sorted if and only if it has a canonical valid hook con-
figuration.

We end this section by recording some lemmas regarding canonical valid hook configurations
that will prove useful in subsequent sections. Let us say a point (i, πi) in the plot of a permutation
π = π1 · · ·πn is a descent top of the plot of π if i is a descent of π. Similarly, say (i, πi) is a descent
bottom of the plot of π if i− 1 is a descent of π. The point (i, πi) is called a left-to-right maximum
of the plot of π if it is higher than all of the points to its left.

Lemma 3.1. Let π be a uniquely sorted permutation of length 2k + 1. Let N1, . . . ,Nk be the
northeast endpoints of the hooks in the canonical valid hook configuration of π. Let DB(π) be the
set of descent bottoms of the plot of π. The two k-element sets DB(π) and {N1, . . . ,Nk} form a
partition of the set {(i, πi) : 2 ≤ i ≤ 2k + 1}.

Proof. Theorem 1.1 tells us that we do indeed have |DB(π)| = des(π) = k. Let d1 < · · · < dk
be the descents of π, and let H = (H1, . . . ,Hk) be the canonical valid hook configuration of
π. By convention, Hi has southwest endpoint (di, πdi) and northeast endpoint Ni. We must
show that DB(π) and {N1, . . . ,Nk} are disjoint. If this were not the case, then we would have
(d` + 1, πd`+1) = Nm for some `,m ∈ {1, . . . , k}. The southwest endpoint of Hm is (dm, πdm), and
this must lie below and to the left of Nm. Thus, m < `. Also, Nm lies strictly below the hook H`.
Referring to the canonical valid hook configuration construction to see how Nm was defined, we
find that this is impossible. �

Lemma 3.2. Let π ∈ U2k+1(312), and let H = (H1, . . . ,Hk) be the canonical valid hook configura-
tion of π. Let Ni denote the northeast endpoint of Hi. The left-to-right maxima of the plot of π
are precisely the points (1, π1),N1, . . . ,Nk.

Proof. Let DB(π) be the set of descent bottoms of the plot of π. Because π avoids 312, every point
in the plot of π that is not in DB(π) must be a left-to-right maximum of the plot of π. On the
other hand, none of the points in DB(π) are left-to-right maxima of the plot of π. The desired
result now follows from Lemma 3.1. �
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4. Permutation Operations

In this section, we establish several definitions and conventions regarding permutations. It will
often be convenient to associate permutations with their plots. From this viewpoint, a permutation
is essentially just an arrangements of points in the plane such that no two distinct points lie on a
single vertical or horizontal line. When viewing permutations in this way, we do not distinguish
between two permutations that have the same relative order. In other words, the plots that we
draw are really meant to represent equivalence classes of permutations, where two permutations are

equivalent if they have the same relative order. For example, if λ = 21 and µ = 12, then

represents (the equivalence class of) 1243.

Given a permutation π = π1 · · ·πn ∈ Sn, we let rev(π) = πn · · ·π1 be the reverse of π. Let π−1

be the inverse of π in the group Sn; this is the permutation in Sn in which the entry i appears in
the πthi position. Geometrically, we obtain the plot of rev(π) by reflecting the plot of π through
the line x = (n+ 1)/2. We obtain the plot of π−1 by reflecting the plot of π though the line y = x.
Let rot(π) (respectively, rot−1(π)) be the permutation whose plot is obtained by rotating the plot
of π counterclockwise (respectively, clockwise) by 90◦. Equivalently, rot(π) = rev(π−1).

The sum of two permutations µ and λ, denoted µ ⊕ λ, is the permutation obtained by placing
the plot of λ above and to the right of the plot of µ. The skew sum of µ and λ, denoted µ	 λ, is
the permutation obtained by placing the plot of λ below and to the right of the plot of µ. In our
geometric point of view, we have

µ⊕ λ = and µ	 λ = .

For each i ∈ [n], we define four “sliding operators” on Sn. The first, denoted3 swui, essentially
takes the points in the plot of a permutation π that lie southwest of the point with height i and
slides them up above all the points that are southeast of the point with height i. We illustrate this
operator in Figure 4. To define this more precisely, let Li (respectively, Ri) be the set of elements
of [i− 1] that lie to the left (respectively, right) of i in π. If πj ≥ i, then the jth entry of swui(π) is

πj . If πj < πi, then either πj ∈ Li or πj ∈ Ri. If πj is the mth-smallest element of Ri, then the jth

entry of swui(π) is m. If πj is the mth-largest element of Li, then the jth entry of swui(π) is i−m.

Figure 4. The operator swu6 slides the points to the southwest of the point with
height 6 (shaded in pink) up.

3The name of the operator stands for “southwest up.”
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The second operator we define is swdi, which takes the points in the plot of π that lie southwest
of the point with height i and slides them down below the points lying to the southeast of that
point. We can define this operator formally by

swdi(π) = rev(swui(rev(π))).

The third and fourth operators, swli and swri, are defined by

swli(π) = rot−1(swui(rot(π))) and swri(π) = rot−1(swdi(rot(π))).

The operator swli takes the points to the southwest of the point in position i and slides them to
the left; the operator swri slides them to the right. We illustrate swr6 in Figure 5. We can also
define these maps on arbitrary permutations by normalizing the permutations, applying the maps,
and then “unnormalizing.” For example, since swu4(1243) = 2341, we have swu4(2496) = 4692.

Figure 5. The operator swr6 slides the points to the southwest of the point in
position 6 (shaded in pink) to the right.

We define swu : Sn → Sn by

swu = swu1 ◦ swu2 ◦ · · · ◦ swun .

An alternative recursive way of thinking of this map, which we illustrate in Figure 6, is as follows.
Let us write π = LnR. We have

swu(π) = (swu(L)⊕ 1)	 swu(R).

This recursive definition requires us to define swu on arbitrary permutations, which we can do
by normalizating, applying swu, and then unnormalizing. The reader should imagine this sliding
operator as acting on a collection of points in the plane instead of a string of numbers. Similarly,
let

swd = swd1 ◦ swd2 ◦ · · · ◦ swdn, swl = swl1 ◦ swl2 ◦ · · · ◦ swln, swr = swr1 ◦ swr2 ◦ · · · ◦ swrn .

As before, we can also define these maps for arbitrary permutations. By a slight abuse of notation,
we use the symbols swu, swd, swl, swr to denote the maps defined on all permutations of all lengths
(or alternatively, on their equivalence classes).

Figure 6. A recursive definition of the map swu.
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Lemma 4.1. The maps

swu : Av(231)→ Av(132) and swd : Av(132)→ Av(231)

are inverse bijections. The maps

swl : Av(132)→ Av(312) and swr : Av(312)→ Av(132)

are inverse bijections.

Proof. We first prove by induction on n that

swu : Avn(231)→ Avn(132) and swd : Avn(132)→ Avn(231)

are inverse bijections. This is clear if n = 0 or n = 1, so assume n ≥ 2. Choose π ∈ Avn(231), and
write π = LnR. Because π avoids 231, we have π = L⊕ (1	R). Furthermore, L and R avoid 231.
The recursive definition of swu tells us that swu(π) = (swu(L) ⊕ 1) 	 swu(R). By induction, we
find that swu(L) and swu(R) avoid 132, so swu(π) also avoids 132. Moreover, there is a recursive
definition of swd analogous to the recursive definition of swu that yields

swd(swu(π)) = swd((swu(L)⊕ 1)	 swu(R)) = swd(swu(L))⊕ (1	 swd(swu(R))).

By induction on n, this is just L ⊕ (1 	 R), which is π. This shows that swd is a left inverse
of swu, and a similar argument with the roles of swd and swu reversed shows that swd is also a
right inverse of swu. The second statement now follows easily from the first if we use the fact that
swl = rot−1 ◦ swu ◦ rot. �

Lemma 4.2. The maps

swu : Av(231, 312)→ Av(132, 312) and swd : Av(132, 312)→ Av(231, 312)

are inverse bijections. The maps

swl : Av(132, 231)→ Av(231, 312) and swr : Av(231, 312)→ Av(132, 231)

are inverse bijections.

Proof. To prove the first statement, we must show that swu(Avn(231, 312)) = Avn(132, 312) for all
n ≥ 1. This is clear if n ≤ 2, so we may assume n ≥ 3 and induct on n. Choose π ∈ Avn(231, 312).
Because π avoids 231, we can write π = L⊕(1	R) for some permutations L,R ∈ Av(231, 312). Note
that R is a decreasing permutation because π avoids 312. By induction, swu(L) ∈ Av(132, 312).
Also, swu(R) = R. The recursive definition of swu tells us that swu(π) = (swu(L)⊕ 1)	 swu(R).
The permutation swu(π) certainly avoids 132. Since swu(L) avoids 312 and swu(R) = R is de-
creasing, swu(π) avoids 312. This proves that swu(Avn(231, 312)) ⊆ Avn(132, 312) for all n ≥ 1. A
similar argument with swu replaced by swd proves the reverse containment. The second statement
now follows from the first if we use the fact that swl = rot−1 ◦ rev ◦ swd ◦ rev ◦ rot. �

In the following lemma, recall that Des(π) denotes the set of descents of π.

Lemma 4.3. For every permutation π, we have Des(swu(π)) = Des(π). If π ∈ Av(312), then
des(swr(π)) = des(π−1) = des(π). If π ∈ Av(132), then des(swl(π)) = des(π−1) = des(π).

Proof. For each i ∈ [n] and σ ∈ Sn, it is clear from the definition of swui that Des(swui(σ)) =
Des(σ). The first claim now follows from the fact that swu(π) = swu1 ◦ · · · ◦ swun(π). Now assume
π ∈ Avn(312). The second claim is trivial if n ≤ 1, so we may assume n ≥ 2 and induct on n.
Because π avoids 312, we can write π = λ ⊕ (µ 	 1) for some λ ∈ Av(312) and µ ∈ Av(312). We
have π−1 = λ−1 ⊕ (1 	 µ−1), so we can use induction to see that des(π) = des(λ) + des(µ) + 1 =
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des(λ−1) + des(µ−1) + 1 = des(π−1). Similarly, the recursive definition of swr (which is analogous
to the recursive definition that we gave for swu) tells us that swr(π) = swr(µ)	 (swr(λ)⊕ 1). We
know by induction that des(swr(µ)) = des(µ) and des(swr(λ)) = des(λ). We want to prove that
des(swr(π)) = des(π). If µ is empty, then

des(swr(π)) = des(swr(λ)) = des(λ) = des(π).

