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Abstract. For a positive integer n ≥ 3, the sides and diagonals of a
convex n -gon divide the interior of the convex n -gon into finitely (poly-
nomial in n) many regions bounded by them. Here in this article we
associate to every region a unique n -cycle in the symmetric group Sn

of a certain type (defined as two standard consecutive cycle) by study-
ing point arrangements in the plane. Then we find that there are more
(exponential in n) number of such cycles leading to the conclusion that
not every region labelled by a cycle appears in every convex n -gon. In
fact most of them do not occur in any given single convex n -gon. Later
in main Theorem Ω of this article we characterize combinatorially those
cycles (defined as definite cycles) whose corresponding regions occur in
every convex n -gon and those cycles (defined as indefinite cycles) whose
corresponding regions do not occur in every convex n -gon.
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1. Introduction

The regions of a convex n -gon when divided by the diagonals has been stud-
ied in various contexts in the literature. To quote a few occurrences of this,
we can refer to J.W. Freeman [2], the chapter 9 of R. Honsberger [5], chapter
3 of J. Herman, R. Kucera, J. Simsa [4] and the OEIS sequence A006522 [6].
Here in this article we consider point arrangements in the plane and using the
theory of point arrangements we study the regions of a convex n -gon when
divided by diagonals and associate to any region a unique two standard con-
secutive cycle. The method of associating cycle invariants as a combinatorial
model to point arrangements in the plane has already been explored by au-
thors J. E. Goodman and R. Pollack [3]. A similar method is explained in
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chapter 10 of the book [1]. Here in this article, we find that for any n, there
are 2n−1−n (exponential in n) two standard consecutive cycles where as the
number of regions in a convex n -gon in which no three diagonals are con-

current at an interior point of the polygon is given by (n−1)(n−2)(n2−3n+12)
24

which is a polynomial in n. Hence we conclude that not every region occurs
in every convex n -gon. This leads to definite (those which occur always) cy-
cles/regions and indefinite (those which do not occur always) cycles/regions.
It happens that, for n ≤ 5 all regions are definite. For n = 6, 7 the indefinite
regions start to appear. However for n ≥ 8 both the types can be combi-
natorial characterized. We characterize them in main Theorem Ω. The main
theorem is not stated in the beginning and is stated in Section 6 after the
required definitions and motivation for these definitions.

2. Definitions

We begin this section with a few definitions.

Definition 2.1 (Point Arrangement in the Plane). Let Pn = {P1, P2, . . . , Pn}
be a finite set of n points in the plane R2. Then Pn is said to be a point
arrangement in the plane if no three points are collinear.

Definition 2.2 (Isomorphism of Point Arrangements). Let Pjn = {P j1 , P
j
2 , . . . ,

P jn}, j = 1, 2 be two point arrangements in the plane R2. Then a bijection
δ : P1

n −→ P2
n is an isomorphism if for any four points A,B,C,D ∈ P1

n, D is
in the interior of the triangle formed by A,B,C if and only if δ(D) is in the
interior of the triangle formed by δ(A), δ(B), δ(C).
We say the isomorphism δ is an orientation preserving isomorphism if for any
three points the A,B,C ∈ P1

n the orientation A −→ B −→ C −→ A of the
triangle ∆ABC and the orientation δ(A) −→ δ(B) −→ δ(C) −→ δ(A) of the
triangle ∆δ(A)δ(B)δ(C) agree.
We say the isomorphism δ is an orientation reversing isomorphism if for any
three points the A,B,C ∈ P1

n the orientation A −→ B −→ C −→ A of the
triangle ∆ABC and the orientation δ(A) −→ δ(B) −→ δ(C) −→ δ(A) of the
triangle ∆δ(A)δ(B)δ(C) disagree.

Example 2.3. Here we mention isomorphism classes of point arrangements
Pn for initial values of n = 3, 4, 5. Figure 1 illustrates the isomorphism classes
of three, four and five point arrangements in the plane. There are two iso-
morphism classes of four point arrangements and three isomorphism classes
of five point arrangements. However there is only one isomorphism class a
triangle arrangement for a three point arrangement in the plane.

Example 2.4. In this example we mention about orientation preserving and
orientation reversing isomorphisms of point arrangements. Let Pn = {P1, P2,
. . . , Pn} be a point arrangement such that P1 −→ P2 −→ . . . −→ Pn −→ P1

form a convex n-gon in this anticlockwise manner. Then any bijection δ :
Pn −→ Pn given by a permutation π ∈ Sn defined as δ(Pi) = Pπ(i) is an
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Figure 1. Isomorphism Classes of Three, Four, Five Point
Arrangements in the Plane

isomorphism of Pn to itself. However the bijections given by permutations
corresponding to the di-hedral group Dn ⊂ Sn of rotations and reflections on
the vertices of a regular n-gon give either an orientation preserving or an
orientation reversing isomorphism of Pn to itself. Remaining permutations
induce isomorphisms which are neither orientation preserving nor orientation
reversing.

Definition 2.5 (Line Cycle at a Point). Let Pn = {P1, P2, . . . , Pn} be a point
arrangement in the plane. Fix Pi ∈ Pn for some 1 ≤ i ≤ n. Consider the
(n− 1) lines Lij joining Pi, Pj for 1 ≤ j ≤ n, j 6= i. An anticlockwise traversal

around the point Pi cuts the lines Lij in a cycle σi ∈ Sn−1 a symmetric group
over the elements {1, 2, . . . , i− 1, i+ 1, . . . , n}. This cycle is defined to be the
line cycle at Pi for the arrangement Pn.

Definition 2.6 (Point Cycle at a Point). Let Pn = {P1, P2, . . . , Pn} be a
point arrangement in the plane. Fix Pi ∈ Pn for some 1 ≤ i ≤ n. Consider
the (n − 1) rays Rij joining Pi, Pj for 1 ≤ j ≤ n, j 6= i starting form Pi.

An anticlockwise traversal around the point Pi cuts the rays Rij in a cycle
σi ∈ Sn−1 a symmetric group over the elements {1, 2, . . . , i− 1, i+ 1, . . . , n}.
This cycle is defined to be the point cycle at Pi for the arrangement Pn.

3. An Isomorphism Theorem on Point Arrangements in the
Plane

First we mention some preliminary observations in Lemma 3.1 and Theo-
rem 3.2 before proving isomorphism Theorem 3.3.
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Lemma 3.1. Let P4 = {P1, P2, P3, P4} be a point arrangement in the plane.
Then the point P4 lies in the interior of the triangle ∆P1P2P3 if and only if
the line cycle and the point cycle of P4 for the arrangement P4 are not equal.

Proof. This is straight forward verification. �

Theorem 3.2. Let Pn = {P1, P2, . . . , Pn} be a point arrangement in the plane.
Then a point Pi, 1 ≤ i ≤ n lies on the convex hull boundary if and only if its
point cycle and line cycle for the arrangement Pn are same. Hence a point
Pi, 1 ≤ i ≤ n lies in the interior of the convex hull if and only if its point
cycle and line cycle for the arrangement Pn are not same.

Proof. This follows from Lemma 3.1. �

Theorem 3.3 (Isomorphism Theorem of Point Arrangements). Let Pjn =

{P j1 , . . . , P jn}, j = 1, 2 be two point arrangements in the plane R2. For j = 1, 2

let σji be the line cycle at the point P ji for the arrangement Pjn for 1 ≤ i ≤ n.
Then a bijection δ : P1

n −→ P2
n is an orientation preserving or an orientation

reversing isomorphism if and only if there exists a permutation π ∈ Sn such
that

• δ(P 1
i ) = P 2

π(i) and

• the line cycle σ2
π(i) = πσ1

i π
−1 for all 1 ≤ i ≤ n or (σ2

π(i))
−1 = πσ1

i π
−1

for all 1 ≤ i ≤ n.

