
ar
X

iv
:1

90
4.

03
28

7v
1

 [
m

at
h.

C
O

]
 5

 A
pr

 2
01

9

THE SORTABILITY OF GRAPHS AND MATRICES
UNDER CONTEXT DIRECTED SWAPS

C. BROWN, C.S. CARRILLO VAZQUEZ, R. GOSWAMI, S. HEIL, AND M. SCHEEPERS

Abstract. The study of sorting permutations by block interchanges has recently been
stimulated by a phenomenon observed in the genome maintenance of certain ciliate species.
The result was the identification of a block interchange operation that applies only under
certain constraints. Interestingly, this constrained block interchange operation can be gener-
alized naturally to simple graphs and to an operation on square matrices. This more general
context provides numerous techniques applicable to the original context. In this paper we
consider the more general context, and obtain an enumeration, in closed form, of all simple
graphs on n vertices that are “sortable” by the graph analogue of the constrained version
of block interchanges. We also obtain asymptotic results on the proportion of graphs on n

vertices that are so sortable.

1. Introduction

Sorting is one of the fundamental steps in the preparation of data for various data-mining
operations. The requirement of efficiency of the sorting process has lead to the invention and
study of several sorting methods. Among these is the block interchange technique: Abstractly
described, a repetition-free list of the numbers 1 through n in some order is given. We shall
call such a list a permutation of the numbers 1 through n.The objective is to sort this list
to result in the numbers 1 through n listed in their canonical order 1, 2, · · · , n − 1, n.
A block interchange of the original list consists of identifying two non-overlapping intervals
of the list, and to then interchange these two intervals while retaining the relative order of
items in each of the two intervals.

Example 1. Consider the list [8, 3, 1, 4, 6, 5, 2, 9, 7]. The result of interchanging the
intervals [3, 1, 4] and [5, 2] is the new list [8, 5, 2, 6, 1, 3, 4, 9, 7].

Two fundamental questions regarding block interchanges are whether a permutation can
be sorted to the canonical order by applying only block interchanges, and if so, to sort
the permutation using the minimum possible number of block interchanges. In [4] Christie
showed that every permutation can be sorted by a sequence of consecutive block interchanges,
and identified a special type of block interchange that is critical to achieving the sorting in the
minimum possible number of steps. The type of block interchange identified in [4] turns out
to be a special case of a broader class of constrained block interchanges that were identified
in a different context in modeling genome maintenance activity in certain species of a class

2010 Mathematics Subject Classification. 05A15, 05C45, 05C50, 68P10.
Key words and phrases. Graph, Eulerian graph, Parity Cut, kernel, nullity, sortability by context directed
swaps.
Supported by the National Science Foundation under the Grant number DMS-1659872.
§ Corresponding Author: mscheepe@boisestate.edu.

1

http://arxiv.org/abs/1904.03287v1

of single cell organisms called ciliates [10]. As in prior work, these special block interchanges
will be called context directed swaps in this paper, and will be defined below.
There is a significant body of work on sorting permutations by context directed swaps.

Of the various approaches to this subject matter, translations to graph theoretic and linear
algebraic methods have been especially useful. In this paper we indicate how to faithfully
translate the context directed swap operation on permutations to corresponding operations
on finite graphs and appropriate square matrices. It turns out that the corresponding oper-
ation on graphs is strongly related to the previously studied operation of edge complemen-
tation [2] was independently discovered in [3], where in Section 7 it is called edge reduction,
and in [7]. Hints of the edge complementation operation also appear on p. 107 of [6].The cor-
responding operation on square matrices in turn, is directly related to the elementary pivot
operation (see page 106 of [6]) on a matrix and to the classical Schur complement [2, 3, 6].
We will exploit the body of knowledge in graph theory and linear algebra to enumerate, for
each n, the set of simple finite graphs on n vertices that are “sortable” (to be defined later)
by the graph theoretic analogue of context directed swaps. No corresponding closed formula
is known for the n-term permutations that are sorted by context directed swaps. When
considering for each n the proportion of simple graphs on n vertices that are sortable by
the graph theoretic analog of context directed swaps, an interesting phenomenon emerges:
For even values of n this proportion converges, and for odd values of n the proportion also
converges, but the limiting values for these two cases are different. A similar phenomenon
has been observed for permutations sortable by context directed swaps, as the reader can
verify from the data in the sequence A249165 available at [11].
The rest of the paper is organized as follows: In section 3, some of the background def-

initions and notations will be given. The formal definitions of permutations and context
directed swaps will be provided, as well as the description of the multiple representations of
the permutations. In section 5, the results of applying cds to an overlap graph, gcds, will
be presented. In particular, this section will discuss the properties of Eulerian graphs after
applying gcds on them. In Section 6 we determine the complexity of a decision problem
regarding graphs associated with permutations. In Section 7 we examine the sortabilty of
finite simple graphs and square matrices. The results of this section leads to the enumerative
results of Section 8, and the asymptotic results of Section 9.

2. Acknowledgements

This research was supported by the National Science Foundation Grant No. DMS-1659872
and Boise State University. We also thank Professor Robert Brijder for a personal commu-
nication in which the connection with the Schur complement was pointed out.

3. Preliminaries

There are two main types of graphs for a given permutation. One of these is the cycle graph,
which provides a sortability criterion through what is called the strategic pile. The second
graph is the overlap graph, which is constructed from what is called the breakpoint graph.
The connections between these descriptions may be extended by the matrix representation
of permutations. The matrix of a permutation that directly corresponds to the overlap is
the adjacency matrix of the overlap graph.

2

Even though cds originates from the field of biology, the results presented here are purely
mathematical. Therefore, graphs and matrices that do not correspond to physically permis-
sible permutations can be studied. This is because all graphs (and thus the matrices from
the graphs) do not necessarily have a corresponding permutation.

3.1. CDS and Associated Objects.

3.1.1. Permutations, Pointers, and Context Directed Swaps.

Definition 3.1. A permutation, π = [a1, ..., an] ∈ Sn is an array of the integers between 1
and n inclusive, in any order, such that there are no repeats among the integers.

Referring to the elements of permutations, each integer i has a left pointer, (i− 1, i), and
a right pointer, (i, i+1). An integer i along with its pointers is represented as (i−1,i) i (i,i+1).

Example 2. The permutation π1 = [3, 2, 5, 1, 4] can be expressed as

[(2,3)3(3,4), (1,2)2(2,3), (4,5)5(5,6), (0,1)1(1,2), (3,4)4(4,5)].

A permutation can be framed, in which 0 is added to the left of the open parenthesis and
(n + 1) is added to the right of the close parenthesis. In a framed permutations where the
pointers are explicitly given, the left pointer of 0 and the right pointer of n+1 are excluded.

The definition or context directed swap, the main focus of this paper, may now be stated.

Definition 3.2. Given a permutation

π =
[

{

α1
p
} {

α2
q
} {

α3

} {

pα4

} {

qα5

}

]

where each αi is a subsection (or block) of the permutation and p = (x, x + 1) and q =
(y, y + 1) are the pointers of arbitrary entries x and y in the permutation, we define the
operation context directed swaps on the permutation π with context p and q as,

cds{p,q}(π) =
[

{

α1
p
} {

p α4

} {

α3

} {

α2
q
} {

q α5

}

]

.

Example 3. For example, for the permutation π1 = [3, 2, 5, 1, 4], we have that

cds{(1,2),(4,5)}(π1) = [3, 4, 5, 1, 2].

The operation cds interchanges the blocks α2 and α4, including the pointers that were part
of each block. Notice that cds{p,q} can only be applied if the permutation has the pointers p
and q in the following order: “...p...q...p...q...”. Also, the two p pointers are adjacent to each
other in the image of the permutation under cds (as are the two q pointers). This paper will
look at the different limitations and constraints that cds has on the various representations
of permutations.

3.1.2. Cycle Graph, Alternating Cycles, and Strategic Pile. There are two distinct graph
representations of a permutation, the first of which is the cycle graph.

Definition 3.3. The cycle graph of a permutation π = [a1, ..., an] is the directed graph
CG(π) = (V,E), where

V = {0, 1, ..., n, (n+ 1)}, and
E = Ed ∪ Eb

3

with

Eb = {{i, i+ 1} | 0 ≤ i ≤ n}
Ed = {{ai+1, ai} | 1 ≤ i ≤ n} ∪ {{(n+ 1), an}, {a1, 0}}

.

The edges are divided into two sets, where Eb is the set of bold or black edges and Ed is
the set of dotted or gray edges of the cycle graph. The bold edges are connected per each
consecutive number (from smallest to largest), while the dotted edges are connected per each
consecutive element in the permutation, starting at the end of the permutation and moving
backward.

Example 4. The cycle graph of the permutation π2 = [5, 3, 1, 6, 2, 7, 4] is shown in Figure 1
below.

0 5 3 1 6 2 7 4 8

FIGURE 1. The Cycle Graph of π2 = [5, 3, 1, 6, 2, 7, 4]

If walks are made on the cycle graph where consecutive edges in the walks alternate between
belonging to Eb and Ed, then the disjoint sets of nodes in the walks form the alternating
cycles of the permutation.

0

1

3

4

7

8

4

5

1

2

6

7

2

3

5

6

FIGURE 2. The Alternating Cycles of π2 = [5, 3, 1, 6, 2, 7, 4]

The above suggests a representation of permutations as a product of cycles. The cycle
notation (Cπ) of a permutation π is the conjunction of the alternating cycles. Another
way of representing π = [a1, . . . , an] is with Cπ = Yπ ◦ Xn where Xn = (0 1 2 . . . n) and
Yπ = (an an−1 . . . a1 0).

Example 5. The cycle notation of π2 = [5, 3, 1, 6, 2, 7, 4] is Cπ2 = (4 7 2 6 1 3 5 0)(0 1 2 3 4 5 6 7) =
(0 3 7 4)(1 6 2 5); in this case, we have that Yπ2 = (4 7 2 6 1 3 5 0) and X7 = (0 1 2 3 4 5 6 7).

The cycle notation and its related concepts, as used in this paper, are taken from [1].

Definition 3.4. If the cycle notation of a permutation π is

Cπ = (0 ... n b1 ... bk)(...)...(...),
4

then the strategic pile SP(π) of the permutation is the set of elements in the same cycle of
n that follow n in Cπ; that is, SP(π) = {b1, ..., bk}. If 0 and n appear in different cycles of
Cπ or no elements follow n in Cπ, then SP (π) = ∅.
The cycle notation of a permutation gives rise to a sortability criterion under cds for

permutations.

Theorem 3.1. [1]A permutation π is cds-sortable if, and only if, SP (π) = ∅.
The ordered strategic pile of a permutation π, SP∗(π), is the same as the strategic pile for

π, where the order of the numbers that follow n in the cycle notation is preserved. That is,
SP ∗(π) = (b1 ... bk).

Example 6. The ordered strategic pile of π = [3, 2, 5, 1, 4], with cycle notation Cπ =
(0, 5, 4, 2)(1, 3) is SP ∗(π) = (4, 2).

3.1.3. Breakpoint Graph and Overlap Graph. The second graph representation of a permu-
tation is the overlap graph.

Definition 3.5. Given a permutation π = [a1, ..., an], the breakpoint graph of the permu-
tation is the undirected graph BG(π) = (V,E), where

V = {(i, i+ 1)dir | 0 ≤ i ≤ n and dir ∈ {L,R} }
E =

{

{(i, i+ 1)L, (i, i+ 1)R} | 0 ≤ i ≤ n
}

The vertices correspond to the pointers of the elements of the permutation, where (i, i+1)L
indicates a left pointer, and (i, i+ 1)R indicates a right pointer.

Example 7. Let π3 = [4, 5, 2, 6, 1, 7, 3, 8], and write the pointers

0(0,1) [(3,4) 4 (3,4)
,
(3,4) 5 (3,4)

,
(3,4) 2 (3,4)

,
(3,4) 6 (3,4)

,
(3,4) 1 (3,4)

,
(3,4) 7 (3,4)

,
(3,4) 3 (3,4)

,
(3,4) 8 (3,4)] (3,4)9.

Figure 3 shows the breakpoint graph of π3.

0 4 5 2 6 1 7 3 8 9
01 34 45 45 56 12 23 56 67 01 12 67 78 23 34 78 89 89

FIGURE 3. The Breakpoint Graph of π3 = [4, 5, 2, 6, 1, 7, 3, 8]

Using the graph above, we can construct the overlap graph (referred as the interleaving
graph in other sources [References]) by taking the edges between each of the pointers of the
breakpoint graph as the vertices, and constructing an edge in the overlap graph between
these vertices for which edges intersect in the breakpoint graph. A formal definition of this
notion is now given.

Definition 3.6. Given the breakpoint graph BG(π) of a permutation π, the overlap graph
of the permutation π is the undirected graph OG(π) = (V,E) where

V = {(i, i+ 1) | 0 ≤ i ≤ n}, and

5

E = {(i, i+ 1), (j, j + 1)} if there exists an intersection between {(i, i+ 1)L, (i, i+ 1)R} &
{(j, j + 1)L, (j, j + 1)R} in BG(π).

Definition 3.7. Given a permutation π ∈ Sn, the root pointers of π are the two pointers
(0, 1) and (n, n + 1) which cannot be used as p or q in a cds move cds{p,q}(π). Then,
define the roots of the overlap graph OG(π) to be the vertices corresponding to the two root
pointers in π.

An example of the overlap graph of a permutation can be seen in Figure 4.

(0,1)
(1,2)

(2,3)

(3,4)

(4,5)(5,6)

(6,7)

(7,8)

(8,9)

FIGURE 4. The Overlap Graph of π3 = [4, 5, 2, 6, 1, 7, 3, 8]
The root vertices are denoted with “♦” rather than with “©”

Definition 3.8. Let Gn,r denote the set of all n-vertex graphs such that r of the n vertices
are roots. Thus, if π ∈ Sn, then OG(π) ∈ Gn+1,2, since all overlap graphs are two-rooted
and the overlap graph of an n-element permutation must have n + 1 vertices.

Definition 3.9. A graph G is Eulerian if every vertex of G has even degree.

Definition 3.10. Given a simple graph G = (V,E), let the neighborhood of a vertex v in
the graph, denoted NG(v), be the set of all vertices u ∈ V such that edge {u, v} is in E.

Definition 3.11. Given a simple graph G = (V,E), a set S ⊆ V , and a vertex v ∈ V ,
let δS(v) denote the degree of v with respect to S, or the number of edges between v and
vertices in S.

Note that v 6∈ NG(v) for all v ∈ V .

For a set S, denote the cardinality of S by |S|.

3.1.4. Adjacency and Precedence Matrices. We will denote the entry in row i and column j
of the matrix A using the Let A(i, j) be the entry in row i and column j of the matrix A,
let ~ai be the ith column vector of the matrix A, and let vi be the ith entry in the vector ~v.
The adjacency matrix of an overlap graph can now be defined as follows,

Definition 3.12. The adjacency matrix of a graph G = (V,E) with vertex set V =
{v1, v2, . . . , vn} is the n× n matrix Aπ such that, for 1 ≤ i, j ≤ n,

Aπ(i, j) =

{

1 {vi, vj} ∈ E
0 otherwise

6

For simplicity, we define the adjacency matrix of a permutation π to be the adjacency matrix
of its overlap graph, OG(π).

Example 8. The adjacency matrix of the overlap graph of π3 = [4, 5, 2, 6, 1, 7, 3, 8] is

Aπ3 =



























0 1 1 1 0 0 1 0 0
1 0 1 0 0 1 1 0 0
1 1 0 0 0 1 0 1 0
1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0



























.

Definition 3.13. For a permutation π = [a1, ..., an], let fπ be the function defined by
fπ(0) = 0, fπ(ai) = i for 1 ≤ i ≤ n, and fπ(n + 1) = n + 1. Then, the precedence matrix of
π is the (n+ 2)× (n + 2) matrix Pπ such that, for 1 ≤ i, j ≤ (n + 2),

Pπ(i, j) =

{

1 fπ(i− 1) < fπ(j − 1)
0 otherwise

Example 9. The precedence matrix of the permutation π3 = [4, 5, 2, 6, 1, 7, 3, 8] is

Pπ3 =































0 1 1 1 1 1 1 1 1 1
0 0 0 1 0 0 0 1 1 1
0 1 0 1 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1
0 1 1 1 0 1 1 1 1 1
0 1 1 1 0 0 1 1 1 1
0 1 0 1 0 0 0 1 1 1
0 0 0 1 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0































.

We now provide three definitions of matrices that are the result of eliminating the first
and last rows and/or columns of an initial matrix.

Definition 3.14. For an n × n matrix A, we define the central submatrix of A without its
rows, denoted centr(A), to be the (n− 2)×n submatrix of A that excludes the first and last
rows of A. Similarly, the central submatrix of A without its columns, denoted centc(A) is
the n× (n− 2) submatrix of A that excludes the first and last columns of A. Analogously,
we can also define the central submatrix of A without its rows and columns, centr,c(A).

7

Example 10. The three different central submatrix of the matrix

A =



























0 1 1 1 0 0 1 0 0
1 0 1 0 0 1 1 0 0
1 1 0 0 0 1 0 1 0
1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0



























.

are shown below:

centr(A) =





















1 0 1 0 0 1 1 0 0
1 1 0 0 0 1 0 1 0
1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0





















, centc(A) =





























1 1 1 0 0 1 0
0 1 0 0 1 1 0
1 0 0 0 1 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0
1 1 0 0 0 0 0
1 0 0 0 0 0 0
0 1 1 0 0 0 0
0 0 0 0 0 0 0





























, and centr,c(A) =





















0 1 0 0 1 1 0
1 0 0 0 1 0 1
0 0 0 0 0 0 1
0 0 0 0 0 0 0
1 1 0 0 0 0 0
1 0 0 0 0 0 0
0 1 1 0 0 0 0





















4. Generalizing context directed swaps to finite graphs and matrices.

The idea of generalizing the cds operation from permutations to graphs was given in [7],
Section 4. As noted in the introduction, this generalization was also observed independently
in Section 7 of [3]. We will define a slightly modified version of the generalization of cds
to graphs given in [7], and have gcds denote this operation on graphs. This modified gcds
definition is as follows:

Definition 4.1. Let G = (V,E) be a two-rooted undirected graph on n vertices, and let p
and q be non-root vertices of G such that edge {p, q} ∈ E. For any two vertices x, y ∈ V ,
let fx(y) = 1 if x and y are adjacent, and let fx(y) = 0 otherwise. Then gcds{p,q}(G) is the
unique graph G′ = (V,E ′) such that for any u, v ∈ V , edge {u, v} ∈ E ′ if, and only if,

fp(u)fq(v) + fq(u)fp(v) + fu(v) = 1.