If µ is nonempty, then

des(swr(π)) = des(swr(µ)) + des(swr(λ)) + 1 = des(µ) + des(λ) + 1 = des(π).

The proof of the third claim is completely analogous to the proof of the second. �

Lemma 4.4. If π is a sorted permutation, then swu(π) and swd(π) are sorted. If, in addition, π
avoids 132, then swl(π) is sorted.

Proof. Assume σ ∈ Sn is sorted, and let H be its canonical valid hook configuration, which is
guaranteed to exist by Proposition 3.1. For i ∈ [n], we claim that swui(σ) is sorted. To see
this, note that the plot of swui(σ) is obtained from the plot of σ by sliding some points up and
sliding other points down. During this process, let us simply keep the hooks in H attached to their
southwest and northeast endpoints. This is illustrated in Figure 7. The resulting configuration of
hooks is the canonical valid hook configuration of swui(σ).4 Crucially, we are using the fact, which
follows from the canonical valid hook configuration construction, that no hooks in H pass below the
point with height i in the plot of σ (no hook can ever pass below any point in the plot). A similar
argument shows that swdi(σ) is sorted. As i and σ were arbitrary, we find that if π is sorted, then
swu(π) = swu1 ◦ · · · ◦ swun(π) and swd(π) = swd1 ◦ · · · ◦ swdn(π) are sorted.
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Figure 7. The canonical valid hook configuration of σ transforms into the canonical
valid hook configuration of swu9(σ).

To help us prove the second statement, let us define def(σ) to be the smallest nonnegative
integer ` such that σ ⊕ (123 · · · `) is sorted.5 Thus, def(σ) = 0 if and only if σ is sorted. Roughly
speaking, one can think of def(σ) as the number of descent tops in the plot of σ that cannot find
corresponding northeast endpoints for their hooks during the canonical valid hook configuration
construction. From this interpretation, one can verify that for every permutation σ and every
nonempty permutation τ , we have

(6) def(σ ⊕ τ) ≤ max{0,def(σ)− 1}+ def(τ) and def(τ 	 σ) = def(τ) + def(σ) + 1.

4It follows from the results in [27] that σ and swui(σ) actually have the same fertility, but we do not need the full
strength of that result in this article.

5The abbreviation def stands for “deficiency,” not “Defant.”
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Furthermore, the inequality on the left is an equality when τ = 1. That is,

(7) def(σ ⊕ 1) = max{0, def(σ)− 1}.
We claim that if π avoids 132, then def(swl(π)) ≤ def(π). In particular, this will prove that if π
avoids 132 and is sorted, then swl(π) is sorted. The proof of this claim is by induction on the length
n of the permutation π. We are done if n ≤ 2 since swl(π) = π in that case, so we may assume that
n ≥ 3. Since π avoids 132, we can write π = µ	 (λ⊕ 1) for some permutations λ and µ that avoid
132. The recursive definition of swl tells us that swl(π) = swl(λ)⊕ (swl(µ)	 1). By induction,

(8) def(swl(λ)) ≤ def(λ) and def(swl(µ)) ≤ def(µ).

If µ is nonempty, then we can apply (6), (7), and (8) to find that

def(swl(π)) = def(swl(λ)⊕ (swl(µ)	 1)) ≤ max{0,def(swl(λ))− 1}+ def(swl(µ)	 1)

= max{0,def(swl(λ))− 1}+ def(swl(µ)) + def(1) + 1 ≤ max{0, def(λ)− 1}+ def(µ) + def(1) + 1

= max{0, def(λ)− 1}+ def(µ) + 1 = def(λ⊕ 1) + def(µ) + 1 = def(µ	 (λ⊕ 1)) = def(π).

If µ is empty, then (7) and (8) imply that

def(swl(π)) = def(swl(λ)⊕ 1) = max{0, def(swl(λ))− 1}
≤ max{0, def(λ)− 1} = def(λ⊕ 1) = def(π). �

5. Stanley Intervals and U2k+1(312)

Throughout this section, we assume π = π1 · · ·πn ∈ Un(312) and let n = 2k + 1. Let Λi = D
if n − i ∈ Des(π), and let Λi = U otherwise. Let Λ′i = U if i ∈ Des(rot(π)), and let Λ′i = D
otherwise. Form the words Λ = Λ1 · · ·Λ2k and Λ′ = Λ′1 · · ·Λ′2k over the alphabet {U,D}, and let

ΛΛk(π) = (Λ,Λ′). Figure 8 illustrates this procedure. Our goal is to show that ΛΛk(π) ∈ Int(LSk )
and that the resulting map

ΛΛk : U2k+1(312)→ Int(LSk )

is bijective.6

9
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5

4

3

2
1

Figure 8. An example illustrating the definition of ΛΛ4. Imagine taking the purple
path drawn on the permutation and rotating it 180◦ to obtain the purple Dyck path
on the bottom. Similarly, rotate the green path drawn on the permutation by 90◦

clockwise to obtain the reverse of the green Dyck path on the top.

Lemma 3.2 tells us that the left-to-right maxima of the plot of π are (1, π1),N1, . . . ,Nk, where
N1, . . . ,Nk are the northeast endpoints of the hooks in the canonical valid hook configuration of
π. It will be useful to keep in mind that πn = n because π is sorted. Let R0, . . . ,Rk be these left-
to-right maxima, written in order from right to left (for example, R0 = (n, n) and Rk = (1, π1)).

6We use the letter Λ to denote Dyck paths because it resembles an up step followed by a down step. The “double
lambda” symbol ΛΛ is meant to resemble two copies of Λ since the bijections output pairs of Dyck paths.
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To improve readability, we also let P(i) = (i, πi). From π, we obtain a k× k matrix M(π) = (mij)
as follows. First, let mij = 0 whenever j ≤ k − i (in other words, the matrix obtained by “turning
M(π) upside down” is upper-triangular). If j > k − i, then we let mij be the number of points in
the plot of π that lie between Rk−j and Rk−j+1 horizontally and lie between Ri and Ri+1 vertically
(we make the convention that all points “lie above Rk+1,” even though Rk+1 is not actually a point
that we have defined). Alternatively, we can imagine drawing vertical lines through the points
R0, . . . ,Rk and horizontal lines through R1, . . . ,Rk to produces an array of cells as in Figure 9.
The matrix M(π) is now obtained by recording the number of points in each of these cells.

M(π) =


0 0 0 1
0 0 0 0
0 0 0 0
2 0 1 0



Figure 9. The array of cells and the corresponding matrix M(π).

Remark 5.1. In the array of cells we have just described, the points appearing in each column
must be decreasing in height from left to right because π avoids 312. Similarly, the points appearing
in each row must be decreasing in height from left to right. This tells us that the permutation π
is uniquely determined by the matrix M(π). Indeed, the matrix tells us how many points to place
in each cell, and the positions of all of the point relative to each other are then determined by the
fact that the points within rows and columns are decreasing in height. ♦

We now return to the definition of ΛΛk. One can check that Λ = UDγ1UDγ2 · · ·UDγk and
Λ′ = UDγ′1UDγ′2 · · ·UDγ′k , where γi is the sum of the entries in column k − i + 1 of M(π) and γ′i
is the sum of the entries in row i of M(π). Because every nonzero entry in one of the first i rows
of M(π) is also in one of the last i columns of M(π), we have

(9) γ1 + · · · γi ≥ γ′1 + · · · γ′i for all i ∈ {1, . . . , k}.

Lemma 5.1. Preserving the notation from above, we have ΛΛk(π) ∈ Int(LSk ).

Proof. Let us check that Λ and Λ′ are actually Dyck paths. Because π has k descents, exactly half
of the letters in Λ are equal to U . We can use Lemma 4.3 and the fact that rot(π) = rev(π−1) to
see that des(rot(π)) = des(rev(π−1)) = 2k − des(π−1) = 2k − des(π) = k. Therefore, exactly half
of the letters in Λ′ are equal to U .

Recall that n = 2k + 1. Choose p ∈ {1, . . . , 2k}, and let u be the number of appearances of the
letter U in Λ1 · · ·Λp. For i ∈ {1, . . . , 2k}, we have Λi = D if and only if P(n− i+ 1) is in DB(π),
the set of descent bottoms in the plot of π. Because DB(π) and {N1, . . . ,Nk} form a partition of
{P(r) : 2 ≤ r ≤ n} by Lemma 3.1, we have Λi = U if and only if P(n − i + 1) ∈ {N1, . . . ,Nk}.
This means that u is the number of northeast endpoints (in the canonical valid hook configuration
of π) that lie in the set {P(n− p+ 1), . . . ,P(n)}. Also, p−u is the number of appearances of D in
Λ1 · · ·Λp, which is |Des(π) ∩ {n − p, . . . , n − 1}|. This is the number of southwest endpoints that
lie in the set {P(n− p), . . . ,P(n− 1)}. Each of these southwest endpoints must belong to a hook
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whose northeast endpoint is in {P(n − p + 1), . . . ,P(n)}, so p − u ≤ u. As p was arbitrary, this
proves that Λ is a Dyck path.

Let us keep p and u as in the preceding paragraph. Let u′ be the number of appearances of U
in Λ′1 · · ·Λ′p. We will show that u′ ≥ u. As p was arbitrary, this will prove that Λ′ is a Dyck path
and that Λ ≤S≤ Λ′. We can write

Λ1 · · ·Λp = UDγ1UDγ2 · · ·UDγu−1UDδ and Λ′1 · · ·Λ′p = UDγ′1UDγ′2 · · ·UDγ′
u′−1UDδ′

for some δ ∈ {0, . . . , γu} and δ′ ∈ {0, . . . , γ′u′}. For the sake of finding a contradiction, assume
u ≥ u′ + 1. Since Λ1 · · ·Λp and Λ′1 · · ·Λ′p have the same length, the former must have fewer copies
of D than the latter has. In symbols, this says that γ1 + · · · γu−1 + δ < γ′1 + · · · γ′u−1 + δ′. Using
(9) and the assumption that u ≥ u′ + 1, we obtain our desired contradiction from the chain of
inequalities

γ1 + · · · γu−1 + δ ≥ γ1 + · · · γu−1 ≥ γ1 + · · · γu′ ≥ γ′1 + · · · γ′u′ ≥ γ′1 + · · · γ′u′−1 + δ′. �

We need one additional technical lemma before we can prove the invertibility of ΛΛk. Given a
k×k matrix M = (mij) and indices r, r′, c, c′ ∈ {1, . . . , k}, consider the matrix obtained by deleting
all rows of M except rows r and r′ and deleting all columns of M except columns c and c′. We say
this new matrix is a lower 2× 2 submatrix of M if k+ 1− c ≤ r < r′ and c < c′. Define the energy

of M to be e(M) =
∑k

i=1

∑k
j=1 2i−jmij .

