2-NEIGHBORLY 0/1-POLYTOPES OF DIMENSION 7

ALEKSANDR MAKSIMENKO

Abstract

We give a complete enumeration of all 2-neighborly 0/1-polytopes of dimension 7. There are 13959358918 different $0 / 1$-equivalence classes of such polytopes. They form 5850402014 combinatorial classes and 1274089 different f-vectors. It enables us to list some of their combinatorial properties. In particular, we have found a 2 -neighborly polytope with 14 vertices and 16 facets.

1. Introduction

A $0 / 1$-polytope is a convex polytope whose set of vertices is subset of $\{0,1\}^{d}$. For beautiful introduction to the world of 0/1-polytopes, we refer to Ziegler [17]. Some recent results can be found in [10]. The classification of all 1226525 different $0 / 1$-equivalence classes of $0 / 1$-polytopes of dimension 5 was done by Aichholzer [1]. Also he completed the classification of 6 -dimensional $0 / 1$ polytopes up to 12 vertices. Recently, Chen and Guo [4] computed the numbers of $0 / 1$-equivalence classes of 6 -dimensional polytopes for each number of vertices $k \in[13,64]$. But nowadays it is too hard to list all these $\approx 4.0 \cdot 10^{14}$ classes and investigate their properties explicitly. (If every polytope will ocupy 8 bytes, then all the database will take about 3 petabytes.) Thus, it makes sense to focus on some interesting families of $0 / 1$-polytopes.

A convex polytope P is called 2-neighborly if any two vertices form a 1-face (i.e. edge) of P. There are at least two reasons for investigation of 2-neighborly $0 / 1$-polytopes:
(1) Let $P_{d, n}$ is a random d-dimensional 0/1-polytope with n vertices. In 2008, Bondarenko and Brodskiy [3 showed, that if $n=O\left(2^{d / 6}\right)$, then the probability $\operatorname{Pr}\left(P_{d, n}\right.$ is 2-neighborly) tends to 1 as $d \rightarrow \infty$. Similar results are obtained by Gillmann [10].
(2) Special 0/1-polytopes, such as the cut polytopes, the traveling salesman polytopes, the knapsack polytopes, the k-SAT polytopes, the 3 -assignment polytopes, the set covering polytopes and many others have 2-neighborly faces with superpolynomial (in the dimension) number of vertices [6, 14, 15].
We enumerated and classified all 13959358918 0/1-equivalence classes of 7 -dimensional 2neighborly $0 / 1$-polytopes. It enables us to investigate extremal properties of these polytopes. For example, we have found a 2-neighborly polytope with 14 vertices and 16 facets. This is the first known example of a 2-neighborly polytope (except a simplex) whose number of facets is not greater than the number of vertices plus 2 .

In [1], Aichholzer stated the question about the maximal number $N_{2}(d)$ of vertices of a 2neighborly d-dimensional 0/1-polytope. He showed that $N_{2}(6)=13,18 \leq N_{2}(7) \leq 24, N_{2}(8) \geq$ $25, N_{2}(9) \geq 33, N_{2}(10) \geq 44$. We improve these estimations: $N_{2}(7)=20,28 \leq N_{2}(8) \leq 34$, $N_{2}(9) \geq 38, N_{2}(10) \geq 52$.

The entire database occupies about 1TB. The part of it (in particular, all 6-polytopes) and the list of all f-vectors are available at https://github.com/maksimenko-a-n/2neighborly-01polytopes.

[^0]
2. Enumeration of 2-NEIGHBORLY 0/1-POLYTOPES

Every 0/1-polytope is a convex hull of a set $X \subseteq\{0,1\}^{d}$. Since the natural way for defining a $0 / 1$-polytope is the defining its set of vertices X, in the following we will frequently call X by a "polytope", having in mind the convex hull $\operatorname{conv}(X)$.