This is an alternative definition of gcds introduced in [7]. The proof that the two defini-
tions are equivalent is given in Appendix A.

Definition 4.2. Given a matrix M , the matrix cds operation, mcds, on entries p, q is:

mcds(M) = M +MIpqM

where Ipq is the matrix over F2 with Ipq(i, j) = 1 if i = p and j = q or i = q and j = p and
Ipq(i, j) = 0 otherwise.

Using the definitions of gcds andmcds, we now define sortability1 for graphs and matrices
under the respective operations. Noting that the overlap graph of the sorted permutation
[1, 2, . . . , n] is the discrete graph on (n+1) vertices containing no edges and that the adjacency
matrix of this graph is the (n+1)× (n+1) zero matrix, the following notations are defined:

1The terminology “sortability” is inspired by the original context that is being generalized, rather than an
intuitive idea of sorting for a graph or a matrix.

8

Definition 4.3. A two-rooted graph is sorted if it contains no edges, and gcds-sortable if
finitely many applications of the gcds operation on the graph result in a graph containing
no edges.

Definition 4.4. We call a matrix sorted if it is the zero matrix, andmcds-sortable if finitely
many applications of the mcds operation on the matrix will result in the zero matrix.

First, we justify our selection of terminology by showing that gcds applied to overlap
graphs of permutations is equivalent to cds applied to permutations:

Lemma 4.1. Let ϕ : Sn → Gn+1,2 (where Gn+1,2 is the set of two-rooted graphs on n + 1
vertices), such that if π ∈ Sn then ϕ(π) is the overlap graph of π.
Let π be a permutation of [1, 2, . . . , n], and let ϕ(π) = (V,E), where V = {v0, v1, . . . , vn}

and each vertex vi ∈ V corresponds to the pointer (i, i + 1) in π. Then gcds{vp,vq}(ϕ(π))

is defined if, and only if, cds{p,q}(π) is defined, in which case we have gcds{vp,vq}(ϕ(π)) =
ϕ(cds{p,q}(π)).

Proof. By definition of gcds, there is an edge between u and v in G′ = gcds(G) if, and only
if, fp(u)fq(v)+fq(u)fp(v)+fu(v) ≡ 1 (mod 2). This means that if fp(u)fq(v)+fq(u)fp(v) ≡ 0
(mod 2), then there is an edge between u and v in G′ if, and only if, this edge is in G, so
the edge ”stays”. Otherwise, if fp(u)fq(v) + fq(u)fp(v) ≡ 1 (mod 2), then there is an edge
between u and v in G′ if, and only if, there is no edge between u and v in G (e.g. the
edge ”switches” between G and G′). We show that two pointers u, v remain intersected or
non-intersected if, and only if, fp(u)fq(v) + fq(u)fp(v) = 0 for their corresponding vertices
in G.
Let us consider the permutation π with intersecting pointers p and q as follows:

p q p q
α β γ δ α

FIGURE 5. Blocks Defined by a Context

We can label the blocks between the pointers in order from left to right as α, β, γ, δ, α (we
consider the first and last blocks to be part of the same block). Note that if fp(x) = 1, fq(x) =
0, then x can have its two endpoints in either (α,β) or (γ, δ). Similarly, if fp(x) = 0 and
fq(x) = 1, then x can have its two endpoints in either (α, δ) or (β, γ). If fp(x) = fq(x) = 1,
then x can have its two endpoints in either (α, γ) or (β, δ). Finally, if fp(x) = fq(x) = 0,
then both endpoints of x must be in the same block ((α, α),(β, β),(γ, γ), or (δ, δ)). When
cds is applied, the β and δ blocks are swapped, so we will call these two blocks the swapped
blocks, and the other two blocks the unchanged blocks.
Now, given pointers u and v, assume without loss of generality that u appears before v in

π. If u and v are non-intersecting (there is no edge between u and v in G), then the possible
orientations are either u...u...v...v or u...v...v...u. If they are intersecting (there is an edge
between u and v in G), their orientation must be u...v...u...v. Note that the relative ordering
of the pointers inside a block are preserved during cds, so if both ends of a pointer are in the
same block, then no edge adjacent to the corresponding vertex will switch with cds, because

9

no pointer can be moved in between or out from between the two ends. We consider seven
cases:

(1) fp(u) = 1, fq(u) = 0, fp(v) = 1, fq(v) = 1, fp(u)fq(v) + fq(u)fp(v) = 1: In this case
the endpoints of u will be in either (α, β) or (γ, δ) and the endpoints of v will be in
one of (α, γ) and (β, δ). So u will have an endpoint in a swapped block and one in
an unchanged block, and v will either have both ends in the two swapped blocks or
both endpoints in the two unchanged blocks. When cds is applied, v will still have
both endpoints in the two swapped blocks and u will still have one endpoint in the
same unchanged block. However, the other end pointer of u will be either in between
the end pointers of v after the swap or between the pointers after the swap. Thus,
the edge between the corresponding vertices switches.

(2) fp(u) = 0, fq(u) = 1, fp(v) = 1, fq(v) = 1, fp(u)fq(v) + fq(u)fp(v) = 1: In this case
the endpoints of u will be in either (β, γ) or (α, δ) and the endpoints of v will be
in either (α, δ) or (β, γ). So again one pointer will have an end in a swapped block
and one in an unchanged block, and the other will either have both ends in the two
swapped blocks or both ends in the two unchanged blocks, and by the reasoning
above, the edge must switch.

(3) fp(u) = 1, fq(u) = 0, fp(v) = 0, fq(v) = 1, fp(u)fq(v) + fq(u)fp(v) = 1: In this case
the endpoints of u will be in either (α, β) or (γ, δ) and the endpoints of v will be in
either (α, δ) or (β, γ). So each pointer will have one endpoint in a swapped block, and
one endpoint in an unchanged block. If the two endpoints in unchanged blocks are in
the same unchanged block, their other endpoints must be in different swapped blocks,
and thus when cds is applied the relative ordering of one of those two endpoints will
change, switching the edge between two pointers. Otherwise, if the two endpoints
are in the same swapped block, their other endpoints must be in different unchanged
blocks on either side of the swapped block, so when cds is applied, the swapped block
will be transposed with one of the endpoints, thus moving that endpoint either in
between the endpoints of the other pointer or out from in between the pointers after
the swap, causing the edge between the corresponding vertices to switch.

(4) fp(u) = 1, fq(u) = 0, fp(v) = 1, fq(v) = 0, fp(u)fq(v)+fq(u)fp(v) = 0: If two pointers
have their endpoints in the same blocks, then applying cds will not switch the edge
between them, because no point can be moved in between or out from between the
endpoints of the other pointer. Otherwise, in this case we have the endpoints of one
pointer in (α, β) and the endpoints of the other in (γ, δ), and after cds is applied, we
have the endpoints of one pointer in (α, δ) and the endpoints of the other in (β, γ).
Thus, the pointers must be non-intersecting both before and after cds is applied.

(5) fp(u) = 0, fq(u) = 1, fp(v) = 0, fq(v) = 1, fp(u)fq(v)+fq(u)fp(v) = 0: Again, because
two pointers with their endpoints in the same blocks will not change their intersec-
tion when cds is applied, we consider the case in which we have the endpoints of one
pointer in (β, γ) and the endpoints of the other in (α, δ), and after cds is applied,
we must have the endpoints of one pointer in (α, β) and the endpoints of the other

10

in (γ, δ). Thus, the pointers must be non-intersecting both before and after cds is
applied.

(6) fp(u) = 1, fq(u) = 1, fp(v) = 1, fq(v) = 1, fp(u)fq(v)+fq(u)fp(v) = 0: Again, because
two pointers with their endpoints in the same blocks will not change their intersec-
tion when cds is applied, we consider the case in which we have the endpoints of
one pointer in (β, δ) and the endpoints of the other in (α, γ). This is the case both
before and after cds application, so the pointers will be intersecting both times, and
the edge will not change.

(7) fp(u) = fq(u) = 0 or fp(v) = fq(v) = 0, fp(u)fq(v) + fq(u)fp(v) = 0: In this case,
either u or v must be contained in the same block, and since the order of points in
blocks are unchanged, the edge between u and v will not switch.

�

The following lemmas show that the gcds and mcds operations are equivalent, confirming
that our choice of mcds as generalization of cds is correct.

Lemma 4.2. Let ϕ be the function from the set of undirected n-vertex graphs to the set of
n× n matrices over F2 such that if G is a graph, then ϕ(G) is the adjacency matrix of G.
Let G = (V,E) be a graph on n vertices, and let V = {v1, v2, . . . , vn}. Then mcds can be

applied to rows p and q of ϕ(G) if, and only if, gcds can be applied to vertices vp and vq of
G, in which case we have mcds{p,q}(ϕ(G)) = ϕ(gcds{vp,vq}(G)).

Proof. By definition, the gcds move that includes the vertices vp and vq is valid if, and only
if, vp and vq are adjacent in G. The mcds move on rows p and q in ϕ(G) is valid if, and only
if, the element in row p, column q of ϕ(G) is a 1. Note that by definition of the adjacency
matrix, these conditions are equivalent, so (p, q) is a valid mcds move if, and only if, (vp, vq)
is a valid gcds move, as desired.
Next, let vp and vq be adjacent vertices inG; we claim thatmcds{p,q}(ϕ(G)) = ϕ(gcds{vp,vq}(G)).

It suffices to show that for any i and j with 1 ≤ i, j ≤ n, the element at position (i, j) in
mcds{p,q}(ϕ(G)) is equal to the element at position (i, j) in ϕ(gcds{vp,vq}(G)).

Let M = ϕ(G). We defined mcds{p,q}(ϕ(G)) = M+MIpqM , where Ipq is the n×n matrix
with ones in positions (p, q) and (q, p) and the remaining entries all equal to zero. Then, we
have

(M +MIpqM)(i, j) = M(i, j) + ((MIpq)M)(i, j)

= M(i, j) +

n
∑

k=1

(MIpq)(i, k)M(k, j)

= M(i, j) +

n
∑

k=1

n
∑

t=1

M(i, t)Ipq(t, k)M(k, j).

Note that by definition of the matrix Ipq, we have that Ipq(t, k) = 1 if and only t = p and
k = q or t = q and k = p. Thus, it follows that

11

(M +MIpqM)(i, j) = M(i, j) +
n
∑

k=1

n
∑

t=1

M(i, t)Ipq(t, k)M(k, j)

= M(i, j) +M(i, p)M(q, j) +M(i, q)M(p, j).

Next, to find ϕ(gcds{vp,vq}(G))(i, j) , we have that if fvp(vi)fvq(vj) + fvp(vj)fvq(vi) = 1

then edge {vi, vj} is included in gcds{vp,vq}(G) if, and only if, it is not included in G, and
otherwise edge {vi, vj} is included in gcds{vp,vq}(G) if, and only if, it is included in G,

where for vertices vx and vy fvx(vy) is defined to be 1 if vx and vy are adjacent in G and
otherwise 0. By definition of the adjacency matrix, we have that fvx(vy) = M(x, y) for all
pairs (x, y) with 1 ≤ x, y ≤ n. Therefore, we have that fvp(vi)fvq(vj) + fvp(vj)fvq(vi) =
M(p, i)M(q, j) +M(p, j)M(q, i). Furthermore, edge {vi, vj} is included in G if, and only if,
M(i, j) = 1.
We also have that when M(p, i)M(q, j) +M(p, j)M(q, i) = 1, edge (vi, vj) will appear in

gcds{vp,vq}(G) if, and only if,M(i, j) = 0. Additionally, whenM(p, i)M(q, j)+M(p, j)M(q, i) 6=
1 implies edge {vi, vj} is in gcds{vp,vq}(G) if, and only if,M(i, j) = 1. Since 0 ≤ M(p, i)M(q, j)+
M(p, j)M(q, i) ≤ 2, ifM(p, i)M(q, j)+M(p, j)M(q, i) 6= 1 thenM(p, i)M(q, j)+M(p, j)M(q, i) ≡
0 (mod 2). Therefore, in either case, edge {vi, vj} is in gcds{vp,vq}(G) if, and only if, M(i, j)+
M(p, i)M(q, j)+M(p, j)M(q, i) ≡ 1 (mod 2). This implies that ϕ(gcds{vp,vq}(G))(i, j) = 1 if

M(i, j)+M(p, i)M(q, j)+M(p, j)M(q, i) ≡ 1 (mod 2) and otherwise ϕ(gcds{vp,vq}(G))(i, j) =
0. Thus,

ϕ(gcds{vp,vq}(G))(i, j) ≡ M(i, j) +M(p, i)M(q, j) +M(p, j)M(q, i) (mod 2).

Using simple arithmetic, we have ϕ(gcds{vp,vq}(G))(i, j) = M(i, j) + M(p, i)M(q, j) +

M(p, j)M(q, i). Since the graph G is undirected, the matrix M = ϕ(G) is symmetric, so
M(p, i) = M(i, p) and M(q, i) = M(i, q) and thus

ϕ(gcds{vp,vq}(G))(i, j) = M(i, j) +M(p, i)M(q, j) +M(p, j)M(q, i)

= M(i, j) +M(i, p)M(q, j) +M(i, q)M(p, j)

= (M +MIpqM)(i, j)

= mcds{p,q}(M)(i, j),

with addition and multiplication in F2. Therefore, we have

mcds{p,q}(ϕ(G)) = ϕ(gcds{vp,vq}(G)),

as desired. �

Corollary 4.3. Define the function ϕ : Sn → Mn(F2) so that for a permutation π, ϕ(π) is
the adjacency matrix of π. Let π ∈ Sn. Then, mcds can be applied to rows p and q of ϕ(π)
if, and only if, cds can be applied to the pointers (p, p+1) and (q, q+1) of π, in which case
we have

mcds{p,q}(ϕ(π)) = ϕ(cds{p,q}(π)).

Proof. By Lemma 4.1, we have that cds{p,q}(π) is defined if, and only if, gcds{vp,vq}(OG(π))
is defined, and by Lemma 4.2 this gcds operation is defined if, and only if, mcds{p,q}(ϕ(π))

12

is defined, so each mcds operation is defined if, and only if, the corresponding cds operation
is defined.
Furthermore, if we let ϕ1 be the function defined in Lemma 4.1 taking a permutation to

its overlap graph and let ϕ2 be the function defined in Lemma 4.2 taking a graph to its
adjacency matrix, then we have ϕ = ϕ2 ◦ ϕ1. Applying Lemmas 4.1 and 4.2, we have

mcds{p,q}(ϕ(π)) = mcds{p,q}(ϕ2(ϕ1(π)))

= ϕ2(gcds{vp,vq}(ϕ1(π)))

= ϕ2(ϕ1(cds{p,q}(π)))

= ϕ(cds{p,q}(π)),

as desired. �

5. Parity Cuts and Preservation Properties

Definition 5.1. [8] Let G = (V,E) be a two-rooted graph. A parity cut of G is a partition
V = V1 ∪ V2, V1 ∩ V2 = ∅ such that for any non-root vertex v ∈ Vi, δVj

(v), j 6= i, is even.

For the purpose of this paper, we will only consider parity cuts to mean those cuts in
which the roots also have an even number of edges to vertices of the opposite set.

Lemma 5.1. Let G = (V,E) be an Eulerian graph with G′ = (V,E ′) = gcds{u,v}(G) for
some vertices u, v ∈ V . Then G′ is also an Eulerian graph.

Proof. Let p, q ∈ V such that {p, q} ∈ E. Consider G′ = gcds{p,q}(G). Let u ∈ V such that
u 6= p and u 6= q. There are three cases:

(1) The vertex u is adjacent to neither p nor q. In this case, NG(u) = NG′(u).
(2) The vertex u is adjacent to either p or q but not both. Without loss of generality,

assume that u is adjacent to p. Then, let S = NG(q)\{p}. For each s ∈ S, {u, s} ∈ E ′

if, and only if, {u, s} 6∈ E. Let x be the number of adjacencies in S gained and y be
the number of adjacencies in S lost. Since x+ y = |S|,(and |S| must be odd) exactly
one of x or y is odd. Therefore x − y, the net change of adjacencies of u in S, is
odd. However, the edge {u, p} does not exist in G′. Therefore, the total net change
in adjacencies of u is even. Because u had an even number of adjacencies in G, u
must have an even number of adjacencies in G′.

(3) The vertex u is adjacent to both p and q. Let a1, ..., ai be the vertices adjacent to p,
but not to q. Let b1, ..., bj be the vertices adjacent to q, but not to p, and c1, ..., ck
be the vertices adjacent to both p and q other than u. For all r, 1 ≤ r ≤ i, the
edge {ar, u} will exist in G′ if, and only if, it does not exist in G. Likewise, for all
r, 1 ≤ r ≤ j, {br, u} will exist in G′ if, and only if, it did not exist in G. However, for
all r, 1 ≤ r ≤ k, {cr, u} will exist in G′ if, and only if, it did exist in G. Therefore, the
total number of edges switched (where switched means the edge exists in exactly one
of G and G′) is equal to i+j. Since the vertex p has even degree and a1, ..., ai, c1, ..., ck
does not include u or q, i + k must be even. Similarly, since the vertex q has even
degree, so j+ k must be even. Therefore, the net change in adjacencies of u must be
even, so u must be of even degree in G′.

By combining the above cases, we have shown that in a graph with only even degree
vertices, a gcds operation will result in a graph with only even degree vertices. �

13

Another property that is preserved under gcds on an Eulerian graph is presented in the
following theorem.