Lemma 5.2. Let a1, . . . , ak, b1, . . . , bk be nonnegative integers such that a1 + · · ·+ak = b1 + · · ·+bk
and ak−i+1+· · ·+ak ≤ bk−i+1+· · ·+bk for all i ∈ {1, . . . , k}. There exists a k×k matrix M = (mij)
with nonnegative integer entries such that

(i) mij = 0 whenever j ≤ k − i;
(ii) the sum of the entries in column i of M is bi for every i ∈ {1, . . . , k};

(iii) the sum of the entries in row i of M is ak−i+1 for every i ∈ {1, . . . , k};
(iv) in every lower 2× 2 submatrix of M , either the bottom left entry or the top right entry is 0.

Proof. Let us first prove that there is a k × k matrix M satisfying properties (i)–(iii). Let R =
a1 + · · · + ak = b1 + · · · + bk. We induct on both k and R, observing that the proof is trivial
if k = 1 or R = 0. Assume k ≥ 2 and R ≥ 1. Let us first consider the case in which bk = 0.
Since ak ≤ bk, we have ak = 0 as well. Notice that a1 + · · · + ak−1 = b1 + · · · + bk−1 and
a(k−1)−i+1 + · · · + ak−1 ≤ b(k−1)−i+1 + · · · + bk−1 for all i ∈ {1, . . . , k − 1}. Using the induction
hypothesis (inducting on k), we find that there is a matrix M ′ = (m′ij) such that the properties

(i)–(iii) are satisfied when we replace k by k − 1 and replace M by M ′. Now let mij = 0 when
i = 1 or j = k, and let mij = m′(i−1)j when i ≥ 2 and j ≤ k − 1. The matrix M = (mij) satisfies

properties (i)–(iii).

We now consider the case in which bk ≥ 1. Let ` be the smallest positive integer such that
ak−`+1 ≥ 1. Let b′i = bi for i 6= k, and let b′k = bk − 1. Let a′i = ai for i 6= k − ` + 1, and
let a′k−`+1 = ak−`+1 − 1. Note that a′1 + · · · + a′k = b′1 + · · · + b′k = R − 1. If i < `, then
a′k−i+1 + · · · + a′k = ak−i+1 + · · · + ak = 0 ≤ b′k−i+1 + · · · + b′k. If i ≥ `, then a′k−i+1 + · · · + a′k =
ak−i+1 + · · ·+ ak − 1 ≤ bk−i+1 + · · ·+ bk − 1 = b′k−i+1 + · · ·+ b′k. This shows that the hypotheses
of the lemma are satisfied by a′1, . . . , a

′
k, b
′
1, . . . , b

′
k. By induction on R, we see that there is a

matrix M ′ = (m′ij) such that properties (i)–(iii) are satisfied when we replace a1, . . . , ak, b1, . . . , bk
by a′1, . . . , a

′
k, b
′
1, . . . , b

′
k and replace M by M ′. Let mij = m′ij when (i, j) 6= (k − ` + 1, k), and let

m(k−`+1)k = m′(k−`+1)k + 1. The matrix M = (mij) satisfies properties (i)–(iii).



CATALAN INTERVALS AND UNIQUELY SORTED PERMUTATIONS 15

If M does not satisfy property (iv), then we can define a “move” on M as follows. Choose
r, r′, c, c′ ∈ {1, . . . , k} with k + 1 − c ≤ r < r′ and c < c′ such that mr′c and mrc′ are positive.
Now replace the entries mrc,mrc′ ,mr′c,mr′c′ with the entries mrc + 1,mrc′ − 1,mr′c − 1,mr′c′ + 1,

respectively. Performing a move produces a new matrix M̃ that still satisfies properties (i)–(iii).
Considering the energies of these matrices, which we defined above, we find that

e(M)−e(M̃) = −2r−c+2r−c
′
+2r

′−c−2r
′−c′ ≥ −2(r

′−1)−c+2r−c
′
+2r

′−c−2r
′−(c+1) = 2r−c

′ ≥ 21−k.

This shows that after applying a finite sequence of moves, we will eventually obtain a matrix that
satisfies all of the properties (i)–(iv). �

Theorem 5.1. For each nonnegative integer k, the map ΛΛk : U2k+1(312)→ Int(LSk ) is a bijection.

Proof. We first prove surjectivity. Fix (Λ,Λ′) ∈ Int(LSk ), and write Λ = UDγ1UDγ2 · · ·UDγk and

Λ′ = UDγ′1UDγ′2 · · ·UDγ′k . Put ai = γ′k−i+1 and bi = γk−i+1. The fact that Λ and Λ′ are Dyck
paths guarantees that a1 + · · · + ak = b1 + · · · + bk = k. The fact that Λ ≤S Λ′ tells us that
ak−i+1 + · · · + ak ≤ bk−i+1 + · · · + bk for all i ∈ {1, . . . , k}. Appealing to Lemma 5.2, we obtain
a matrix M = (mij) satisfying the properties (i)–(iv) listed in the statement of that Lemma. It
follows from Remark 5.1 that we can use such a matrix to obtain a permutation π ∈ Sn (where
n = 2k + 1) with M(π) = M and with the property that Λi = D if and only if n− i ∈ Des(π) and
Λ′i = U if and only if i ∈ Des(rot(π)). Because D appears exactly k times in Λ, the permutation
π has exactly k descents. The construction of π described in Remark 5.1 along with property
(iv) from Lemma 5.2 guarantee that π avoids 312. To see that π is uniquely sorted, it suffices
by Theorem 1.1 and Proposition 3.1 to see that it has a canonical valid hook configuration. This
follows from the fact that every prefix of Λ contains at least as many copies of U as copies of D.
Indeed, if d1 < . . . < dk are the descents of π, then this property of Λ guarantees that the plot of π
has at least ` left-to-right maxima to the right of P(dk−`+1) for every ` ∈ {1, . . . , k}. This means
that it is always possible to find a northeast endpoint for the hook Hk−`+1 when we construct the
canonical valid hook configuration of π. Consequently, π ∈ U2k+1(312). Properties (ii) and (iii)
from Lemma 5.2 ensure that ΛΛk(π) = (Λ,Λ′).

To prove injectivity, let us assume by way of contradiction that there are distinct π, π′ ∈
U2k+1(312) with ΛΛk(π) = ΛΛk(π

′) = (Λ,Λ′), where (Λ,Λ′) is as above. According to Remark
5.1, the matrices M(π) = (mij) and M(π′) = (m′ij) uniquely determine π and π′, respectively.

Therefore, these matrices are distinct. However, both of these matrices satisfy properties (i)–(iv)
from Lemma 5.2, where ai = γ′k−i+1 and bi = γk−i+1. Because they are distinct, we can find a pair
(i0, j0) with mi0j0 6= m′i0j0 . We may assume that j0 was chosen maximally, which means mij = m′ij
whenever j > j0. We may assume that i0 was chosen maximally after j0 was chosen, meaning
mij0 = m′ij0 whenever i > i0. We may assume without loss of generality that mi0j0 > m′i0j0 .

Because M(π) and M(π′) satisfy property (ii), their jth0 columns have the same sum. This means
that there exists i1 6= i0 with mi1j0 < m′i1j0 . In particular, m′i1j0 is positive. The maximality of

i0 guarantees that i1 < i0. Because M(π) and M(π′) satisfy property (iii), their ith1 rows have the
same sum. This means that there exists j1 6= j0 with mi1j1 > m′i1j0 . The maximality of j0 guaran-

tees that j1 < j0. Since M(π) satisfies property (i) and mi1j1 > 0, we must have k + 1 − j1 ≤ i1.

Now, the jth1 columns of M(π) and M(π′) have the same sum, so there exists i2 6= i1 such that
mi2j1 < m′i2j1 . If i2 > i1, then m′i2j1 and m′i1j0 are positive numbers that form the bottom left

and top right entries in a lower 2 × 2 submatrix of M(π). This is impossible since M(π) satisfies
property (iv), so we must have i2 < i1. Continuing in this fashion, we find decreasing sequences of
positive integers i0 > i1 > i2 > · · · and j0 > j1 > j2 > · · · . This is our desired contradiction. �
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Combining Theorem 5.1 with equation (1) yields the following corollary.

Corollary 5.1. For each nonnegative integer k,

|U2k+1(312)| = CkCk+2 − C2
k+1 =

6

(k + 1)(k + 2)2(k + 3)

(
2k

k

)(
2k + 2

k + 1

)
.

6. Tamari Intervals, U2k+1(132), and U2k+1(231)

In Section 4, we introduced sliding operators swu, swd, swl, swr. In the previous section, we
found bijections ΛΛk : U2k+1(312) → Int(LSk ), where LSk is the kth Stanley lattice. Recall that

LTk is the kth Tamari lattice, which we defined in Section 2. The purpose of the current section
is to show that for each nonnegative integer k, the maps swu : U2k+1(231) → U2k+1(132) and
ΛΛk ◦ swl : U2k+1(132) → Int(LTk ) are bijections.7 We have actually already done all of the heavy
lifting needed to establish the first of these bijections.

Theorem 6.1. For each nonnegative integer k, the maps swu : U2k+1(231) → U2k+1(132) and
swd : U2k+1(132)→ U2k+1(231) are inverse bijections.

