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Abstract

A finite group of order n is said to have the distinct divisor property
(DDP) if there exists a permutation g1, . . . , gn of its elements such that
g−1i gi+1 6= g−1j gj+1 for all 1 ≤ i < j < n. We show that an abelian
group is DDP if and only if it has a unique element of order 2. We
also describe a construction of DDP groups via group extensions by
abelian groups and show that there exist infinitely many non abelian
DDP groups.
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1 Introduction

A Costas array of order n is a permutation x1, . . . , xn of {1, 2, . . . , n} such
that the

(
n
2

)
vectors (j − i, xj − xi), i 6= j, are all distinct. Costas arrays

were first studied by John P. Costas for their applications in sonar and radar
[3, 4]. Several algebraic constructions of Costas arrays exist for special orders
n, such as Welch, Logarithmic Welch, and Lempel constructions [8, 9, 10].
Through exhaustive computer searches, all Costas arrays of order n ≤ 29
have been found [5]. However, the problem of finding Costas arrays for
larger orders becomes computationally very difficult. The weaker notion of
DDP permutation requires only the consecutive distinct difference property
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i.e., xi+1 − xi 6= xj+1 − xj for all 1 ≤ i < j < n. By recursive constructions,
an abundance of DDP permutations can be found, at least 2n, of order n [1].

In this paper, we are interested in a notion slightly stronger than DDP.

Definition 1. A DDP sequence mod a positive integer n is a permutation
x0, . . . , xn−1 of the elements of Zn = Z/nZ such that x0 = 0 and xi+1 − xi 6≡
xj+1 − xj (mod n) for all 0 ≤ i < j < n− 1.

The first example of a DDP sequence mod 12 was introduced by F. H.
Klein in 1925 as the all-interval twelve-tone row, series, or chord

F,E,C,A,G,D,A[,D[, E[,G[,B[, C[,

named the Mutterakkord (mother chord) [12]. In integers mod 12, this se-
quence reads

0, 11, 7, 4, 2, 9, 3, 8, 10, 1, 5, 6,

and the sequence of consecutive differences mod 12 is given by 11, 8, 9, 10,7,
6, 5, 2, 3, 4, 1, which are all distinct. By 1952, there were 18 known examples
of all-interval series [6]. In 1965, IBM 7094 listed all of the 3856 examples of
all-interval rows [2]. Another example of an eleven-interval, twelve-tone row
is the Grandmother chord, invented by Nicolas Slonimsky in 1938 [14].

Figure 1: An image of the Mother chord and Grandmother chord in Slonimsky’s
Thesaurus of Scales and Melodic Patterns (p. 185).

The grandmother chord has the additional property that the intervals are
odd and even alternately, and the odd intervals decrease by one whole-tone,
while the even intervals increase by one whole-tone. In integers mod 12, the
grandmother chord is

0, 11, 1, 10, 2, 9, 3, 8, 4, 7, 5, 6,

where the sequence of consecutive differences mod 12 is given by 11, 2, 9, 4,
7, 6, 5, 8, 3, 10, 1. Inspired by Slonimsky’s grandmother chord, we define
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the Slonimsky sequence modulo n by letting

si = (−1)idi/2e =

{
i/2 if i is even;

n− (i+ 1)/2 if i is odd.
(1)

Then the sequence s0, . . . , sn−1 is a DDP sequence modulo n if and only
if n is even. If x0, . . . , xn−1 is a DDP sequence modulo n, then the sequence
rx0, . . . , rxn−1 is also a DDP sequence modulo n for each r with gcd(r, n) = 1.
Therefore, there are at least φ(n) DDP sequences mod an even integer n.
The numbers of DDP sequences mod even integers are given by the sequence
[7, 11]

A141599 : 1, 2, 4, 24, 288, 3856, 89328, 2755968, 103653120, . . . .

There are no DDP sequences mod odd n (see Lemma 10).
In our next definition, we generalize Definition 1, which pertains to the

group (Zn,+), to any finite group G.

Definition 2. LetG be a finite group with n elements. We say a permutation
g0, . . . , gn−1 of elements of G has the distinct divisor property (DDP) or
g0, . . . , gn−1 is a DDP sequence, if g0 = 1G and g−1i gi+1 6= g−1j gj+1 for all
0 ≤ i < j < n− 1. The set of all DDP sequences in G is denoted by OG. We
say G is a DDP group if OG 6= ∅.