Proof. Suppose δ is an orientation preserving or an orientation reversing
isomorphism. Then the permutation π is given by the defining equation
δ(P 1

i ) = P 2
π(i). Now we restrict the point arrangements Pjn, j = 1, 2 to four

point arrangements given by {P 1
r , P

1
s , P

1
t , P

1
u} and {P 2

π(r), P
2
π(s), P

2
π(t), P

2
π(u)}

for 1 ≤ r < s < t < u ≤ n and observe the orientations of the four
correspoding pairs triangles. We obtain that if δ is orientation preserving
then σ2

π(i) = πσ1
i π
−1 for all 1 ≤ i ≤ n and if δ is orientation reversing

then we obtain (σ2
π(i))

−1 = πσ1
i π
−1 for all 1 ≤ i ≤ n. Now let us prove

the converse. Suppose such a permutation π exists. By renumbering the
points of one arrangement and using a reflection if necessary we assume
without loss of generality that σ2

i = σ1
i for 1 ≤ i ≤ n. Now we restrict

to four point sub-arrangements say {P jr , P js , P
j
t , P

j
u}, j = 1, 2. There are

two possibilities for any four points. Either they form a convex quadrilat-
eral or the convex hull is a triangle with an interior point. From the line
cycles we write the consecutive symbols. For example, in first case, sup-
pose some four points Qr, Qs, Qt, Qu form a quadrilateral and the line cycles
be given by (rst), (stu), (tur), (urs). The consecutive symbols are given by
{rs, rt, st, su, tr, tu, ur, us} consisting of eight elements. We can also read off
the anticlockwise order of the points Qr −→ Qs −→ Qt −→ Qu −→ Qr. In
the second case let the convex hull be a triangle with an interior point and
the line cycles be given by (tsu), (tru), (urs), (srt). The consecutive symbols
are given by {rs, rt, ru, su, sr, ts, tr, ut, ur} consisting of nine elements. So
we conclude that the convex hull is a triangle. The interior point Qr can be
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read off from the six consecutive symbols {rs, sr, rt, tr, ru, ur} out of the nine
consecutive symbols. We also find from the line cycle (tsu) of the point Qr,
the points Qs, Qt, Qu from an triangle in Qs −→ Qt −→ Qu −→ Qs in this
anticlockwise order. Hence the map P 1

i −→ P 2
i , 1 ≤ i ≤ n is an orientation

preserving isomorphism. This proves the theorem. �

Example 3.4. Suppose in Theorem 3.3 we replace line cycles by point cycles. It
is not true that if there exists π ∈ Sn such that the point cycle σ2

π(i) = πσ1
i π
−1

for all 1 ≤ i ≤ n or (σ2
π(i))

−1 = πσ1
i π
−1 for all 1 ≤ i ≤ n then the map

δ defined as δ(P 1
i ) = P 2

π(i) is an orientation preserving or an orientation

reversing isomorphism. In fact δ need not be an isomorphism at all. Figure 2
gives a counter example. The identity map is not an isomorphism but the

Figure 2. Four Point Arrangements with same Point Cycles

point cycles of all the four respective pairs of points are equal. It is necessary
to take line cycles in Theorem 3.3, though there is another permutation π ∈ S4

such that π(2) = 1, π(3) = 2, π(1) = 3, π(4) = 4 for point cycles which gives
rise to an isomorphism in Figure 2.

4. The number of regions in a convex n -gon

In this section we define the regions of a convex n -gon which has generic
diagonals. We then compute the number of regions formed by the diagonals
and sides.

Definition 4.1 (Definition of a side and diagonal of a convex n -gon). Let
Pn = {P1, . . . , Pn} be a point arrangements in R2 such that the points form a
convex n -gon in the anticlockwise manner P1 −→ P2 −→ . . . −→ Pn −→ P1.
A side of the convex n -gon is a line PiPj with j ≡ i±1 where 1 ≤ i 6= j ≤ n. A
diagonal of the convex n -gon is a line PiPj with j 6≡ i±1 where 1 ≤ i 6= j ≤ n.

Definition 4.2 (Convex n -gon with generic diagonals). Let Pn = {P1, . . . , Pn}
be a point arrangements in R2 such that the points form a convex n -gon
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in the anticlockwise manner P1 −→ P2 −→ . . . −→ Pn −→ P1. We say
the convex n -gon has generic diagonals if for every three pairs of subscripts
{it, jt}, 1 ≤ it 6= jt ≤ n, 1 ≤ t ≤ 3 with

{i1, j1} ∩ {i2, j2} ∩ {i3, j3} = ∅,
Pi1Pj1 , Pi2Pj2 , Pi3Pj3 do not concur in the plane R2.

Definition 4.3 (Definition of a Region). Let Pn = {P1, . . . , Pn} be a point
arrangements in R2 such that the points form a convex n -gon in the anti-
clockwise manner P1 −→ P2 −→ . . . −→ Pn −→ P1 and which has generic
diagonals. A region is defined to be a connected component of the interior of
the convex n -gon when the diagonals and sides are removed.

Now we state the theorem.

Theorem 4.4. Let Pn = {P1, . . . , Pn} be a point arrangement in R2 such that
the points form a convex n -gon in the anticlockwise manner P1 −→ P2 −→
. . . −→ Pn −→ P1 and which has generic diagonals. Then the number of
regions formed by the convex n -gon is given by

(n− 1)(n− 2)(n2 − 3n+ 12)

24
.

Proof. For the proof, refer to R. Honsberger [5] chapter 9, pp. 99− 107 and
also J.W.Freeman [2]. �

5. On the 2 -standard consecutive structure of an n -cycle and
the Regions of a Convex n -gon

Here in this section, we define i -standard consecutive structure on an n -cycle
and observe in Theorem 5.4 that an n -cycle has an unique i -standard con-
secutive structure for some 1 ≤ i ≤ n− 1 for n > 1. We associate to a region
in a convex n−gon formed by the diagonals, a 2 -standard consecutive cycle.
Now we introduce a structure on a permutation as follows.

Definition 5.1. We say an n -cycle (a1 = 1, a2, . . . , an) is an i -standard cycle
if there exists a way to write the integers ai : i = 1, . . . , n as i sequences of
inequalities as follows:

a11 < a12 < . . . < a1j1

a21 < a22 < . . . < a2j2

a31 < a32 < . . . < a3j3

...

ai1 < ai2 < . . . < aiji

where {ast | 1 ≤ s ≤ i, 1 ≤ t ≤ js} = {a1, a2, . . . , an} = {1, 2, . . . , n}, j1+j2+
. . .+ji = n and i is minimal, that is, there exists no smaller integer with such
property and further more that as(t+1) occurs to the right of ast for every
1 ≤ s ≤ i and 1 ≤ t ≤ js − 1 in this cycle arrangement (a1 = 1, a2, . . . , an).
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Define i -standard consecutive structure on an n -cycle as follows.

Definition 5.2. We say an n - cycle (a1 = 1, a2, . . . , an) is a consecutive
i -standard cycle or a i -standard consecutive cycle if we have

as1 < as2 < . . . < asjs

and in addition ast = as1 + (t− 1), 1 ≤ t ≤ js, 1 ≤ s ≤ i where {ast | 1 ≤ s ≤
i, 1 ≤ t ≤ js} = {a1, a2, . . . , an} = {1, 2, . . . , n}, j1 + . . .+ js = n and as(t+1)

occurs to the right of ast for every s = 1, . . . , i and 1 ≤ t ≤ js − 1 in this
cycle arrangement (a1 = 1, a2, . . . , an) and i is minimal, that is, there exists
no smaller integer with such property. If the minimal value of i is two then
we say that the cycle has 2 -standard consecutive structure.