Proof. Lemma 4.1 tells us that swu : Av(231) → Av(132) and swd : Av(132) → Av(231) are
inverse bijections. These maps also preserve lengths of permutations, so it suffices to show that
they map uniquely sorted permutations to uniquely sorted permutations. If π ∈ U2k+1(231), then
we know from Theorem 1.1 and Lemma 4.3 that des(swu(π)) = des(π) = k. Lemma 4.4 tells us
that swu(π) is sorted, so it follows from Theorem 1.1 that swu(π) is uniquely sorted. This shows
that swu(U2k+1(231)) ⊆ U2k+1(132), and a similar argument proves the reverse containment. �

We now proceed to establish our bijections between 132-avoiding uniquely sorted permutations
and intervals in Tamari lattices. This essentially amounts to proving that if π ∈ U2k+1(312), then
swr(π) is sorted if and only if ΛΛk(π) ∈ Int(LTk ). We do this in the following two propositions.

Proposition 6.1. If π ∈ U2k+1(312) is such that ΛΛk(π) ∈ Int(LTk ), then swr(π) is sorted.

Proof. We prove the contrapositive. Assume swr(π) is not sorted. Let n = 2k+1. Since π is sorted
and swr(π) = swr1 ◦ · · · ◦ swrn(π) by definition, there exists i ∈ [n] such that the permutation
π′ := swri+1 ◦ · · · ◦ swrn(π) is sorted while π′′ := swri ◦ · · · ◦ swrn(π) = swri(π

′) is not. Write
π′ = π′1 · · ·π′n and π′′ = π′′1 · · ·π′′n. Let a = π′i, and let ` ∈ [n] be such that π` = a. Because π avoids
312, its plot has the shape shown in Figure 10. Using the definitions of the maps swri, . . . , swrn,
we find that the shapes of π′ and π′′ are as shown in Figure 10. The boxes in these diagrams are
meant to represent places where there could be points, but boxes could be empty.

Because π′ is sorted, it has a canonical valid hook configuration H′ by Proposition 3.1. Let Q(λ)
(respectively, Q(σ′)) be the number of hooks in H′ with northeast endpoints in λ (respectively, σ′)
whose southwest endpoints are not in λ (respectively, σ′). Recall the definition of the deficiency
statistic def from the proof of Lemma 4.4. Again, one can think of def(τ) as the number of
descent tops in the plot of τ that cannot find northeast endpoints within τ for their hooks. Every
southwest endpoint counted by def(λ) or def(µ′) belongs to a hook whose northeast endpoint is
counted by either Q(λ) or Q(σ′). Therefore, Q(σ′) + Q(λ) ≥ def(λ) + def(µ′). Hence, Q(λ) ≥
def(λ) + def(µ′)−Q(σ′).

7It is not clear at this point that the composition ΛΛk ◦ swl : U2k+1(132)→ Int(LT
k ) is even well-defined, but we will

see that it is.
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Figure 10. The shapes of the plots of π, π′, π′′.

When we try to construct the canonical valid hook configuration of π′′, we must fail at some
point because π′′ is not sorted. The plots of π′ and π′′ are the same to the right of the point (i, a),
so this failure must occur when we try to find the northeast endpoint of a hook whose southwest
endpoint is in either λ or µ′. All choices for these northeast endpoints are either (i, a) or are in
σ′, and the choices in σ′ contain all of the points in σ′ that are counted by Q(σ′). It follows that
Q(σ′) + 1 < def(λ) + def(µ′). Using the last line from the preceding paragraph, we find that
Q(λ) ≥ def(λ) + def(µ′)−Q(σ′) > 1. Therefore, Q(λ) ≥ 2. It follows that in the plot of π′, there
are at least two points in λ that are northeast endpoints of hooks in H′ whose southwest endpoints
are not in λ. These points (after they have been slid horizontally) are still northeast endpoints of
hooks in the canonical valid hook configuration H of π. Indeed, this is a consequence of Lemma
3.1 because π is uniquely sorted and these points are left-to-right maxima of the plot of π. In the
plot of π, the hooks with these two points as northeast endpoints must have southwest endpoints
that are not in λ.

Every time we mention hooks, southwest endpoints, or northeast endpoints in the remainder
of the proof, we refer to those of the canonical valid hook configuration H of π. Note that πn =
n because π is sorted. Lemma 3.2 tells us that the left-to-right maxima of the plot of π are
(1, π1),N1,N2, . . . ,Nk, where N1, . . . ,Nk are the northeast endpoints. Let R0, . . . ,Rk be these
left-to-right maxima, written in order from right to left (so R0 = (n, n) and Rk = (1, π1)). Let

ΛΛk(π) = (Λ,Λ′), where Λ = UDγ1UDγ2 · · ·UDγk and Λ′ = UDγ′1UDγ′2 · · ·UDγ′k . Because π avoids
312, the points lying horizontally between Ri−1 and Ri are decreasing in height from left to right
for every i ∈ [k]. Similarly, the points lying vertically between Ri and Ri+1 are decreasing in height
from left to right for every i ∈ [k]. This implies that γi is the number of points lying horizontally
between Ri−1 and Ri, while γ′i is the number of points lying vertically between Ri and Ri+1 (we
make the convention that all points “lie above Rk+1,” even though Rk+1 is not actually a point
that we have defined).

We saw above that there are (at least) two points in λ that are northeast endpoints of hooks
whose southwest endpoints are not in λ. Their southwest endpoints must be in µ. Since these
points are northeast endpoints, they are Rj−1 and Rj+m−1 for some j ∈ [k] and m ≥ 1. We
may assume that we have chosen these points as far left as possible. In particular, Rj+m−1 is the
leftmost point in λ.
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For r ∈ {j, . . . , j + m − 1}, let ζ(r) be the permutation whose plot is the portion of λ obtained
by deleting everything to the left of Rr and everything equal to or to the right of Rj−1. Because
none of the hooks with southwest endpoints in λ have Rj−1 as their northeast endpoints, all of the

southwest endpoints in ζ(r) belong to hooks whose northeast endpoints are in ζ(r). When r = j,
this implies that there are no points horizontally between Rj−1 and Rj . Thus, γj = 0. When
r = j + 1, this implies that there is at most one point other than Rj that lies horizontally between
Rj−1 and Rj+1. Thus, γj + γj+1 ≤ 1. Continuing in this way, we find that γj + · · ·+ γj+v ≤ v for
all v ∈ {0, . . . ,m− 1}. Referring to Definition 2.1, we find that longj(Λ) ≥ m.

Now recall that we chose the point Rj−1 as far left as possible subject to the conditions that it is
not the leftmost point in λ and that it is the northeast endpoint of a hook whose southwest endpoint
is in µ. When the northeast endpoint of this hook was determined in the canonical valid hook
configuration construction, we did not choose any of the points Rj , . . . ,Rj+m−2. This means that
we could not have chosen any of these points, so they must have already been northeast endpoints of
other hooks. These other hooks must all have their southwest endpoints in λ (since we chose Rj−1
as far left as possible). These southwest endpoints are descent tops, and the corresponding descent
bottoms are not left-to-right maxima. This tells us that there are at least m− 1 points other than
Rj+1, . . . ,Rj+m−2 that lie horizontally between Rj and Rj+m−1. All of these points are in λ, so
they must lie above Rj+m and below Rj+1. This forces γ′j+1+ · · ·+γ′j+m−1 ≥ m−1. However, (`, a)

is another point that lies above Rj+m and below Rj+1, so we actually have γ′j+1 + · · ·+ γ′j+m−1 >

m − 1. Since γ′j ≥ 0, this means that γ′j + · · · + γ′j+m−1 > m − 1. According to Definition 2.1,

longj(Λ
′) ≤ m− 1. We have seen that longj(Λ) ≥ m, so it is immediate from the definition of the

Tamari lattice LTk that (Λ,Λ′) 6∈ Int(LTk ). �

Proposition 6.2. If π ∈ U2k+1(312) is such that swr(π) is sorted, then ΛΛk(π) ∈ Int(LTk ).

Proof. Let ΛΛk(π) = (Λ,Λ′), where Λ = UDγ1UDγ2 · · ·UDγk and Λ′ = UDγ′1UDγ′2 · · ·UDγ′k . We
are going to prove the contrapositive of the proposition, so assume (Λ,Λ′) 6∈ Int(LTk ). This means
that there exists j ∈ [k] such that longj(Λ) > longj(Λ

′). As in the proof of the previous proposition,
we let R0, . . . ,Rk be the left-to-right maxima of the plot of π listed in order from right to left. Let
(`, a) be the highest point in the plot of π that appears below and to the right of Rj . Let Rj+m be
the leftmost point that is higher than (`, a). Using the assumption that π avoids 312, we find that
the plot of π has the following shape:

The image is meant to indicate that Rj is the highest and the rightmost point in λ and that Rj+m

is the leftmost point in λ. The boxes in this diagram represent places where there could be points,
but boxes could be empty.

Let t = longj(Λ) and t′ = longj(Λ
′). Since t > t′ ≥ 0, it follows from Definition 2.1 that γj = 0

and

(10) γj + · · ·+ γj+t′ ≤ t′ < γ′j + · · ·+ γ′j+t′ .
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Now, γj + · · · + γj+t′ is the number of points in the plot of π other than Rj , . . . ,Rj+t′−1 lying
horizontally between Rj−1 and Rj+t′ . Since γj = 0, this is actually the same as the number
of points in the plot of π other than Rj+1, . . . ,Rj+t′−1 lying horizontally between Rj and Rj+t′ .
Similarly, γ′j+· · ·+γ′j+t′ is the number of points other than Rj+1, . . . ,Rj+t′ lying vertically between

Rj and Rj+t′+1. If t′ ≤ m − 1, then all of these points counted by γ′j + · · · + γ′j+t′ are in λ. In
fact, they all lie horizontally between Rj and Rj+t′ , so they are among the points counted by
γj + · · · + γj+t′ . This contradicts (10), so we must have t′ ≥ m. This means that t ≥ m + 1, so
it follows from Definition 2.1 that γj + · · · + γj+m ≤ m. The points in the plot of π other than
Rj+1, . . . ,Rj+m−1 that lie horizontally between Rj and Rj+m are all in λ. Letting |λ| denote the
number of points in λ, we find that

(11) |λ| = γj + · · ·+ γj+m +m+ 1 ≤ 2m+ 1.