We will use the following trivial facts. Every $0 / 1$-polytope $\operatorname{conv}(X), X \subseteq\{0,1\}^{d}$, is the convex hull of a $0 / 1$-polytope $\operatorname{conv}(X \backslash\{x\})$ and a vector $x \in X$. The same is true for 2 -neighborly polytopes. Let P be a 2-neighborly polytope and $X=\operatorname{ext}(P)$ be its set of vertices. Then for every $x \in X$ the polytope $\operatorname{conv}(X \backslash x)$ is also 2-neighborly. Thus, we can enumerate 2-neighborly $0 / 1$-polytopes iteratively, starting with a polytope consisting of a single point and adding one point each time.

Two polytopes are $0 / 1$-equivalent if one can be transformed into the other by a symmetry of the $0 / 1$-cube. More precisely, this transformation means the using of two operations: permuting of coordinates and replacing some coordinates x_{i} by $1-x_{i}$ (switching). Thus, one $0 / 1$-equivalence class can contain up to $2^{d} d$! of $0 / 1$-polytopes of dimension d. The $0 / 1$-equivalence implies affine and combinatorial equivalences [17, Proposition 7].

Every $0 / 1$-vector $x=\left(x_{1}, x_{2}, \ldots, x_{d}\right) \in\{0,1\}^{d}$ can be associated with the binary number " $x_{1} x_{2} \ldots x_{d}$ ". Thus, every $0 / 1$-polytope $X \subseteq\{0,1\}^{d}$ can be naturally associated with the sequence of such binary numbers sorted in increasing order. Let \mathcal{C} be a $0 / 1$-equivalence class (a set of polytopes). A polytope $X \in \mathcal{C}$ is called a representative if it is lexicografically less than any other polytope $Y \in \mathcal{C}$. For a given $0 / 1$-polytope Y, the appropriate representative (Y) can be found with a straightforward branch and bound algorithm.

Therefore, for enumeration of 2-neighborly 0/1-polytopes we can iteratively use the algorithm 1 . In the first step, T_{1} contains only one polytope $\{(0, \ldots, 0)\}$.

For testing 2-neighborliness of a $0 / 1$-polytope $X \subseteq\{0,1\}^{d}$ we use the ideas described in [1, Sec. 2.2]. Let $v, w \in X$ and we want to check the adjacency of v and w in $\operatorname{conv}(X)$. First of all, we switch X to $Y=\{x \oplus v \mid x \in X\}$. (Here, \oplus is a coordinatewise XOR operation.) Hence, v will be switched to 0 . It is easy to prove that the vertices $0, y \in Y$ form an edge of a polytope Y iff they form an edge of a polytope $Z=\{z \in Y \mid z \wedge y=z\}$. (Here, \wedge is a coordinatewise AND operation.) Thus, we have to check whether y is in the conical hull

$$
\operatorname{cone}(Z)=\left\{\sum_{z \in Z} \lambda_{z} z \mid \lambda_{z} \geq 0\right\} .
$$

Namely, vertices 0 and y form an edge in Z iff $y \notin \operatorname{cone}(Z)$. The cheking of $y \notin \operatorname{cone}(Z)$ can be done by solving the corresponding linear programming problem. We did it with COIN-OR Linear Programming Solver (5).

We have run this algorithm on the computer cluster of Discrete and computational geometry laboratory of Yaroslavl state university (https://dcgcluster.accelcomp.org). The cluster has a hundred 2.9 GHz -cores. After several weeks of computations we had got the rezults collected in Table 1b, Every $0 / 1$-vector $x \in\{0,1\}^{d}, d \leq 8$, we store as a 1 -byte integer. Thus, a polytope with n vertices occupies n bytes and all the database - about 173GB.

Our results for the dimension 6 coincide with Aichholzer database [1]. In addition, we enumerate all 2-neighborly $0 / 1$-polytopes of dimension 6 with 13 vertices.