For odd values of n, instead of distinct consecutive differences, the se-
quence (1) has distinct consecutive signed differences. This motivates the
following definition.

Definition 3. Let p0, . . . , pn−1 be a permutation of elements of an abelian
group G with p0 = 0. The sequence of signed differences is defined by h0 = 0
and hi = (−1)i−1(pi−1−pi) for 1 ≤ i < n. We say p0, . . . , pn−1 is a Slonimsky
sequence if the following conditions hold:

i) hi 6= hj for all 0 ≤ i < j < n.

ii) hi + hn−i = 0 for all 0 < i < n.

iii) pi + pn−i−1 = pn−1 for all 0 ≤ i < n, where we refer to pn−1 as the last
term of the sequence.

For example, the following sequence is a Slonimsky sequence in Z7:

0, 6, 1, 5, 2, 4, 3,
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and its sequence of signed differences is 0, 1, 2, 3, 4, 5, 6. Slonimsky sequences
in odd abelian groups play an important role in constructing DDP sequences
via group extensions, and we study them in section 2.

This is how this paper is organized. In section 2, we show that every odd
abelian group has a Slonimsky sequence. In section 3, we use the existence
of Slonimsky sequences in odd abelian groups to show that every central
extension of an even DDP group by an odd abelian group is DDP (see Cor.
8). We also show that for every odd nilpotent group G and an even DDP
group K, the direct product G×K is DDP (see Theorem 9). In particular,
G× Z2m is DDP for every odd nilpotent group G and every integer m ≥ 1.

In section 4, we show that a finite abelian group is DDP if and only if it
has a unique element of order 2. We also find a lower bound on the number of
DDP sequences in an abelian group G in terms of the prime factorization of
its order. In particular, we will show that if n = 2mkl for m ≥ 1 and relatively
prime odd integers k, l, then there are at least (2k)l−1 DDP sequences modulo
the even integer n (see Cor. 14). Finally, in section 5, we will show that there
are infinitely many non abelian DDP groups.

2 Slonimsky sequences in abelian groups

In this section, we prove that every abelian odd group has a Slonimsky se-
quence. This result will only be needed in the proof of Theorem 7 and can
be skipped in a first reading. We begin with the cyclic case.

Lemma 4. If n is odd, then G = (Zn,+) has a Slonimsky sequence with the
last term (n− 1)/2.

Proof. Let pi = (−1)idi/2e mod n for 0 ≤ i ≤ n−1. Then, for 1 ≤ i ≤ n−1,
we have

hi = (−1)i−1(pi−1 − pi) = (−1)i−1
(
(−1)i−1d(i− 1)/2e − (−1)idi/2e

)
= d(i− 1)/2e+ di/2e = i,

hence property (i) in Definition 3 holds. Moreover, hi + hn−i = i+ n− i = 0
(mod n) and pi + pn−i−1 = (−1)idi/2e + (−1)n−i−1d(n − i − 1)/2e = (n −
1)/2 whether i is even or odd. It follows that p0, . . . , pn−1 is a Slonimsky
sequence.

Theorem 5. Let G = Zm1 × · · · × Zmd
be an odd abelian group. Then there

exists a Slonimsky sequence in G with the last term

((m1 − 1)/2, . . . , (md − 1)/2).
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Proof. Proof is by induction on d. The claim for d = 1 follows from Lemma
4. For d > 1, let H = Zm1 × · · · × Zmd−1

and md = m = 2l − 1. By the
inductive hypothesis for H, there exists a Slonimsky sequence p0, . . . , pn−1 in
H with signed differences h0, . . . , hn−1 such that

hi + hn−i = 0, ∀i ∈ {1, . . . , n− 1}; (2)

pi + pn−i−1 = ((m1 − 1)/2, . . . , (md−1 − 1)/2), ∀i ∈ {0, . . . , n− 1}. (3)

In order to define the Slonimsky sequence P0, . . . , Pmn−1 in G = H ×Zm, we
first define its sequence of signed differences gi, 1 ≤ i ≤ mn, in G as follows.
For 1 ≤ i ≤ mn, write i = qn + r, where 0 ≤ q ≤ m− 1 and 0 ≤ r ≤ n− 1.
If r = 0, we let gi = (0H , q) ∈ H × Zm, and if 0 < r ≤ m− 1, we let

gi = (hr, (−1)ql + 2dq/2e) .