The m + 1 points Rj , . . . ,Rj+m, which lie in λ, are not descent bottoms in the plot of λ, so it
follows from (11) that des(λ) ≤ |λ| − (m+ 1) ≤ (|λ| − 1)/2. We know that λ avoids 312 because π
does, so we can use Lemma 4.3 to see that

(12) des(swr(λ)) ≤ (|λ| − 1)/2.

We now check that swr(π) has the following shape:

Because π ∈ U2k+1(312), we know from Theorem 1.1 and Lemma 4.3 that des(swr(π)) = des(π) = k.
Our goal is to show that swr(π) is not sorted, so suppose by way of contradiction that it is sorted.
Theorem 1.1 tells us that swr(π) is uniquely sorted. Let N′1, . . . ,N

′
k be the northeast endpoints of

the hooks in the canonical valid hook configuration of swr(π). Let DB(swr(π)) be the set of descent
bottoms in the plot of swr(π). Let Q = (1, swr(π)1) be the leftmost point in the plot of swr(π).
According to Lemma 3.1, the sets DB(swr(π)), {N′1, . . . ,N′k}, and {Q} form a partition of the set
of points in the plot of swr(π).

Now refer back to the above image of the plot of swr(π). Let E be the set of points lying in the
dotted region. It is possible that there is a point in this plot lying above and to the left of all of
the points in E . It is also possible that there is no such point. In either case,

(13) |(DB(swr(π)) ∪ {Q}) ∩ E| ≤ des(swr(λ)) + 1.

Now note that there are no points in the plot of swr(π) lying below and to the left of the dotted
region. This means that every element of {N′1, . . . ,N′k} ∩ E is the northeast endpoint of a hook (in
the canonical valid hook configuration of swr(π)) whose southwest endpoint is also in E . Hence,
|{N′1, . . . ,N′k}∩E| is at most the number of southwest endpoints that lie in E . Now recall from the
canonical valid hook configuration construction that the southwest endpoints of hooks are precisely
the descent tops in the plot. It follows that the number of southwest endpoints in E is the number
of descent tops in E , which is des(swr(λ)). Combining this observation with (12) and (13) yields

|E| = |(DB(swr(π)) ∪ {Q}) ∩ E|+ |{N′q, . . . ,N′k} ∩ E| ≤ des(swr(λ)) + 1 + des(swr(λ)) ≤ |λ|.
This is our desired contradiction because |E| = |λ|+ 1. �
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Theorem 6.2. For each nonnegative integer k, the map ΛΛk ◦ swl : U2k+1(132) → Int(LTk ) is a
bijection.

Proof. First, recall from Lemma 4.1 that swl : Av(132) → Av(312) and swr : Av(312) → Av(132)
are inverse bijections. If π ∈ U2k+1(132), then we know from Theorem 1.1 that π is sorted and has
k descents. Lemmas 4.3 and 4.4 guarantee that swl(π) is sorted and has k descents, so it follows
from Theorem 1.1 that swl(π) ∈ U2k+1(312). This means that it actually makes sense to apply ΛΛk
to swl(π). Since swr(swl(π)) = π is sorted, Proposition 6.2 tells us that ΛΛk(swl(π)) ∈ Int(LTk ).

Hence, ΛΛk ◦ swl does indeed map U2k+1 into Int(LTk ). The injectivity of the map ΛΛk ◦ swl :

U2k+1(132)→ Int(LTk ) follows from the injectivity of ΛΛk and the injectivity of swl on U2k+1(132).

To prove surjectivity, choose (Λ,Λ′) ∈ Int(LTk ). Let σ = ΛΛ−1k (Λ,Λ′). We know by the definition
of ΛΛk that σ ∈ U2k+1(312), so σ has k descents. According to Lemma 4.3, swr(σ) has k descents.
Since ΛΛk(σ) ∈ Int(LTk ), it follows from Proposition 6.1 that swr(σ) is sorted. By Theorem 1.1,
swr(σ) ∈ U2k+1(132). This proves surjectivity since ΛΛk ◦ swl(swr(σ)) = ΛΛk(σ) = (Λ,Λ′). �

Combining Theorem 6.1, Theorem 6.2, and equation (2) yields the following corollary.

Corollary 6.1. For each nonnegative integer k,

|U2k+1(132)| = |U2k+1(231)| = 2

(3k + 1)(3k + 2)

(
4k + 1

k + 1

)
.

7. Noncrossing Partition Intervals and U2k+1(312, 1342)

As mentioned in the introduction, the Kreweras lattices LKk are isomorphic to the noncrossing

partition lattices NCk and are sublattices of the Tamari lattices LTk . We want to find a bijection be-
tween uniquely sorted permutations avoiding 312 and 1342 and intervals in Kreweras (equivalently,
noncrossing partition) lattices. Since U2k+1(312, 1342) ⊆ U2k+1(312) and Int(LKk ) ⊆ Int(LSk ), one
might hope that the map ΛΛk from Section 5 would yield our desired bijection. More precisely,
it would be nice if we had ΛΛk(U2k+1(312, 1342)) = Int(LKk ). This, however, is not the case; we
must define a completely different map. We find it convenient to only work with the noncrossing
partition lattices in this section. Thus, our goal is to prove the following theorem.

Theorem 7.1. For each nonnegative integer k, there is a bijection

Υk : U2k+1(312, 1342)→ Int(NCk).

The proof of Theorem 7.1 in the specific case k = 0 is trivial (we make the convention that
NC0 = {∅}), so we will assume throughout this section that k ≥ 1.

To prove this theorem, we make use of generating trees, an enumerative tool that was introduced
in [17] and studied heavily afterward [3,56,57]. To describe a generating tree of a class of combina-
torial objects, we first specify a scheme by which each object of size n can be uniquely generated
from an object of size n − 1. We then label each object with the number of objects it generates.
The generating tree consists of an “axiom” that specifies the labels of the objects of size 1 along
with a “rule” that describes the labels of the objects generated by each object with a given label.
For example, in the generating tree

Axiom: (2) Rule: (1) ; (2), (2) ; (1)(2),

the axiom (2) tells us that we begin with a single object of size 1 that has label 2. The rule
(1) ; (2), (2) ; (1)(2) tells us that each object of size n− 1 with label 1 generates a single object
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of size n with label 2, whereas each object of size n− 1 with label 2 generates one object of size n
with label 1 and one object of size n with label 2. This example generating tree describes objects
counted by the Fibonacci numbers.

We are going to describe a generating tree for the class of intervals in noncrossing partition
lattices and a generating tree for the class8 U(312, 1342). We will find that there is a natural
isomorphism between these two generating trees. This isomorphism yields the desired bijections
Υk.

Remark 7.1. It is actually possible to give a short description of the bijection Υk that does not
rely on generating trees. We do this in the following paragraph. However, it is not at all obvious
from the definition we are about to give that this map is indeed a bijection from U2k+1(312, 1342)
to Int(NCk). The current author was able to prove this directly, but the proof ended up being
very long and tedious. For this reason, we will content ourselves with merely defining the map.
We also omit the proof that this map is indeed the same as the map Υk that we will obtain later
via generating tees, although this fact can be proven by tracing carefully through the relevant
definitions. In order to avoid potential confusion arising from the fact that we have given different
definitions of these maps and have not proven them to be equivalent, we use the symbol Υ′k for the
map defined in the next paragraph.

Suppose we are given π ∈ U2k+1(312, 1342). Because π is sorted, we know from Proposition 3.1
that it has a canonical valid hook configuration H. Let W1, . . . ,Wk be the northeast endpoints
of the hooks in H listed in increasing order of height. Let U` be the southwest endpoint of the
hook whose northeast endpoint is W`. The partner of W`, which we denote by V`, is the point
immediately to the right9 of U` in the plot of π. Let ρ be the partition of [k] obtained as follows.
Place numbers `,m ∈ [k] in the same block of ρ if V` appears immediately above and immediately
to the left of Vm in the plot of π. Then, close all of these blocks by transitivity. Let κ be the
partition of [k] obtained as follows. Place numbers `,m ∈ [k] in the same block of κ if they are in
the same block of ρ or if W` appears immediately above and immediately to the left of Vm in the
plot of π. Then, close all of these blocks by transitivity. Let Υ′k(π) = (ρ, κ). Figure 11 shows an
example application of each of the maps Υ′1,Υ

′
2,Υ

′
3,Υ

′
4 (which are secretly the same as the maps

Υ1,Υ2,Υ3,Υ4 defined later). At this point in time, the reader should ignore the horizontal maps,
the green arrows, and the green shading in Figure 11. ♦

We now proceed to describe the generating tree for the combinatorial class of intervals in
noncrossing partition lattices. Let us say an interval (ρ, κ) ∈ Int(NCk) generates an interval
(ρ̃, κ̃) ∈ Int(NCk+1) if ρ and κ are the partitions obtained by removing the number k + 1 from
its blocks in ρ̃ and κ̃, respectively. Each interval in Int(NCk) will generate multiple intervals in
Int(NCk+1); to understand the possibilities here, we introduce operations u, v1, . . . , vk,w1, . . . ,wk.
Given (ρ, κ) ∈ Int(NCk), let u(ρ, κ) be the interval whose first and second partitions are obtained
by appending the singleton block {k+1} to ρ and κ, respectively. For r ∈ {1, . . . , k}, let vr(ρ, κ) be
the interval whose first and second partitions are obtained by adding the number k+1 to the blocks
containing r in ρ and κ, respectively. Let wr(ρ, κ) be the interval whose first partition is obtained
by appending the singleton block {k+1} to ρ and whose second partition is obtained by adding the
number k+ 1 to the block in κ that contains r. We will always say that u is an allowable operation
of (ρ, κ). We say vr is an allowable operation of (ρ, κ) if vr(ρ, κ) ∈ Int(NCk+1) and r is minimal
in its block in ρ. We say wr is an allowable operation of (ρ, κ) if wr(ρ, κ) ∈ Int(NCk+1) and r is

8Every combinatorial class has a “size function.” The “size” of a permutation of length 2k + 1 in this class is k.
9We say a point Y is immediately to the right of a point X if Y is the leftmost point to the right of X. The phrases
“immediately to the left,” “immediately above,” and “immediately below” are defined similarly.
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maximal in its block in κ. As mentioned before, every interval (ρ̃, κ̃) ∈ Int(NCk+1) is generated by
a unique (ρ, κ) ∈ Int(NCk). Furthermore, there is a unique allowable operation of (ρ, κ) that sends
(ρ, κ) to (ρ̃, κ̃). Consequently, the number of intervals generated by (ρ, κ) is precisely the number
of allowable operations of (ρ, κ). The bottom of Figure 11 depicts applications of some allowable
operations.

