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Abstract

Starting from the first Hardy-Littlewood conjecture some topics will
be covered: an empirical approach to the distribution of the twin primes
in classes mod(10) and a simplified proof of the Bruns theorem .

Finally, it will be explored an approach based on numerical analysis:
Monte Carlo Method and Low discrepancy Sequences will be used to prove
the convergence of the conjecture to the expected values.

Keywords— twin prime numbers, Hardy-Littlewood conjecture, Monte
Carlo methods.

1 Introduction

The twin prime conjecture also known as Polignacs conjecture is one of
the oldest and best-known unsolved problems in number theory and in
all of mathematics: it states that for every positive even natural number
k, there are infinitely many consecutive prime pairs p and p′ such that
p′ − p = k.
The case k = 2 is the twin prime conjecture. Even if the conjecture has
not been proved, in spite of many challenges, most mathematicians believe
it is true.
Recently, a proof of the conjecture was proposed [1], but an error was
found after its publication, leaving the conjecture open to this day.
What we know for sure, from empirical analysis, is that as numbers get
larger, twin primes become increasingly rare.
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Some remarks on the first Hardy-Littlewood conjecture 2

A second twin prime conjecture, called the strong twin prime conjecture
or firstHardy-Littlewood conjecture, states that the number π2(n) of twin
primes less than or equal tonis asymptotically equal to 1:

π2(n) ∼ 2C2

∫ n

2

dx

(ln(x))2
(1)

whereC2is the so-calledtwin primes constant [4].

Even if both conjectures have not been proved, models for the primes,
based on some statistical distribution, can provide the asymptotic value
of various statistics about primes. The “naive”Cramér random model,
models the set of prime numbers by a random set: the starting point
is the prime number theorem 2 involving that in the range [x, x + εx],
for any fixed ε > 0 and large x, there are about εx

log x
primes and each

natural number has an independent probability3 of lying in the model set
of primes. Using Borel-Cantelli lemma, it can be proved that the model
leads to a conjecture of the form:

π2(n) ∼
x

(ln ln(x))2
(2)

and consequently that there are infinitely many twin primes. The model
is too simplified to give accurate results, but tends to give predictions of
the right order of magnitude [12, 14] .

It is worth noting that in 1996 it was proved [13] that:

π2(n) ≤ cΠ2
x

(ln ln(x))2

[

1 +O

(

ln2(x)

ln(x)

)]

(3)

whereΠ2is thetwin primes constantandcis another constant, that accord-
ing to Hardy-Littlewood conjecture is 2 and that has been precised to be
6.8325 [3] from previous values [15].

2 Hardy-Littlewood conjecture: an asymp-
totic distribution of twin primes

Let:

P = the set of primes

Xi(2, m) := #{(pi, pi+2) : pi, pi+2 ∈ P and
{ pi
10

}

= m} (4)

1Notation: The use of the asymptotic notations O, o, ∼ is standard, as well as the symbol
≈ used to denote rough, conjectural or heuristic approximations.

2i.e p(n) ∼ n ln(n)
3but its quite obvious that ’p is prime’ and ’p + 2 is prime’ are not independent events,

because p+ 2is automatically odd and more likely to be prime
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With i = 1, 2, 3 i.e. X1(2, 1) X2(2, 7) X3(2, 9) It is evidently clear that
every pair of twin primes, with the sole exception of: (3 5) (5 7), belongs
to one of these three classes:

X1(2, 1) ={(11, 13) (41, 43) (71, 73) · · · }

X2(2, 7) ={(17, 19) (107, 109) (137, 139) · · · }

X3(2, 9) ={(29, 31) (59, 61) (149, 151) · · · }

The Hardy-Littlewood conjecture refers to the number of twin primes and
doesn’t provide any information about their distribution. On the basis of
numerical evidence it is possible to propose a different perspective of the
famous conjecture, and a correlation, otherwise lacking, between the dis-
tribution and the counting function of the twin primes.
The distribution of pairs of primes has been studied with the Chi-square
χ2 statistic approach [2], in order to compare experimental data to the
expected values: based on this analysis, it was possible to verify the hy-
pothesis that twin primes thin out in the three classes with the same
cardinality.