We first show that g0, . . . , gmn−1 is a permutation of elements of G. Suppose
gi = gj, where i = qn + r and j = pn + t. If r = 0, then gj = gi = (0H , q)
which implies that t = 0, hence gj = (0H , p), and so p = q ⇒ i = j. Thus,
suppose that r, t 6= 0. It follows from gi = gj that hr = ht, and so r = t. It
also follows from gi = gj that (−1)ql + 2dq/2e = (−1)pl + 2dp/2e. If p − q
is odd, we conclude that |2dq/2e − 2dp/2e| = 2l, which is a contradiction,
since 2dp/2e, 2dq/2e ∈ {0, 2, . . . , 2l − 2}. If p − q is even, we conclude that
2dq/2e = 2dp/2e, which implies that p = q ⇒ i = j. Therefore, g0, . . . , gmn−1
is a permutation of elements of G.

Next, we define Pi =
∑i

k=0(−1)kgk and show that P0, . . . , Pmn−1 is a
Slonimsky sequence in G. A simple induction shows that for i = qn+ r with
0 ≤ q ≤ m− 1 and 0 ≤ r ≤ n− 1, we have

Pi =


(pr, q/2) if q is even and r is even;

(pr,−l − q/2) if q is even and r is odd;

(pn−r−1,−(q + 1)/2) if q is odd and r is even;

(pn−r−1,−l + (q + 1)/2) if q is odd and r is odd.

We need to show that P0, . . . , Pmn−1 is a permutation of elements of G.
Suppose that Pi = Pj for i = qn + r and j = pn + t. If r, t are both even
or both odd, from Pi = Pj, we conclude that p = q. Thus, without loss of
generality, suppose that p is even and q is odd. Then pt = pn−r−1 and so
t = n−r−1 which implies that t and r are both even or both odd. If they are
both odd, then p/2 = −l+(q+1)/2 modulo m, and if they are both even, then
−l−p/2 = −(q+1)/2 modulo m. In either case we gave p/2−(q+1)/2 = −l
(mod m), which is a contradiction since 1− l ≤ p/2− (q + 1)/2 ≤ l − 2.

5



Next, we show that gi + gmn−i = 0 for all 1 ≤ i ≤ mn− 1. Let i = qn+ r,
where 0 ≤ q ≤ n − 1 and 0 ≤ r ≤ m − 1. So we can write mn − i =
(m− q − 1)n+ n− r. Suppose r 6= 0. Then

gi+gmn−i = (hr, (−1)ql + 2dq/2e)+
(
hn−r, (−1)m−q−1l + 2d(m− q − 1)/2e

)
.

Since hr + hn−r = 0 and m− 1 is even, this simplifies to

gi + gmn−i = (0, (−1)q2l + 2dq/2e+ 2d(−q/2)e − 1) = (0, 0) ∈ H × Zm.

If r = 0, then gi = (0, q) and one writes mn − i = (m − q)n. Therefore,
gmn−i = (0,m− q) which again leads to gi + gmn−i = (0, 0).

Finally, we claim that Pi+Pmn−i−1 = ((m1−1)/2, . . . , (md−1)/2) for all
i ∈ {0, . . . ,mn− 1}. We have pr + pm−r−1 = ((m1 − 1)/2, . . . , (md−1 − 1)/2)
for all r = 0, . . . ,m− 1 by the inductive hypothesis. Let i = qn + r, and so
mn− i− 1 = (m− q − 1)n+ n− r − 1. If q is even and r is odd, then

Pi + Pmn−i−1 = (pr + pn−r−1, (m− 1)/2)

= ((m1 − 1)/2, . . . , (md−1 − 1)/2, (m− 1)/2).

The claim in other cases follows similarly.

3 Central extensions

In this section, we describe a construction of DDP sequences via group
extensions. Let G be a group extension of H by N i.e., suppose that
1 → N → G

π−→ H → 1 is a short exact sequence. We will describe an
algorithm to lift a DDP sequence in H to G. By a lift of the DDP se-
quence h1, . . . , h|H| in H to G, we mean a DDP sequence g1, . . . , g|G| such
that π(gi) = hi for i = 1, . . . , |H|.