Example 5.3. For example if we consider the 5 -cycle (1, 4, 5, 2, 3) it is a
2 -standard consecutive cycle. However it has the following two 2 -standard
structures.

• 1 < 4 < 5, 2 < 3 (not consecutive).
• 1 < 2 < 3, 4 < 5 (consecutive).

Now we prove Theorem 5.4 on the existence and uniqueness of the i -standard
consecutive structure on an n -cycle for n > 1.

Theorem 5.4 (Existence and Uniqueness of the Consecutive i -Standard Struc-
ture on an n -cycle).
For n > 1, there exists i -standard consecutive structure for some 1 ≤ i ≤ n−1
on an n -cycle and is uniquely determined.

Proof. We prove this by induction on i, n as follows. If i = n = 1 then there
is nothing to prove. The position of the element n is uniquely determined as
it should appear in one of them at the end and (n − 1) appears before n if
(n − 1) appears before n in the n -cycle and appears as a single element of
standardness if (n−1) appears after n. Now we remove n from the cycle. The
remaining cycle is either i -standard on (n− 1) -elements or (i− 1) standard
on (n− 1) -elements. This proves the theorem.
We can actually build this structure in an unique way for the given n -cycle
as follows. Write 1 first. Then write 1 < 2 as it appears later. Then write 3
next to 2 if it appears after 2 or write as a single element of standardness if
it appears before 2 and so on. �

Now we prove a theorem below which enables us to identify regions by their
two standard consecutive cycles.

Theorem 5.5. Let Pn = {P1, . . . , Pn} be a point arrangement in R2 such that
the points form a convex n -gon in the anticlockwise manner P1 −→ P2 −→
. . . −→ Pn −→ P1 and which has generic diagonals. Let R be a region and
Pn+1 ∈ R. Then the line cycle of Pn+1 for the point arrangement Pn∪{Pn+1}
is a two standard consecutive structure and the cycle is independent of any
point Pn+1 ∈ R and depends only on the region R and moreover different
regions of the convex n -gon are associated to different cycles.
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Proof. Since the point Pn+1 ∈ R and not on the diagonals the finite set
Pn ∪ {Pn+1} is a point arrangement. An anticlockwise traversal around the
point Pn+1 gives a cycle (a1 = 1, a2, . . . , an) which has the property that it
is obtained by interlacing in some manner two sequences 1 < 2 < . . . < i and
i + 1 < i + 2 < . . . < n for some 2 < i < n giving rise to a two standard
consecutive cycle. It is clear that the line cycle depends only on the region R.
If R and S are two different regions then there exist three subscripts i < j < k
such that ∆PiPjPk contains R and ∆PiPjPk does not contain S. In the cycle
associated to R the subscripts i, j, k appear as the sub-cycle (ikj) and in the
cycle associated to S the subscripts i, j, k appear as the sub-cycle (ijk) and
hence they are different. �

Definition 5.6 (Two standard consecutive cycle of a region). Let Pn = {P1, . . . ,
Pn} be a point arrangement in R2 such that the points form a convex n -gon
in the anticlockwise manner P1 −→ P2 −→ . . . −→ Pn −→ P1 and which has
generic diagonals. Let R be a region. The line cycle associated to any point
P ∈ R is defined to be the two standard consecutive cycle of the region R.
Using Theorem 5.5, the cycle is well defined, unique and has the two standard
consecutive structure.

Definition 5.7 (Isomorphism between two regions). For j = 1, 2, let Pjn =

{P j1 , . . . , P jn} be two point arrangements in R2 such that the points form a

convex n -gon in the anticlockwise manner P j1 −→ P j2 −→ . . . −→ P jn −→ P j1
and both of which has generic diagonals. Let Rj be a region in Pjn, j = 1, 2
respectively. We say R1 is isomorphic to R2 if the line cycle of the regions
R1 and R2 are same, that is, for any two points P jn+1 ∈ Rj , j = 1, 2 the map

δ : P1
n ∪ {P 1

n+1} −→ P2
n ∪ {P 2

n+1} given by δ(P 1
i ) = P 2

i , 1 ≤ i ≤ n + 1 is an
orientation preserving isomorphism of point arrangements.

Example 5.8. Here is an example in Figure 3 of two non-isomorphic regions R
and S in two hexagons and their line cycles (145236), (125634) respectively.
Later in Theorem 6.3 we will observe that if two regions R and S of two
convex n -gons respectively are isomorphic then the regions R and S still need
not have the same number of sides. The number of sides can vary.

Now we enumerate the two standard consecutive cycles.

Lemma 5.9. Let Tn ⊂ Sn be the set of 2 -standard consecutive n -cycles in Sn.

1. We have

#(Tn) = 2n−1 − n.
2. The number of non-isomorphic regions R in a convex n -gon is also

2n−1 − n.

Proof. This proof of (1) follows by counting the cardinality of Tn. If the
2 -standard consecutive structure is given by

• 1 < 2 < 3 < . . . < j.
• j + 1 < j + 2 < . . . < n.
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Figure 3. Two non-isomorphic regions R and S in hexagons

then the number of such cycles is given by
(
n−1
j−1
)
−1. Hence the total number

is given by

n−1∑
i=2

((
n− 1

i− 1

)
− 1

)
=

n−1∑
i=0

((
n− 1

i

)
− 1

)
= 2n−1 − n.

Now we construct for every given two standard consecutive cycle, a convex

Figure 4. Two examples for n = 6, 7 and cycles
(134526), (1526374) respectively

n -gon and a region R inside it which has the given two standard consecutive
cycle. Let (1 = a1a2 . . . an) be a given two standard consecutive cycle. The
construction is done as follows. Choose a point P in the plane and draw n
lines La1 , La2 , . . . , Lan passing through P with increasing angles for Lai with
respect to L1 = La1 by assuming L1 is the X -axis. Let aij = j, 1 ≤ j ≤ n.
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Choose a point P1 on the positive X -axis. Now traverse anticlockwise around
the point P cutting the lines La2 , La3 . . . , La(i2−1)

and choose a point P2 on
the ray that we have reached on Lai2 = L2 and continue this process till we
choose a point Pn on a suitable ray of Lain = Ln. In this process we make
sure that the we obtain a convex n -gon P1 −→ P2 −→ . . . −→ Pn −→ P1

in the anticlockwise manner with generic diagonals. We refer to Figure 4 for
two illustrative examples. This proves the lemma.

�

6. Definite and Indefinite Regions and their Characterization

We have seen in Theorem 4.4 that there are polynomial (in n) number of
regions in any convex n -gon with generic diagonals. However in Lemma 5.9
we have seen that there are exponential (in n) number of 2 -standard con-
secutive cycles. So we conclude that not every region labeled by 2 -standard
consecutive cycle occurs in every convex n -gon with generic diagonals. This
motivates the following definition.

Definition 6.1 (Definite and Indefinite Two Standard Consecutive n -cycle).
We say a two standard consecutive n -cycle (a1 = 1a2 . . . an) is definite if
there is a corresponding region R which occurs in every convex n -gon with
generic diagonals. Otherwise we say the cycle is indefinite.

Example 6.2. All regions labelled by two standard consecutive cycles of a
triangle, quadrilateral and a pentagon are definite. The first occurence of
indefinite regions is when n = 6. We refer to Figure 3. The indefinite two
standard consecutive cycles are given by

(145236), (125634).

6.1. Some Properties of Two Standard Consecutive Cycles Associated to
Regions

We prove some properties of two standard consecutive cycles associated to
regions in this section. We state the following theorem.