Let4:

πi
2(n) be counting function of class Xi(2,m) (e.g. n = 80, π1

2(80) = 3).
Numerical analysis provides the following results concerning the class
X1(2, 1):

Figure 1: Proportion of π1

2
(n)/π2(n) for X1(2, 1)

4S = #
⋃

i X̄i(2, m) differs from 2n because classes of only one element (pairs (3, 5)(5, 7))
have not been considered in the numerical model
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And similar results for the classes X2(2, 7) and X3(2, 9). It may be
clearly seen that the three classes converge toward the same value: 33.3%
and the Chi-square χ2 statistic approach justifies a random distribution
of the twin primes in the three classes.

Hence, under empirical evidence, the first Hardy-Littlewood conjecture
may be re-written as follows:

πi
2(n) =

1

3
π2(n) ∼

2

3
C2

∫ n

2

dn

(ln ln(n))2
, i = 1, 2, 3 (5)

In other words5, the asymptotic distribution of pairs of twin primes
(pi, pi + 2) in the three classes Xi(2, m), m = pimod(10), m = 1, 7, 9
may be described as statistically random6: no strong empirical evidence
appears to the contrary.

The fact that twin primes behave more randomly than primes, is also
supported by the works by Kelly and Pilling [7], [8] pointing out that
the occurrences of twin primes in any sequence of primes are like fixed
probability random events.

3 From Hardy-Littlewood conjecture to
the Bruns theorem

Viggo Brun wanted to analyze the sum

∑

p, p+2 primes

1

p
+

1

p+ 2
(6)

hoping that the sum would be infinite and thus giving a solution to the
twin prime conjecture. However, what he proved in 1919, by means of a
specific sieve, is that the sum of reciprocals of the twin primes converges
to a finite value [5].

∑

p, p+2 primes

1

p
+

1

p+ 2
≈ 1.9 < +∞ (7)

If the series had diverged, it would have indicated that there is an in-
finite number of twin primes but the proof that it converges does not
provide more information about Polignacs conjecture. The original proof
of the convergence was based on the Bruns simple pure sieve (princi-
ple of Inclusion-Exclusion), although it is possible to provide a simplified
demonstration starting from the first Hardy-Littlewood conjecture.

Proof

First of all, it is easy to observe that:
∫ n

2

dx

(ln ln(x))2
∼

n

(ln ln(n))2
(8)

5It’s worth noting that the numerical analysis leads to a similar result also in case of cousin
primes, sexy primes and Sophie Germain primes [2]

6even if some small differences appear in the speed of convergence rate
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In fact, let:

f(n) =

∫ n

2

dx

(ln ln(x))2
(9)

and
g(n) =

n

(ln ln(x))2
(10)

then
f(n)

g(n)
=

f ′(n)

g′(n)
=

1

1− 2/ ln(n)
= 1 (11)

Unfortunately, the asymptotical equivalence does not provide any in-
formation about the behavior of the ratio:

∫ n

2
dx

(ln ln(x))2

n

(ln ln(n))2

∈ [2, +∞[ (12)

In order to bound the integral with a degree of approximation, in the
set [2, +∞[ we proceed as follows:

∫ n

2

dx

(ln ln(x))2
=

∫ n

2

dx

ln(x)
−

x

ln(x)

∣

∣

∣

∣

∣

n

2

= li(n)−li(2)−
n

ln(n)
+

2

ln(2)
(13)

with

li(n) =

∫ n

0

dn

ln ln(x)
(14)

The asymptotic expansion (Poincaré expansion) of li(n) for n → ∞ gives:

li(n) ∼
n

ln ln(n)

∞
∑

k=0

k!

(ln ln(n))k
(15)

i.e.7

li(n) ∼
n

ln(n)
+

n

ln2(n)
+

2n

ln3(n)
+ · · · (16)

Hence assuming the Hardy-Littlewood conjecture (Eq.1):

π2(n) ∼ 2C2 ·

(

−li(2) +
2

ln(2)
+

n

ln2(n)
+

2n

ln3(n)
+

6n

ln4(n)
+ · · ·

)

(17)

Where li(2) = 1.045163 · · · [6] The series is not convergent and an ap-
proximation is reasonable where the series is truncated at a finite number
of terms with an error roughly of the same size as the next term.

In fact, the problem associated to divergence is that for a fixed ε, the
error in a divergent series will reach to an ε-dependent minimum, but as
more terms are added the error then increases without bound and tends
to infinity.

