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2-NEIGHBORLY 0/1-POLYTOPES OF DIMENSION 7

ALEKSANDR MAKSIMENKO

Abstract. We give a complete enumeration of all 2-neighborly 0/1-polytopes of dimension
7. There are 13 959 358 918 different 0/1-equivalence classes of such polytopes. They form
5 850 402 014 combinatorial classes and 1 274 089 different f -vectors. It enables us to list some
of their combinatorial properties. In particular, we have found a 2-neighborly polytope with
14 vertices and 16 facets.

1. Introduction

A 0/1-polytope is a convex polytope whose set of vertices is subset of {0, 1}d. For beautiful in-
troduction to the world of 0/1-polytopes, we refer to Ziegler [17]. Some recent results can be found
in [10]. The classification of all 1 226 525 different 0/1-equivalence classes of 0/1-polytopes of di-
mension 5 was done by Aichholzer [1]. Also he completed the classification of 6-dimensional 0/1-
polytopes up to 12 vertices. Recently, Chen and Guo [4] computed the numbers of 0/1-equivalence
classes of 6-dimensional polytopes for each number of vertices k ∈ [13, 64]. But nowadays it is
too hard to list all these ≈ 4.0 · 1014 classes and investigate their properties explicitly. (If every
polytope will ocupy 8 bytes, then all the database will take about 3 petabytes.) Thus, it makes
sense to focus on some interesting families of 0/1-polytopes.

A convex polytope P is called 2-neighborly if any two vertices form a 1-face (i.e. edge) of P .
There are at least two reasons for investigation of 2-neighborly 0/1-polytopes:

(1) Let Pd,n is a random d-dimensional 0/1-polytope with n vertices. In 2008, Bondarenko and

Brodskiy [3] showed, that if n = O(2d/6), then the probability Pr(Pd,n is 2-neighborly)
tends to 1 as d → ∞. Similar results are obtained by Gillmann [10].

(2) Special 0/1-polytopes, such as the cut polytopes, the traveling salesman polytopes, the knap-
sack polytopes, the k-SAT polytopes, the 3-assignment polytopes, the set covering poly-
topes and many others have 2-neighborly faces with superpolynomial (in the dimension)
number of vertices [6, 14, 15].

We enumerated and classified all 13 959 358 918 0/1-equivalence classes of 7-dimensional 2-
neighborly 0/1-polytopes. It enables us to investigate extremal properties of these polytopes.
For example, we have found a 2-neighborly polytope with 14 vertices and 16 facets. This is
the first known example of a 2-neighborly polytope (except a simplex) whose number of facets is
not greater than the number of vertices plus 2.

In [1], Aichholzer stated the question about the maximal number N2(d) of vertices of a 2-
neighborly d-dimensional 0/1-polytope. He showed that N2(6) = 13, 18 ≤ N2(7) ≤ 24, N2(8) ≥
25, N2(9) ≥ 33, N2(10) ≥ 44. We improve these estimations: N2(7) = 20, 28 ≤ N2(8) ≤ 34,
N2(9) ≥ 38, N2(10) ≥ 52.

The entire database occupies about 1TB. The part of it (in particular, all 6-polytopes) and
the list of all f-vectors are available at https://github.com/maksimenko-a-n/2neighborly-01polytopes.

Supported by the project №1.5768.2017/9.10 of P.G. Demidov Yaroslavl State University within State Assign-
ment for Research.
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2. Enumeration of 2-neighborly 0/1-polytopes

Every 0/1-polytope is a convex hull of a set X ⊆ {0, 1}d. Since the natural way for defining
a 0/1-polytope is the defining its set of vertices X, in the following we will frequently call X by
a “polytope”, having in mind the convex hull conv(X).

We will use the following trivial facts. Every 0/1-polytope conv(X), X ⊆ {0, 1}d, is the convex
hull of a 0/1-polytope conv(X \ {x}) and a vector x ∈ X. The same is true for 2-neighborly
polytopes. Let P be a 2-neighborly polytope and X = ext(P ) be its set of vertices. Then for
every x ∈ X the polytope conv(X \x) is also 2-neighborly. Thus, we can enumerate 2-neighborly
0/1-polytopes iteratively, starting with a polytope consisting of a single point and adding one
point each time.

Two polytopes are 0/1-equivalent if one can be transformed into the other by a symmetry
of the 0/1-cube. More precisely, this transformation means the using of two operations: permuting
of coordinates and replacing some coordinates xi by 1−xi (switching). Thus, one 0/1-equivalence
class can contain up to 2dd! of 0/1-polytopes of dimension d. The 0/1-equivalence implies affine
and combinatorial equivalences [17, Proposition 7].