Theorem 6.3. Let Pn = {P1, . . . , Pn} be a point arrangement in R2 such
that the points form a convex n -gon in the anticlockwise manner P1 −→
P2 −→ . . . −→ Pn −→ P1 and which has generic diagonals. Let R be a region
with associated two standard consecutive cycle (1 = a1a2 . . . an). Let the two
standard consective structure be given by

1 < 2 < . . . < l

(l + 1) < (l + 2) < . . . < n.

Then

1. If PiPj is a side of the region R then the elements i, j are consecutive
in the cycle (1 = a1a2 . . . an).
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2. The two standard consecutive cycle for the region S on the other side
of the region R across PiPj is obtained by swapping i, j in the cycle
(1 = a1a2 . . . an).

3. Let PiPj be the side of the region R and j 6≡ i± 1 mod n. Then either
i ∈ {1, 2, . . . , l}, j ∈ {l+ 1, l+ 2, . . . , n} or j ∈ {1, 2, . . . , l}, i ∈ {l+ 1, l+
2, . . . , n}.

4. The converse is not true, that is, if i, j occur consecutively in (1 =
a1a2 . . . an) such that j 6≡ i ± 1 mod n, 1 ≤ i ≤ l, l + 1 ≤ j ≤ n then
PiPj need not be a side of the region R.

5. The number of sides of a region R with the same cycle (1 = a1a2 . . . an)
may vary from one convex n -gon to another convex n -gon provided it
occurs in them.

6. The region R is contained in the triangle ∆PiPjPk with i < j < k if
and only if the cycle (1 = a1a2 . . . an) contains (ikj) as a sub-cycle.

Proof.

• We prove (1). The line cycle does not change for any point in R. Hence
choosing a point close to PiPj in the region R we conclude that i, j
occurs consecutively in the line cycle. Moreover if we give anticlockwise

orientation to the sides of R and the directed side is
−→
ij then i, j appear

next to each other with j first and then i second in the the cycle (1 =
a1a2 . . . an).

• We prove (2). If we go across the side PiPj to a new region S from R
then it is clear that there is swap of i, j in the line cycle (1 = a1a2 . . . an)
to obtain the line cycle for S.

• We prove (3). If PiPj is a side of the region R with j 6≡ i ± 1 mod n
then it is not the side of the convex n -gon. So there is a region S
adjacent to R across PiPj . The cycle of S is obtained by swapping i, j
in (1 = a1a2 . . . an). Now this is two standard consecutive if and only if
i ∈ {1, 2, . . . , l}, j ∈ {l + 1, l + 2, . . . , n} or vice-versa.

• We prove (4). We consider the example in Figure 5. In this example
the region R is a pentagon with cycle (1526374) and the two standard
consecutive structure 1 < 2 < 3 < 4; 5 < 6 < 7 with l = 4. The numbers
1, 5 appear consecutively in the cycle of R, however, P1P5 is not the
side of the region R.

• We prove (5). Consider the central region of a regular heptagon. It also
has cycle (1526374). This central region is heptagon where as the region
R in Figure 5 is a pentagon.

• We prove (6). Let Q1, Q2, Q3 ∈ Pn. Let Q4 be in the interior of the
convex n -gon. Then Q4 is in the interior of the triangle ∆Q1Q2Q3

oriented anticlockwise if and only if the line cycle of Q4 for the point
arrangement {Q1, Q2, Q3, Q4} is (132).

This completes the proof of the theorem. �
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Figure 5. A heptagon and a region R with cycle (1526374) respectively

6.2. Characterization of Definite and Indefinite Regions

In this section we characterize the definite and indefinite two standard con-
secutive n -cycles combinatorially. We begin with a definition.

Definition 6.4 (The diagonal distance of a two standard consecutive cycle).
Let (1 = a1a2 . . . an) be a two standard consecutive n -cycle. Let the two
standard consecutive structure be given by

1 < 2 < . . . < l

l + 1 < l + 2 < . . . < n.

Consider the set S of all pairs {i, j} with 1 ≤ i 6= j ≤ n such that

1. j 6≡ i± 1 mod n,
2. i, j are consecutive in (1 = a1a2 . . . an) and
3. i ∈ {1, . . . , l}, j ∈ {l + 1, . . . , n} or j ∈ {1, . . . , l}, i ∈ {l + 1, . . . , n}

The diagonal distance of (1 = a1a2 . . . an) is defined as

min
{i,j}∈S

{(i− j) mod n, (j − i) mod n}

Here the residue classes mod n are {0, 1, . . . , (n− 1)}.

Example 6.5. Now we consider an illustration of Theorem 6.6 where diagonal
distance two cycles are mentioned by taking n = 6. There are 26−1 − 6 = 26
two standard consecutive cycles. There are 24 cycles with diagonal distance
two. Now we list the cycles obtained in Case 1 of Theorem 6.6.

• Move 1 −→ (134562), (145623), (156234), (162345).
• Move 2 −→ (132456), (134256), (134526), (134562).
• Move 3 −→ (124356), (124536), (124563), (132456).
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• Move 4 −→ (123546), (123564), (142356), (124356).
• Move 5 −→ (123465), (152346), (125346), (123546).
• Move 6 −→ (162345), (126345), (123645), (123465).

These give n2 − 3n = 62 − 3.6 = 18 cycles which are definite. These are the
outermost layer regions of the convex n -gon where n = 6. Now we list the
cycles obtained in Case 2 of Theorem 6.6.

• Move 1 and swap 2, 6 −→ (134526), (145263), (152634), (126345).
• Move 2 and swap 1, 3 −→ (124563), (142563), (145263), (145623).
• Move 3 and swap 2, 4 −→ (142356), (142536), (142563), (134256).
• Move 4 and swap 3, 5 −→ (125346), (125364), (142536), (124536).
• Move 5 and swap 4, 6 −→ (123645), (152364), (125364), (123564).
• Move 6 and swap 1, 5 −→ (156234), (152634), (152364), (152346).

These give in addition n2 − 5n = 62 − 5.6 = 6 cycles which are definite.
These six cycles correspond to the second outermost layer regions of the
convex n -gon where n = 6. We also have two indefinite cycles given by
(145236), (125634). These total to 18 + 6 + 2 = 26 cycles.

Now in the following theorem we characterize the two standard consecutive
cycle which has diagonal distance two.

Theorem 6.6. Let (1 = a1a2 . . . an) be a two standard consecutive n -cycle with
the two standard consecutive structure given by 1 < . . . < l; l+ 1 < . . . < n.
Then the diagonal distance of the cycle is two if and only if it is obtained
from the cycle (12 . . . n) in the following two ways.

1. Considering the cyclic notation of the cycle (12 . . . n) on a circle in an
anticlockwise manner, and moving i forward (anticlockwise) for some
1 ≤ i ≤ n − 1 in a finite number of steps to any position after (i + 1)
and before (i− 1).