Theorem 5.2. Let G = (V,E) be an Eulerian graph with G′ = (V,E ′) = gcds{u,v}(G) for
some vertices u, v ∈ V . Let p, q be vertices and (V1, V2) be a partition of V , then (V1, V2) is
a parity cut of G if, and only if, there exists some parity cut (V ′

1 , V
′
2) of G

′ such that for all
vertices v 6= p, q ∈ V , v ∈ V1 ⇔ v ∈ V ′

1 .

Proof. (⇐) Suppose that (V1, V2) is a valid parity cut of G. We will show that for any
vertex u ∈ Vi, when gcds is performed on two vertices p, q, the parity of δVj

(v), j 6= i
does not change, and that therefore this is also a valid parity cut for G′. We note that
because G is Eulerian, for any v ∈ V , δV1(v) and δV2(v) will both be even. Consider the sets
A = {v ∈ Vj|v 6= q, v is adjacent only to p}, B = {v ∈ Vj |v 6= p, v is adjacent only to q},
and C = {v ∈ Vj| v is adjacent to both p and q}. Suppose u is adjacent to x vertices in A,
y vertices in B, and z vertices in C. There are 3 possible cases:

(1) Suppose p, q ∈ Vi. In this case, δVj
(p) = |A⋃C| = |A| + |C|, which is even, and

similarly, |B|+ |C| is even, so |A|+ |B| must also be even.
(a) Suppose u is adjacent to both p and q. When the gcds operation is performed,

edges between u and vertices of A and B will switch (for any vertex v ∈ A∪B, the
edge between u and v is inG′ if and only if it is not inG), which means u′ ∈ V (G′)
will have δVj

(u′) = δVj
(u)+(|A|−x)−x+(|B|−y)−y = δVj

(u)+|A|+|B|−2x−2y
edges, so the change in δVj

(u) is even.

(b) Suppose u is adjacent only to p. When the gcds operation is performed, edges
between u and vertices of B and C will switch, which means u′ ∈ V (G′) will
have δVj

(u′) = δVj
(u)+(|B|−y)−y+(|C|−z)−z = δVj

(u)+ |B|+ |C|−2y−2z
edges, so the change in δVj

(u) is even.

q

u p

V1 V2

(a)

q

u p

V1 V2

(b)

FIGURE 6. Case 1: p, q ∈ Vi.

(2) Suppose that p ∈ Vi, q ∈ Vj. In this case, δVj
(p) = |A ∪ C ∪ {q}| = |A| + |C| + 1,

which is even, so |A| + |C| must be odd and similarly, |B| + |C| must be even, so
|A|+ |B| must be odd.
(a) Suppose u is adjacent to both p and q. When the gcds operation is per-

formed, edges between u and vertices of A and B will switch and the edge
between u and q will be removed, which means u′ ∈ V (G′) will have δVj

(u′) =
δVj

(u) + (|A| − x) − x + (|B| − y) − y − 1 = δVj
(u) + |A| + |B| − 2x − 2y − 1

edges, so the change in δVj
(u) is even.

14

(b) Suppose u is adjacent only to p. When the gcds operation is performed, edges
between u and vertices of B and C will switch, which means u′ ∈ V (G′) will
have δVj

(u′) = δVj
(u)+(|B|−y)−y+(|C|−z)−z = δVj

(u)+ |B|+ |C|−2y−2z
edges, so the change in δVj

(u) is even.

(c) Suppose u is adjacent only to q. When the gcds operation is performed, edges
between u and vertices of A and C will switch and the edge between u and q
will be removed, which means u′ ∈ V (G′) will have δVj

(u′) = δVj
(u)+(|A|−x)−

x+ (|C| − z)− z − 1 = δVj
(u) + |A|+ |C| − 2x− 2z − 1 edges, so the change in

δVj
(u) is even.

p

u q

V1 V2

(a)

p

u q

V1 V2

(b)

p

u q

V1 V2

(c)

FIGURE 7. Case 2: p ∈ Vi, q ∈ Vj.

(3) Suppose p, q ∈ Vj . In this case, δVj
(p) = |A⋃C

⋃{q}| = |A|+ |C|+1, which is even,
so |A|+ |C| must be odd and similarly, |B|+ |C| must be odd, so |A|+ |B| must be
even.
(a) Suppose u is adjacent to both p and q. When the gcds operation is per-

formed, edges between u and vertices of A and B will switch and the edges
between u and both p and q will be removed, which means u′ ∈ V (G′) will have
δVj

(u′) = δVj
(u)+(|A|−x)−x+(|B|−y)−y−2 = δVj

(u)+ |A|+ |B|−2x−2y−2
edges, so the change in δVj

(u) is even.

(b) Suppose u is adjacent only to p. When the gcds operation is performed, edges
between u and vertices of B and C will switch and the edges between u and p
will be removed, which means u′ ∈ V (G′) will have δVj

(u′) = δVj
(u)+(|B|−y)−

y + (|C| − z)− z − 1 = δVj
(u) + |B|+ |C| − 2y − 2z − 1 edges, so the change in

δVj
(u) is even.

15

u

p q

V1 V2

(a)

u

p q

V1 V2

(b)

FIGURE 8. Case 3: p, q ∈ Vj.

In all three cases, it is clear that δVj
(u′) is even if, and only if, δVj

(u) is even. Additionally,
δVj

(p′) = δVj
(q′) = 0, and we assumed that δVj

(p) and δVj
(q) were both even, so if δV1(p),

δV1(q), δV2(p), and δV2(q) are all even, then for all u ∈ Vi, the parity of δVj
(u), j 6= i does not

change.

(⇒) Conversely, suppose G′ has a valid parity cut with sets (V ′
1 , V

′
2). We will show that

there is also a valid parity cut (V1, V2) for G such that ∀v 6= p, q ∈ V, v ∈ V ′
1 ⇔ v ∈ V1.

Since p and q are isolated vertices in G′, either p, q ∈ V1 or p, q ∈ V2. Suppose in G, p had
an even number of edges to vertices (other than q) in Vi (this must be true for some i = 1, 2
since p had even degree and one edge to q). Since p must also have had an edge to q and it
had even degree, it must then have had an odd number of edges to vertices (other than q) in
Vj, j 6= i. Now, if q also had an even number of edges to vertices in Vi, we can consider the
partition of G with all vertices other than p and q in the same sets that they are in in the
valid parity cut of G′ and with p and q in Vj. Otherwise, if q had an odd number of edges
to vertices in Vi, we can consider the partition of G with all vertices other than p and q in
the same sets that they are in in the valid parity cut of G′ and with p in Vi and q in Vj . In
either case, p and q must have an even number of edges to vertices in the partition they are
not it. Furthermore, as shown above, for any other vertex u ∈ V , after application of gcds
on p and q, the parity of the number of edges between u and vertices in the partition that
does not contain u does not change. Therefore, since this quantity is even in G′, it must
have been even in G. Therefore, this cut must be a valid parity cut in G. �

To further analyze characteristics of Eulerian graphs, three properties on graphs will be
presented below, them first introduced in [8].

Definition 5.2. [8] Let G = (V,E) be a two-rooted graph with roots x, y ∈ V . We define
the following three properties:

a): G has property a if there exists some parity cut (V1, V2) such that x ∈ V1, y ∈ V2, δV2(x)
is even, and δV1(y) is even.

b): G has property b if there exists some parity cut (V1, V2) such that x ∈ V1, y ∈ V2, δV2(x)
is odd, and δV1(y) is odd.

c): G has property c if there exists some parity cut (V1, V2) such that x, y ∈ V1, and δV2(x)
and δV2(y) are both odd.

Again, for the purposes of this paper, we will adapt this definition as follows:

a): G has property a if there exists some parity cut (V1, V2) such that x ∈ V1 and y ∈ V2.
16

Since we define parity cuts of two-rooted graphs to only be those cuts in which the roots
have an even number of edges to vertices of the opposite set, this definition of property a is
equivalent.
Of the above three properties, we have that property a is preserved when applying gcds

to an Eulerian graph, and therefore we have a sortability criterion with this property.

Theorem 5.3. Let G = (V,E) be an Eulerian graph with roots x, y ∈ V and let G′ =
(V,E ′) = gcds{u,v}(G) for some u, v ∈ V . In this case G′ has property a if, and only if, G
has property a.

Proof. ⇐ Suppose G has property a. In this case, there exists some parity cut (V1, V2) of G
with x ∈ V1 and y ∈ V2. Therefore, by Lemma 5.2, there exists some parity cut (V ′

1 , V
′
2) of

G′ with x ∈ V ′
1 and y ∈ V ′

2 .
⇒ Similarly, if G′ has property a, there exists some parity cut (V ′

1 , V
′
2) of G

′ with x ∈ V ′
1

and y ∈ V ′
2 , so by Lemma 5.2, there exists some parity cut (V1, V2) of G with x ∈ V1 and

y ∈ V2. �

Corollary 5.4. An Eulerian graph is gcds sortable if, and only if, it has property a.

Proof. In any fixed point graph, there must exist some non-isolated, non-root vertex v. If
this graph is Eulerian, then it must be adjacent to both roots, and no other vertices. As a
result, both roots must be in the same set of any parity cut of this graph. Thus, the only
Eulerian graph which has property a and on which it is not possible to perform the gcds
operation is the discrete graph. Therefore, if an Eulerian graph has property a, after any
number of applications of the gcds operation it will still be Eulerian and have property a,
which means it must eventually become the discrete graph and thus be sortable, whereas if
the graph does not have property a, after any number of applications of the gcds operation
it will still be Eulerian and not have property a, which means it cannot ever become the
discrete graph and must be unsortable. �

Besides obtaining theorems related to property a, we have the following lemma referring
to property b.

Lemma 5.5. The overlap graph of a valid unsigned permutation cannot have property b.

Proof. Suppose an overlap graph G = (V,E) has property b. First note that such a graph
must be Eulerian. Therefore, given a parity cut (V1, V2), for all non-root vertices v ∈ V ,
δV1(v) and δV2(v) must both be even, while for the roots x, y ∈ V , these degrees must be
odd for sets. In this case, consider one partition of this graph when a valid parity cut with
property b is made. In the subgraph induced on V1, every vertex except the one root in this
set must have even degree, while the root has odd degree. However, it is not possible for
only one vertex in a graph to have odd degree, so this is a contradiction. �

Finally, focusing on property c, we have the corollary below.

Corollary 5.6. All Eulerian graphs must have exactly one of property a or property c.

Proof. We know from [8] that all graphs must have at least one of properties a, b, or c.
Therefore, by the above lemma, all Eulerian graphs must have at least one of properties a or
c. Furthermore, Theorem 2.2 from [8] tells us that if a graph has two of the three properties,
it must also have the third. Since it is not possible for an Eulerian graph to have property
b, this means that no Eulerian graph can have both properties a and c. �

17

Aside from the properties a, b, and c, one can look at the parity cut space in order to
obtain more information on Eulerian graphs.

Definition 5.3. We define the parity cut space of a graph to be the vector space of parity
cuts on the graph.

Definition 5.4. We define the characteristic vector of a parity cut S to be the vector ~x such
that, for each 1 ≤ i ≤ n, we have xi = 1 if vertex vi ∈ S and xi = 0 if vi 6∈ S.

The following major result shows the relation between the overlap graph of a permutation
and its adjacency matrix, connecting two major concepts in graph theory and linear algebra.

Theorem 5.7. The parity cut space of an Eulerian graph of a permutation is equivalent to
the kernel of its adjacency matrix.

Proof. Suppose we have a parity cut S of an Eulerian graph G = (V,E). Now because S is
a parity cut, we know that for each vertex v ∈ V \ S, the number of edges of v to vertices in
S will be even. Similarly, for each v ∈ S, the number of edges to vertices of in V \ S will be
even. However, since G is Eulerian, this means that for each v ∈ S, the number of edges to
vertices of in S will also be even. That is, S ⊆ V is a parity cut of G if, and only if, for all
v ∈ V , the number of edges from v to vertices in S is even.
Suppose we have such a parity cut, S, and let ~s be the characteristic vector of this cut and

~v be the row representing vertex v in the adjacency matrix of G. This means that ~v · ~s will
be 0 (working over the finite field of size 2). Therefore, given the adjacency matrix M , this

means that M~s = ~0, so ~s must be in the kernel of M .
Conversely, if we find a vector ~s in the kernel of M , this means that for each vertex v ∈ V ,

~v̇~s = 0, or that the number of edges of v to vertices in the set S defined by ~s must be even.
Therefore, ~s must necessarily define a parity cut of G. �

Thus, we have the following sortability criteria for an Eulerian graph.

Corollary 5.8. An Eulerian graph is gcds sortable if, and only if, the kernel of its adjacency
matrix contains a vector ~x such that x1 + xn = 1.

Proof. This follows directly from Corollary 5.4 and Theorem 5.7. �

In this section we have talked about concepts related to Eulerian graphs. Because overlap
graphs are a subsets of Eulerian graphs, the above lemmas and theorems are applicable in
the context of permutations. Nevertheless, if we restrict ourselves in working on overlap
graphs, we can have more precise properties of them that are related to what has already
been covered. Such properties are what will be discussed in the next subsection.

5.1. Permutations, Alternating Cycles, and Adjacency Matrices. The first lemma
we will look at connects parity cut and alternating cycles, the latter being a concept that
was introduced early on in the Terminology and Notations section.

Lemma 5.9. For an overlap graph G = (V,E) of a valid permutation, a partition of V such
that elements of each alternating cycle are contained in the same set constitutes a parity cut.

Proof. It suffices to show that given an alternating cycle (a1, a2, ..., ak) of a permutation π and
any pointer p not in that cycle, the pointer will intersect an even number of pointers of the
cycle. First note that in π, the pointer a1, ...ak will be arranged in pairs ai(ai−1 + 1) (where

18

subtraction is mod k). Now, between the p tail pointer and the p+1 head pointer, there will
be an even number of pointers of the alternating cycle, because they are situated in pairs.
We say that pointer q intersects pointer p if either its head or tail pointer lies between the
head and tail pointer of p, and its other pointer either precedes or succeeds both pointers of p
in the permutation. Furthermore, the pointers that we consider to belong to the alternating
cycles are the head pointers of the (ai−1 + 1) and the tail pointers of the ai. Since there
are exactly two of these pointers per pair, there must be an even number of these pointers
in between the head and tail pointers of p. Now, since each of these pointers corresponds
to exactly one other pointer in the alternating cycle, we see that an even number of these
pointers must connect to other such pointers in between the pointer of p, which means an
even number must correspond to pointers either preceding or succeeding both pointers of p
in the permutation, which means an even number of these pointers intersect p. Thus, given
any pointer p and an alternating cycle of π, p must have an even number of intersections with
pointers of the alternating cycle, so in any partition of V consisting of alternating cycles,
every vertex in one set must intersect an even number of vertices of each cycle of the other
set, and therefore this forms a parity cut. �

Having the restriction of working on overlap graphs rather than on Eulerian graphs, we
obtain a more detailed property connecting the alternating cycles and the kernels of the
adjacency matrix.

Theorem 5.10. The alternating cycles of π form an orthogonal basis for the kernel of the
adjacency matrix of π.

Proof. We know that the characteristic vectors of the alternating cycles must be orthogonal
(since the cycles are disjoint) and also that they all define parity cuts (see Lemma 5.9,
so it only remains to show that there are no parity cuts that are not formed by a linear
combination of parity cuts formed from alternating cycles (under the symmetric difference
operation). That is, every parity cut must be composed of complete alternating cycles.

FIGURE 9. Example Breakpoint Graph

Suppose we have a permutation and a set of pointers that constitute a parity a cut. We
will show that these pointers must form complete alternating cycles.
First, let us consider the head and tail of each pointer. We will call these dots. Given

this permutation, we know that the first dot must be the (0, 1) tail pointer and the last dot
must be the (n, n+ 1) head pointer. Furthermore, if we start at the first dot and follow the
pointer along to the second dot of that pointer, we will end up at the (0, 1) head pointer,
and if we move to the dot directly to the right, we will be at the (1, 2) tail pointer. Since
this is a valid permutation, if we continue to move along each pointer and then jump to the

19

dot directly to the right until we reach the rightmost dot (the (n, n+1) tail pointer), we will
end up visiting every dot in the permutation exactly once.
Now, let us color blue the dots that correspond to pointers in the parity cut. We can now

label the remaining dots as follows: dots with an even number of blue dots preceding them
in the permutation will be colored red, and dots with an odd number of blue dots preceding
them will be colored green. This can be further generalized by coloring the ”territory”
between every pair of blue pointers either red or green and noting that all vertices in that
territory, if there are any, must have that color. There are a few things we can note. First,
since every pointer in the parity cut must intersect an even number of other parity cut
pointers, between any two blue dots of the same pointer, there must be an even number
of blue dots. This means that if there is a red dot directly to the left of one blue dot of
a pointer, there must also be a red dot directly to the right of the other blue dot of that
pointer. More generally, if the left side of a blue dot is red territory, the right side of the
other blue dot in that pointer must also be red territory. Second, since there must be an
odd number of blue dots between dots of different color (red or green), dots can only be in
the same pointer with dots of the same color. Finally, the first dot must be either red or
blue, and if it is blue, the territory to its left must be red.
We can now attempt to visit every dot along the permutation as described above. Since

the first dot must be red or blue, we start at either a red or blue dot and follow the pointer
to another dot of the same color. Now each time we are at a red dot, we must follow the
pointer to another red dot, and the dot directly to the right of that dot can either be red or
blue. If it is blue, it must have red territory to its left. Each time we visit a blue dot with
red territory to its left, we will follow the pointer to a blue dot with red territory to its right,
which means the dot directly to the right of it must either be red or blue with red territory
to its left. Thus, since we start at a dot that is either red or blue with red to its left, and
any such dot must be connected by a pointer to a dot with another such dot directly to its
right, the only possible dots we can visit must be either red, blue with red to its right, or
blue connected by a pointer to another blue with red to its right. Since we must visit every
single dot in the permutation, this means that there can be no green dots.
However, if there are no green dots, the blue pointers in the parity cut must form alter-

nating cycles, because the blue dots will appear in perfect adjacent pairs. Since the green
territories must all be empty, the first blue to will be adjacent to the second blue dot, the
third will be adjacent to the fourth, and so on. Since the first dot has green territory to its
right, its pointer pair must have green to its left, so there must be a blue dot directly to its
left, and this blue dot will have green to its right also, so its pointer pair must have green
to its left, and so on, thus forming a complete alternating cycle. �

A result related to the theorem above is presented in the following lemma, although now
we are eliminating the first and last rows of the adjacency matrix.