Every 0/1-vector x = (x1, x2, . . . , xd) ∈ {0, 1}d can be associated with the binary number
“x1x2 . . . xd”. Thus, every 0/1-polytope X ⊆ {0, 1}d can be naturally associated with the sequence
of such binary numbers sorted in increasing order. Let C be a 0/1-equivalence class (a set
of polytopes). A polytope X ∈ C is called a representative if it is lexicografically less than any
other polytope Y ∈ C. For a given 0/1-polytope Y , the appropriate representative(Y ) can be
found with a straightforward branch and bound algorithm.

Therefore, for enumeration of 2-neighborly 0/1-polytopes we can iteratively use the algorithm 1.
In the first step, T1 contains only one polytope {(0, . . . , 0)}.

For testing 2-neighborliness of a 0/1-polytope X ⊆ {0, 1}d we use the ideas described in [1,
Sec. 2.2]. Let v,w ∈ X and we want to check the adjacency of v and w in conv(X). First of all,
we switch X to Y = {x⊕ v | x ∈ X}. (Here, ⊕ is a coordinatewise XOR operation.) Hence, v
will be switched to 0. It is easy to prove that the vertices 0, y ∈ Y form an edge of a polytope Y
iff they form an edge of a polytope Z = {z ∈ Y | z ∧ y = z}. (Here, ∧ is a coordinatewise AND
operation.) Thus, we have to check whether y is in the conical hull

cone(Z) =

{

∑

z∈Z

λzz

∣

∣

∣

∣

∣

λz ≥ 0

}

.

Namely, vertices 0 and y form an edge in Z iff y /∈ cone(Z). The cheking of y /∈ cone(Z) can
be done by solving the corresponding linear programming problem. We did it with COIN-OR
Linear Programming Solver [5].

We have run this algorithm on the computer cluster of Discrete and computational geometry
laboratory of Yaroslavl state university (https://dcgcluster.accelcomp.org). The cluster has
a hundred 2.9GHz-cores. After several weeks of computations we had got the rezults collected in
Table 1b. Every 0/1-vector x ∈ {0, 1}d, d ≤ 8, we store as a 1-byte integer. Thus, a polytope
with n vertices occupies n bytes and all the database — about 173GB.

Our results for the dimension 6 coincide with Aichholzer database [1]. In addition, we enumer-
ate all 2-neighborly 0/1-polytopes of dimension 6 with 13 vertices.

3. Evaluating of combinatorial types and f-vectors

It is well known (see e.g. [13]) that the combinatorial type (face lattice) of a polytope P with
vertices {v1, . . . , vn} and facets {f1, . . . , fk} is uniquely determined by its facet-vertex incidence
matrix M = (mij) ∈ {0, 1}k×n, where mij = 1 if facet fi contains vertex vj, and mij = 0

2
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Algorithm 1: The enumeration of 2-neighborly 0/1-polytopes

Input : the dimension d, the array Tn of 2-neighborly 0/1-polytopes with n vertices
(every polytope is an array of n 0/1-vectors)

Output: the array Tn+1 of 2-neighborly 0/1-polytopes with n+ 1 vertices

Function enumerate_2neighborly(d, Tn)

for X ∈ Tn do
for v ∈ {0, 1}d \X do

if is_2neighborly(X, v) then
add representative(X ∪ {v}) to Tn+1;

end

end

end

sort Tn+1 and remove duplicates;

return Tn+1;

end

// Let conv(X) be 2-neighborly. Is conv(X ∪ {v}) 2-neighborly?

Function is_2neighborly(X, v)

Y := ∅;
// firstly, test edges for v and x ∈ X

for x ∈ X do add x⊕ v to Y; // switch v to 0

for y ∈ Y do
if no_edge_0y(Y , y) then return false;

end

// test edges {x, y} ⊆ X

for x ∈ X do
w := v ⊕ x;

Y := ∅;
for y ∈ X \ x do add y ⊕ x to Y; // switch x to 0

for y ∈ Y do
if w ∧ y = w then

if no_edge_0y(Y ∪ {w}, y) then return false;

end

end

end

return true;

end

// Isn’t {0, y} an edge of conv(Y ∪ {0})?
Function no_edge_0y(Y, y)