2. From any cycle obtained in the previous step by moving i, we swap the
adjacent elements (i− 1), (i+ 1).

Proof. We prove the reverse implication (⇐) first. Any cycle obtained in steps
(1), (2) have diagonal distance two since (i− 1), (i+ 1) considered cyclically
are consecutive and either (i− 1) ∈ {1, . . . , l}, i+ 1 ∈ {l + 1, l + 2, . . . , n} or
(i+ 1) ∈ {1, . . . , l}, i− 1 ∈ {l+ 1, l+ 2, . . . , n}. This proves that the diagonal
distance is two.
Now we prove the forward implication. Suppose the diagonal distance is two.
Then first we construct a convex n -gon with vertices P1 −→ P2 −→ . . . −→
Pn −→ P1 in this anticlockwise manner such that the cycle (1 = a1a2 . . . an)
appears as a region using Figure 4 in Lemma 5.9. Since the diagonal distance
is two, there exists 1 ≤ i ≤ n such that i− 1, i+ 1 appear consecutively and
either (i−1) ∈ {1, . . . , l}, i+1 ∈ {l+1, l+2, . . . , n} or (i+1) ∈ {1, . . . , l}, i−1 ∈
{l + 1, l + 2, . . . , n}. Now using the convex n -gon, by applying moves of the
type mentioned in step (1), (2) on the cycle, we just cross the regions to reach
the outside of convex n -gon via crossing either the side Pi−1Pi or PiPi+1.
Here the cycle we arrive at must be the cycle (12 . . . n). Hence this proves the
forward implication thereby completing the proof of the theorem. �
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Now we prove a lemma which is used in the proof of Theorem Ω. This lemma
describes certain two standard consecutive (n−1) -cycles of diagonal distance
two which upon adding n gives two standard consecutive n -cycles of diagonal
distance two.

Lemma 6.7. Let 7 ≤ n ∈ N. Let (1 = a1a2 . . . an−1) be a two standard
consecutive (n− 1) -cycle with diagonal distance two. For some 1 ≤ i ≤ n− 1
let

(i− 1) mod (n− 1), (i+ 1) mod (n− 1) ∈ {1, . . . , (n− 1)}
appear consecutively in the cycle and suppose i /∈ {1, 2, (n− 1), (n− 2)}, that
is,

{(i− 1) mod (n− 1),(i+ 1) mod (n− 1)}
/∈ {{1, n− 2},{2, n− 1}, {1, 3}, {n− 3, n− 1}}.

If we add n to the cycle and obtain a two standard consecutive n -cycle then
it also has diagonal distance two.

Proof. If we add n to (1 = a1a2 . . . an−1) in the right of both (i−1) mod (n−
1), (i+ 1) mod (n− 1), the cycle still has diagonal distance two unless {(i−
1) mod (n − 1), (i + 1) mod (n − 1)} ∈ {{2, n − 1}, {1, n − 2}}. We cannot
add n after 1 and to the left of both of them as the resulting cycle will not
be two standard consecutive. Now if we add n in between (i−1) mod (n−1)
and (i+ 1) mod (n− 1) then only the following possibilities occur.

(1) (1 = a1a2 . . . an−1n) = (1 = a1 . . . 3n) with an−1 = 3 or
(2) (1 = a1a2 . . . an−1n) = (1(n − 1)2 . . . (n − 2)n) with a2 = (n − 1), aj =

j − 1, 3 ≤ j ≤ n− 1 or
(3) (1 = a1a2 . . . an−1n) = (12 . . . j(n − 1)(j + 1) . . . (n − 2)n) for some

2 ≤ j ≤ (n− 3)
(4) (1 = a1 . . . (n− 1)n2 . . . an−1) = (1j . . . (n− 2)(n− 1)n2 . . . (j− 1)) with

4 ≤ j ≤ n− 2 or
(5) (1 = a1a2na3 . . . an−1) = (1(n−1)n2 . . . (n−2)) with a2 = (n−1), aj =

j − 1, 3 ≤ j ≤ n− 1 or
(6) (1 = a1a2 . . . an−2nan−1) = (13 . . . (n − 1)n2) with an−1 = 2, aj =

(j + 1), 2 ≤ j ≤ n− 2 or
(7) (1 = a1a2 . . . an−4an−3nan−2an−1) = (123 . . . (n−4)(n−1)n(n−3)(n−

2)) with aj = j, 2 ≤ j ≤ n−4, an−3 = n−1, an−2 = n−3, an−1 = n−2.
(8) (1 = a1a2 . . . an−3an−2nan−1) = (1 . . . j(n − 2)(j + 1) . . . (n − 4)(n −

1)n(n− 3)) for some 2 ≤ j ≤ n− 5, an−3 = n− 4, an−2 = n− 1, an−1 =
n− 3.

In these cases we have {(i− 1) mod (n− 1), (i+ 1) mod (n− 1)} ∈ {{1, n−
2}, {2, n− 1}, {1, 3}, {n− 1, n− 3}}. This proves the lemma. �

Now we prove the main theorem of the article.

Theorem Ω. Let (1 = a1a2 . . . an) be a two standard consecutive n -cycle.

(A) Then this cycle is definite if and only if it is obtained from the cycle
(12 . . . n) in the following three ways.
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(a) Considering the cyclic notation of the cycle (12 . . . n) on a circle in
an anticlockwise manner, and moving i forward (anticlockwise) for
some 1 ≤ i ≤ n−1 in a finite number of steps to any position after
(i+ 1) and before (i− 1). The diagonal distance of these cycles is
two.

(b) From any cycle obtained in the previous step by moving i, we swap
the adjacent elements (i−1), (i+1). The diagonal distance of these
cycles is also two.

(c) n = 7 and (1 = a1a2 . . . an) = (1526374). This is the only cycle
which has diagonal distance more than two and is definite. This
phenomenon occurs only when n = 7.

(B) Then this cycle is indefinite if and only if there exists

1 ≤ i1 < i2 < i3 < i4 < i5 < i6 ≤ n

with the following property that if for some j ∈ {0, 1, 2, 3, 4, 5}

aij+1 = min{ai1 , ai2 , ai3 , ai4 , ai5 , ai6} with aij+t = ai((j+t) mod 6)

where ((j + t) mod 6) ∈ {1, 2, 3, 4, 5, 6} then we have either

aij+1 < aij+4 < aij+5 < aij+2 < aij+3 < aij+6

or

aij+1 < aij+2 < aij+5 < aij+6 < aij+3 < aij+4 .

Here in the subscripts the local cycles (145236), (125634) appear which
are the indefinite cycles for n = 6.

The proof of Theorem Ω is given after the following example.

Example 6.8. We illustrate Theorem Ω(B) in this example. Clearly the cy-
cles (145236), (125634) are indefinite using Theorem Ω(B). Consider the two
standard consecutive cycle

(1 = a1a2a3a4a5a6a7a8) = (15263748).

Choose i1 = 1, i2 = 2, i3 = 4, i4 = 5, i5 = 7, i6 = 8. Choose j = 0. We have

aij+1
= ai1 = a1 = 1 < aij+4

= ai4 = a5 = 3 < aij+5
= ai5 = a7 = 4 <

aij+2
= ai2 = a2 = 5 < aij+3

= ai3 = a4 = 6 < aij+6
= ai6 = a8 = 8.

So using Theorem Ω(B) we have that the cycle is indefinite. Also observe that
this can be expressed by the fact that (815634) is a sub-cycle.
Consider the two standard consecutive cycle

(1 = a1a2a3a4a5a6a7a8) = (15263784).

Choose i1 = 2, i2 = 3, i3 = 5, i4 = 6, i5 = 7, i6 = 8. Choose j = 1. We have

aij+1 = ai2 = a3 = 2 < aij+2 = ai3 = a5 = 3 < aij+5 = ai6 = a8 = 4 <

aij+6 = ai1 = a2 = 5 < aij+3 = ai4 = a6 = 7 < aij+4 = ai5 = a7 = 8.

So using Theorem Ω(B) we have that the cycle is indefinite. Also observe that
this can be expressed by the fact that (452378) is a sub-cycle.
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Proof of Theorem Ω. First we prove the reverse (⇐) implication in (A).
The cycles obtained in A(a) and A(b) exactly correspond to the regions for
which one of the following n diagonals

P1P3, P2P4, . . . , Pn−1P1, PnP2

is a side and these clearly are definite regions. These cycles have diagonal dis-
tance exactly two. There are 2n2−8n such cycles with corresponding regions.
For n = 7 there are 27−1 − 7 = 57 two standard consecutive cycles. There

are (7−1)(7−2)(72−3∗7+12)
24 = 50 regions in a heptagon with generic diagonals.