3. Evaluating of combinatorial types and f-vectors

It is well known (see e.g. [13]) that the combinatorial type (face lattice) of a polytope P with vertices $\left\{v_{1}, \ldots, v_{n}\right\}$ and facets $\left\{f_{1}, \ldots, f_{k}\right\}$ is uniquely determined by its facet-vertex incidence matrix $M=\left(m_{i j}\right) \in\{0,1\}^{k \times n}$, where $m_{i j}=1$ if facet f_{i} contains vertex v_{j}, and $m_{i j}=0$

```
Algorithm 1: The enumeration of 2-neighborly \(0 / 1\)-polytopes
    Input : the dimension \(d\), the array \(T_{n}\) of 2-neighborly \(0 / 1\)-polytopes with \(n\) vertices
                (every polytope is an array of \(n 0 / 1\)-vectors)
    Output: the array \(T_{n+1}\) of 2-neighborly 0 /1-polytopes with \(n+1\) vertices
    Function enumerate_2neighborly (d, \(T_{n}\) )
    for \(X \in T_{n}\) do
        for \(v \in\{0,1\}^{d} \backslash X\) do
            if is_2neighborly \((X, v)\) then
                add representative \((X \cup\{v\})\) to \(T_{n+1}\);
            end
        end
        end
        sort \(T_{n+1}\) and remove duplicates;
        return \(T_{n+1}\);
    end
    // Let \(\operatorname{conv}(\mathrm{X})\) be 2-neighborly. Is \(\operatorname{conv}(\mathrm{X} \cup\{v\})\) 2-neighborly?
    Function is_2neighborly (X, v)
        \(Y:=\emptyset ;\)
        // firstly, test edges for v and \(x \in X\)
    for \(x \in \mathrm{X}\) do add \(x \oplus \mathrm{v}\) to Y ; // switch v to 0
    for \(y \in Y\) do
        if no_edge_0y \((Y, y)\) then return false;
    end
    // test edges \(\{x, y\} \subseteq X\)
    for \(x \in \mathbf{X}\) do
        \(w:=\mathrm{v} \oplus x ;\)
        \(Y:=\emptyset\);
        for \(y \in \mathrm{X} \backslash x\) do add \(y \oplus x\) to Y; // switch \(x\) to 0
        for \(y \in Y\) do
                if \(w \wedge y=w\) then
                    if no_edge_0y \((Y \cup\{w\}, y)\) then return false;
                end
            end
        end
        return true;
    end
    // Isn't \(\{0, \mathrm{y}\}\) an edge of \(\operatorname{conv}(\mathrm{Y} \cup\{0\})\) ?
    Function no_edge_0y(Y, y)
        \(Z:=\emptyset ;\)
        for \(z \in \mathrm{Y} \backslash \mathrm{y}\) do
            if \(z \wedge \mathrm{y}=z\) then add \(z\) to \(Z\);
        end
        if \(\mathrm{y} \in \operatorname{cone}(Z)\) then return true;
        return false;
    end
```

(A) The dimension 6		(B) The dimension 7	
vertices	0/1-equivalence classes	vertices	0/1-equivalence classes
1	1	1	1
2	6	2	7
3	16	3	23
4	94	4	191
5	445	5	1510
6	2528	6	16373
7	12359	7	183209
8	47445	8	1985525
9	108220	9	18565154
10	110032	10	136197421
11	38221	11	707274277
12	3222	12	2345160234
13	36	13	4456209397
total	322625	14	4284931624
		15	1757834961
		16	244831279
		17	8967617
		18	73512
		19	180
		20	3
		total	13962232498

Table 1. The number of $0 / 1$-equivalence classes of 2-neighborly polytopes of dimensions 6 and 7
otherwise. Thus, polytopes are combinatorially equivalent iff their facet-vertex incidence matrices differ only by column and row permutations.