Lemma 5.11. Let M be the adjacency matrix of the overlap graph of a permutation and
M ′ be M without the first and last rows. The characteristic vector of the strategic pile is the
only element of the kernel of M ′ that consists of elements of the alternating cycle containing
both roots, but does not itself contain both roots.

Proof. First of all, every alternating cycle will be in this basis, and since they are disjoint, no
alternating cycle will be a linear combination of the others. Now, consider the alternating

20

cycle containing (0, 1), but without the strategic pile elements. We know that all of the dots
in this set, except the first and last will be in the pairs (bk+1, bk+1). However, we also know
that no pointer can have one of its dots either before the (0, 1) tail pointer (the first dot in
this set) or after the (n, n + 1) head pointer (the last dot in this set). Therefore, given any
pointer other than the (0, 1) pointer or the (n, n+1) pointer, there must be an even number
of dots in between the head and tail of this pointer, which means this pointer intersects an
even number of dots in this set. Therefore, the characteristic vector of this set must also be
in the kernel.
Now, we must show that there are no other elements in the kernel. Take any element of

this kernel. Because no valid permutation graph can have property b, we know that either
both roots are in the same side of the cut and have odd degree with respect to the cut, or
both roots have even degree with respect to the cut. In the latter case, our argument from
above shows that the cut must be composed of alternating cycles. In the former case, we
can again color the dots of the permutation as before, with dots in the set of the parity cut
containing the roots colored blue, dots with an even number of blue dots preceding them
colored red, and dots with an odd number of blue dots preceding them colored green. Now,
since we know the first dot of the (0, 1) pointer must have red territory to its left, and that
it has odd degree with respect to the parity cut, the second dot of this pointer must have
an odd number of blue dots between the first dot and itself, and therefore must have green
territory directly to its right. Similarly, since we know the last dot of the (n, n + 1) pointer
must have red territory to its right, and that it has odd degree with respect to the parity
cut, the first dot of this pointer must have an odd number of blue dots between the second
dot and itself, and therefore must have green territory directly to its left. Therefore, for
these two pointers, there is red territory directly to different sides of each dot, and green
on the other. However, as our previous argument showed, fore every other pointer, the red
territory must be on the same side of both dots. Therefore, if we again try to follow a path
along the dots of the permutation in order, we will visit only green dots, which means there
can be no red dots. Again, as before, this shows that the parity cut must be composed of
alternating cycles, except for the cycle containing the (0, 1) and (n, n + 1) pointer. In this
case, if we follow the pointer, we see that only the part of the cycle from the (0, 1) pointer
up to and including the (n, n+1) pointer are in the cut. However, this is also an element of
the kernel. Therefore, the sets of alternating cycles and the strategic pile for a basis for the
kernel for the adjacency matrix without the first and last rows. �

However, regardless of eliminating the first and the last rows of a sortable permutation’s
adjacency matrix, it conserves a property if compared to the original adjacency matrix.

Lemma 5.12. For a sortable permutation π with adjacency matrix M and M ′ equal to M
with the first and last rows removed, ker(M ′) = ker(M).

Proof. We know that if a permutation is sortable, then there will some element ~x such that
~x1 = 1 and ~xn = 0 and some element ~y such that ~y1 = 0 and ~yn = 1 in the kernel of M . How-
ever, this implies that the first column is linear combination of other columns, not including
the last, and that the last column is a linear combination of other columns, not including
the first. But this means that the first row and last rows are also linear combinations of
the middle rows. Thus, removing these two rows does not reduce the dimension of M , and
therefore the nullity of M ′ is the same as the nullity of M . Furthermore, it is clear that

21

every element of the kernel of M is an element of the kernel of M ′, so the kernel of M ′ must
be exactly the kernel of M . �

6. A decision problem and its complexity

We shall now provide some definitions which will later on help us convert from the adja-
cency to the precedence matrix (and vice-versa). The first definition is the following:

Definition 6.1. For each positive integer n, define Bn ∈ Mn(F2) so that for 1 ≤ i, j ≤ n,
we have Bn(i, j) = 1 if, and only if, i = j or i+ 1 = j.

For example,

B5 =













1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1













.

Definition 6.2. Define Z : Mn(F2) → Mn+1(F2) as follows:

Z(A)(i, j) =







1 i = j = 1
0 exactly one of i and j is 1
A(i− 1, j − 1) otherwise

For example,

Example 11.

Z

















0 1 1 0
1 0 1 1
1 1 0 0
0 1 0 0

















=













1 0 0 0 0
0 0 1 1 0
0 1 0 1 1
0 1 1 0 0
0 0 1 0 0













.

Define F : Mn(F2) → Mn−1(F2) as follows:

F (A)(i, j) = A(i, j)⊕ A(i+ 1, j)⊕A(i, j + 1)⊕ A(i+ 1, j + 1),

for 1 ≤ i, j ≤ n− 1, where ⊕ denotes the addition operation in F2. Using the same input as
the one that was used in the previous example, we now show what happens if we apply F
rather than Z to such input. For example,

F

















0 1 1 0
1 0 1 1
1 1 0 0
0 1 0 0

















=





0 1 1
1 0 0
1 0 0



 ,

Define S : Mn(F2) → Mn(F2) as follows:

S(A)(i, j) ≡
i
∑

r=1

j
∑

c=1

A(r, c) (mod 2).

22

For example,

S

















0 1 1 0
1 0 1 1
1 1 0 0
0 1 0 0

















=









0 1 0 0
1 0 0 1
0 0 0 1
0 1 1 0









.

We now show a relation between the adjacency and precedence matrices of a permutation.

Lemma 6.1. Let π ∈ Sn be a permutation, and let A and P be the adjacency and precedence
matrices of π, respectively. Also, let δ(i, j) = 1 if i = j, and δ(i, j) = 0 if i 6= j (i.e. δ is the
Kronecker delta function). Then, for any pair (i, j) with 0 ≤ i, j ≤ n, we have that

A(i, j) = P (i, j)⊕ P (i+ 1, j)⊕ P (i, j + 1)⊕ P (i+ 1, j + 1)⊕ δ(i, j)⊕ δ(i+ 1, j),

where ⊕ denotes the addition operation in F2.

Proof. By definition, we have that A(i, j) = 1 if, and only if, the edges connecting the first
and second occurrences of the pointers (i, i+ 1) and (j, j + 1) in π overlap. This will occur
if, and only if, exactly one occurrence of (j, j + 1) lies between the two (i, i + 1) pointers;
one such case is shown below.

(j,j+1)j + 1 . . . i(i,i+1) . . . j(j,j+1) . . .(i,i+1) (i+ 1)

We consider the following cases: i+ 1 < j, i+ 1 = j, i > j, and i = j.

Case 1: i+ 1 < j.
In this case, we have that i+ 1 < j implies that i < i+ 1 < j < j + 1, so the four elements
of the permutation adjacent to (i, i + 1) and (j, j + 1) pointers are all distinct. Therefore,
we have that the (j, j+1) pointer adjacent to j is between the (i, i+1) pointers if, and only
if, j is between i and i + 1 in π. This is the case if, and only if, exactly one of i and i + 1
precedes j in π, or if P (i, j) ⊕ P (i + 1, j) = 1. Similarly, the (j, j + 1) pointer adjacent to
j + 1 is between the (i, i+ 1) pointers if, and only if, P (i, j + 1)⊕ P (i+ 1, j + 1) = 1.
Since we have A(i, j) = 1 if, and only if, exactly one of the occurrences of the (j, j + 1)

pointer is between the two (i, i+ 1) occurrences, we will have P (i, j)⊕P (i+1, j)⊕P (i, j +
1)⊕P (i+1, j+1) = 1. Therefore, it follows from the fact that δ(i, j) = δ(i+1, j) = 0 since
i+ 1 > j that we indeed have

A(i, j) = P (i, j)⊕ P (i+ 1, j)⊕ P (i, j + 1)⊕ P (i+ 1, j + 1)⊕ δ(i, j)⊕ δ(i+ 1, j)

in this case.

Case 2: i+ 1 = j.
Since i, i+ 1, and j + 1 are distinct, similarly we have that the (j, j +1) pointer adjacent to
j + 1 is between the two (i, i+ 1) pointers if, and only if, P (i, j + 1)⊕ P (i+ 1, j + 1) = 1.
However, since i+1 = j, determining whether the (j, j+1) pointer adjacent to j is between

the (i, i+1) pointers requires a subtler analysis. The (j, j+1) and (i, i+1) pointers adjacent
to j appear in the following order, since i+ 1 = j:

(i,i+1)j(j,j+1).

Thus, we have that the (j, j + 1) pointer adjacent to j appears between the two (i, i + 1)
pointers if, and only if, the (i, i+ 1) pointer adjacent to i appears after j in π; this holds if,
and only if, the element i comes after j in the permutation π, or P (i, j) = 0.

23

Since δ(i+1, j) = 1 in this case, we have that P (i, j) = 0 if, and only if, P (i, j)⊕δ(i+1, j) =
1. As i+1 = j, we must have P (i+1, j) = 0, so P (i, j)⊕ δ(i+1, j) = P (i, j)⊕P (i+1, j)⊕
δ(i+ 1, j).
Together with the result for the (j, j + 1) pointer adjacent to j + 1, we have that the

(i, i + 1) and (j, j + 1) pointer pairs overlap if, and only if, P (i, j) ⊕ P (i + 1, j) ⊕ P (i, j +
1)⊕ P (i+ 1, j + 1)⊕ δ(i+ 1, j) = 1. We also have δ(i, j) = 0. Thus,

P (i, j) = P (i, j)⊕ P (i+ 1, j)⊕ P (i, j + 1)⊕ P (i+ 1, j + 1)⊕ δ(i, j)⊕ δ(i+ 1, j)

when i+ 1 = j.

Case 3: i > j.
Since the adjacency matrix is symmetric, as the overlap graph is undirected, we have that
A(i, j) = A(j, i). By the results proven in cases 1 and 2, we have that

A(i, j) = A(j, i) = P (j, i)⊕ P (j + 1, i)⊕ P (j, i+ 1)⊕ P (j + 1, i+ 1)⊕ δ(j, i)⊕ δ(j + 1, i).

Note that, for s 6= t, we have that P (s, t) = P (t, s) ⊕ 1, since s precedes t if, and only if,
t does not precede s, and if s = t then P (s, t) = P (t, s). Thus, if i > j + 1 (in which case
δ(j + 1, i) = δ(i+ 1, j) = 0), then we have

A(i, j) = A(j, i)

= P (j, i)⊕ P (j + 1, i)⊕ P (j, i+ 1)⊕ P (j + 1, i+ 1)⊕ δ(j, i)⊕ δ(j + 1, i)

= (1⊕ P (i, j))⊕ (1⊕ P (i, j + 1))⊕ (1⊕ P (i+ 1, j))⊕ (1⊕ P (i+ 1, j + 1))⊕ 0

= (1⊕ 1⊕ 1⊕ 1)⊕ P (i, j)⊕ P (i, j + 1)⊕ P (i+ 1, j)⊕ P (i+ 1, j + 1)

= P (i, j)⊕ P (i, j + 1)⊕ P (i+ 1, j)⊕ P (i+ 1, j + 1)⊕ δ(i, j)⊕ δ(i+ 1, j),

as desired. If i = j + 1, we have both δ(j + 1, i) = 1 and P (j + 1, i) = P (i, j + 1) but
δ(i+ 1, j) = 0, so

A(i, j) = A(j, i)

= P (j, i)⊕ P (j + 1, i)⊕ P (j, i+ 1)⊕ P (j + 1, i+ 1)⊕ δ(j, i)⊕ δ(j + 1, i)

= (1⊕ P (i, j))⊕ P (i, j + 1)⊕ (1⊕ P (i+ 1, j))⊕ (1⊕ P (i+ 1, j + 1))⊕ 1

= (1⊕ 1⊕ 1⊕ 1)⊕ P (i, j)⊕ P (i, j + 1)⊕ P (i+ 1, j)⊕ P (i+ 1, j + 1)

= P (i, j)⊕ P (i, j + 1)⊕ P (i+ 1, j)⊕ P (i+ 1, j + 1)⊕ δ(i, j)⊕ δ(i+ 1, j).

Hence, the result follows also in the case when i > j.

Case 4: i = j.
In this case, since no element precedes itself, we obtain P (i, j) = P (i+1, j+1) = 0. We also
have that since i+1 precedes i if, and only if, i does not precede i+1, P (i+1, j)⊕P (i, j+1) =
1. Thus, we have P (i, j)⊕ P (i+ 1, j)⊕ P (i, j + 1) ⊕ P (i+ 1, j + 1) = 1. Since δ(i, j) = 1
and δ(i+ 1, j) = 0 in this case, and A(i, j) = 0 since no pointer overlaps itself, we have that

A(i, j) = P (i, j)⊕P (i, j+1)⊕P (i+1, j)⊕P (i+1, j+1)⊕δ(i, j)⊕δ(i+1, j) = 1⊕1⊕0 = 0

in this case as well.

24

Therefore, in all cases we have shown that

A(i, j) = P (i, j)⊕ P (i+ 1, j)⊕ P (i, j + 1)⊕ P (i+ 1, j + 1)⊕ δ(i, j)⊕ δ(i+ 1, j),

so the lemma is proven. �

Lemma 6.2. For any permutation π ∈ Sn with adjacency matrix Aπ and precedence matrix
Pπ,

Aπ = F (Pπ) +Bn+1,

where the function F and the matrix Bn+1 are as defined earlier.

Proof. We consider the above formula elementwise. By definition, we have that the element
at position (i, j) of F (Pπ) is

Pπ(i, j)⊕ Pπ(i+ 1, j)⊕ Pπ(i, j + 1)⊕ Pπ(i+ 1, j + 1).

Also, note that Bn+1(i, j) = 1 if, and only if, i = j or i + 1 = j, so it is equal to δ(i, j) ⊕
δ(i+ 1, j). Thus, for every pair (i, j) with 1 ≤ i, j ≤ n + 1, the element at position (i, j) of
the matrix F (Pπ) +Bn+1 is equal to the sum

Pπ(i, j)⊕ Pπ(i+ 1, j)⊕ P (i, j + 1)⊕ P (i+ 1, j + 1)⊕ δ(i, j)⊕ δ(i+ 1, j),

which by Lemma 6.1 is equal to Aπ(i, j); hence, we have that Aπ = F (Pπ) +Bn+1. �

Lemma 6.3. For any permutation π ∈ Sn, the following is true:

Pπ = S(Z(Aπ) +Bn+2).

Proof. For brevity, let Zπ = Z(Aπ), let Mπ = Z(Aπ)+Bn+2, and let Sπ = S(Z(Aπ)+Bn+2).
We claim that Pπ(i, j) = Sπ(i, j) for all pairs (i, j) with 1 ≤ i, j ≤ n + 2.
We proceed by induction. For the base case, we will prove that for any 1 ≤ i ≤ n + 2,

we have Pπ(i, 1) = Sπ(i, 1) and Pπ(1, i) = Sπ(1, i), and for the inductive step we will show
that for 1 ≤ i, j ≤ n+ 1, if Pπ(i, j) = Sπ(i, j), Pπ(i+ 1, j) = Sπ(i+ 1, j), and Pπ(i, j + 1) =
Sπ(i, j + 1), then Pπ(i+ 1, j + 1) = Sπ(i+ 1, j + 1).
First, note that Mπ(1, 1) = 1 ⊕ 1 = 0, Mπ(1, 2) = 0 ⊕ 1 = 1, for any i ≥ 2 we have

Mπ(1, i) = 0⊕ 0 = 0, and for any i ≥ 2 we have Mπ(i, 1) = 0⊕ 0 = 0. By definition of S, we
have

Sπ(i, 1) =

i
∑

k=1

Mπ(k, 1) = 0 + 0 + · · ·+ 0 = 0

for each 1 ≤ i ≤ n + 2. Also, for 2 ≤ i ≤ n+ 2 we have that

Sπ(1, i) =

i
∑

k=1

Mπ(1, k) = 0 + 1 + 0 + · · ·+ 0 = 1.

Moreover, since π′ = (0, π1, π2, . . . , πn, n+ 1), we have that Pπ(i, 1) = 0 for all 1 ≤ i ≤ n+ 2
and Pπ(1, i) = 1 for 2 ≤ i ≤ n + 2. Hence, we have shown that Pπ(1, i) = Sπ(1, i) and
Pπ(i, 1) = Sπ(i, 1) for all i with 1 ≤ i ≤ n + 2.
We will now prove the inductive step. Let i and j be integers with 1 ≤ i, j ≤ n +

1. Following the definition of Z and B, we have that Zπ(i + 1, j + 1) = Aπ(i, j) and
Bn+2(i + 1, j + 1) = δ(i + 1, j + 1) ⊕ δ(i + 2, j + 1). Since i + 1 = j + 1 ⇐⇒ i = j and
i + 2 = j + 1 ⇐⇒ i + 1 = j, we also have that Bn+2(i + 1, j + 1) = δ(i, j) ⊕ δ(i + 1, j).

25

Hence, it follows that

Mπ(i+ 1, j + 1) = Zπ(i+ 1, j + 1)⊕Bn+2(i+ 1, j + 1) = Aπ(i, j)⊕ δ(i, j)⊕ δ(i+ 1, j).