Now in Figure 3 we have seen for the hexagon that the cycles (145236) and
(125634) are indefinite and mutually exclusive, that is, if one occurs then the
other does not occur. Extending this scenario for n = 7 we conclude that
there are seven pair of mutually exclusive two standard consecutive cycles.
They are obtained by cyclically shifting as follows.

(I) First pair (1523674), (1256347). We ignore 1 and the oriented triangle

∆
−−−→
P5P2

−−−→
P3P6

−−−→
P7P4 containing the region (1523674) is oriented clockwise

where as the oriented triangle ∆
−−−→
P5P2

−−−→
P3P6

−−−→
P7P4 containing the region

(1256347) is anticlockwise. We illustrate this in Figure 6.

Figure 6. Local Triangles ignoring 1 containing mutually
exclusive cycles/regions (1523674), (1256347) respectively

(II) Second pair (1526347), (1236745). We ignore 2 and the oriented triangle

∆
−−−→
P1P5

−−−→
P6P3

−−−→
P4P7 containing the region (1526347) is oriented clockwise

where as the oriented triangle ∆
−−−→
P1P5

−−−→
P6P3

−−−→
P4P7 containing the region

(1236745) is anticlockwise.
(III) Third pair (1263745), (1562347). We ignore 3 and the oriented triangle

∆
−−−→
P5P1

−−−→
P2P6

−−−→
P7P4 containing the region (1263745) is oriented clockwise

where as the oriented triangle ∆
−−−→
P5P1

−−−→
P2P6

−−−→
P7P4 containing the region

(1562347) is anticlockwise.
(IV) Fourth pair (1562374), (1267345). We ignore 4 and the oriented triangle

∆
−−−→
P1P5

−−−→
P6P2

−−−→
P3P7 containing the region (1562374) is oriented clockwise

where as the oriented triangle ∆
−−−→
P1P5

−−−→
P6P2

−−−→
P3P7 containing the region

(1267345) is anticlockwise.
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(V) Fifth pair (1526734), (1456237). We ignore 5 and the oriented triangle

∆
−−−→
P4P1

−−−→
P2P6

−−−→
P7P3 containing the region (1526734) is oriented clockwise

where as the oriented triangle ∆
−−−→
P4P1

−−−→
P2P6

−−−→
P7P3 containing the region

(1456237) is anticlockwise.
(VI) Sixth pair (1452637), (1256734). We ignore 6 and the oriented triangle

∆
−−−→
P1P4

−−−→
P5P2

−−−→
P3P7 containing the region (1452637) is oriented clockwise

where as the oriented triangle ∆
−−−→
P1P4

−−−→
P5P2

−−−→
P3P7 containing the region

(1256734) is anticlockwise.
(VII) Seventh pair (1256374), (1452367). We ignore 7 and the oriented triangle

∆
−−−→
P4P1

−−−→
P2P5

−−−→
P6P3 containing the region (1256374) is oriented clockwise

where as the oriented triangle ∆
−−−→
P4P1

−−−→
P2P5

−−−→
P6P3 containing the region

(1452367) is anticlockwise.

Now there are 2n2 − 8n = 2.72 − 8 ∗ 7 = 42 definite cycles whose regions
definitely occur using A(a), A(b). These cycles can be written down. Out of
the remaining 15 cycles there are seven mutually exclusive pairs. Totally there
are 50 regions that occur in a heptagon with generic diagonals. Hence there is
one more definite cycle which occurs that is cycle (1526374). This completes
the proof of reverse implication (⇐) of Theorem Ω(A).

Now we prove the reverse implication (⇐) in (B). In both the cases mentioned
in (B) we can obtain a mutually exclusive cycle for the cycle (1 = a1a2 . . . an)
by orienting the local triangle the other way similar to the diagrams given
in Figure 6. We illustrate this in Figure 7. This proves that the cycle (1 =
a1a2 . . . an) is indefinite. This completes the proof of reverse implication (⇐)
of Theorem Ω(B).

To complete the proof of Theorem Ω it is enough to prove that if for a two
standard consecutive cycle (1 = a1a2 . . . an), the diagonal distance is more
than two and n ≥ 8 (Note: n 6= 7) then the cycle is indefinite and satisfies
the property mentioned in Theorem Ω(B).

First we show that for n = 8 the only definite cycles are those with diagonal
distance two explicitly. For this we list all the 120 two standard consecutive
cycles as a union of fifteen orbits each containing eight cycles under the cyclic
shift action of Z/8Z. The cycles in the first eight orbits 1, . . . , 8 have diagonal
distance two and satisfy the conditions of Theorem ΩA(a), A(b). The cycles in
the remaining seven orbits 9, . . . , 15 satisfy the conditions of Theorem Ω(B).
The cycles in these orbits do not have diagonal distance two. We consider the
one standard consecutive cycle (12345678) on a circle in anticlockwise cyclic
manner.

1. Move element i forward (anticlockwise) by one position in (12345678)
for 1 ≤ i ≤ 8. This is also same as moving another element i forward by
six positions in (12345678) for 1 ≤ i ≤ 8.
(13456782), (13245678), (12435678), (12354678),
(12346578), (12345768), (12345687), (18234567).

2. Move element i forward by two positions in (12345678) for 1 ≤ i ≤ 8.
This is also same as moving another element i forward by one position
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Figure 7. Mutually Exclusive Indefinite Regions

in (12345678) and swapping (i − 1), (i + 1) considered cyclically for
1 ≤ i ≤ 8. They are given as:
(14567823), (13425678), (12453678), (12356478),
(12346758), (12345786), (17234568), (12834567).

3. Move element i forward by three positions in (12345678) for 1 ≤ i ≤ 8.
(15678234), (13452678), (12456378), (12356748),
(12346785), (16234578), (12734568), (12384567).

4. Move element i forward by four positions in (12345678) for 1 ≤ i ≤ 8.
(16782345), (13456278), (12456738), (12356784),
(15234678), (12634578), (12374568), (12348567).

5. Move element i forward by five positions in (12345678) for 1 ≤ i ≤ 8.
(17823456), (13456728), (12456783), (14235678),
(12534678), (12364578), (12347568), (12345867).

6. Move element i forward by two positions in (12345678) and swap (i −
1), (i+1) considered cyclically for 1 ≤ i ≤ 8. This is also same as moving
another element i forward by five positions in (12345678) and swapping
(i− 1), (i+ 1) considered cyclically for 1 ≤ i ≤ 8. They are given as:
(14567283), (14256783), (14253678), (12536478),
(12364758), (12347586), (17234586), (17283456).

7. Move element i forward by three positions in (12345678) and swap (i−
1), (i+ 1) considered cyclically for 1 ≤ i ≤ 8.
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(15672834), (14526783), (14256378), (12536748),
(12364785), (16234758), (12734586), (17238456).

8. Move element i forward by four positions in (12345678) and swap (i−
1), (i+ 1) considered cyclically for 1 ≤ i ≤ 8.
(16728345), (14562783), (14256738), (12536784),
(15236478), (12634758), (12374586), (17234856).

9. The following cycles satisfy the condition of Theorem Ω(B). For example
the cycle (12563478) contains the sub-cycle (125634).
(12563478), (12367458), (12347856), (16723458),
(12783456), (14567238), (12567834), (14523678).

10. The following cycles satisfy the condition of Theorem Ω(B). For example
the cycle (12563748) contains the sub-cycle (125634).
(12563748), (12367485), (16234785), (16273458),
(12738456), (15672384), (15267834), (14526378).