For every polytope in our database we computed its facet-vertex incidence matrix M by using lrs [2]. This evaluation takes about 10 days on the computer cluster with 32 cores. After that, for every matrix M, we computed the canonical form of a vertex-facet digraph of M by using bliss [12] (as it was done in [7]). This evaluation takes about 2 days on the computer cluster with 32 cores. Having sorted canonical forms, we have splitted all the polytopes into combinatorial equivalence classes.

For computing f-vector of a polytope from its facet-vertex incidence matrix, we used Kaibel\&Pfetsch algorithm [13] and modified it for the case, when the number of vertices is small (an incidence matrix row can be stored in a 32 -bit integer). The computing of f-vectors of all polytopes took about two weeks on the cluster.

The results of these computations are collected in Tables 24. We enumerate only fulldimensional $0 / 1$-polytopes, since any nonfull-dimensional 0/1-polytope is affinely equivalent to some full-dimensional one [17.

To give an idea of the magnitude of the obtained numbers, we give a couple of examples: f-vector ($13,78,266,531,603,355,84$) consists of 2448144 combinatorial classes; f-vector (9,36 , $82,114,97,48,12$) consists of one combinatorial class with $51609790 / 1$-equivalence classes.

vertices	0/1-equivalence classes	combinatorial classes	f-vectors
6	237	1	1
7	334	2	2
8	102	8	5
9	10	7	4
10	1	1	1
total	684	19	13

Table 2. Full-dimensional 2-neighborly 0/1-polytopes of dimension 5

vertices	0/1-equivalence classes	combinatorial classes	f-vectors
7	9892	1	1
8	46813	4	4
9	108178	81	32
10	110029	9651	180
11	38221	17782	411
12	3222	2730	455
13	36	35	34
total	316391	30284	1117

Table 3. Full-dimensional 2-neighborly 0/1-polytopes of dimension 6

vertices	0/1-equivalence classes	combinatorial classes	f-vectors
8	1456318	1	1
9	17588780	6	6
10	135330686	419	108
11	706996729	4790131	2090
12	2345138023	271351237	17113
13	4456209206	1414858979	66929
14	4284931624	2487091476	171289
15	1757834961	1431813684	303063
16	244831279	23549854	382319
17	8967617	8872600	282000
18	73512	73444	48988
19	180	180	180
20	3	3	3
total	13959358918	5850402014	1274089

Table 4. Full-dimensional 2-neighborly $0 / 1$-polytopes of dimension 7

For every combinatorial type, we store its facet-vertex incidence matrix. If the number of vertices (columns of the matrix) is not greater than 16, one row of the matrix occupies

2 bytes. The average number of facets (rows of the matrix) is 97 . Thus, all combinatorial types occupy about 1TB. The part of the database (in particular, all 6-polytopes) is available at https://github.com/maksimenko-a-n/2neighborly-01polytopes. The full information can be requested from the author (by e-mail).

4. d-Polytopes with $d+3$ vertices

Combinatorial types of d-polytopes with $d+3$ or less vertices can be enumerated by using Gale diagrams [11, Chap. 6]. For $d+1$ vertices there are only one d-polytope - a simplex. For $d+2$ vertices, the number of combinatorial types is equal to the number of tuples $\left(m_{0},\left\{m_{1}, m_{-1}\right\}\right)$, where $m_{0}, m_{1}, m_{-1} \in \mathbb{Z}, m_{0} \geq 0, m_{1} \geq 2, m_{-1} \geq 2$, and $m_{0}+m_{1}+m_{-1}=d+2$ [11, Sec. 6.3]. The appropriate polytope is 2-neighborly iff $m_{1} \geq 3, m_{-1} \geq 3$. For small d, these tuples can be easily enumearted by hands.