It turns out that in order for our algorithm of lifting a DDP sequence
from H to G work, the group N = ker(π) must contain no real elements of
G except the identity.

Definition 6. An element h ∈ G is said to be a real element of G if there
exists g ∈ G such that g−1hg = h−1. We denote the set of real elements of
G by R(G).

Let N be a normal subgroup of G. If the only real element of G in N is
1G i.e., N ∩R(G) = {1G}, then

∀h ∈ N\{1G} ∀g ∈ G : hgh 6= g, (4)
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or equivalently, for abelian N ,

∀g ∈ G ∀h1, h2 ∈ N : h1 6= h2 ⇒ h1gh1 6= h2gh2.

If N is contained in the center of G, then N ∩R(G) = {1G} is equivalent to
N having odd order.

Theorem 7. Let π : G → H be an epimorphism such that ker(π) is an
abelian group of odd order m with ker(π) ∩ R(G) = {1G}. If H is an even
DDP group, then G is an even DDP group. More precisely, let p0, . . . , pn−1 be
a DDP sequence in H. Then there exist at least (2m)(n−1−e)/2 DDP sequences
P0, . . . , Pmn−1 in G such that π(Pi) = pi for all i = 0, . . . , n − 1, where e is
the number of elements of order 2 in H. In particular

|OG| ≥ |OH | × (2m)(n−1−e)/2.

Proof. Let p0, . . . , pn−1 be a DDP sequence in H. We define h0 = 1H and
hr = p−1r−1pr for 1 ≤ r ≤ n − 1. We define a bijection σ : {0, . . . , n − 1} →
{0, . . . , n− 1} by letting σ(r) to be the unique number in {0, . . . , n− 1} such
that hσ(r) = h−1r . Let

I = {0 ≤ r ≤ n− 1 : σ(r) = r},

and let A be a set obtained by including exactly one of r or σ(r) for every
r ∈ {0, . . . , n− 1}\I, and define B = {0, . . . , n− 1}\(A ∪ I). Clearly, 0 ∈ I
and there are 2(n−|I|)/2 choices for A.

Let also α0, α1, . . . , αm−1 be a Slonimsky sequence in N = ker(π); such
a special DDP sequence exists by Theorem 5, since N has odd order. Let
β0, . . . , βm−1 be the sequence of signed differences. Let us denote the element
αm−1 by yN . By the definition of Slonimsky sequence, one has

αiαm−1−i = yN = αm−1, ∀0 ≤ i ≤ m− 1 (5)

βiβm−i = 0N , ∀1 ≤ i ≤ m− 1 (6)

In order to define the sequence P0, . . . , Pmn−1, we first define its sequence
of consecutive differences g0, . . . , gmn−1 as follows. For each r ∈ A, we let gr
be an arbitrary element of π−1(hr). Also, if r ∈ A, we define

gσ(r) =


g−1r if r + σ(r) is odd;

yNg
−1
r yN if r and σ(r) are both odd;

y−1N g−1r y−1N if r and σ(r) are both even.

(7)
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To define gr for r ∈ I, choose fr ∈ π−1(hr) to be arbitrary. Then one can
show that

π−1(hr) = {αifrαi | i ∈ {1, . . . ,m} and αi ∈ N},

and hence there exists vr ∈ N such that f−1r = vrfrvr, since π(f−1r ) = hr =

π(fr). Then, choose wr ∈ N such that w2
r = vry

(−1)r+1

N , and let gr = wrfrwr.
It follows from this definition that

g−1r =

{
yNgryN if r ∈ I is even;

y−1N gry
−1
N if r ∈ I is odd.

Next, we define gi for all n ≤ i ≤ mn − 1. The idea is to present
g0, . . . , gmn−1 as a union of m blocks each containing n elements so that
π maps each block onto H, alternating in increasing (for even blocks) or
decreasing (for odd blocks) order of indices. To be more precise, by the
Euclidean algorithm, there exist unique integers 0 ≤ r ≤ n− 1 and 0 ≤ q ≤
m− 1 such that i = nq + r. If r = 0, let gi = βq. If r ≥ 1, let

gi =


αqg

−1
n−rαq if q is odd and r is odd;

α−1q g−1n−rα
−1
q if q is odd and r is even;

α−1q grα
−1
q if q is even and r is odd;

αqgrαq if q is even and r is even.