11. The following cycles satisfy the condition of Theorem Ω(B). For example
the cycle (12567348) contains the sub-cycle (125634).
(12567348), (12367845), (15623478), (12673458),
(12378456), (15672348), (12678345), (14562378).

12. The following cycles satisfy the condition of Theorem Ω(B). For example
the cycle (12567384) contains the sub-cycle (125634).
(12567384), (15236784), (15263478), (12637458),
(12374856), (16723485), (16278345), (14562738).

13. The following cycles satisfy the condition of Theorem Ω(B). For example
the cycle (12563784) contains the sub-cycle (125634).
(12563784), (15236748), (12634785), (16237458),
(12734856), (16723845), (15627834), (14526738).

14. The following cycles satisfy the condition of Theorem Ω(B). For example
the cycle (12637485) contains the sub-cycle (126745) locally ignoring
3, 8.
(12637485), (16237485), (16273485), (16273845),
(15627384), (15267384), (15263784), (15263748).

15. The following cycles satisfy the condition of Theorem Ω(B). For example
the cycle (12673845) contains the sub-cycle (126745) locally ignoring
3, 8.
(12673845), (15623784), (15267348), (12637845),
(15623748), (12673485), (16237845), (15627348).

This completes the proof of Theorem Ω for n = 8 the base case of the induc-
tion step.

Now we show by induction on k = n ≥ 9 we show if the cycle is indefinite
then the diagonal distance is not two and satisfies the criterion given in
Theorem Ω(B).

Using Lemma 6.7 we first consider cycles of diagonal distance two and hence
definite cycles for k = n− 1 ≥ 8 of the form (1 = a1a2 . . . an−1) which satisfy
one of the following properties.
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(a) The cycle contains 2, (n− 1) consecutively with (n− 1) first and 2 next
(has diagonal distance two).

(b) The cycle contains 2, (n− 1) consecutively with 2 first and (n− 1) next
(has diagonal distance two).

(c) The cycle contains 1, (n− 2) consecutively with 1 first and (n− 2) next
to it (which has diagonal distance two).

(d) The cycle contains 1, (n − 2) consecutively with 1 first and (n − 2) at
the end (which has diagonal distance two).

(e) The cycle contains (n− 1), (n− 3) consecutively with (n− 1) first and
(n− 3) next (has diagonal distance two).

(f) The cycle contains (n− 3), (n− 1) consecutively with (n− 3) first and
(n− 1) next (has diagonal distance two).

(g) The cycle contains 1, 3 consecutively with 1 first and 3 next to it (which
has diagonal distance two).

(h) The cycle contains 1, 3 consecutively with 1 first and 3 at the end (which
has diagonal distance two).

These cycles upon adding n may or may not remain definite. The remaining
definite cycles upon adding n will remain definite using Lemma 6.7. We will
later consider indefinite (n − 1) -cycles. We mention the various cases (i)-
(xvi) and prove in each case that upon adding n the resulting two standard
consecutive cycle will either have diagonal distance two and hence remain
definite or it does not have diagonal distance two and satisfies the criterion
of Theorem Ω (so becomes indefinite).

(i) If the cycle (1 = a1a2 . . . an−1) contains 2, (n − 1) consecutively with
(n− 1) first and 2 next (has diagonal distance two) then the cycle is of
the following form

(1j . . . (n− 2)(n− 1)23 . . . (j − 1)) for some 4 ≤ j ≤ n− 2 or

either (134 . . . (n− 1)2) or (1(n− 1)23 . . . (n− 2)).

It is clear that upon adding n to (134 . . . (n−1)2) the resulting two stan-
dard consecutive cycle has diagonal distance two and hence definite. If
we add n in between (n − 1) and 2 or just next to 2 in any of these
the resulting two standard consecutive cycle also has diagonal distance
two and hence definite. If we add n to (1(n− 1)23 . . . (n− 2)) anywhere
after 3 then the resulting two standard consecutive cycle also has diag-
onal distance two and hence definite. If we add n to (1j . . . (n− 2)(n−
1)23 . . . (j − 1)) with 4 ≤ j ≤ n− 2, anywhere after 3 then the resulting
two standard consecutive cycle does not have diagonal distance two and
is indefinite because it has (23n1(n − 2)(n − 1)) as a sub-cycle which
satisfies the criterion of Theorem Ω(B).

(ii) 2, (n − 1) appear in this order next to 1 as follows. Now consider the
cycle (

12(n− 1)34 . . . (n− 4)(n− 3)(n− 2)
)
.

If we add n anywhere after (n− 1) and before (n− 3) the resulting two
standard cycle does not have diagonal distance two and is indefinite
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because it has (12(n− 1)n(n− 3)(n− 2)) as a sub-cycle which satisfies
the criterion of Theorem Ω(B). If we add n in between (n−3) and (n−2)
or after (n− 2) then the cycle is definite and has diagonal distance two.

(iii) 2, (n − 1) appear in this order in the middle as follows. Now consider
for some 3 ≤ a ≤ n− 4 the cycle

(1(a+ 2) . . . (n− 2)2(n− 1)3 . . . a(a+ 1)).

If we add n anywhere between (n − 1) and a, then the resulting two
standard cycle does not have diagonal distance two and is indefinite
because it has (12(n − 1)na(a + 1)) as a sub-cycle which satisfies the
criterion of Theorem Ω(B). If we add n in between a and a + 1 and
obtain the two standard consecutive cycle (15 . . . (n − 2)2(n − 1)3n4)
for a = 3 then it does not have diagonal distance two and is indefinite
because it has (23n156) as a sub-cycle which satisfies the criterion of
Theorem Ω(B) since n ≥ 8. This argument does not work for n = 7.
This is because (152634) has diagonal distance two for k = 6 and if we
add n = 7 in between (n−1) = 6 and 4 we get (1526374) which does not
have (237156) as a sub-cycle. In fact (1526374) does not have diagonal
distance two and also does not satisfy the criterion of Theorem Ω(B). It
is a definite cycle for n = 7 and this is the only exception phenomenon.
If we add n after (a+ 1) or for a > 3 we add n in between a and (a+ 1)
then the resulting two standard cycle does not have diagonal distance
two and is indefinite because it has (34n1(n− 2)(n− 1)) as a sub-cycle
which satisfies the criterion of Theorem Ω(B).

(iv) 2, (n−1) appear in this order at the last but one or at the end positions
as follows. Now consider the cycles

(14 . . . (n− 2)2(n− 1)3) and (134 . . . (n− 2)2(n− 1)).

These cycles are definite as 1, 3 appear consecutively and has diagonal
distance two.

(v) 1, (n − 2) appear in the beginning and (n − 1) appears at the end as
follows. Now consider the cycle(

1(n− 2)23 . . . (n− 3)(n− 1)
)
.

n can only be added at the end and the resulting two standard cycle
is definite and has diagonal distance two and it has (n − 3), (n − 1) as
consecutive.

(vi) 1, (n − 2) appear in the beginning and (n − 1) appears at the last but
one position as follows. Now consider the cycle(

1(n− 2)23 . . . (n− 4)(n− 1)(n− 3)
)
.

If n is added at the end then the the resulting two standard cycle is
definite and has diagonal distance two and it has (n − 3), (n − 1) as
consecutive. If n is added in between (n − 1) and (n − 3) then the
resulting two standard cycle does not have diagonal distance two and is
indefinite because it has (23(n−1)n(n−3)(n−2)) as a sub-cycle which
satisfies the criterion of Theorem Ω(B).
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(vii) 1, (n−2) appear in the beginning and (n−1) appears in between 3 and
(n− 4) as follows. Now consider the cycle(

1(n− 2)23 . . . (n− 1) . . . (n− 4)(n− 3)
)
.