1

1

1

1 2

2 1

1 2

2 1

1 2

23

3 3

3 4

4

Figure 11. Examples illustrating the various maps and operations defined in this
section. We find it convenient to draw the plots of uniquely sorted permutations
with their canonical valid hook configurations. The green arrows indicate the points
that split into two when we apply w′1 and v′1.

Consider the following ordering on these operations:

v1 ≺ w1 ≺ v2 ≺ w2 ≺ · · · ≺ vk ≺ wk ≺ u.

Let (ρ, κ) ∈ Int(NCk). For each operation o, let F (o) be the set of allowable operations of (ρ, κ)
preceding o in the ordering ≺. If vr is an allowable operation of (ρ, κ), then it is not difficult
to check that the allowable operations of the interval vr(ρ, κ) ∈ Int(NCk+1) are precisely the
operations in F (vr)∪ {vr,wk+1, u}. If wr is an allowable operation of (ρ, κ), then it is not difficult
to check that the allowable operations of the interval wr(ρ, κ) ∈ Int(NCk+1) are precisely the
operations in F (wr)∪ {vk+1,wk+1, u}. Finally, the allowable operations of u(ρ, κ) are the elements
of F (u) ∪ {vk+1,wk+1, u}. Now recall that the label of (ρ, κ) in our generating tree is the number
of allowable operations of (ρ, κ). This is precisely |F (u)|+ 1. The above discussion tells us that the
labels of the intervals generated by (ρ, κ) are 3, 4, 5, . . . , |F (u)|+ 3. In summary, a generating tree
of the class of intervals in noncrossing partition lattices is

(14) Axiom: (3) Rule: (m) ; (3)(4) · · · (m+ 2) for every m ∈ N.
Let us remark that it is proven in [3] that the generating tree in (14) describes objects counted by

the 3-Catalan numbers 1
2k+1

(
3k
k

)
. Thus, we have actually reproven equation (3).

We now want to describe a generating tree for the combinatorial class U(312, 1342). We associate
such permutations with their canonical valid hook configurations. Suppose π = π1 · · ·π2k+1 ∈
U2k+1(312, 1342), and let P(i) be the point (i, πi) in the plot of π. Given a point X in the plot π,
let splitX(π) be the permutation whose plot is obtained by inserting a new point immediately below
and immediately to the right of X and then normalizing. In other words, we “split” the point X
into two points in such a way that one of the new points is below and to the right of the other.
Using Lemma 3.1, one can show that there is a chain of hooks connecting the point P(1) to the



CATALAN INTERVALS AND UNIQUELY SORTED PERMUTATIONS 23

point P(2k + 1). We call this chain of hooks (including the endpoints of the hooks in the chain)
the skyline of π. For example, if π = 432657819 is the permutation in the top right of Figure 11,
then the skyline of π contains the points P(1),P(7),P(9).

Theorem 1.1 tells us that π has exactly k descents, say d1 < · · · < dk. Let dk+1 = 2k + 1.
Let u′(π) = (π 	 1) ⊕ 1 (recall the notation from Section 4). For r ∈ {1, . . . , k}, let v′r(π) =
splitP(dr+1)(π) ⊕ 1 and w′r(π) = splitP(dr+1)(π) ⊕ 1. We will always say that u′ is an allowable

operation of π. We say v′r is an allowable operation of π if P(dr) is in the skyline of π. We say
w′r is an allowable operation of π if P(dr+1) is in the skyline of π and is not immediately above
P(dr+1 + 1) in the plot of π. The top of Figure 11 illustrates the application of some of these
allowable operations. Recall that in a uniquely sorted permutation, the partner of the northeast
endpoint of a hook H in the canonical valid hook configuration is the point immediately to the
right of the southwest endpoint of H. Let us say a permutation π ∈ U2k+1(312, 1342) generates
a permutation π̃ ∈ U2k+3(312, 1342) if the plot of π is obtained by removing the highest point in
the plot of π̃ (which is also the rightmost point and is also a northeast endpoint of a hook in the
canonical valid hook configuration of π̃) and the partner of that point from the plot of π̃ (and then
normalizing).

We have defined the rule by which a permutation in U2k+1(312, 1342) generates permutations
in U2k+3(312, 1342). In order to better understand this rule, we prove the following lemmas. The
reader may find it helpful to refer to the top of Figure 11 while reading the proofs that follow.

Lemma 7.1. Every permutation π̃ ∈ U2k+3(312, 1342) is generated by a unique permutation π ∈
U2k+1(312, 1342). Furthermore, there is an allowable operation of π that sends π to π̃.

Proof. Let π be the permutation that generates π̃ (it is clearly unique). We first want to show

that π ∈ U2k+1(312, 1342). Let P(i) and P̃(i) denote the points (i, πi) and (i, π̃i) in the plots of

π and π̃, respectively. Since π̃ is sorted, it has a canonical valid hook configuration H̃. The point

P̃(2k + 3) is the northeast endpoint of a hook H in H̃. Let P̃(` − 1) be the southwest endpoint

of H so that P̃(`) is the partner of P̃(2k + 3). The plot of π is obtained from the plot of π̃ by

removing P̃(2k + 3) and P̃(`) and normalizing. Note that π avoids 312 and 1342 because π̃ does.

We know that P̃(2k+3) is not a descent bottom of the plot of π̃ and that P̃(`) is a descent bottom.
It follows that des(π) = des(π̃) − 1 (we are using the fact that π avoids 312). Theorem 1.1 tells
us that des(π̃) = k + 1, so des(π) = k. That same theorem now tells us that in order to prove
π ∈ U2k+1(312, 1342), it suffices to prove that π is sorted. By Proposition 3.1, we need to show
that π has a canonical valid hook configuration.

Suppose first that ` is not a descent of π̃. Since π̃`−1 > π̃`, it follows from the fact that π̃ avoids
312 that π̃`+1 > π̃`−1. Referring to the canonical valid hook configuration construction, we find

that the hook with southwest endpoint P̃(`−1) must have P̃(`+1) as its northeast endpoint. This

hook is H, and its northeast endpoint is P̃(2k+3). This shows that ` = 2k+2. The canonical valid

hook configuration of π is now obtained by removing the points P̃(2k + 3) and P̃(`) = P̃(2k + 2)
along with the hook H and then normalizing. Note also that the assumption that π̃ avoids 312 and
1342 forces us to have either π̃` = 1 or π̃` = π̃`−1 − 1. In the first case, u′(π) = π̃. In the second
case, w′k(π) = π̃.

Next, assume ` is a descent of π̃. In this case, P̃(`) is a descent top of the plot of π̃, so it is the

southwest endpoint of a hook H ′ in H̃. Let us draw a new hook H ′′ whose southwest endpoint is

P̃(` − 1) (which is the southwest endpoint of H) and whose northeast endpoint is the northeast
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endpoint of H ′. If we now remove the points P̃(2k + 3) and P̃(`) along with the hooks H and H ′

(but keep the hook H ′′) and then normalize, we obtain the canonical valid hook configuration of π.
To see an example of this, consider the permutations π = 21435 and π̃ = 3215467, which appear
in the top of Figure 11 (` = 2 in this example). This completes the proof that π is sorted. Notice

also that the point P̃(` − 1) is in the skyline of π̃. It follows from this procedure that the point
P(`− 1) is in the skyline of π.

We still need to show that there is an allowable operation of π that sends π to π̃ when ` is a
descent of π̃. In this case, `− 1 is a descent of π. As before, we let d1 < · · · < dk be the descents of
π. Let r be such that `− 1 = dr. As mentioned at the end of the last paragraph, P(dr) = P(`− 1)

is in the skyline of π. We have two cases to consider. First, assume P̃(`) lies immediately above

P̃(`+ 1) in the plot of π̃. In this case, we find that v′r is an allowable operation of π that sends π

to π̃. For the second case, assume P̃(`) does not lie immediately above P̃(` + 1) in the plot of π̃.
This means that P(dr) does not lie immediately above P(dr + 1) in the plot of π. Using the fact

that π̃ avoids 312 and 1342, we also find that P̃(`− 1) is immediately above and to the left of P̃(`)
in the plot of π̃. Therefore, w′r−1 is an allowable operation of π that sends π to π̃. We should check
that r ≥ 2 in this case. Indeed, it follows from Lemma 3.1 that d1 = 1. If we had r = 1, then the
fact that P(dr) does not lie immediately above P(dr + 1) in the plot of π would force π to contain
a 312 pattern. �

Lemma 7.2. If o′ is an allowable operation of a permutation π ∈ U2k+1(312, 1342), then the
permutation π̃ = o′(π) is in U2k+3(312, 1342). Furthermore, o′ is the only allowable operation of π
that sends π to π̃.

Proof. Let H be the canonical valid hook configuration of π. Let d1 < · · · < dk be the descents of

π. Let P(i) and P̃(i) denote the points (i, πi) and (i, π̃i). Since π has k descents and avoids 312 and
1342, it is easy to check that π̃ has k + 1 descents and avoids those same patterns. According to
Theorem 1.1, we need to show that π̃ is sorted. By Proposition 3.1, this amounts to showing that π̃

has a canonical valid hook configuration H̃. To do this, we simply reverse the process described in
the proof of Lemma 7.1 that allowed us to obtain the canonical valid hook configuration of π from
that of π̃. More precisely, if o′ is u′ or w′k, then we keep all of the hooks from H the same (modulo

normalization of the plot) and attach a new hook with southwest endpoint P̃(2k+1) and northeast

endpoint P̃(2k + 3). Otherwise, there exists r ∈ {1, . . . , k} such that o′ is either v′r or w′r−1. Let
` − 1 = dr, and note that dr is a descent of both π and π̃. Also, ` is a descent of π̃. We obtain a
configuration of hooks of π̃ by keeping all of the hooks in H unchanged (modulo normalization). Let

H ′′ be the hook in this configuration with southwest endpoint P̃(dr) = P̃(`− 1). Now form a new

hook H of π̃ with southwest endpoint P̃(` − 1) and northeast endpoint P̃(2k + 3). Form another

new hook H ′ of π̃ whose southwest endpoint is P̃(`) and whose northeast endpoint is the northeast

endpoint of H ′′. Removing the hook H ′′, we obtain the canonical valid hook configuration H̃ of π̃.