Using induction, we assume that Pπ(i, j) = Sπ(i, j), Pπ(i + 1, j) = Sπ(i + 1, j), and
Pπ(i, j + 1) = Sπ(i, j + 1); we will prove that Pπ(i + 1, j + 1) = Sπ(i + 1, j + 1). From the
definition of S, we have the following equalities:

Sπ(i+ 1, j + 1) =
i+1
∑

r=1

j+1
∑

c=1

Mπ(r, c)

=
i+1
∑

r=1

j+1
∑

c=1

Mπ(r, c)⊕ 2
i
∑

r=1

j
∑

c=1

Mπ(r, c)

=

i
∑

r=1

j
∑

c=1

Mπ(r, c)⊕
i
∑

r=1

Mπ(r, j + 1)⊕
j
∑

c=1

Mπ(i+ 1, c)

⊕Mπ(i+ 1, j + 1)⊕
i
∑

r=1

j
∑

c=1

Mπ(r, c)⊕
i
∑

r=1

j
∑

c=1

Mπ(r, c)

=

i
∑

r=1

j
∑

c=1

Mπ(r, c)⊕
(

i
∑

r=1

Mπ(r, j + 1)⊕
i
∑

r=1

j
∑

c=1

Mπ(r, c)

)

⊕
(

j
∑

c=1

Mπ(i+ 1, c)⊕
i
∑

r=1

j
∑

c=1

Mπ(r, c)

)

⊕Mπ(i+ 1, j + 1)

=
i
∑

r=1

j
∑

c=1

Mπ(r, c)⊕
i
∑

r=1

j+1
∑

c=1

Mπ(r, c)⊕
i+1
∑

r=1

j
∑

c=1

Mπ(r, c)⊕Mπ(i+ 1, j + 1)

= Sπ(i, j)⊕ Sπ(i, j + 1)⊕ Sπ(i+ 1, j)⊕Mπ(i+ 1, j + 1)

= Sπ(i, j)⊕ Sπ(i, j + 1)⊕ Sπ(i+ 1, j)⊕ A(i, j)⊕ δ(i, j)⊕ δ(i+ 1, j)

By the inductive assumption, we have that Sπ(i, j) = Pπ(i, j), Sπ(i, j+1) = Pπ(i, j+1), and
Sπ(i+ 1, j) = Pπ(i+ 1, j), so it follows that

Sπ(i+ 1, j + 1) = Pπ(i, j)⊕ Pπ(i, j + 1)⊕ Pπ(i+ 1, j)⊕Aπ(i, j)⊕ δ(i, j)⊕ δ(i+ 1, j).

By Lemma 6.1, we have that

Aπ(i, j) = Pπ(i, j)⊕ Pπ(i+ 1, j)⊕ Pπ(i, j + 1)⊕ Pπ(i+ 1, j + 1)⊕ δ(i, j)⊕ δ(i+ 1, j).

Adding Aπ(i, j)⊕ Pπ(i + 1, j + 1) to both sides and reducing the resulting sums modulo 2,
we have that

Aπ(i, j)⊕ Pπ(i+ 1, j + 1)⊕Aπ(i, j) = Pπ(i, j)⊕ Pπ(i+ 1, j)⊕ Pπ(i, j + 1)⊕ Pπ(i+ 1, j + 1)

⊕ δ(i, j)⊕ δ(i+ 1, j)⊕ Aπ(i, j)⊕ Pπ(i+ 1, j + 1),

and so

Pπ(i+ 1, j + 1) = Pπ(i, j)⊕ Pπ(i+ 1, j)⊕ Pπ(i, j + 1)⊕ δ(i, j)⊕ δ(i+ 1, j)⊕ Aπ(i, j)

= Pπ(i, j)⊕ Pπ(i, j + 1)⊕ Pπ(i+ 1, j)⊕ Aπ(i, j)⊕ δ(i, j)⊕ δ(i+ 1, j).

26

Therefore, it follows that Sπ(i+1, j+1) = Pπ(i+1, j+1), and so by induction we have that
Sπ(i, j) = Pπ(i, j) for all i and j with 1 ≤ i, j ≤ n+2. Hence, Pπ = Sπ(Zπ(Aπ) +Bn+2). �

With the insight obtained from the above lemmas on conversions between the two main
matrices of a permutation, we can address the following decision problems. The first one,
involving the cds move graph of a permutation, was posed in [1].

Decision problem 1: CDS MOVE GRAPH [1]

INSTANCE: A finite graph G.
QUESTION: Is there a permutation π with cds move graph isomorphic to G?

Although this question of determining whether a permutation with move graph isomorphic
to a given graph exists still appears to be difficult, we found that a polynomial time algorithm
exists for the following simpler decision problem.

Decision problem 2: LABELED CDS MOVE GRAPH

INSTANCE: A finite graph G with vertices labeled (1, 2) through (n− 1, n).
QUESTION: Is there a permutation π with cds move graph equal to G?

Lemma 6.4. The decision problem LABELED CDS MOVE GRAPH is in P, where
P denotes the set of decision problems solvable in polynomial time.

Proof. Let G be such a labeled move graph on n − 1 vertices, and let M be the adjacency
matrix of G. If there is some permutation π on n vertices with move graph adjacent to G,
then the overlap graph of π will consist of G with two additional handle vertices added and
additional edges adjacent to at least one handle added as well. The adjacency matrix of the
overlap graph of π is thus an (n+ 1)× (n+ 1) matrix A such that A(i+ 1, j + 1) = M(i, j)
for 1 ≤ i, j ≤ n− 1.
Since the overlap graph of a permutation is an Eulerian graph, we have that A(i, n+1) ≡

∑n
j=1A(i, j) (mod 2), so the final row and column of the adjacency matrix A are determined

by the remaining rows and columns.
Let P ∈ Mn+2 be the precedence matrix of the permutation π. Then, row 1 of P is the

vector [0 1 1 . . . 1] and row n+ 2 is the vector [0 0 0 . . . 0]. For each i with 1 ≤ i ≤ n, let
si be the number of indices j such that P (i+ 1, j) = 1. Let πi be the element in position i
of the permutation π. Then, we have that sπi

= n + 1 − i, since πi precedes the elements
πi+1 through πn and n+ 1 in the permutation π. If we exclude the entries in columns 0 and
(n+ 1) from the sum, it will be n− i, since all πi in the permutation precede n+ 1 and are
preceded by 0. Therefore, the row sums of the central submatrix of the precedence matrix
P form a permutation of the sequence (0, 1, 2, . . . , n− 1).
Let Tn be the set of all n × n matrices C such that the sums

∑n
j=1C(i, j) for 1 ≤ i ≤ n

form a permutation of (0, 1, 2, . . . , n − 1), C(i, i) = 0, and for all i 6= j we have C(i, j) =
1 − C(j, i). We claim that a matrix C is the central submatrix of the precedence matrix
of some permutation π of length n if, and only if, C ∈ Tn. We showed that if C is the
central submatrix of a permutation’s precedence matrix, then C is an element of Tn (the

27

final two conditions follow since no element can precede itself, and if i precedes j then j
does not precede i), and so it suffices to show that each element of Tn corresponds to some
permutation.
First, note that if π and π′ are distinct permutations in Sn, then πi 6= π′

i for some i > 0.
This implies that different rows in the matrices associated with π and π′ will have sum (n−i).
Since there is only one row in each matrix with this sum, we have that the two matrices
are distinct. Hence, since |Sn| = n!, there are n! distinct matrices in Tn corresponding to
permutations.
We claim that |Tn| = n!. By our earlier argument, it suffices to show that each element

of Tn corresponds to some permutation. Furthermore, since each of the n! permutations
corresponds to a distinct element of Tn, we already have |Tn| ≥ n!, so it suffices to show that
|Tn| ≤ n!. To show this, we proceed by induction on n. For n = 1, the only 1 × 1 matrix
whose row sums form a permutation of (0) is the matrix

[

0
]

, so we indeed have |T1| ≤ 1 and
the base case holds.
Now assume that |Tn| ≤ n! for n = k; we will prove that this also holds for n = k+1. Let

C be a matrix in Tk+1. Then, by definition, there is some integer i with 1 ≤ i ≤ k + 1 such
C(i, j) = 0 for all j with 1 ≤ j ≤ k + 1. By definition of Tn, this implies that C(j, i) = 1 for
each 1 ≤ j ≤ k+1 such that j 6= i. Let C ′ be the k×k submatrix of C with the ith row and
ith column removed. Then, the sum of each row in C ′ is equal to the corresponding sum in
C minus 1, and the row with sum 0 in C was removed to form C ′, so the row sums of C ′ form
a permutation of (0, 1, 2, . . . , k − 1). Furthermore, the equalities C ′(i, i) = 0 for 1 ≤ i ≤ k
and C ′(i, j) = 1− C ′(j, i) for 1 ≤ i, j ≤ k, i 6= j follow from the corresponding properties of
C, since the indices of the deleted row and column were equal. Thus, we have that C ′ ∈ Tk.
By our inductive hypothesis, there are at most k! matrices C ′ ∈ Tk, so since there are k + 1
possible locations of the zero row in the matrix Tk+1, there are at most (k + 1)! possibilities
for the matrix C. Hence, we have that |Tk+1| ≤ (k + 1)!, and so by induction our claim is
proven.
Therefore, we have that an n × n matrix C is the central submatrix of the precedence

matrix of some permutation π ∈ Sn if, and only if, C ∈ Tn.
Let M be the adjacency matrix of the (n− 1) vertex move graph G, let ~u ∈ F

n
2 such that

ui = 1 if, and only if, the vertex (i− 1, i) is adjacent to the last handle (n, n + 1) after it is
added, and let ~v ∈ F

n
2 such that vi = 1 if, and only if, the vertex (i− 1, i) is adjacent to the

first handle (0, 1) after it is added (so in particular v1 = 0). Then, the complete adjacency
matrix, in block form, is the matrix

A =





0 ~vT x
~v M ~u
x ~uT x



 ,

where x ∈ {0, 1}. If A is the adjacency matrix of a permutation, then since the overlap graph
of any permutation is Eulerian, we must have that vi +

∑n−1
j=1 M(i, j) + ui ≡ 0 (mod 2), so

it follows that ~u = ~v+M · [1 1 1 . . . 1]T . By our formula proven earlier, we have that if A is
the complete adjacency matrix (equal to M with additional rows and columns added at the
beginning and end) and it corresponds to a permutation π with precedence matrix P , then
P = S(Z(A) + Bn+1), where the functions S and Z and the matrix Bn+1 are as defined in
the lemma. Using the formula above, we can compute the element at position (i, j) of the

28

matrix P as follows:

P (i, j) =

i
∑

r=1

j
∑

c=1

(Z(A) +Bn+1)(r, c).

By definition of Z, Z(A)(1, 1) = 1, Z(A)(1, i) = Z(A)(i, 1) = 1 for all 2 ≤ i ≤ n, and
Z(A)(i, j) = A(i, j) for all 2 ≤ i, j ≤ n. Now, let A′ be the matrix with all zeroes in the top
row and left column, and the entries of A in the remaining positions. Then,

B = Bn+1 +













1 0 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0
0 0 0 . . . 0













=

















0 0 0 . . . 0 0
0 1 1 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 1
0 0 0 . . . 0 1

















.

It follows that

P (i, j) =
i
∑

r=1

j
∑

c=1

Bn+2(r, c)⊕
i
∑

r=1

j
∑

c=1

A′(r, c) =
i
∑

r=1

j
∑

c=1

Bn+2(r, c)⊕
i
∑

r=2

j
∑

c=2

A(r, c).

For 2 ≤ i, j ≤ n+1, we have that
∑i

r=2

∑j
c=2A(r, c) =

∑i
r=2 vr⊕

∑j
c=2 vc+

∑i
r=3

∑j
c=3M(r−

1, c−1) (where the second sum is taken to be 0 if i = 2 or j = 2). Hence, for 2 ≤ i, j ≤ n+1,
we conclude that

P (i, j) =

(

i
∑

r=1

j
∑

c=1

Bn+2(r, c)⊕
i
∑

r=3

j
∑

c=3

M(r − 1, c− 1)

)

⊕
(

i
∑

r=2

vr ⊕
j
∑

c=2

vc

)

.

Note that the first sum can be computed directly given the matrix M in polynomial time
(O(n4) by computing each term directly, or O(n2) by applying dynamic programming to the
partial sums). If the precedence matrix P is in Tn, then the row sums

∑n
j=2 P (i, j) for each

i (not taken modulo 2) form a permutation of (0, 1, 2, . . . , n− 1), so there is some row with
sum 0.
Thus, there must be some i such that if ~w is the n-element vector over Fn

2 with

wj =

(

i
∑

r=1

j
∑

c=1

Bn+2(r, c)⊕
i
∑

r=3

j
∑

c=3

M(r − 1, c− 1)

)

,

then we must have that
(

∑i
r=2 vr +

∑j
c=2 vc

)

= wj for each 1 ≤ j ≤ n (over F2). As the

vector ~v can be uniquely determined from this system of n equations, there are at most n
possible values of this vector, namely the vectors ~w determined by each row i of the matrix
M .
Each entry in one of the ~w vectors corresponding to a row of the matrix can be computed

using O(n2) operations, and there are n entries in each vector and n vectors, so all n of the
vectors ~w corresponding to the rows can be computed in O(n4), yielding the possible values
for ~v in polynomial time.
Given a vector ~v, we can compute the vector ~u corresponding to the rightmost column

using the formula ~u = ~v +M · [1, 1, 1, . . . , 1]T , derived above. As each entry in A except for
the single number x = A(1, n) = A(n, 1) is determined and x ∈ {0, 1}, there are only two

29

possible adjacency matrices A for each ~v. Therefore, there are 2n possible adjacency matrices
A that could correspond to permutations with move graph G (with adjacency matrix M).
Then, using the formula P = S(Z(A) + Bn+1), we can compute the precedence matrix
associated with each adjacency matrix A in polynomial time: since there are O(n2) terms in
the sum used to compute each entry in the matrix P and O(n2) entries, this computation
requires at most O(n4) time and so is polynomial. Finally, for each precedence matrix P
the row sums can be computed and placed in increasing order in O(n2) time, thus allowing
us to decide if P ∈ Tn in polynomial time. As this process only needs to be performed for
2n matrices, we can determine if there is a possible adjacency matrix A with labeled move
graph G corresponding to a permutation in O(n5) time, so we conclude that the problem
LABELED CDS MOVE GRAPH is in P. �

7. Graph and Matrix Sortability

7.1. Sortability under gcds. A parity cut of any simple graph (and thus not just an
Eulerian graph), is defined as follows:

Definition 7.1. Let G = (V,E) be a simple graph. A generalized parity cut is a set V1 ⊆ V
such that ∀v ∈ V, δV1(v) is even.

One can tell if a subset of the vertex set is a generalized parity cut from the lemma that
appears below.

Lemma 7.1. Let G = (V,E) and G′ = (V,E ′) = gcds{p,q}(G) for two vertices p, q ∈ V . If
we consider a subset V1 of V , then V1 is a generalized parity cut of G if, and only if, there
exists a generalized parity cut V ′

1 of G′ such that for all vertices v 6= p, q ∈ V , v ∈ V1 if and
only if v ∈ V ′

1 .

Proof. Consider a generalized parity cut of G with set V1. We will show that for any vertex
u ∈ V , when gcds is performed on two vertices p, q, the parity of δV1(u) does not change,
and that therefore this is also a generalized parity cut for G′.
We can again consider the sets A = {v ∈ V1|v 6= q, v is adjacent only to p}, B = {v ∈

V1|v 6= p, v is adjacent only to q}, and C = {v ∈ V1| v is adjacent to both p and q}, and
suppose u is adjacent to x vertices in A, y vertices in B, and z vertices in C. We now have
three cases:

Case 1. p, q ∈ V1 and are adjacent to each other. Then |N(p)| \ {q} = |A⋃C| = |A|+ |C| is
odd, and similarly |B|+ |C| is odd. Therefore, if |C| is odd, |A|+ |B| is even, and if
|C| is even, |A|+ |B| is also even.
(a) u is adjacent to both p and q. Then when the gcds operation is performed,

edges between u and vertices of A and B will switch, and the edges to p and q
will be removed which means u′ ∈ V (G′) will have δV1(u

′) = δV1(u)+ (|A| −x)−
x+ (|B| − y)− y − 2 = δV1(u) + |A|+ |B| − 2x− 2y − 2 edges, so the change in
δV1(u) is even.

(b) u is adjacent to exactly one of p and q. Without loss of generality, suppose u is
adjacent only to p. Then, when the gcds operation is performed, edges between u
and vertices of B and C will switch and the edge to p will be removed, meaning
u′ ∈ V (G′) will have δV1(u

′) = δV1(u) + (|B| − y) − y + (|C| − z) − z − 1 =
δV1(u) + |B| + |C| − 2y − 2z − 1 edges. This is again even, so either way the
change in δV1(u) is even.

30

Case 2. Exactly one of p, q is in V1: This is a similar argument to our argument in case 1.
Without loss of generality, suppose p is in V1. In this case, we know that |B| + |C|
is odd, and |A|+ |C| is even. Therefore, if |C| is odd, |A|+ |B| is odd, and if |C| is
even, |A|+ |B| is also odd.
(a) If u is adjacent to both p and q, when the gcds operation is performed, edges

between u and vertices of A and B will switch, and the edge to p will be removed
meaning u′ ∈ V (G′) will have δV1(u

′) = δV1(u)+(|A|−x)−x+(|B|−y)−y−1 =
δV1(u) + |A|+ |B| − 2x− 2y − 1 edges, so the change in δV1(u) is even.

(b) Otherwise, if u is adjacent to only p, when the gcds operation is performed, edges
between u and vertices of B and C will switch and the edge to p will be removed,
meaning u′ ∈ V (G′) will have δV1(u

′) = δV1(u)+(|B|−y)−y+(|C|−z)−z−1 =
δV1(u) + |B|+ |C| − 2x− 2y − 1 edges, which is also even.

(c) Finally, if u is adjacent to only q, when the gcds operation is performed, edges
between u and vertices of A and C will switch, meaning u′ ∈ V (G′) will have
δV1(u

′) = δV1(u) + (|A| − x) − x + (|C| − z) − z = δV1(u) + |A| + |C| − 2x − 2z
edges, which is also even.

Case 3. p, q 6∈ V1: In this case, we know that |B|+ |C| and |A|+ |C| are both even, so |A|+ |B|
must be even.
(a) If u is adjacent to both p and q, when the gcds operation is performed, edges

between u and vertices of A and B will switch, so u′ ∈ V (G′) will have δV1(u
′) =

δV1(u)+ (|A| −x)−x+(|B| − y)− y = δV1(u)+ |A|+ |B| − 2x− 2y edges, which
is even.

(b) Otherwise, if u is adjacent to only one of the vertices, without loss of generality
p, when the gcds operation is performed, edges between u and vertices of B and
C will switch, which means u′ ∈ V (G′) will have δV1(u

′) = δV1(u) + (|B| − y)−
y + (|C| − z)− z = δV1(u) + |B|+ |C| − 2x− 2y edges, which is also even.