If we add n at the end then the resulting two standard cycle does not
have diagonal distance two and is indefinite because it has ((n− 4)(n−
3)n1(n− 2)(n− 1)) as a sub-cycle which satisfies the criterion of Theo-
rem Ω(B). If we add n after (n−1) and before (n−3) then the resulting
two standard cycle does not have diagonal distance two and is indefinite
because it has (23(n− 1)n(n− 3)(n− 2)) as a sub-cycle which satisfies
the criterion of Theorem Ω(B).

(viii) 1, (n−2) appear in the beginning and (n−1) appears in between 2 and
3 as follows. Now consider the cycle(

1(n− 2)2(n− 1)34 . . . (n− 4)(n− 3)
)
.

If we add n anywhere after 4 then the resulting two standard cycle does
not have diagonal distance two and is indefinite because it has (34n1(n−
2)(n−1)) as a sub-cycle which satisfies the criterion of Theorem Ω(B). If
we add n in between (n−1) and before 4 then the resulting two standard
cycle does not have diagonal distance two and is indefinite because it
has (12(n − 1)n45) (Note: n ≥ 8) as a sub-cycle which satisfies the
criterion of Theorem Ω(B). For n = 7 this argument does not work.
This is because (152634) has diagonal distance two for k = 6 and if we
add n = 7 in between (n−1) = 6 and 4 we get (1526374) which does not
have (126745) as a sub-cycle. In fact (1526374) does not have diagonal
distance two and also does not satisfy the criterion of Theorem Ω(B). It
is a definite cycle for n = 7 and this is the only exception phenomenon.

(ix) 1, (n−2) appear in the beginning and (n−1) appears in between (n−2)
and 2 as follows. Now consider the cycle(

1(n− 2)(n− 1)23 . . . (n− 4)(n− 3)
)
.

If we add n anywhere after 3 then the resulting two standard cycle does
not have diagonal distance two and is indefinite because it has (23n1(n−
2)(n− 1)) as a sub-cycle which satisfies the criterion of Theorem Ω(B).
If we add n in between 2 and 3 or in between (n−1) and 2 then the the
resulting two standard cycle has diagonal distance two and is definite
with 2, n as consecutive.

(x) 1, (n − 2) appear consecutively with 1 first and (n − 2) at the end as
follows. Now consider the cycle(

1 . . . (n− 1) . . . (n− 2)
)
.

If we add n at the end after (n − 2) or just before (n − 2) then the
resulting two standard cycle has diagonal distance two and is definite.
If we add n after (n − 1) and before (n − 2) then the cycles (1(n −
1)2 . . . n . . . (n− 3)(n− 2)), (1(n− 1)n2 . . . (n− 3)(n− 2)) has diagonal
distance two and are definite. The cycle (12 . . . (n−1) . . . n . . . (n−3)(n−
2)) does not have diagonal distance two and is indefinite because it has



On the Regions Formed by the Diagonals of Convex Polygon 23

(12(n− 1)n(n− 3)(n− 2)) as a sub-cycle which satisfies the criterion of
Theorem Ω(B).

(xi) (n− 1), (n− 3) appear consecutively in this order and (n− 2) appears
after (n− 3). Now consider the cycle(

123 . . . (n− 1)(n− 3)(n− 2)
)
.

If we add n after (n − 3) then the resulting two standard cycle has
diagonal distance two and is definite. If we add n in between (n − 1)
and (n−3) then the resulting two standard cycle does not have diagonal
distance two and is indefinite because it has (12(n− 1)n(n− 3)(n− 2))
as a sub-cycle which satisfies the criterion of Theorem Ω(B).

(xii) (n− 1), (n− 3) appear consecutively in this order and (n− 2) appears
before (n− 3). Now consider the cycle(

1 . . . (n− 2) . . . (n− 1)(n− 3)
)
.

If we add n after (n − 3) then the resulting two standard cycle has
diagonal distance two and is definite. If we add n in between (n − 1)
and (n−3) then the cycles

(
1 . . . (n−5)(n−4)(n−2)(n−1)n(n−3)

)
and(

1 . . . (n−5)(n−2)(n−4)(n−1)n(n−3)
)

has diagonal distance two and

are definite. The cycle
(
1 . . . (n − 2) . . . (n − 5)(n − 4)(n − 1)n(n − 3)

)
does not have diagonal distance two and is indefinite because it has
((n− 5)(n− 4)(n− 1)n(n− 3)(n− 2)) as a sub-cycle which satisfies the
criterion of Theorem Ω(B).

(xiii) (n− 3), (n− 1) appear consecutively in this order and (n− 2) appears
before (n− 3). Now consider the cycle(

1 . . . (n− 2) . . . (n− 3)(n− 1)
)
.

Now n has to be added at the end and the resulting two standard cycle
has diagonal distance two and is definite.

(xiv) (n− 3), (n− 1) appear consecutively in this order and (n− 2) appears
after (n− 3). Now consider the cycle(

1 . . . (n− 1)(n− 3)(n− 2)
)
.

If n is added after (n − 3) then the resulting two standard cycle has
diagonal distance two and is definite. If n is added in between (n − 1)
and n− 3 then the resulting two standard cycle does not have diagonal
distance two and is indefinite because it has (12(n− 1)n(n− 3)(n− 2))
as a sub-cycle which satisfies the criterion of Theorem Ω(B).

(xv) 1, 3 appear consecutive with 1 first and 3 just next to it. Now consider
the cycle (

13 . . . 2 . . . (n− 1)
)
,
(
13 . . . (n− 1)2

)
.

Now n must be added at the end in
(
13 . . . 2 . . . (n − 1)

)
and the re-

sulting two standard cycle has diagonal distance two and is definite. In(
13 . . . (n − 1)2

)
, n must be added after (n − 1) and the resulting two

standard cycle has diagonal distance two and is definite.
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(xvi) 1, 3 appear consecutive with 1 first and 3 at the end. Now consider the
cycle (

1 . . . 2 . . . (n− 1)3
)
.

If n is added in between (n− 1) and 3 then the resulting two standard
cycle has diagonal distance two and is definite. If n is added after 3
at the end then the cycles (1425 . . . (n− 1)3n), (1245 . . . (n− 1)3n) have
diagonal distance two and are definite. The cycle (145 . . . 2 . . . (n−1)3n)
does not have diagonal distance two and is indefinite because it has
(23n145) as a sub-cycle which satisfies the criterion of Theorem Ω(B).

If a two standard consecutive (n − 1) -cycle (1 = a1a2 . . . an−1) is already
indefinite satisfying the criterion of Theorem Ω(B) then it satisfies the cri-
terion of Theorem Ω(B) after adding n and obtain a two standard consec-
utive n -cycle. We will now show that it does not have diagonal distance
two. Let (1 = a1 . . . an−1) be an indefinite (n − 1) -cycle. By induction it
does not have diagonal distance two. After adding n we show that n can-
not be adjacent to 2 or (n − 2). Suppose the (n − 1) -cycle is given by
(1 = a1 . . . (n − 2) . . . (n − 1) . . . an−1). Then n should appear after (n − 1)
unless the cycle is (12 . . . (n − 3)n(n − 2)(n − 1)) or (12 . . . (n − 2)n(n − 1))
which is impossible. Hence n and (n−2) cannot be adjacent. Suppose (n−2)
appears after (n−1) in the indefinite (n−1) -cycle (1 = a1 . . . an−1). Then it
is given by (1 = a1 . . . (n− 1) . . . (n− 2) = an−1) which has diagonal distance
two. Hence a contradiction. By a similar reasoning n cannot appear adja-
cent to 2. So the resulting two standard consecutive n -cycle does not have
diagonal distance 2. This completes the proof of main Theorem Ω. �
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