We need to show that there is at most one allowable operation of π that sends π to π̃. If π̃2k+2 = 1,

then the only such operation is u′. Now assume π̃2k+2 6= 1. Let P̃(dr) be the southwest endpoint

of the hook in H̃ whose northeast endpoint is P̃(2k + 3). Analyzing the canonical valid hook

configuration construction, we find that H̃ must have been formed via the construction described
in the preceding paragraph. In other words, the only possibilities for allowable operations that
send π to π̃ are v′r and w′r−1. If P(dr) is immediately above P(dr + 1) in the plot of π, then the
only possibility is v′r because w′r−1 is not an allowable operation of π. If P(dr) is not immediately
above P(dr + 1) in the plot of π, then the permutations v′r(π) and w′r−1(π) are distinct. In this
case, there is again at most one possibility for an allowable operation of π that sends π to π̃. �
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We are now in a position to describe our generating tree. Lemmas 7.1 and 7.2 tell us that every
permutation in U2k+3(312, 1342) is generated by a unique permutation in U2k+1(312, 1342) and that
the number of permutations in U2k+3(312, 1342) that a permutation π ∈ U2k+1(312, 1342) generates
is the number of allowable operations of π. Consider the following ordering:

v′1 ≺ w′1 ≺ v′2 ≺ w′2 ≺ · · · ≺ v′k ≺ w′k ≺ u′.

Choose π ∈ U2k+1(312, 1342). For each operation o′, let F ′(o′) be the set of allowable operations of π
preceding o′ in the ordering ≺. In the proof of Lemma 7.2, we described the procedure that produces
the canonical valid hook configuration of π̃ from that of π when π̃ is a permutation that π generates.
If v′r is an allowable operation of π and π̃ = v′r(π), then we can trace through this procedure to see
that the allowable operations of π̃ are precisely the operations in F ′(v′r) ∪ {v′r,w′k+1, u

′}. If w′r is
an allowable operation of π and π̃ = w′r(π), then we can trace through this procedure to see that
the allowable operations of π̃ are precisely the operations in F ′(w′r)∪ {v′k+1,w

′
k+1, u

′}. Finally, the
allowable operations of u′(π) are the elements of F ′(u′)∪{v′k+1,w

′
k+1, u

′}. The number of allowable
operations of π is |F ′(u′)| + 1. The above discussion tells us that the labels of the permutations
generated by π are 3, 4, 5, . . . , |F ′(u′)|+ 3. In summary, a generating tree of the combinatorial class
U(312, 1342) is

(15) Axiom: (3) Rule: (m) ; (3)(4) · · · (m+ 2) for every m ∈ N.

Of course, (14) and (15) are identical. Thus, there is a natural isomorphism10 between the
generating trees of intervals in noncrossing partition lattices and uniquely sorted permutations
avoiding 312 and 1342. In fact, this isomorphism is unique. Finally, we obtain the bijections
Υk : U2k+1(312, 1342)→ Int(NCk) from this isomorphism of generating trees in the obvious fashion,
proving Theorem 7.1. Using the equation (3), we obtain the following corollary.

Corollary 7.1. For each nonnegative integer k,

|U2k+1(312, 1342)| = 1

2k + 1

(
3k

k

)
.

8. Pallo Comb Intervals and U2k+1(231, 4132)

Aval and Chapoton showed how to decompose the intervals in Pallo comb posets in order to
obtain the identity (4). In this section, we show how to decompose permutations in U2k+1(231, 4132)
in order to obtain a similar identity that proves these permutations are in bijection with Pallo comb
intervals. More precisely, we have the following theorem.

Theorem 8.1. We have ∑
k≥0
|U2k+1(231, 4132)|xk = C(xC(x)),

where C(x) =
1−
√

1− 4x

2x
is the generating function of the sequence of Catalan numbers.

We know that the Pallo comb poset PCk is a subposet of the Tamari lattice LTk . If we combine
Theorems 6.1 and 6.2, we find a bijection ΛΛk ◦ swl ◦ swu from U2k+1(231, 4132) to a subset of
Int(LTk ). One might hope to prove Theorem 8.1 by showing that this subset is precisely Int(PCk)
and then invoking (4). Unfortunately, this is not the case when k = 3 (and probably also when
k ≥ 4). Before we can prove Theorem 8.1, we need the following lemma.

10We haven’t formally defined “isomorphisms” of generating trees, but we expect the notion will be apparent.
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Lemma 8.1. For each nonnegative integer k, |U2k+1(132, 231)| = Ck.

Proof.11 It is known that |Av2k+1(132, 231)| = 22k. One way to prove this is to first observe that a
permutation avoids 132 and 231 if and only if it can be written as a decreasing sequence followed by
an increasing sequence. Given π ∈ Av2k+1(132, 231), we can write π = L1R, where L is decreasing
and R is increasing. Let w` = U if 2k + 2− ` is an entry in R, and let w` = D if 2k + 2− ` is an
entry in L. We obtain a word w = w1 · · ·w2k ∈ {U,D}2k. The map π 7→ w is a bijection between
Av2k+1(132, 231) and {U,D}2k. The permutation π has exactly k descents if and only if the letter
D appears exactly k times in the corresponding word w. Furthermore, π has a canonical valid
hook configuration (meaning it is sorted) if and only if every prefix of w contains at least as many
occurrences of the letter U as occurrences of D. Using Theorem 1.1, we see that π is uniquely
sorted if and only if w is a Dyck path. �

Proof of Theorem 8.1. Let B(x) =
∑

k≥0 |U2k+1(231, 4132)|xk and B̃(x) =
∑

n≥1 |Un(231, 4132)|xn.

Since there are no uniquely sorted permutations of even length, we have B̃(x) = xB(x2). Therefore,

our goal is to show that B̃(x) = E(x), where E(x) = xC(x2C(x2)). Using the standard Catalan
functional equation C(x) = 1 + xC(x)2, we find that E(x) = x+ xC(x2)E(x)2. This last equation

and the condition E(x) = x + O(x2) uniquely determine the power series E(x). Since B̃(x) =
x+O(x2), we are left to prove that

(16) B̃(x) = x+ xC(x2)B̃(x)2.

The term x in (16) represents the permutation 1. Now suppose π ∈ Un(231, 4132), where
n = 2k + 1 ≥ 3. Proposition 3.1 tells us that π has a canonical valid hook configuration H, and
Lemma 3.1 tells us that the point (2k+ 1, 2k+ 1) is the northeast endpoint of a hook H in H. Let
(i, πi) be the southwest endpoint of H. We will say π is nice if i = 1. Let us first consider the case
in which π is nice.

Because π avoids 231, we can write π = π1λµ(2k + 1), where λ ∈ Sπ1−1 and µ is a permutation
of {π1 + 1, . . . , 2k}. Because π avoids 231 and 4132, λ avoids 132 and 231. As mentioned in the
proof of Lemma 8.1, λ is a decreasing sequence followed by an increasing sequence. Let m be the
largest integer such that the subpermutation τ of λ formed by the entries 1, 2, . . . , 2m + 1 is in
U2m+1(132, 231). We can write λ = LτR, where τ ∈ U2m+1(132, 231), L is decreasing, and R is
increasing. We claim that π′ = π1LRµ is a uniquely sorted permutation that avoids 231 and 4132.
It is easy to check that π′ is a permutation of length 2k− 2m− 1 that avoids 231 and 4132 and has
exactly k −m − 1 descents; we need to show that it has a canonical valid hook configuration H′.
We obtain H′ from the canonical valid hook configuration H = (H1, . . . ,Hk) of π as follows. Let
` be the length of L. For all r ∈ {1, . . . , ` + m + 1}, the southwest endpoint of Hr is (r, πr). For
r ∈ {1, . . . , `}, let H ′r be the hook of π′ with southwest endpoint (r, πr) = (r, π′r) whose northeast
endpoint has the same height as the northeast endpoint of Hr+1. For r ∈ {` + m + 2, . . . , k},
let H ′r be the hook of π′ whose southwest and northeast endpoints have the same heights as the
southwest and northeast endpoints of Hr, respectively. The canonical valid hook configuration of
π′ is H′ = (H ′1, . . . ,H

′
`, H

′
`+m+2, . . . ,H

′
k). See Figure 12 for an example of this construction.

One can use Lemma 3.1 and the fact that π is uniquely sorted to see that the last entry in L
is 2m + 2, the smallest entry in π′. Thus, if we let π′′ be the normalization of π′, then we have
obtained from π the pair (π′′, τ) ∈ U2k−2m−1(231, 4132) × U2m+1(132, 231). We can reverse this
procedure. If we are given (π′′, τ), then we can increase all of the entries in π′′ by 2m+ 1 to form

11One could alternatively prove this lemma by showing that ΛΛk ◦ swl : U2k+1(132, 231)→ Int(Ak) is a bijection.
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Figure 12. Decomposing the nice permutation π into pieces. In this example,
k = 5, ` = 2, and m = 1.

π′. We then insert τ after the smallest entry in π′ and append the entry 2k+ 1 to the end to form
the permutation π. Lemma 8.1 tells us that

∑
n≥1 |Un(132, 231)|xn = xC(x2), so it follows that the

generating function that counts nice permutations in U(231, 4132) is x2C(x2)B̃(x).