7This implies also: li(n) − n ln(n) = O(n ln 2n)
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Since for every n ∈ N, n ≥ 1012, we have:

1

ln3(n)
≥

6

ln4(n)
(18)

Hence we can write for every n ∈ N, n ≥ 1012 i.e. in the set
[1012, +∞[

1 <
π2(n)

2C2
n

ln2(n)

≤ 1 +
2

ln(n)
+

7

ln2(n)
(19)

i.e.

1 <
π2(n)

n

ln2(n)

≤≈ 1.4277 (20)

Hence if we assume the Hardy-Littlewood conjecture we can say that
a number exists n̄ ∈ N such that for every n ≥ n̄:

π2(n) ≤ K
n

ln2(n)
(21)

It is worth noting that the ratio

π2(n)
n

ln2(n)

(22)

has been studied by many authors under the general condition:

π2(n)
n

ln2(n)

< 2C2 + ε (23)

Recentely, Wu [16] proved that for a sufficiently large n:

π2(n)
n

ln2(n)

< 4.5 (24)

Now let us consider the sum in Eq.6

∑

p, p+2 primes

1

p
+

1

p+ 2
(25)

Since
1

p
+

1

p+ 2
≤

2

p
, (26)

the convergence of Eq.6 is equivalent to the convergence of

∑

p, p+2 primes

1

p
, (27)

there are two possibilities:

a) Twin primes are finite in number (in this case the sum of the series
is finite and the convergence is proved);

b) Twin primes are not finite in number, in this case:
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Let r be the rth twin prime8 (e.g qr = 107, hence r = π2(107) = 10):

r = π2(qr) ≤ K
qr

ln2(qr)
≤ K

qr

ln2(r + 1)
, since qr > r + 1, ∀r ∈ N (28)

Hence
1

qr
≤ K

1

r ln2(r + 1)
(29)

And:
∑

p, p+2 primes

1

p
=

∞
∑

1

1

qr
≤ K

∞
∑

1

1

r ln2(r + 1)
(30)

For the comparison test, also the series

∑

p, p+2 primes

1

p
(31)

converges.

4 Calculation of the integral 2C2

∫ n

2
dx

(ln ln(x))2

using MonteCarlo approach

Monte Carlo (MC) and Quasi-Monte Carlo (QMC) methods are widely
used in numerical analysis, especially in Physics and Finance. Consider
an integral of the form: I =

∫

Ω
f(x)dx. Where Ω is the domain of inte-

gration and f(x) a bounded real function.

Most direct quadrature methods are based on the Riemann definition
of an integral (a finite sum of ordered ’areas’ under the curve y = f(x)):
MC and QMC methods are explained by Lebesgue integration: the finite
sum do not depend on the order, it is enough that the function can be
somehow ’measured ’.

By the strong law of large numbers, if U is a uniformly distributed
random variable on Ω then the average of the sum of f(Ui) i ∈ [1, N ]
converges to I almost surely when n tends to infinity, i.e.:

∫

Ω

f(x)dx ≈
1

N

N
∑

i=1

f(Ui) (32)

Hence, while conventional numerical methods calculate the integrand
at regularly spaced points, MC method samples the integrand at random
points Ui, i ∈ [1, N ] (N is the number of samples).

The critical issue with these points, is that they may not be equally
distributed in the domain and this leads to the need to increase the num-
ber of samples, and, consequently, run-times.

8This part of the proof is the same as in [9]
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This problem can be solved with QMC methods, making use of quasi-
random numbers that are more well-distributed [10]. Although quasi-
random numbers come from a deterministic algorithm, they pass a statis-
tical test of randomness.

Among these methods those which make use of low discrepancy se-
quences (LDS)[11] are based on the property of lack of an apparent pattern
in the distance9 between couples of primes and for this reason conforming
a set of quasi-random numbers.

The application of the MC and QMCmethods to the Hardy-Littlewood
integral calculation has been explored:

2C2

∫ n

2

dx

(ln ln(x))2

using low discrepancy sequences (LDS) and Mathematica software 10

(Annex I).
The following Table (Fig.2) provides the results of the MC and LDS meth-
ods:

Figure 2: Comparisons of MC and LDS methods for the first Hardy-Littlewood
conjecture

Since the convergence rate of Monte Carlo method is close11 toO
(

∞√
N

)

,

the error rate decreases as the value of N increases (i.e. as a function π2(n)
increases) as described in literature.