In any case, for any vertex u 6= p, q ∈ V , performing gcds on G doesn’t change the parity
of δV1(u), so if V1 is a generalized parity cut of G, it is also a generalized parity cut of G′.
Now consider a generalized parity cut, V ′

1 of G′. Since p and q are isolated in G′, they
can be moved in or out of V ′

1 to create V1, which will still be a generalized parity cut. If we
consider V ′

1 excluding p and q, there are 3 cases:

(1) The parities of δV ′

1
(p) and δV ′

1
(q) are both even: In this case, since applying gcds

doesn’t change the parity of δV1(u) for any vertex u, V ′
1 is a generalized parity cut of

G also.
(2) Exactly one of δV ′

1
(p) and δV ′

1
(q) is odd: without loss of generality suppose only δV ′

1
(p)

is odd. Then, let V1 be V
′
1

⋃{q}. Since p is adjacent to q, this means that δV1(p) will
now be even, so again, by the preservation of parity, V1 will be a generalized parity
cut of G.

(3) δV ′

1
(p) and δV ′

1
(q) are both odd: Similarly, in this case we can let V1 be V ′

1

⋃{p, q}
and since p and q are adjacent to each other, this means that δV1(p) and δV1(q) will
both now be even, so again, by the preservation of parity, V1 will be a generalized
parity cut of G.

�

We now have a condition for having a generalized parity cut with only one root.
31

Theorem 7.2. A two-rooted graph G = (V,E) has a generalized parity cut containing exactly
one of the two roots and another cut containing exactly the other root if, and only if, its image
under gcds does too.

Proof. This follows directly from Lemma 5.12. �

Thus, we have a necessary, and sufficient, condition for a two-rooted graph to be sortable
under gcds.

Corollary 7.3. A two-rooted graph G = (V,E) is gcds sortable if, and only if, there exists
a generalized parity cut containing exactly one of the two roots and another cut containing
exactly the other root.

Proof. Consider any fixed point graph. There must be some non-root vertex v adjacent to
at least one root and no other non-root vertices. However, in this case there cannot be a
generalized parity cut containing only this root, because then the number of edges from v to
this cut will be only 1. Therefore, such a cut does not exist for any fixed point graph. Then,
by the above theorem, no unsortable graph can have such a cut. However, the discrete graph
does have both generalized parity cuts (simply the sets of the roots alone), so every sortable
graph must also have such cuts. �

Corollary 7.4. gcds Inevitability

Theorem 7.5. Let M be the adjacency matrix of a graph G and centr,c(M) be M with the
first and last rows and columns removed. The number of gcds operations it takes to reach
any fixed point of G is always 1

2
rank(centr,c(M)).

Proof. First, the rank of a skew symmetric matrix will always be even. SinceM is symmetric,
centr,c(M) must be also, and since we are working mod 2, it must also be skew symmetric, so
the rank of centr,c(M) will be even. Now, consider the kernel of centr,c(M). Clearly, if there
are any edges between non-root vertices p and q, centr,c(M(p−1)(q−1)) = centr,c(M(q−1)(p−1)) =
1 and ~e(p−1), ~e(q−1) will not be in ker(centr,c(M)). Then, if we consider M ′ = mcds(M) =
MIpqM+M = (MIpq+I)M , as shown above, the nullity of MIpq+I will be 2, and similarly,
since the first and last columns of MIpq + I will be ~e1 and ~en, the nullity of centr,c(MIpq + I)
will be 2. Therefore, the rank of M will decrease by 2 at every step. Since centr,c(M) is
effectively the adjacency matrix of the subgraph induced on the set of all non-root vertices
of G, when we reach a fixed point, no non-root vertices will be adjacent, so centr,c(M) will
be the zero matrix and have rank 0. Therefore, the number of steps to get from G to any
fixed point must be 1

2
rank(centr,c(M)). �

The above shows the connection between graph theory and linear algebra when talking
about gcds on simple graphs. Next, we examine the case of sortability under cds on matrices,
which we refer to as mcds.

7.2. Sortability under mcds.

Lemma 7.6. Let ~M ′
q be the qth column of M ′ = mcds(M). If M(p, q) = 1, then ~M ′

q = ~0.

Proof. By the definition of mcds, M ′(i, j) = M(i, j) +M(i, p)M(q, j) +M(i, q)M(p, j). If
M(p, q) = 1, then for all 0 ≤ k ≤ n, M ′(k, q) = M(k, q)+M(k, p)M(q, q)+M(k, q)M(p, q) =
M(k, q) +M(k, q) = 0. �

32

Lemma 7.7. Given matrix M , ker(M) ⊆ ker(M ′), where M ′ = mcds(M).

Proof. For any ~x ∈ ker(M),M ′~x = (M +MIpqM)~x = (I +MIpq)M~x = (I +MIpq)~0 = ~0, so
~x ∈ ker(M ′). �

From the above, we have necessary and sufficient conditions of the columns of a matrix
and that matrix after some mcds operation was applied to it.

Theorem 7.8. An n× n matrix M has an element ~x such that x1 = 0 and xn = 1 and an
element ~y such that y1 = 1 and yn = 0 in ker(M) if, and only if, its image under mcds does
too.

Proof. ⇒ By Lemma 7.7, if M has such an ~x in its kernel, M ′ = mcds{p,q}(M) must too.
⇐ Consider an element ~x ∈ ker(M ′). It must either be in the kernel of M or it must be the

case thatM~x is in the kernel of I+MIpq. Now, MIpq has the form
[

~0 · · · ~q · · · ~p · · · ~0
]

,

where ~p is the pth column of M and the qth column of MIpq, and ~q is the qth column of M
and the pth column of MIpq.
Now, if M(p, q) = 1 andM(q, p) = 1, I+MIpq must have rank n−2, because n−2 columns

will just be ~ei, i ∈ {1, ..., n} \ p, q, and (I + MIpq)(p, q) = (I + MIpq)(q, p) = 0 because
(MIpq)(p, p) = M(p, q) = 1 and (MIpq)(q, q) = M(q, p) = 1. Now by Sylvester’s theorem,
rank(M ′) ≥ rank(M) + rank(I +MIpq)− n = rank(M) + (n− 2)− n = rank(M)− 2, which
means that by the Rank-Nullity Theorem, nul(M ′) = n− rank(M ′) ≤ n− (rank(M)− 2) =

nul(M) + 2. Also, because M(p, q) = 1 and M(q, p) = 1, ~p and ~q cannot be ~0, which means
that êp and êq were not elements of ker(M). However, we know from Lemma 7.6 that the pth

and qth columns of M ′ will both be ~0, so êp and êq will both be in ker(M ′). This accounts
for the 2 additional vectors in the basis of ker(M ′), so the only vectors added to the basis
are êp and êq, neither of which fit the condition that their first and last elements sum to 1.
Therefore, the desired ~x will be in the kernel of M ′ only if it was in the kernel of M .
Similarly, if exactly one of M(p, q) and M(q, p) is 0, I +MIpq must have rank n− 1 and

can have at most 1 additional vector in the basis of its kernel. We know that one of M(p, q)

and M(q, p) is 1, and therefore either ~p or ~q cannot be ~0, which means that either êp or êq
were not elements of ker(M). However, by Lemma 7.6 if M(p, q) = 1, the qth column of M ′

will be ~0 and if M(q, p) = 1, the pth column of M ′ will be ~0 so exactly one of êp or êq will be
in ker(M ′), which accounts for the additional vector in the basis of ker(M ′). Thus, the only
vector added to the basis will be exactly one of êp and êq, neither of which fits the condition
that their first and last elements sum to 1, so the desired ~x will be in the kernel of M ′ only
if it was in the kernel of M .
Finally, if both M(p, q) and M(q, p) are 0, I +MIpq must have dimension n and M ′ will

have the same kernel as M . �

From the above, a mcds sortability criterion was found.

Corollary 7.9. A matrix is mcds-sortable if, and only if, its kernel contains an element ~x
such that x1 = 0 and xn = 1 and an element ~y such that y1 = 1 and yn = 0.

Proof. For any fixed point matrix M , 1 < i, j < n, we must have that M(i, j) = 0. If ker(M)
contains an element ~x such that x1 = 0 and xn = 1, M(i, n) must also be 0 for all 1 ≤ i ≤ n,
and similarly if ker(M) contains an element ~y such that y1 = 1 and yn = 0, M(i, 1) must
also be 0 for all 1 ≤ i ≤ n. Therefore the only such fixed point matrix must be the zero

33

matrix, so by Theorem 7.8 every fixed point of a matrix with this property must be the zero
matrix and therefore such a matrix must be mcds-sortable. Similarly no fixed point of a
matrix without this property can be the zero matrix, so a matrix is mcds-sortable if and
only it has this property. �

A second mcds sortability criterion is presented below.

Corollary 7.10. Given a matrix A ∈ Mn, let M = centc(A) and let ~a1 and ~an be the first
and last columns of A, respectively. Then, A is mcds-sortable if, and only if, there exist
vectors ~u, ~u′ ∈ F

n−2
2 such that M~u = ~a1 and M~u′ = ~an.

Proof. We will first prove that if A is mcds-sortable, then such vectors ~u and ~u′ exist. By
Corollary 7.9, we have that if A is mcds-sortable, then ker(A) contains some vectors ~v and
~w such that v1 = 1, vn = 0, w1 = 0, wn = 1.
Let ~u ∈ F

n−2
2 be the column vector containing the elements v2 through vn−1, and define ~u′

similarly for ~w. Then, by definition of the kernel, we have thatM~u+~a1 = 0 andM~u′+~an = 0.
Since vector addition is its own inverse in F

n−2
2 , we have that M~u = ~a1 and M~u′ = ~an, as

desired.
Conversely, if no such vector ~u exists, then there is no solution ~u to the equation M~u = ~a1

and hence no solution to M~u + ~a1 = ~0. Therefore, there can be no vector ~v ∈ ker(A) such
that v1 = 0 and vn = 1, so by Corollary 7.9, A is not mcds-sortable. The argument for
when no such ~u′ exists is similar, so both directions hold. �

8. Counting gcds-sortable Graphs

Using the sortability criterion proven in Corollary 7.9, we prove several lemmas regarding
the structure of general and Eulerian gcds-sortable graphs. Afterwards, we derive formulas
counting the numbers of both general and Eulerian gcds-sortable graphs on n vertices.
Let Mn be the set of all n × n matrices A with coefficients in F2 such that all diagonal

elements of A are zero and A = AT . Note that an n × n matrix is the adjacency matrix of
a simple undirected graph on n vertices if, and only if, it is in Mn.
For brevity, we will say that an n×n matrix A is Eulerian if it is the adjacency matrix of

an Eulerian graph.

Definition 8.1. For a vector ~v ∈ F
n
2 , we define the one’s complement vector of ~v, denoted

~vC , to be the vector
~vC = ~v + [1 1 . . . 1]T ,

where the vector addition is taken over Fn
2 .

Using the definition above, we have the following lemma:

Lemma 8.1. Let A ∈ Mn be the adjacency matrix of an Eulerian graph G, let M = centc(A),
and for 1 ≤ i ≤ n let ~ai be the ith column of A. Then, for any vector ~u such that M~u = ~a1,
we have that M~uC = ~an.

Proof. By definition, for each ~u ∈ F
n−2
2 , we have ~uC = [1 1 . . . 1]T + ~u. If M~u = ~a1, then

we have that M~u = ~a1 and so M~u+ ~a1 = ~0. Since G is Eulerian, we have that

~a1 + (~a2 + · · ·+ ~an−1) + ~an = ~0,
34

so
M
(

[1 1 . . . 1]T
)

+ ~a1 + ~an = ~0.

Therefore, M(~u + ~uC) + ~a1 + ~an = ~0, so by distributivity and commutativity we have that

M~u + ~a1 + M~uC + ~an = 0. Since M~u + ~a1 = 0, it follows that M~uC + ~an = ~0, and since
addition is its own inverse over Fn

2 we have that M~uC = ~an. �

A property regarding the dot product of specific vectors is shown below.

Lemma 8.2. If A is a matrix in Mn and ~u,~v ∈ F
n
2 , then we have (A~u) • ~v = (A~v) • ~u and

(A~u) • ~u = 0.

Proof. Expanding the dot product, we have that

(A~u) • ~v =

n
∑

i=1

(A~u)i~vi =

n
∑

i=1

(

n
∑

j=1

A(i, j)~uj

)

~vi =

n
∑

i=1

n
∑

j=1

A(i, j)~uj~vi.

Since A = AT , we have that
n
∑

i=1

n
∑

j=1

A(i, j)~uj~vi =

n
∑

i=1

n
∑

j=1

A(j, i)~ui~vj =

n
∑

i=1

n
∑

j=1

A(i, j)~vj~ui = (A~v) • ~u,

as desired. Additionally, we have that

(A~u) • ~u =

n
∑

i=1

n
∑

j=1

A(i, j)~ui~uj

=

n
∑

i=2

i−1
∑

j=1

A(i, j)~ui~uj +

n
∑

i=1

A(i, i)~u2
i +

n
∑

i=2

i−1
∑

j=1

A(j, i)~ui~uj

= 2

n
∑

i=2

i−1
∑

j=1

A(i, j)~ui~uj + 0 = 0,

where the addition is taken over F2. �

Definition 8.2. For each positive integer n, let F : Mn × F
n
2 × F

n
2 → Mn+2 be the function

defined as follows. For A ∈ Mn and ~u1, ~u2 ∈ F
n
2 , we define

F (A, ~u1, ~u2) =





0 (A~u1)
T (A~u1)

T • ~u2

A~u1 A A~u2

(A~u1)
T • ~u2 (A~u2)

T 0



 .

Lemma 8.3. For any mcds-sortable n×n matrix A ∈ Mn, there exist vectors ~u1, ~u2 ∈ F
n−2
2

such that
A = F (centr,c(A), ~u1, ~u2).

Proof. For 1 ≤ i ≤ n, we let ~ai denote the ith column of the matrix A. Note that since A is
the adjacency matrix of an undirected graph, we have A = AT , so ~ai is also the ith row of
A. We will also let A(i, j) denote the element of A in row i and column j. Finally, we will
let M = centc(A) and C = centr,c(A).
By Corollary 7.10, since A is mcds-sortable there exist vectors ~u1 and ~u2 in F

n−2
2 satisfying

M ~u1 = ~a1 and M ~u2 = ~an. We claim that A = F (C, ~u1, ~u2) for these ~u1 and ~u2. In particular,
35

we will show that each section of the block matrix given in the definition of F (C, ~u1, ~u2) is
equal to the corresponding submatrix of A.
First, since A ∈ Mn, all of the diagonal elements of A are 0, so we have that the top-left

and bottom-right blocks of F (C, ~u1, ~u2) match the corresponding elements of A. Also, we
have by definition that C is the (n − 2) × (n − 2) submatrix of A containing the elements
A(i, j) for 2 ≤ i, j ≤ n− 1, so the central block of F (C, ~u1, ~u2) is also correct.
Since the vector in F

n−2
2 containing the elements in positions 2 through n − 1 of the n-

element vector M ~u1 is C ~u1 (as C comprises rows 2 through n− 1 of M), we have that since
~a1 = M ~u1, the vector containing the elements in positions 2 through n − 1 of ~a1 is C ~u1.
Therefore, the block in row 2, column 1 of the block matrix F (C, ~u1, ~u2) is correct. Since
A = AT , the block in row 1, column 2 is also correct.
By similar reasoning, we have that since ~an = M ~u2, the vector containing the elements

in positions 2 through n − 1 of ~an is C ~u2. Therefore, the block in row 2, column 3 of the
block matrix F (C, ~u1, ~u2) is correct, and so since A = AT the block in row 3, column 2 is
also correct.
It remains to prove that the blocks in row 1, column 3 and row 3, column 1 are correct. We

proved earlier that the block in row 1, column 2 is correct, so [A(1, 2) A(1, 3) . . . A(1, n− 1)] =
(C ~u1)

T . By definition of centc(A) = M , this row vector (C ~u1)
T is also the first row of the

middle submatrix M of A. Since we have M ~u2 = ~an from the fact that A is mcds-sortable,
it follows that (C ~u1)

T • ~u2 = a1n. Therefore, the block in row 1, column 3 is correct, and
since A is symmetric the block in row 3, column 1 is correct as well.
Thus, all of the blocks have been verified, and so we have shown that for some vectors

~u1, ~u2 ∈ F
n−2
2 , we have A = F (centr,c(A), ~u1, ~u2). �

From the above lemma, we have this corollary.

Corollary 8.4. For any mcds-sortable Eulerian n×n matrix A ∈ Mn, there exists a vector
~u ∈ F

n−2
2 such that

A = F (centr,c(A), ~u, ~u
C).

Proof. As before, let M = centc(A) and let ~ai be the ith column vector of A for 1 ≤ i ≤ n.
By Lemma 8.2, since A is mcds-sortable there are vectors ~u, ~u2 ∈ F

n−2
2 such that A =

F (centr,c(A), ~u, ~u2), M~u = ~a1, and M ~u2 = ~an. But by Lemma 8.1, since A is Eulerian
and M~u = ~a1, we have M~uC = ~an. Since the only restriction placed on ~u2 in the proof of
Lemma 8.1 was that M ~u2 = ~an, we can replace ~u2 with ~uC to get A = F (centr,c(A), ~u, ~u

C),
as desired. �

This function F outputs an mcds-sortable graph, as shown in the upcoming lemma.

Lemma 8.5. For any matrix A ∈ Mn and any vectors ~u1, ~u2 ∈ F
n
2 , the matrix F (A, ~u1, ~u2)

is an element of Mn+2 and is mcds-sortable.

Proof. Let M = F (A, ~u1, ~u2).
We begin by proving that M ∈ Mn+2; to do this, we must show that each diagonal entry

of M is a zero and that M = MT .
By definition of F , we have M(1, 1) = 0, M(i + 1, i + 1) = A(i, i) for 1 ≤ i ≤ n, and

M(n + 2, n + 2) = 0. Since A ∈ Mn, we have A(i, i) = 0 for each 1 ≤ i ≤ n, so it follows
that all of the diagonal entries of M are zeroes.