Z := ∅;
for z ∈ Y \ y do

if z ∧ y = z then add z to Z;

end

if y ∈ cone(Z) then return true;

return false;

end

3
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(a) The dimension 6

vertices 0/1-equivalence
classes

1 1
2 6
3 16
4 94
5 445
6 2 528
7 12 359
8 47 445
9 108 220

10 110 032
11 38 221
12 3 222
13 36

total 322 625

(b) The dimension 7

vertices 0/1-equivalence
classes

1 1
2 7
3 23
4 191
5 1 510
6 16 373
7 183 209
8 1 985 525
9 18 565 154

10 136 197 421
11 707 274 277
12 2 345 160 234
13 4 456 209 397
14 4 284 931 624
15 1 757 834 961
16 244 831 279
17 8 967 617
18 73 512
19 180
20 3

total 13 962 232 498

Table 1. The number of 0/1-equivalence classes of 2-neighborly polytopes of di-
mensions 6 and 7

otherwise. Thus, polytopes are combinatorially equivalent iff their facet-vertex incidence matrices
differ only by column and row permutations.

For every polytope in our database we computed its facet-vertex incidence matrix M by using
lrs [2]. This evaluation takes about 10 days on the computer cluster with 32 cores. After that,
for every matrix M , we computed the canonical form of a vertex-facet digraph of M by using
bliss [12] (as it was done in [7]). This evaluation takes about 2 days on the computer cluster with
32 cores. Having sorted canonical forms, we have splitted all the polytopes into combinatorial
equivalence classes.

For computing f-vector of a polytope from its facet-vertex incidence matrix, we used Kaibel&Pfetsch
algorithm [13] and modified it for the case, when the number of vertices is small (an incidence
matrix row can be stored in a 32-bit integer). The computing of f-vectors of all polytopes took
about two weeks on the cluster.

The results of these computations are collected in Tables 2–4. We enumerate only full-
dimensional 0/1-polytopes, since any nonfull-dimensional 0/1-polytope is affinely equivalent to
some full-dimensional one [17].

To give an idea of the magnitude of the obtained numbers, we give a couple of examples:
f-vector (13, 78, 266, 531, 603, 355, 84) consists of 2 448 144 combinatorial classes; f-vector (9, 36,
82, 114, 97, 48, 12) consists of one combinatorial class with 5 160 979 0/1-equivalence classes.

4
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vertices 0/1-equivalence combinatorial f-vectors
classes classes

6 237 1 1
7 334 2 2
8 102 8 5
9 10 7 4

10 1 1 1

total 684 19 13

Table 2. Full-dimensional 2-neighborly 0/1-polytopes of dimension 5

vertices 0/1-equivalence combinatorial f-vectors
classes classes

7 9 892 1 1
8 46 813 4 4
9 108 178 81 32

10 110 029 9 651 180
11 38 221 17 782 411
12 3 222 2 730 455
13 36 35 34

total 316 391 30 284 1 117

Table 3. Full-dimensional 2-neighborly 0/1-polytopes of dimension 6

vertices 0/1-equivalence combinatorial f-vectors
classes classes

8 1 456 318 1 1
9 17 588 780 6 6

10 135 330 686 419 108
11 706 996 729 4 790 131 2 090
12 2 345 138 023 271 351 237 17 113
13 4 456 209 206 1 414 858 979 66 929
14 4 284 931 624 2 487 091 476 171 289
15 1 757 834 961 1 431 813 684 303 063
16 244 831 279 231 549 854 382 319
17 8 967 617 8 872 600 282 000
18 73 512 73 444 48 988
19 180 180 180
20 3 3 3

total 13 959 358 918 5 850 402 014 1 274 089

Table 4. Full-dimensional 2-neighborly 0/1-polytopes of dimension 7

For every combinatorial type, we store its facet-vertex incidence matrix. If the number
of vertices (columns of the matrix) is not greater than 16, one row of the matrix occupies
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2 bytes. The average number of facets (rows of the matrix) is 97. Thus, all combinatorial
types occupy about 1TB. The part of the database (in particular, all 6-polytopes) is available
at https://github.com/maksimenko-a-n/2neighborly-01polytopes. The full information can
be requested from the author (by e-mail).

4. d-Polytopes with d+ 3 vertices

Combinatorial types of d-polytopes with d+3 or less vertices can be enumerated by using Gale
diagrams [11, Chap. 6]. For d+ 1 vertices there are only one d-polytope — a simplex. For d+ 2
vertices, the number of combinatorial types is equal to the number of tuples (m0, {m1,m−1}),
where m0,m1,m−1 ∈ Z, m0 ≥ 0, m1 ≥ 2, m−1 ≥ 2, and m0 +m1 +m−1 = d + 2 [11, Sec. 6.3].
The appropriate polytope is 2-neighborly iff m1 ≥ 3, m−1 ≥ 3. For small d, these tuples can be
easily enumearted by hands.