(8)

We claim that the sequence Pi =
∏i

k=0 gk, 0 ≤ i ≤ mn − 1, is a DDP
sequence. We prove by induction on 0 ≤ i ≤ mn− 1 that for i = nq + r, we
have

Pi =


Pn−r−1αq if q is odd and r is odd;

Pn−r−1α
−1
q if q is odd and r is even;

Prα
−1
q if q is even and r is odd;

Prαq if q is even and r is even.

(9)

The claim is clearly true for all 0 ≤ i ≤ n− 1. Suppose the claim is true for
i = nq + r. Suppose that q and r are both odd. The proof in all other cases
is similar. If r = n− 1 then

Pi+1 = Pigi+1 = (P0αq)βq+1 = P0αq+1

as claimed. If 0 ≤ r < n− 1. Then i+ 1 = nq + (r + 1) and we have

Pi+1 = Pigi+1 = (Pn−r−1αq)(α
−1
q g−1n−r−1α

−1
q ) = Pn−r−2α

−1
q

8



as claimed. It follows from (9) that Pi 6= Pj for 0 ≤ i < j ≤ mn− 1. To see
this, suppose Pi = Pj for i = nq1+r1 and j = nq2+r2. Suppose that q1 and q2
are even. The proof in other cases is similar. Then pr1 = π(Pi) = π(Pj) = pr2
which implies that r1 = r2 = r. But then αq1 = (P−1r Pi)

±1 = (P−1r Pj)
±1 =

αq2 , and so q1 = q2, hence i = j.
Next, we show that gi 6= gj for all 0 ≤ i < j ≤ mn− 1. On the contrary,

suppose that gi = gj for i = qn+ r and j = pn+ s where 1 ≤ r, s < n. There
are two cases:

Case 1. p ≡ q (mod 2). If p, q are both even, then hr = π(gi) = π(gj) =
hs, and if p, q are both odd, then hn−r = π(gi)

−1 = π(gj)
−1 = hn−s. In either

case, we conclude that r = s. If r is even, this implies that αpgrαp = αqgrαq
(if p, q are even) or α−1q g−1n−rα

−1
q = α−1p g−1n−rα

−1
p (if p, q are odd). In either

case, since N ∩R(G) = {1G}, we must have p = q, and so i = j.
Case 2. Without loss of generality, suppose q is even and p is odd. Then

α±1q grα
±1
q = α±1p g−1n−sα

±1
p . By projecting onto H via π, we must have hr =

h−1n−s. If r = n− s ∈ I, then r and s are both even or both odd. If they are
both even, it follows from gi = gj that αqgrαq = α−1p g−1r α−1p which implies
that αpαq = yN , which is a contradiction, since p and q have different parity.
If r and s are both odd, then α−1q grα

−1
q = αpg

−1
r αp which leads to the same

contradiction.
Thus, suppose r ∈ A∪B. Without loss of generality, suppose r ∈ A, and

so n− s = σ(r) ∈ B. If both r and s are odd, according to Eq. (7) we have
α−1q grα

−1
q = αpg

−1
σ(r)αp = αpy

−1
N gry

−1
N αp, which implies αpαq = yN , a contra-

diction. Similarly, if r and s are both even, we have αqgrαq = α−1p g−1σ(r)α
−1
p =

α−1p yNgryNα
−1
p , which again implies αpαq = yN , a contradiction. If r is odd

and σ(r) is even, then α−1q grα
−1
q = α−1p g−1σ(r)α

−1
p = α−1p grα

−1
p which implies

that αp = αq, a contradiction. Finally, if r is even and σ(r) is odd, then
αqgrαq = αpg

−1
σ(r)αp = αpgrαp which implies that αq = αp, a contradiction.

We have shown that P0, . . . , Pmn−1 is a DDP sequence in G with π(Pi) =
pi for all 0 ≤ i ≤ n − 1. Recall that in constructing the set A, we have
two choices per each pair (r, σ(r)). Moreover, for each r ∈ A, we have m
choices in defining gr. It follows that there are at least (2m)|A| = (2m)(n−|I|)/2

DDP sequences which are lifts of a given DDP sequence in H. Since I is
comprised of 1H and elements of order 2, each DDP sequence in H has at
least (2m)(n−e−1)/2 lifts to G, where e is the number of elements of order 2
in H.