The combinatorial type of every d-polytope with $d+3$ vertices is defined by the appropriate reduced Gale diagram or wheel-sequence [9]. We don't list here the properties of these interesting objects, since it was done in [11, 9, 16]. The results of enumerating wheel-sequences by a computer are collected in Table 5. They coincide with the first values of the sequence A114289: https://oeis.org/search?q=A114289 and with the Fukuda-Miyata-Moriyama collection of d polytopes for $d \leq 6$ [8].

d	$d+2$ vertices			$d+3$ vertices		
	all	2-neighborly polytopes	2-neighborly $0 / 1$-polytopes	all	2-neighborly polytopes	2-neighborly $0 / 1$-polytopes
4	4	1	1	31	1	0
5	6	2	2	116	11	8
6	9	4	4	379	85	81
7	12	6	6	1133	423	419

TABLE 5. Combinatorial types of d-polytopes with $d+2$ and $d+3$ vertices

For $d \leq 7$, every combinatorial type of a 2-neighborly d-polytope with $d+2$ vertices can be represented by a 0/1-polytope. Almost the same is true for polytopes with $d+3$ vertices. The exceptions are 4 polytopes and the pyramids over them. The first one is a cyclic 4 -polytope with 7 vertices. The second can be represented by the wheel-sequence $(0,1,0,1,1,0,1,0,1$, $1,1,1)$. It has f-vector $(8,28,50,44,16)$ and its facet-vertex incidence matrix has two columns with 12 ones as opposed to other polytopes with the same f-vector. The third polytope can be represented by the wheel-sequence $(0,1,0,1,0,1,0,1,0,1,0,1,1,1)$. It has f-vector $(8,28$, $51,47,18)$ and its facet-vertex incidence matrix has a column with 14 ones as opposed to other polytopes with the same f-vector. The forth polytope is represented by the sequence $(0,1,0,1$, $0,1,0,1,0,1,1,1,1,1)$. It has f-vector $(9,36,80,103,72,22)$ and its incidence matrix has no column with 12 ones as opposed to other polytopes with the same f-vector.

5. Polytopes with a small number of facets

The minimal and the maximal numbers of facets of 2-neighborly 0/1-polytopes listed in Table 6 . As can be seen, there is a 2 -neighborly 7 -polytope $P_{14,16}$ with 14 vertices and 16 facets. In Figure 1 , we list vertices of $P_{14,16}$. As far as we know, any other 2-neighborly polytope (except a simplex) has the property (facets - vertices) ≥ 3. The polytope $P_{14,16}$ has several other special properties. It is the only 2 -simple polytope in our database. (A d-polytope is 2 -simple if every $(d-3)$-face is
incident to exactly three facets.) All its vertex figures are combinatorially equivalent 6-polytopes with 13 vertices and 11 facets. For any vertex figure of any other polytope in our database, the number of facets is not less than the number of vertices.
dimension 5

vertices	6	7	8	9	10								
facets min	6	10	12	16	22								
facets max	6	12	20	22	22								
dimension 6													
vertices	7	8	9	10	11	12	13						
facets min	7	11	13	14	17	21	26						
facets max	7	16	30	47	55	65	76						
dimension 7													
vertices	8	9	10	11	12	13	14	15	16	17	18	19	20
facets min	8	12	14	15	18	20	(16)	39	55	67	100	139	219
facets max	8	20	40	70	104	134	163	198	239	254	281	244	228

TABLE 6. The number of facets of a 2-neighborly 0/1-polytope

Figure 1. The 2-neighborly 0/1-polytope with 14 vertices and 16 facets

6. Polytopes with a big number of vertices

Let $N_{2}(d)$ be the maximal number of vertices of a 2-neighborly d-dimensional 0/1-polytope. In [1], it was showed that $N_{2}(d-1)+1 \leq N_{2}(d) \leq 2 N_{2}(d-1)$ and given some estimations for $d \leq 10$. By using Algorithm [1 we improve these estimations (see Table 7).