The combinatorial type of every d-polytope with d + 3 vertices is defined by the appropriate
reduced Gale diagram or wheel-sequence [9]. We don’t list here the properties of these inter-
esting objects, since it was done in [11, 9, 16]. The results of enumerating wheel-sequences by
a computer are collected in Table 5. They coincide with the first values of the sequence A114289:
https://oeis.org/search?q=A114289 and with the Fukuda–Miyata–Moriyama collection of d-
polytopes for d ≤ 6 [8].

d+ 2 vertices d + 3 vertices

d all 2-neighborly 2-neighborly all 2-neighborly 2-neighborly
polytopes 0/1-polytopes polytopes 0/1-polytopes

4 4 1 1 31 1 0
5 6 2 2 116 11 8
6 9 4 4 379 85 81
7 12 6 6 1133 423 419

Table 5. Combinatorial types of d-polytopes with d+ 2 and d+ 3 vertices

For d ≤ 7, every combinatorial type of a 2-neighborly d-polytope with d + 2 vertices can
be represented by a 0/1-polytope. Almost the same is true for polytopes with d + 3 vertices.
The exceptions are 4 polytopes and the pyramids over them. The first one is a cyclic 4-polytope
with 7 vertices. The second can be represented by the wheel-sequence (0, 1, 0, 1, 1, 0, 1, 0, 1,
1, 1, 1). It has f-vector (8, 28, 50, 44, 16) and its facet-vertex incidence matrix has two columns
with 12 ones as opposed to other polytopes with the same f-vector. The third polytope can be
represented by the wheel-sequence (0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1). It has f-vector (8, 28,
51, 47, 18) and its facet-vertex incidence matrix has a column with 14 ones as opposed to other
polytopes with the same f-vector. The forth polytope is represented by the sequence (0, 1, 0, 1,
0, 1, 0, 1, 0, 1, 1, 1, 1, 1). It has f-vector (9, 36, 80, 103, 72, 22) and its incidence matrix has no
column with 12 ones as opposed to other polytopes with the same f-vector.

5. Polytopes with a small number of facets

The minimal and the maximal numbers of facets of 2-neighborly 0/1-polytopes listed in Table 6.
As can be seen, there is a 2-neighborly 7-polytope P14,16 with 14 vertices and 16 facets. In Figure 1,
we list vertices of P14,16. As far as we know, any other 2-neighborly polytope (except a simplex)
has the property (facets− vertices) ≥ 3. The polytope P14,16 has several other special properties.
It is the only 2-simple polytope in our database. (A d-polytope is 2-simple if every (d− 3)-face is

6
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incident to exactly three facets.) All its vertex figures are combinatorially equivalent 6-polytopes
with 13 vertices and 11 facets. For any vertex figure of any other polytope in our database,
the number of facets is not less than the number of vertices.

dimension 5

vertices 6 7 8 9 10
facets min 6 10 12 16 22
facets max 6 12 20 22 22

dimension 6

vertices 7 8 9 10 11 12 13
facets min 7 11 13 14 17 21 26
facets max 7 16 30 47 55 65 76

dimension 7

vertices 8 9 10 11 12 13 14 15 16 17 18 19 20
facets min 8 12 14 15 18 20 16 39 55 67 100 139 219
facets max 8 20 40 70 104 134 163 198 239 254 281 244 228

Table 6. The number of facets of a 2-neighborly 0/1-polytope

coordinates

ve
rt

ic
es

0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 1 1
1 0 0 1 1 0 0
1 0 1 0 1 0 1
1 0 1 1 0 1 0
1 1 0 0 1 1 0
1 1 0 1 0 0 1
1 1 1 0 0 0 0

Figure 1. The 2-neighborly 0/1-polytope with 14 vertices and 16 facets

6. Polytopes with a big number of vertices

Let N2(d) be the maximal number of vertices of a 2-neighborly d-dimensional 0/1-polytope.
In [1], it was showed that N2(d − 1) + 1 ≤ N2(d) ≤ 2N2(d − 1) and given some estimations for
d ≤ 10. By using Algorithm 1, we improve these estimations (see Table 7).
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dimension 7 8 9 10

[1]
best example 18 25 33 44
upper bound 24 48 96 192

new
best example 20 28 38 52
upper bound 20 34 68 136

Table 7. The maximal number of vertices of a 2-neighborly 0/1-polytope
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