36

Next, we will show that M = MT . To do this, we will show that for each block submatrix
B(i, j) appearing in the block form of M in the definition of F , we have that B(i, j)T =
B(j, i) (for each 1 ≤ i, j ≤ 3). First, since B(1, 1) = B(3, 3) =

[

0
]

, this relation holds for

(i, j) = (1, 1) and (3, 3). Since A ∈ Mn, we have A = AT by definition, so since B(2, 2) = A
it also holds for (i, j) = (2, 2). By definition of F , we have B(2, 1) = A~u1, B(1, 2) = (A~u1)

T ,
B(2, 3) = A~u2, and B(3, 2) = (A~u2)

T , so we additionally have B(i, j)T = B(j, i) for (i, j) =
(1, 2), (2, 1), (2, 3), and (3, 2). Finally, both B(1, 1) and B(3, 3) are equal to the single element
matrix

[

(A~u1)
T • ~u2

]

, so the cases (i, j) = (1, 1) and (3, 3) hold as well. Therefore, we have

proven that M = MT , so M ∈ Mn+2.
Next, we will show that M is mcds-sortable. By Corollary 7.10, it suffices to find vectors

~u and ~u′ ∈ F
n
2 such that centc(M)~u = ~m1 and centc(M)~u′ = ~mn+2. Let P = centc(M). We

claim that the vectors ~u = ~u1 and ~u′ = ~u2 satisfy the required conditions; we must show
that P ~u1 = ~m1 and P ~u2 = ~mn+2.
By definition of F , we have that P, ~m1, and ~mn+2 can be expressed in block form as follows:

P =





(A~u1)
T

A

(A~u2)
T



 , ~m1 =





0
A~u1

(A~u1)
T • ~u2



 , and ~mn+2 =





(A~u1)
T • ~u2

A~u2

0



 .

We will prove that P ~u1 = ~m1 and P ~u2 = ~mn+2 by showing that for each component index
i with 1 ≤ i ≤ n+ 2, (P ~u1)i = (~m1)i and (P ~u2)i = (~mn+2)i.
First, for 2 ≤ i ≤ n + 1, we have that (P ~u1)i = ~ai−1 • ~u1 = (A~u1)i−1 = (~m1)i. Similarly,

(P ~u2)i = ~ai−1 • ~u2 = (A~u2)i−1 = (~mn+2)i.
Next, we consider the case in which i = 1. In this case, applying Lemma 8.2 we have that

(P ~u1)1 = (A~u1)
T • ~u1 = 0 = (~m1)1 and (P ~u2)1 = (A~u1)

T • ~u2 = (~mn+2)1, as needed.
Finally, we consider the case with i = n + 2. We have by Lemma 8.2 that (P ~u1)n+2 =

(A~u2)
T ~u1 = (A~u2)• ~u1 = (A~u1)

T ~u2 = (~m1)n+2 and (P ~u2)n+2 = (A~u2)
T • ~u2 = 0 = (~mn+2)n+2.

Therefore, we have shown that each pair of corresponding entries are equal, so we have
that P ~u1 = ~m1 and P ~u2 = ~mn+2, and the lemma is proven. �

Moreover, F outputs an Eulerian graph under the following circumstances.

Corollary 8.6. For any matrix A ∈ Mn and any vector ~u ∈ F
n
2 , the matrix F (A, ~u, ~uC) is

both mcds-sortable and Eulerian.

Proof. Let M = F (A, ~u, ~uC). Since ~uC ∈ F
n
2 , it follows directly from Lemma 8.5 that M is

mcds-sortable; hence, it suffices to prove that M is Eulerian.
M represents the adjacency matrix of a graph G, and is Eulerian if, and only if, G is

Eulerian. Each position j in row i such that M(i, j) = 1 corresponds to a vertex j such that
there is an edge between vertices i and j. Thus, for all vertices in G to have even degree we
must have that the sum of the elements in each row is even, or equivalently is 0 when taken
over F2.
We begin by showing that the sum of the first row is zero over F2. By definition of

M = F (A, ~u, ~uC), we have:

n+2
∑

i=1

M(1, i) = 0 +
n
∑

i=1

(A~u)i + (A~u)T • ~uC

37

=
n
∑

i=1

(

n
∑

j=1

A(i, j)uj

)

+
n
∑

i=1

(A~u)i
(

uC
)

i

=
n
∑

i=1

n
∑

j=1

A(i, j)uj +
n
∑

i=1

(

n
∑

j=1

A(i, j)uj

)

(

uC
)

i

=

n
∑

i=1

n
∑

j=1

A(i, j)uj

(

1 +
(

uC
)

i

)

=

n
∑

i=1

n
∑

j=1

A(i, j)ujui

=
n
∑

i=2

i−1
∑

j=1

A(i, j)ujui +
n
∑

i=1

A(i, i)u2
i +

n
∑

i=2

i−1
∑

j=1

A(j, i)uiuj.

Since A ∈ Mn the main-diagonal elements of A are all zeroes and A = AT . Therefore, we

have
n
∑

i=1

A(i, i)u2
i = 0 and

n
∑

i=2

i−1
∑

j=1

A(i, j)ujui =
n
∑

i=2

i−1
∑

j=1

A(j, i)uiuj, so it follows that the sum

of the first row is even. By similar reasoning, and the fact that

(A~u)T•~uC =
n
∑

i=1

n
∑

j=1

A(i, j)uj(u
C)i =

n
∑

i=1

n
∑

j=1

A(j, i)ui(u
C)j =

n
∑

i=1

n
∑

j=1

A(i, j)(uC)jui =
(

A~uC
)T•~u,

we also have that the sum of the last row is even.
We will now show that the sum of each row ~mi in the middle, for 2 ≤ i ≤ n + 1, is even.

By definition of F , we have that for 1 ≤ i ≤ n,
n+2
∑

j=1

M(i+ 1, j) = (A~u)i +

n
∑

j=1

A(i, j) + (A~uC)i.

By definition of ~uC , we have ~u+ ~uC = [1 1 . . . 1]T , so by commutativity and distributivity
we have that

(A~u)i +

n
∑

j=1

A(i, j) + (A~uC)i = (A(~u+ ~uC))i +

n
∑

j=1

A(i, j)

=
(

A
(

[1 1 . . . 1]T
))

i
+

n
∑

j=1

A(i, j)

=
n
∑

j=1

A(i, j) +
n
∑

j=1

A(i, j),

which is even. Hence, the sum of each row in the matrix M = F (A, ~u, ~uC) is even, so
F (A, ~u, ~uC) is Eulerian and the corollary is proven. �

A necessary and sufficient condition related to the kernel of a matrix and the function F
applied to it is expressed below.

38

Lemma 8.7. Let A be a matrix in Mn, and let ~u1, ~u2, ~v1, ~v2 be vectors in F
n
2 . Then, we have

that F (A, ~u1, ~u2) = F (A, ~v1, ~v2) if, and only if, ~v1 − ~u1 ∈ ker(A) and ~v2 − ~u2 ∈ ker(A).

Proof. If F (A, ~u1, ~u2) = F (A, ~v1, ~v2), then considering the middle n rows of the two matrices
produced via the definition of F we must have that A~u1 = A~v1 and A~u2 = A~v2. Hence, we
have that A(~v1− ~u1) = ~0 and A(~v2− ~u2) = ~0, so by definition we have ~v1− ~u1, ~v2− ~u2 ∈ ker(A).
Conversely, if the vectors ~v1 − ~u1 and ~v2 − ~u2 are both in the kernel of A, let ~w1 = ~v1 − ~u1

and ~w1 = ~v2 − ~u2. We will show that the corresponding blocks in each location within the
matrices F (A, ~u1, ~u2) and F (A, ~v1, ~v2) are equal. Since the blocks along the main diagonal
only involve A, which is the same for both matrices, it suffices to prove equality for the
remaining six pairs of non-diagonal blocks. Moreover, since the top-right and bottom-left
blocks in the definition of F are identical, and since A~u1 = A~v1 =⇒ (A~u1)

T = (A~v1)
T

and A~u2 = A~v2 =⇒ (A~u2)
T = (A~v2)

T , it suffices to show that the corresponding blocks in
positions (2, 1), (2, 3), and (1, 3) of the two block matrices F (A, ~u1, ~u2) and F (A, ~v1, ~v2) are
equal.
Since A~v1 = A(~u1 + ~w1) = A~u1 + A ~w1 = A~u1 + ~0 = A~u1, the corresponding blocks in row

2, column 1 are equal. By similar reasoning, we have A~v2 = A~u1, so the blocks in row 2,
column 3 are equal. Finally, since A~u1 = A~v1, we have that

(A~v1)
T • ~v2 = (A~u1)

T • ~v2 = (A~u1)
T • (~u2 + ~w2) = (A~u1)

T • ~u2 + (A~u1)
T • ~w2.

As A is symmetric and all of the main diagonal entries are zeroes, we may apply an argument
similar to that used in the proof of Lemma 8.3 to show that (A~u1)

T • ~w2 = (A~w)T • ~u1, which
is 0 since ~w ∈ ker(A). Thus, we are left with (A~v1)

T • ~v2 = (A~u1)
T • ~u2, so the blocks in row

1, column 3 are equal as well. Hence, we have shown that if ~v1 − ~u1, ~v2 − ~u2 ∈ ker(A) then
F (A, ~u1, ~u2) = F (A, ~v1, ~v2). �

A consequence of the above lemma is now presented.

Corollary 8.8. Let A be a matrix inMn, and let ~u,~v ∈ F
n
2 . Then, we have that F (A, ~u, ~uC) =

F (A,~v, ~vC) if, and only if, ~v − ~u ∈ ker(A).

Proof. By Lemma 8.3, it suffices to show that ~vC−~uC ∈ ker(A) if, and only if, ~v−~u ∈ ker(A).
By definition, we have that

~vC − ~uC =
(

~v + [1 1 . . . 1]T
)

−
(

~u+ [1 1 . . . 1]T
)

= ~v − ~u,

so it follows immediately that ~v − ~u ∈ ker(A) ⇐⇒ ~vC − ~uC ∈ ker(A). �

The properties that have been mentioned in this section have led us to the following
theorem which tells us the number of two-rooted gcds-sortable graphs G on n + 2 vertices
under a specific circumstance. It is described in more detail below.

Theorem 8.9. Let A be the adjacency matrix of an undirected graph on n vertices with no
self-loops and at most one edge between any two vertices. Then, we have that the number of
two-rooted gcds-sortable graphs G on n + 2 vertices such that A is the adjacency matrix of
the subgraph of non-rooted vertices of G is 4rank(A), and the number of such graphs that are
Eulerian is 2rank(A), where A is taken as a matrix over the field F2.

Proof. We define the relation ∼ on F
n
2 × F

n
2 as follows: (~u1, ~u2) ∼ (~v1, ~v2) if, and only if,

F (A, ~u1, ~u2) = F (A, ~v1, ~v2). Since ∼ is a relation defined in terms of equality, we have that
39

∼ is reflexive, symmetric, and transitive, so ∼ is an equivalence relation. Let [(~u1, ~u2)] be
the equivalence class containing (~u1, ~u2) under the equivalence relation ∼.
By Lemma 8.7, we have that (~u1, ~u2) ∼ (~v1, ~v2) if, and only if, ~v1− ~u1 and ~v2− ~u2 are both

in the kernel of A. Thus, we have that

[(~u1, ~u2)] = {(~u1 + ~w1, ~u2 + ~w2) | ~w1, ~w2 ∈ ker(A)},
and so |[(~u1, ~u2)]| = | ker(A)|2 for any pair (~u1, ~u2) ∈ F

n
2 × F

n
2 .

Thus, the number of distinct equivalence classes under the relation∼ is given by | (Fn
2 × F

n
2) \ ∼ | =

4n

| ker(A)|2 . Since ker(A) is a subspace of the vector space F
n
2 , we have that ker(A) is iso-

morphic to the vector space F
dim(ker(A))
2 , and so | ker(A)| = 2dim(ker(A)). Therefore, since

dim(ker(A)) + rank(A) = n by the Rank-Nullity Theorem, we have that the number of
distinct equivalence classes is

4n

| ker(A)|2 =
4n

(2dim(ker(A)))
2 =

4n

4dim(ker(A))
= 4rank(A).

Therefore, there are exactly 4rank(A) distinct (n + 2) × (n + 2) matrices M such that
M = F (A, ~u1, ~u2) for some ~u1, ~u2 ∈ F

n
2 . By Lemma 8.5, all of these matrices are valid

adjacency matrices of undirected simple graphs, and all are mcds-sortable. Also, by Lemma
8.3, any (n+ 2)× (n+ 2) mcds-sortable matrix M whose central n× n submatrix is A can
be written as F (A, ~u1, ~u2) for some ~u1 and ~u2, so there are exactly 4rank(A) mcds-sortable
(n+2)× (n+2) matrices whose central submatrix is A. Each of these matrices corresponds
to a distinct two-rooted graph with G as its non-rooted subgraph, so there are also 4rank(A)

such gcds-sortable graphs.
To count the number of Eulerian gcds-sortable graphs with central submatrix A, we

apply a similar procedure, but using single vectors in F
n
2 instead of ordered pairs of vectors.

As before, we define an equivalence relation ∼E on F
n
2 such that ~u ∼E ~v if, and only

if, F (A, ~u, ~uC) = F (A,~v, ~vC), and we consider the equivalence classes [~u] under ∼E . By
Corollary 8.8, we have that [~u] = {~u+ ~w | ~w ∈ ker(A)}. Thus, we have |[~u]| = | ker(A)|. By
an analogous argument to the one above, the number of equivalence classes under ∼K is

2k

| ker(A)| = 2rank(A).

It follows by Corollaries 8.4 and 8.6 that there is exactly one (n+2)× (n+2) mcds-sortable
Eulerian matrix whose central submatrix is A for each equivalence class, using a similar
argument as before, so there are 2rank(A) mcds-sortable Eulerian (n+ 2)× (n+ 2) matrices
whose central submatrix is A, each corresponding to a gcds-sortable graph with non-rooted
n-vertex subgraph G. �

To count the total number of gcds-sortable two-rooted graphs on n-vertices, we apply
Theorem 8.9 along with the following combinatorial result proven in [9].

Theorem 8.10 (MacWilliams, 1969, Theorem 3). Let N0(t, r) be the number of symmetric
t× t matrices A with entries in F(2n) such that all of the main diagonal entries of A are 0
and rank(A) = r. Then, if r is odd, we have N0(t, r) = 0, and if r = 2s we have that

N0(t, r) =
s
∏

i=1

22i−2

22i − 1
·
2s−1
∏

i=0

(2t−i − 1).

40

Proof. This result was proven by MacWilliams in [9], Theorem 3. �

From such theorem, we get the following corollary.

Corollary 8.11. The number of gcds-sortable two-rooted graphs on n vertices is

⌊n/2⌋−1
∑

s=0

2s(s+3)

(

∏2s−1
i=0 (2n−2−i − 1)
∏s

i=1 (2
2i − 1)

)

.

Moreover, the number of gcds-sortable two-rooted Eulerian graphs on n vertices is

⌊n/2⌋−1
∑

s=0

2
s(s+3)

2

(

∏2s−1
i=0 (2n−2−i − 1)
∏s

i=1 (2
2i − 1)

)

.

Proof. By Theorem 8.9, we have that for each matrix A ∈ Mn−2, there are exactly 4rank(A)

two-rooted gcds-sortable graphs G such that A is the adjacency matrix of the non-rooted
subgraph of G, 2rank(A) of which are Eulerian. Therefore, to count the gcds-sortable graphs
on n vertices, it suffices to count the number of matrices A ∈ Mn−2 with rank r over the
field F2 for each r with 0 ≤ r ≤ n− 2.
To do this, we apply Theorem 8.10 (proven as Theorem 3 in [9]) with t = n− 2, for each

value of r from 0 to n− 2. Since there are no solutions in the case where r is odd, the total
number of gcds-sortable graphs on n vertices is given by

⌊n−2
2

⌋
∑

s=0

42sN0(n− 2, 2s) =

⌊n−2
2

⌋
∑

s=0

42s

(

s
∏

i=1

22i−2

22i − 1
·
2s−1
∏

i=0

(2n−2−i − 1)

)

=

⌊n/2⌋−1
∑

s=0

24s

(

s
∏

i=1

22i−2

22i − 1
·
2s−1
∏

i=0

(2n−2−i − 1)

)

=

⌊n/2⌋−1
∑

s=0

24s ·
s
∏

i=1

22i−2 ·
(

∏2s−1
i=0 (2n−2−i − 1)
∏s

i=1(2
2i − 1)

)

=

⌊n/2⌋−1
∑

s=0

24s · 2s(s−1) ·
(

∏2s−1
i=0 (2n−2−i − 1)
∏s

i=1(2
2i − 1)

)

=

⌊n/2⌋−1
∑

s=0

2s(s+3) ·
(

∏2s−1
i=0 (2n−2−i − 1)
∏s

i=1(2
2i − 1)

)

,

as desired. The derivation of the corresponding formula for Eulerian graphs is similar, but
with the initial 42s term replaced with 22s. �

9. The proportion of graphs that are gcds sortable

Here is a table of the numbers of gcds-sortable graphs and gcds-sortable Eulerian graphs
on n-vertices, for 3 ≤ n ≤ 10, computed using the formula.

41

vertices # total graphs # gcds-sortable ratio # gcds-sortable Eulerian
3 8 1 .125 1
4 64 17 .266 5
5 1,024 113 .110 29
6 32,768 7,729 .236 365
7 2,097,152 224,689 .107 7,565
8 268,435,456 61,562,033 .229 259,533
9 68,719,476,736 7,309,130,417 .106 16,766,541
10 35,184,372,088,832 8,013,328,398,001 .228 1,695,913,805

TABLE 1. gcds-sortable graphs on n vertices, 3 ≤ n ≤ 10

As can be observed in the table above, the proportions of gcds-sortable graphs on even
and odd numbers of vertices appear to converge. A proof of this is given in the following
lemma:

Lemma 9.1. Let rn be the proportion of two-rooted graphs on n vertices that are gcds-
sortable. By our formula for the number of gcds-sortable graphs on n vertices and the fact

that there are 2(
n

2) total graphs, we have that

rn =
1

2
n(n−1)

2

⌊n/2⌋−1
∑

s=0

2s(s+3)

(

∏2s−1
i=0 (2n−2−i − 1)
∏s

i=1 (2
2i − 1)

)

.