Acknowledgments

The author is grateful to Sergey Lichak, who helped to run Algorithm 1 on the computer cluster.

	dimension	7	8	9	10
[1]	best example	18	25	33	44
upper bound	24	48	96	192	
new	best example	20	28	38	52
	upper bound	20	34	68	136

Table 7. The maximal number of vertices of a 2 -neighborly $0 / 1$-polytope

References

[1] O. Aichholzer. Extremal properties of 0/1-polytopes of dimension 5. In Polytopes - Combinatorics and Computation. Birkhauser, 2000, pp. 111-130, http://www.ist.tugraz.at/staff/aichholzer/research/rp/rcs/info01poly
[2] D. Avis. lrs: A revised implementation of the reverse search vertex enumeration algorithm. In Polytopes - Combinatorics and Computation. Birkhauser, 2000, pp. 177-198, http://cgm.cs.mcgill.ca/~avis/C/lrs.html
[3] V.A. Bondarenko, A.G. Brodskiy. On random 2-adjacent 0/1-polyhedra. Discrete Mathematics and Applications, 18(2): 181-186, 2008.
[4] W.Y.C. Chen, P.L. Guo. Equivalence classes of full-dimensional 0/1-polytopes with many vertices. Discrete \& Computational Geometry, 52(4): 630-662, 2014.
[5] CLP: COIN-OR linear programming solver: https://github.com/coin-or/Clp
[6] M.M. Deza, M. Laurent. Geometry of cuts and metrics, Springer, 1997.
[7] M. Firsching. The complete enumeration of 4-polytopes and 3-spheres with nine vertices, preprint, 22 pages. https://arxiv.org/abs/1803.05205v2.
[8] K. Fukuda, H. Miyata, S.Moriyama. Complete enumeration of small realizable oriented matroids. Discrete \& Computational Geometry, 49(2), 2013, 359-381. The database is available at http://www-imai.is.s.u-tokyo.ac.jp/~hmiyata/oriented_matroids/
[9] É. Fusy. Counting d-polytopes with $d+3$ vertices. The electronic journal of combinatorics, 13, \#R23, 2006.
[10] R. Gillmann. 0/1-Polytopes: typical and extremal properties. PhD Thesis, TU Berlin, 2006.
[11] B. Grünbaum. Convex polytope, 2nd edition (V. Kaibel, V. Klee and G.M. Ziegler, eds.), Springer, 2003.
[12] T. Junttila and P. Kaski. Engineering an efficient canonical labeling tool for large and sparse graphs. In: Proceedings of the Ninth Workshop on Algorithm Engineering and Experiments (ALENEX07), pages 135149, SIAM, 2007.
bliss: A Tool for Computing Automorphism Groups and Canonical Labelings of Graphs: version 0.73. http://www.tcs.hut.fi/Software/bliss/.
[13] V. Kaibel and M. E. Pfetsch. Computing the face lattice of a polytope from its vertex-facet incidences. Comput.Geom., 23(3): 281-290, 2002.
[14] A. Maksimenko. The common face of some 0/1-polytopes with NP-complete nonadjacency relation. Journal of Mathematical Sciences, 203(6): 823-832, 2014.
[15] A. Maksimenko. Boolean quadric polytopes are faces of linear ordering polytopes. Siberian Electronic Mathematical Reports, 14: 640-646, 2017.
[16] A. Maksimenko. The lower bound for the number of facets of a k-neighborly d-polytope with $d+3$ vertices. arXiv:1509.00362.
[17] G.M. Ziegler. Lectures on 0/1-polytopes. In Polytopes - Combinatorics and Computation, 2000, pp. 1-41.
Laboratory of Discrete and Computational Geometry, P.G. Demidov Yaroslavl State University, ul. Sovetskaya 14, Yaroslavl 150000, Russia

E-mail address: maximenko.a.n@gmail.com

[^0]: Supported by the project № $1.5768 .2017 / 9.10$ of P. G. Demidov Yaroslavl State University within State Assignment for Research.