We now consider the general case in which π is not necessarily nice. Let σ = π1 · · ·πi−1, and
let σ′ be the normalization of πi · · ·π2k+1. Let σ′′ be the normalization of σπi. Because π avoids
231, π = σ ⊕ σ′ (so σ′′ = σi). The permutation σ′′ is in Ui(231, 4132). The permutation σ′ is a
nice permutation in U(231, 4132). If we were given the permutation σ′′ ∈ U(231, 4132) and the nice
permutation σ′ ∈ U(231, 4132), then we could easily reobtain π by first deleting the last entry of

σ′′ to form σ and then writing π = σ ⊕ σ′. It follows that B̃(x) − x = 1
x(x2C(x2)B̃(x))B̃(x) =

xC(x2)B̃(x)2, which is (16) (the 1
x comes from the fact that π1 · · ·πi and πi · · ·π2k+1 overlap in the

entry πi). �

Figure 13. An illustration of the equation B̃(x)−x = xC(x2)B̃(x)2 from the proof
of Theorem 8.1. The factor 1

x comes from the fact that the point marked with the
square appears twice on the right-hand side.
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9. Catalan Antichain Intervals

In this section, we prove that

|U2k+1(321)| = |U2k+1(231, 312)| = |U2k+1(132, 231)| = |U2k+1(132, 312)| = Ck.

These results fit into the theme of this article if we interpret Ck as the number of intervals in the
antichain Ak.
Theorem 9.1. For each nonnegative integer k, we have |U2k+1(321)| = Ck.

Proof. A parking function of length k is a tuple (a1, . . . , ak) of positive integers such that ai ≤ i for
all i ∈ [k]. We say this parking function is nondecreasing if a1 ≤ · · · ≤ ak. It is well known that the
number of nondecreasing parking functions of length k is Ck. Given π = π1 · · ·π2k+1 ∈ U2k+1(321),
put ai = π2i − i+ 1. We claim that (a1, . . . , ak) is a nondecreasing parking function.

Note that (2, π2) is not the northeast endpoint of a hook in the canonical valid hook configuration
of π. Lemma 3.1 tells us that (2, π2) is a descent bottom in the plot of π, so 1 is a descent of π.
Since π avoids 321, no two descents of π are consecutive integers. We know by Theorem 1.1 that π
has k descents, so these descents must be 1, 3, 5, . . . , 2k− 1. Choose i ∈ [k]. Since π avoids 321 and
π2i−1 > π2i, all of the elements of [π2i−1] appear to the left of π2i in π. Because π2i−1 is an additional
entry that appears to the left of π2i in π, we must have 2i−1 ≥ π2i. It follows that ai = π2i−i+1 ≤ i.
As i was arbitrary, (a1, . . . , ak) is a parking function. If i ∈ [k − 1], then π2i+2 ≥ π2i + 1 since π
avoids 321 and π2i−1 > π2i. This means that ai+1 = π2i+2− (i+ 1) + 1 ≥ π2i− i+ 1 = ai. As i was
arbitrary, (a1, . . . , ak) is nondecreasing.

Given the nondecreasing parking function (a1, . . . , ak), we can reobtain the permutation π. In-
deed, the values of π2, π4, . . . , π2k are determined by the definition ai = π2i−i+1. The other entries
of π are determined by the fact that π1 < π3 < · · · < π2k+1, which is an easy consequence of the
fact that π is a 321-avoiding sorted permutation whose descents are 1, 3, 5, . . . , 2k− 1. Thus, π2i−1
must be the ith-smallest element of [2k + 1] \ {π2, π4, . . . , π2k}. We want to check that the permu-
tation π obtained in this way is indeed in U2k+1(321). One can easily check that this permutation
avoids 321 and has k descents. We must show that it has a canonical valid hook configuration
H = (H1, . . . ,Hk). This is easy; Hi is simply the hook with southwest endpoint (2i− 1, π2i−1) and
northeast endpoint (2i+ 1, π2i+1). �

In the following theorems, recall the bijection ΛΛk : U2k+1(312)→ Int(LSk ) from Theorem 5.1.

Theorem 9.2. For each nonnegative integer k, the restriction of ΛΛk to U2k+1(231, 312) is a
bijection from U2k+1(231, 312) to Int(Ak). Hence, |U2k+1(231, 312)| = Ck.

Proof. A permutation is called layered if can be written as Deca1 ⊕Deca2 ⊕ · · · ⊕ Decam for some
positive integers a1, . . . , am, where Deca = a(a−1) · · · 1 is the decreasing permutation in Sa. It is a
standard fact among permutation pattern enthusiasts that a permutation π ∈ Sn is layered if and
only if it avoids 231 and 312. It is straightforward to check that a permutation π ∈ U2k+1(312) is
layered if and only if ΛΛk(π) ∈ Int(Ak) (meaning ΛΛk(π) = (Λ,Λ) for some Λ ∈ Dk). �

Theorem 9.3. For each nonnegative integer k, the restriction of ΛΛk ◦ swl to U2k+1(132, 231) is a
bijection from U2k+1(132, 231) to Int(Ak). Hence, |U2k+1(132, 231)| = Ck.

Proof. We already know from Lemma 8.1 that |U2k+1(132, 231)| = Ck. Now suppose π ∈
U2k+1(132, 231). We know by Theorem 1.1 that π is sorted and has k descents. Lemmas 4.3 and
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4.4 tell us that swl(π) is sorted and has k descents, so it follows from Theorem 1.1 that swl(π) is
uniquely sorted. We know from Lemma 4.2 that swl(π) ∈ Av(231, 312). Lemma 4.2 also tells us that
swl is injective on U2k+1(132, 231). We have proven that swl : U2k+1(132, 231) → U2k+1(231, 312)
is an injection. It must also be surjective because |U2k+1(132, 231)| = |U2k+1(231, 312)| = Ck by
Lemma 8.1 and Theorem 9.2. The proof of the theorem now follows from Theorem 9.2. �

Theorem 9.4. For each nonnegative integer k, the restriction of ΛΛk ◦ swd to U2k+1(132, 312) is a
bijection from U2k+1(132, 312) to Int(Ak). Hence, |U2k+1(132, 312)| = Ck.

Proof. Theorem 6.1 and Lemma 4.2 tell us that swd : U2k+1(132) → U2k+1(231) and swd :
Av(132, 312)→ Av(231, 312) are bijections. It follows that swd : U2k+1(132, 312)→ U2k+1(231, 312)
is a bijection, so the proof of the theorem follows from Theorem 9.2. �

10. Concluding Remarks

One of our primary focuses in this paper has been the enumeration of sets of the form
U2k+1(τ

(1), . . . , τ (r)). We can actually complete this enumeration for all possible cases in which the

patterns τ (1), . . . , τ (r) are of length 3. It is easy to check that U2k+1(123) and U2k+1(213) are empty

when k ≥ 2, so we only need to focus on the cases in which {τ (1), . . . , τ (r)} ⊆ {132, 231, 312, 321}.
When r = 0 (so we consider the set U2k+1), the enumeration is completed in [31] and is given by
Lassalle’s sequence (as discussed in the introduction). The cases in which r = 1 are handled in
Corollary 5.1, Corollary 6.1, and Theorem 9.1. Three of the six cases in which r = 2 are handled
in Theorems 9.3, 9.2, and 9.4. In the following theorem, we finish the other three cases in which
r = 2 along with all of the cases in which r = 3 or r = 4.

Theorem 10.1. For each nonnegative integer k, we have

|U2k+1(231, 321)| = |U2k+1(312, 321)| = |U2k+1(231, 312, 321)| = |U2k+1(132, 231, 312)| = 1.

For each k ≥ 2, we have U2k+1(132, 321) = ∅.

Proof. We may assume k ≥ 2. The proof of Theorem 9.1 shows that if π = π1 · · ·π2k+1 ∈
U2k+1(321), then π1 < π3 < · · · < π2k+1, and the descents of π are 1, 3, 5, . . . , 2k − 1. It easily
follows that

U2k+1(231, 321) = U2k+1(312, 321) = U2k+1(231, 312, 321) = {214365 · · · (2k)(2k − 1)(2k + 1)}
and that U2k+1(132, 321) = ∅. Every element of Av(132, 231, 312) is of the form L⊕R, where L is
a decreasing permutation and R is an increasing permutation. A uniquely sorted permutation of
length 2k + 1 must have k descents, so

U2k+1(132, 231, 312) = {(k + 1)k · · · 1(k + 2)(k + 3) · · · (2k + 1)}. �

Theorem 10.1 implies that

U2k+1(132, 231, 321) = U2k+1(132, 312, 321) = U2k+1(132, 231, 312, 321) = ∅,

so we have completed the enumeration of U2k+1(τ
(1), . . . , τ (r)) when τ (1), . . . , τ (r) are of length

3. Since we enumerated U2k+1(312, 1342) in Corollary 7.1 and enumerated U2k+1(231, 4132) in

Theorem 8.1, it is natural to look at other sets of the form U2k+1(τ
(1), τ (2)) with τ (1) ∈ S3 and

τ (2) ∈ S4. To this end, we have eighteen conjectures. Each row of the following table represents
the conjecture that the class of (normalized) uniquely sorted permutations (of odd length) avoiding
the given patterns is counted by the corresponding OEIS sequence.
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Patterns OEIS Sequence

312, 1432

312, 2431

312, 3421 A001764

132, 3412

231, 1423

312, 1243 A122368

Patterns OEIS Sequence

132, 3421

132, 4312 A001700

231, 1243

132, 2341

132, 4123
A109081

312, 2341 A006605

Patterns OEIS Sequence

312, 3241 A279569

312, 4321 A063020

132, 4231 A071725

231, 1432 A001003

231, 4312 A127632

231, 4321 A056010

Table 1. Conjectural OEIS sequences enumerating sets of the form U2k+1(τ
(1), τ (2)).

Note that the OEIS sequences A001764 and A127632 give the numbers appearing in (3) and
(4), respectively. A couple of especially well-known sequences appearing in Table 1 are A001700,

which consists of the binomial coefficients
(
2k−1
k

)
, and A001003, which consists of the little Schröder

numbers. We have also calculated the first few values of |U2k+1(231, 4123)|; beginning at k = 0,
they are 1, 1, 3, 10, 36, 138, 553, 2288, 9699, 41908. This sequence appears to be new, so we have
added it as sequence A307346 in the OEIS. We have also computed the first few terms in each of
the 24 sequences (|U2k+1(τ)|)k≥0 for τ ∈ S4; these sequences appear to be new.
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[8] M. Bóna, A survey of stack-sorting disciplines. Electron. J. Combin., 9.2 (2003): 16.
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