Then, we claim that the sequences {r2n|n ∈ N} and {r2n+1|n ∈ N} of the proportions
of gcds-sortable graphs on odd and even numbers of vertices converge to finite, positive
constants.

Proof. We first consider the sequence {r2n|n ∈ N}, corresponding to the case where the
number of vertices is even. We begin by rewriting the formula in terms of r2n, and we define
xn = r2n for convenience:

xn = r2n =
n−1
∑

s=0

2s(s+3)

2n(2n−1)

(

∏2s−1
i=0 (22n−2−i − 1)
∏s

i=1 (2
2i − 1)

)

.

For each positive integer n and each integer s with 0 ≤ s < n, let

T (n, s) =
2s(s+3)

2n(2n−1)

(

∏2s−1
i=0 (22n−2−i − 1)
∏s

i=1 (2
2i − 1)

)

.

In order to prove that the sequence {xn} converges, we will prove the following two lemmas
about the terms T (n, s).

Lemma 9.2. Let k =
√
2. Then for each integer n ≥ 10 and each integer s with n

3
≤ s ≤ n,

we have that

1− k−n <
T (n+ 1, s+ 1)

T (n, s)
< 1 + k−n.

Proof. We begin by simplifying the expression T (n+1,s+1)
T (n,s)

; we have

T (n+ 1, s+ 1)

T (n, s)
=

(

2(s+1)(s+4)

2(n+1)(2n+1)

(

∏2s+1
i=0 (22n−i − 1)
∏s+1

i=1 (2
2i − 1)

))

·
(

2n(2n−1)

2s(s+3)

(

∏s
i=1 (2

2i − 1)
∏2s−1

i=0 (22n−2−i − 1)

))

42

=

(

2s
2+5s+4

22n2+3n+1

(

∏s
i=1 (2

2i − 1)
∏s+1

i=1 (2
2i − 1)

))

·
(

22n
2−n

2s2+3s

(

∏2s+1
i=0 (22n−i − 1)

∏2s−1
i=0 (22n−2−i − 1)

))

=
2s

2+5s+4

2s2+3s
· 22n

2−n

22n2+3n+1
·
(

∏s
i=1 (2

2i − 1)
∏s+1

i=1 (2
2i − 1)

)

·
(

∏2s+1
i=0 (22n−i − 1)

∏2s−1
i=0 (22n−2−i − 1)

)

= 22s+4 · 1

24n+1
· 1

22s+2 − 1
·
(

∏2n
i=2n−2s−1 (2

i − 1)
∏2n−2

i=2n−2s−1 (2
i − 1)

)

=
22s+4

22s+2 − 1
· 1

24n+1
·
(

22n − 1
) (

22n−1 − 1
)

=
22s+2

22s+2 − 1
· (2

4n−1 − 3 · 22n−1 + 1)

24n−1

=

(

1 +
1

22s+2 − 1

)(

1− 3

22n
+

1

24n−1

)

.

Let k =
√
2. Then, for n ≥ 10, s ≥ n

3
, we have

T (n+ 1, s+ 1)

T (n, s)
≥ 1− 3

22n
≥ 1− 2−n > 1− k−n

and
T (n+ 1, s+ 1)

T (n, s)
≤ 1 +

1

22s+2 − 1
≤ 1 +

1

22s
= 1 +

1

22n/3
= 1 + k−4n/3 < 1 + k−n,

as desired. �

Lemma 9.3. Let k =
√
2. Then for each integer n ≥ 10 and each nonnegative integer

s ≤ 2n
3
, we have

T (n, s) < k−n.

Proof. Note that since 22n−2−i − 1 ≤ 22n−2−i for all 0 ≤ i < n and 22i − 1 ≥ 22i−1 for all
i ≥ 1, we have that

T (n, s) =
2s(s+3)

2n(2n−1)

(

∏2s−1
i=0 (22n−2−i − 1)
∏s

i=1 (2
2i − 1)

)

≤ 2s(s+3)

2n(2n−1)

(

∏2s−1
i=0 (22n−2−i)
∏s

i=1 (2
2i−1)

)

.

Therefore, we have that

log2 T (n, s) ≤ s(s+ 3)− n(2n− 1) +

2s−1
∑

i=0

(2n− 2− i)−
s
∑

i=1

(2i− 1)

= s2 + 3s− 2n2 + n+ 4ns− 4s−
(

2s−1
∑

i=0

i

)

− 2

(

s
∑

i=1

i

)

+ s

= s2 + 3s− 2n2 + n+ 4ns− 4s− 2s(2s− 1)

2
− 2

s(s+ 1)

2
+ s

= s2 + 3s− 2n2 + n+ 4ns− 4s− 2s2 + s− s2 − s+ s

= −2n2 + 4ns− 2s2 + n

= −2(n− s)2 + n
43

Using our assumption that s ≤ 2n
3
, we have n− s ≥ n

3
, so −2(n− s)2 +n ≤ −2n2/9+n. For

n ≥ 10, we have
−2n2/9 + n < −2n + n = −n.

Therefore, it follows that T (n, s) < 2−n <
(√

2
)−n

for n ≥ 10, s ≤ 2n
3
, so the value k =

√
2

satisfies the condition for our desired constant. �

Let k =
√
2. By Lemmas 9.2 and 9.3, for each integer n with n ≥ 10 we have 1 − k−n <

T (n+1,s+1)
T (n,s)

< 1 + k−n for s ≥ n/2, T (n + 1, s) < k−n for s ≤ n/2, and T (n, s) < k−n for

s ≤ n/2.

Multiplying the inequality 1 − k−n < T (n+1,s+1)
T (n,s)

< 1 + k−n through by T (n, s) and then

subtracting T (n, s) from each term, we have that −T (n, s)k−n < T (n+1, s+1)− T (n, s) <
T (n, s)k−n. Since T (n, s) ≤ xn ≤ 1 (as the proportion of gcds-sortable graphs cannot be
greater than 1), we must have that

|T (n+ 1, s+ 1)− T (n, s)| < k−n.

We expand the difference |xn+1 − xn| using the Triangle Inequality:

|xn+1 − xn| =
∣

∣

∣

∣

∣

n
∑

s=0

T (n+ 1, s)−
n−1
∑

s=0

T (n, s)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

n−1
∑

s=⌊n
2
⌋+1

T (n+ 1, s+ 1)− T (n, s)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

⌊n
2
⌋+1
∑

s=0

T (n+ 1, s)

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

⌊n
2
⌋

∑

s=0

T (n, s)

∣

∣

∣

∣

∣

∣

≤
n−1
∑

s=⌊n
2
⌋+1

|T (n+ 1, s+ 1)− T (n, s)|+
⌊n
2
⌋+1
∑

s=0

|T (n + 1, s)|+
⌊n
2
⌋

∑

s=0

|T (n, s)|

≤ (n− ⌊n/2⌋ − 1)k−n + (⌊n/2⌋ + 2) k−n + (⌊n/2⌋ + 1) k−n

= (n+ ⌊n/2⌋ + 2) k−n

≤ 3nk−n.

Let d = k−1
2
, and let c = k

d+1
. Note that since k > 1, we have d + 1 = k+1

2
< k, so c > 1.

Now let T = 3
d
= 6

k−1
. Since k is a constant not depending on n, both T and c are positive

constants not depending on n (and c > 1). Then, since d > 0, we have

3nk−n =
3

d
k−n(nd) ≤ 3

d
k−n

n
∑

j=0

(

n

j

)

dj =
3

d
k−n(d+ 1)n =

3

d
·
(

k

d+ 1

)−n

= T · c−n.

Thus, we have shown that |xn+1 − xn| < Tc−n for each integer n ≥ 10 and constants
T > 0, c > 1.
Let a1 = x1, and for each integer n ≥ 2, an = xn − xn−1. Then, for each n > 0 we have

that xn =
∑n

i=1 ai. Let bn = Tc−(n−1) for each n > 0. Then, |an| ≤ bn for all n ≥ 10. Since
the geometric series

∑∞
n=1 bn converges, we have that the series

∑∞
n=1 an converges as well.

Therefore, the sequence {xn | n ∈ N} = {r2n | n ∈ N} converges.
44

Let L = lim
n→∞

xn. Then,

L = x100+

∞
∑

n=100

(xn+1−xn) ≥ x100−
∞
∑

n=100

|xn+1−xn| ≥ x100−
∞
∑

n=100

T ·c−n ≥ x100−c−100 cT

c− 1
.

With k =
√
2, we have c = 2

√
2√

2+1
= 4 − 2

√
2 > 1.1 and T = 6√

2−1
< 6

0.3
= 20, and also

c < 2. Thus, we have cT
c−1

< 2·20
0.1

= 400. Additionally, we have that c−100 < 1.1−100 < 10−4,

so c−100 cT
c−1

< 0.04. By computing the value of x100 through inserting n = 100 into the
formula for xn. We can verify that x100 > 0.2 and so L ≥ 0.2− 0.04 ≥ 0.16 > 0. Therefore,
the limiting value of the sequence, which exists by our convergence result, must be strictly
positive.
The proof that the sequence {xn | n ∈ N} = {r2n+1 | n ∈ N} converges to a positive limit

is similar. �

References

[1] K.L.M. Adamyk, E. Holmes, G.R. Mayfield, D.J. Moritz, M. Scheepers, B.E. Tenner, and H.C. Wauck,
Sorting Permutations: Games, Genomes, and Cycles, Discrete Mathematics, Algorithms and

Applications 9:5 (2017), 1750063 (31 pp)
[2] R. Brijder and H.J. Hoogeboom, The Group Structure of Pivot and Loop Complementation on Graphs

and Set Systems, European Journal of Combinatorics 32 (2011), 1353 - 1367
[3] R. Brijder, T. Harju and H.J. Hoogeboom, Pivots, Determinants, and Perfect Matchings of Graphs

Theoretical Computer Science 454 (2012), 64 - 71.
[4] D.A. Christie, Sorting Permutations by Block Interchanges, Information Processing Letters 60

(1996), 165 - 169
[5] A. Ehrenfeucht, T.Harju, I. Petre, D.M. Prescott and G. Rozenberg, Computation in Living Cells: Gene

Assembly in Ciliates, Springer-Verlag 2004.
[6] J.F. Geelen, A generalization of Tutte’s characterization of totally unimodular matrices, Journal of

Combinatorial Theory, Series B 70 (1997), 101 - 117.
[7] C.L. Jansen, M. Scheepers, S.L. Simon, and E. Tatum Permutation Sorting and a Game on Graphs,

arXiv:1411.5429v1 [math.CO]
[8] H.Q. Li, J. Ramsey, M. Scheepers, H.E. Schilling, and C. Stanford Parity Cuts In 2-Rooted Graphs: A

Trichotomy Theorem (in preparation)
[9] J. MacWilliams Orthogonal matrices over finite fields The American Mathematical Monthly 76

(1969), no. 2, 152–164
[10] D.M. Prescott, A. Ehrenfeucht and G. Rozenberg, Template guided recombination for IES elimination

and unscrambling of genes in stichotrichous ciliates, Journal of Theoretical Biology 222 (2003),
3232 - 330

[11] N. J. A. Sloane, The On-line Encyclopedia of Integer Sequences, published electronically at
http://www.oeis.org/.

Appendix A. Equivalence of gcds definitions

We now provided an equivalence among a definition we provided in the present paper with
a definition presented in another reference.

Lemma A.1. The definition of gcds given as Definition 4.1 is equivalent to the definition
given in [7].

Proof. We proceed by casework, considering whether edge {u, v} will be present in the graph
gcds{p,q}(G) for each case in the definition from [7] governing the adjacency relationships
between the vertices u, v, p, and q.

45

http://www.oeis.org/

Our vertices p and q correspond to the vertices x and y in the [7] definition used to apply
gcds, and our vertices u and v correspond to the arbitrary vertices p and q in the [7] that
are affected by the gcds operation.

(1) Case A: At least one of the vertices u and v is adjacent to neither p nor q.
In this case, we will either have fp(u) = fq(u) = 0 or fp(v) = fq(v) = 0. In both

situations, it follows that fp(u)fq(v) + fq(u)fp(v) = 0, so the edge {u, v} is in E ′ if,
and only if, {u, v} ∈ E. At least one of u and v will not appear in the master list
M(p, q) in this case (whichever one was adjacent to neither p nor q), so this condition
matches the specification given in the [7] definition.

(2) Case B: Both u and v appear in the master list M(p, q).
(a) Subcase B1: u and v do not appear in the same column of the master list.

The [7] definition specifies that {u, v} ∈ E ′ if, and only if, {u, v} 6∈ E. This sub-
case corresponds to the case when there is no vertex in the set {p, q} that u and
v are both adjacent to, so if fp(u) = 1, then fq(u) = 0, fq(v) = 1, and fp(v) = 0.
Alternatively, if fp(u) = 0, then fq(u) = 1, fq(v) = 0, and fp(v) = 1. In either
case, we have that fp(u)fq(v) + fq(u)fp(v) = 1, so our definition specifies that
{u, v} ∈ E ′ if and only {u, v} ∈ E, as desired.

(b) Subcase B2: u and v appear in the same column of the master list, and the sum
of the number of times u appears and the number of times v appears is even.
First, we note that the [7] definition lets {u, v} be an edge in E ′ if, and only if,
{u, v} ∈ E. We now consider the possible values of fp(u), fq(u), fp(v), and fq(v).
Since u and v both appear in the same column of the master list, they are both
adjacent to w for a specific vertex w ∈ {p, q}. Furthermore, since the number
of adjacencies is even, either none or both of u and v are adjacent to the other
vertex in {p, q}.
This leaves a total of 3 possibilities. If both are adjacent to the other vertex
for either choice of w, we have that fp(u) = fp(v) = fq(u) = fq(v) = 1, so
fp(u)fq(v) + fp(v)fq(u) 6= 1 and we have uv ∈ E ′ if, and only if, uv ∈ E. Oth-
erwise, both u and v are adjacent to w but neither is adjacent to the other
vertex. If w = p, then fp(u) = fp(v) = 1 and fq(u) = fq(v) = 0, so we have
fp(u)fq(v) + fq(u)fp(v) 6= 1; similarly, if w = q, then fp(u) = fp(v) = 0 and
fq(u) = fq(v) = 1, so fp(u)fq(v) + fq(u)fp(v) 6= 1. In either case, we have
{u, v} ∈ E ′ if, and only if, {u, v} ∈ E, so the definitions are always equivalent
in subcase B2.

(c) Subcase B3: u and v appear in the same column of the master list, and the sum
of the number of times u appears and the number of times v appears is odd.
The [7] definition lets {u, v} ∈ E ′ if, and only if, {u, v} 6∈ E. Note that since
u and v are both adjacent to some w ∈ {p, q} (since they appear in the same
column of the master list), at least two of fp(u), fq(u), fp(v), and fq(v) are equal
to 1. Since the sum of the numbers of times p and q appear in the master list is
odd, we have that an odd number of fp(u), fq(u), fp(v), and fq(v) are equal to

46

1. Hence, exactly three of the quantities fp(u), fq(u), fp(v), and fq(v) are equal
to 1, and the fourth is equal to zero. Thus, one of the two products in the
expression fp(u)fq(v)+fq(u)fp(v) will contain two ones, and the other term will
contain one 1 and one 0. Therefore, we must have fp(u)fq(v) + fq(u)fp(v) = 1,
so our gcds definition lets {u, v} ∈ E ′ iff {u, v} 6∈ E as well for subcase B3.

Finally, if u or v is an element of {p, q}, we consider the case in which u = p without loss of
generality. Then, we have fp(u) = 0 and fq(u) = 1, so we have that fp(u)fq(v)+fq(u)fp(v) =
1 if, and only if, fp(v) = 1 - in other words, if v and u are adjacent. In this case (when
{u, v} ∈ E), we will have {u, v} ∈ E ′ if, and only if, {u, v} 6∈ E, so {u, v} 6∈ E ′. If {u, v} 6∈ E,
we will have fp(u)fq(v) + fq(u)fp(v) 6= 1, so {u, v} ∈ E ′ if, and only if, {u, v} ∈ E and so
{u, v} 6∈ E ′. Therefore, either way we have that edge {u, v} is not in E ′. By similar reasoning,
we conclude that there is no edge in E ′ whose endpoints include either vertex p or vertex
q, so p and q are isolated vertices in G′. This aligns with the specification given in the [7]
definition.
Thus, our definition corresponds to the definition of [7] in each case, so the two definitions

are equivalent.
�

Department of Mathematics, University of Arizona, Tucson, AZ 85721, USA

E-mail address : colbybrown@email.arizona.edu

Department of Computer Science and Department of Mathematics, University of Rochester,

Rochester, NY 14627, USA

E-mail address : ccarril2@u.rochester.edu

Department of Electrical Engineering and Computer Science, University of Michigan –

Ann Arbor, Ann Arbor, MI 48109, USA

E-mail address : gorashmi@umich.edu

Department of Mathematics, Washington University in St. Louis, St. Louis, MO 63130,

USA

E-mail address : sheil@wustl.edu

Department of Mathematics, Boise State University, Boise, ID 83725, USA

E-mail address : mscheepe@boisestate.edu

47

colbybrown@email.arizona.edu
ccarril2@u.rochester.edu
gorashmi@umich.edu
sheil@wustl.edu
mscheepe@boisestate.edu

	1. Introduction
	2. Acknowledgements
	3. Preliminaries
	3.1. CDS and Associated Objects

	4. Generalizing context directed swaps to finite graphs and matrices.
	5. Parity Cuts and Preservation Properties
	5.1. Permutations, Alternating Cycles, and Adjacency Matrices

	6. A decision problem and its complexity
	7. Graph and Matrix Sortability
	7.1. Sortability under gcds
	7.2. Sortability under mcds

	8. Counting gcds-sortable Graphs
	9. The proportion of graphs that are gcds sortable
	References
	Appendix A. Equivalence of gcds definitions