96 is the most common separation distance up to about n ≈ 1.74× 1035
10It is worth notice that a compensating constant a × 7.39 has been used, depending on

the limits of integration, the minimal and maximal values of the set of samples, and the
dimensions of the integrand [11]

11It is rather slow: quadrupling the number of sampled points will halve the error
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In the table shown in Fig.2, the convergence is not proved due to the
low number of N points considered in the calculation (n = 1011, N =
17548), but the advantage of using LDS can be appreciated.

Finally, the following table (Fig. 3) provides the results of the Monte
Carlo method with a sufficient number of samples:

Figure 3: Hardy-Littlewood conjecture using MC with a a larger set of N points.

5 CONCLUSIONS

In spite of many challenges and improvements due to numerical analysis,
twin primes are still an unsolved problem in number theory. The first
Hardy-Littlewood conjecture can be described as a milestone in this field.

This paper has proposed an empirical analysis of the twin primes dis-
tribution that leads to write the conjecture in terms of mod(10) classes
marked by the same cardinality, according to a statistically random sys-
tem.

Furthermore, starting from the conjecture, an elementary demonstra-
tion of the Bruns theorem about the convergence of the sum of the recip-
rocal of the twin primes has been provided.

Finally, a less conventional method of calculation of the Hardy-Littlewood
integral has been explored based on the MC and QMC methods involving
the use of low discrepancy sequences (LDS).

The result of the calculation with a sufficient number of samples is
compelling and provides (for any given n larger than n = 106 say) a small
relative error and an original example of application of these methods to
the number theory.
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6 Annex: MonteCarlo code (Mathemat-
ica)

powers = {10, 10^2, 10^3, 10^4, 10^5, 10^6, 10^7, 10^8, 10^9, 10^10,

10^11};

nooftwinp = {2, 8, 35, 205, 1224, 8169, 58980, 440312, 3424506,

27412679, 224376048};

HLconjecture = {4.8361883278, 13.5354875604, 45.7955004115,

214.2109398311, 1248.7087356371, 8248.0296898308, 58753.8164979342,

440367.7942273770, 3425308.1557430851, 27411416.5322785837,

224368864.6811819439};

normalized = 2*ListMetadistances66/Max[ListMetadistances66];

(*This calls the list of LDS, named ListMetadistances66*)

mcHLintegrand =

Table[Table[

1/(Log[x])^2, {x, 2, powers[[k]], (powers[[k]] - 2)/17547}], {k,

1, Length[powers]}];

(*discretize integrand for calculation of integral for metadistances*)

mcHLsummatories =

Table[2 c2*

Sum[powers[[k]]* mcHLintegrand[[k, i]]*

RandomReal[]/Length[mcHLintegrand[[k]]], {i, 1,

Length[mcHLintegrand[[k]]] - 1}], {k, 1, Length[mcHLintegrand]}]

(*calculate integral using MC, just up to the length of the discretized integrand*)

HLintegrand2 =

Table[1/(Log[x])^2, {x, 2,

powers[[2]], (powers[[2]] - 2)/(Length[ListMetadistances66])}];

(*discretize the integrand for metadistances*)

summatories =

Table[2 c2*

Sum[powers[[k]]*7.39* HLintegrand[[k, i]]*

normalized[[i]]/Length[HLintegrand[[k]]], {i, 1,

Length[HLintegrand[[k]]] - 1}], {k, 1, Length[HLintegrand]}]

(*calculate all the integrals, for every upper limit of the integral (powers) *)

(*make the comparisons*)

comparisons =

Table[{pow2[[k]], pi2n[[k]], ScientificForm[HLconjecture[[k]], 3],

ScientificForm[(Abs[pi2n[[k]] - HLconjecture[[k]]])*100/pi2n[[k]],

3], ScientificForm[mcHLsummatories[[k]],

3], (Abs[pi2n[[k]] - mcHLsummatories[[k]]])*100/pi2n[[k]],

ScientificForm[summatories[[k]], 3],

N[(Abs[pi2n[[k]] - summatories[[k]]])*100/pi2n[[k]], 3]}, {k, 1,
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Length[summatories]}]; PrependTo[comparisons, {"powers",

"\!\(\*SubscriptBox[\(\[Pi]\), \(2\)]\)(n)", "HL conj.", "% error",

"mc HL", "% error", "LDS HL", "% error"}]; MatrixForm[comparisons]
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