Corollary 8. Every central extension of an even DDP group by an odd
abelian group is a DDP group.

Proof. Let N be an odd abelian group and H be an even DDP group. Sup-
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pose that π : G→ H is an epimorphism with ker(π) ∼= N . We need to show
that G is a DDP group. Since ker(π) is an odd abelian group and, by the
definition of central extension, the normal subgroup ker(π) lies in the center
of G, one has ker(π) ∩RG = {1G}, the conditions of Theorem 7 hold, hence
G is an even DDP group.

Theorem 9. Let G be a finite odd nilpotent group and K be an even DDP
group. Then G×K is a DDP group.

Proof. Let Z0 � Z1 � · · · � Zn = G be the upper central series of G. We
prove by a finite reverse induction on 0 ≤ i ≤ n that (G/Zi) ×K is a DDP
group. The claim is clearly true for i = n. Suppose we have proved that
(G/Zi+1)×K is DDP for 0 ≤ i < n and we show that (G/Zi)×K is DDP.
Consider the epimorphism

πi :
G

Zi
×K → G

Zi+1

×K, πi(g + Zi, k) := (g + Zi+1, k)

induced by the inclusion Zi ↪→ Zi+1. By the inductive hypothesis G/(Zi+1)×
K is DDP. Moreover, ker(πi) ∼= (Zi+1/Zi) × {1K} which is contained in the
center of G/Zi × K. It then follows from Corollary 8 that (G/Zi) × K is
DDP. When i = 0, we conclude that G×K is DDP.

4 The abelian case

In this section, we determine all finite abelian DDP groups. We begin with
describing an obstruction to the existence of a DDP sequence in the abelian
case. For an abelian group G, we use 0G (or simply 0) to denote its identity
element.

Lemma 10. If G is an abelian DDP group, then it has a unique element of
order 2.

Proof. Let x1, . . . , xk be a DDP sequence in G. Then we have

−x1 + xk =
k−1∑
i=1

−xi + xi+1 =
∑
g∈G

g. (10)

Now let us assume to the contrary that either G has odd order or it has
more than one element of order 2. Firstly, if G has odd order, we have
2
∑

g∈G g =
∑

g∈G g+
∑

g∈G(−g) = 0G, and (10) implies that xk = x1, which
is not allowed. Secondly, if G has more than one element of order 2, then

10



one can write G = Zm×Zn×H for even integers m,n, and an abelian group
H. But then

∑
g∈G

g =

(
mn|H|/2,mn|H|/2,mn

∑
h∈H

h

)
= (0Zm , 0Zn , 0H) = 0G ∈ G,

since
∑

i∈Zn
i = n(n − 1)/2 = n/2 modulo n and 2

∑
h∈H h = 0H . Now it

follows again from (10) that

−x1 + xk = 0G,

which contradicts the assumption that x1, . . . , xk are distinct.

In the next Lemma we consider the group (Zn,+) where n = 2m.

Lemma 11. Let n = 2m, where m is a positive natural number. Then the
following statements hold.

a) The sequence xi = i(i+1)/2, 0 ≤ i ≤ n−1, is a DDP sequence modulo
n for all m ≥ 1.

b) The sequence

yi =

{
i(i+ 1)/2 if 0 ≤ i < 2m−2 or 3 · 2m−2 ≤ i < 2m,

i(i+ 1)/2 + 2m−1 if 2m−2 ≤ i < 3 · 2m−2,

is a DDP sequence modulo n for all m ≥ 2.

Proof. Since xi+1 − xi = i + 1, part (a) is equivalent to the claim that
i 7→ i(i + 1)/2 is a bijection on Zn. If n = 2m, then the map i 7→ i(i + 1)/2
is a bijection modulo n. To see this, let j ∈ Zn be arbitrary. Then 8j + 1 is
a quadratic residue modulo 2m+3 [13, Thm. 5-1]. Hence there exists i ∈ Zn
such that 8j + 1 = (2i+ 1)2 (mod 2)m+3, and so j ≡ i(i+ 1)/2 (mod n). It
follows that i 7→ i(i+ 1)/2 is onto, hence a bijection, on Zn.

For part (b), one verifies that the sequence of consecutive differences of
y0, . . . , yn−1 is given by

0, 1, 2, . . . , 2m−2−1, 3·2m−2, 2m−2+1, . . . , 3·2m−2−1, 2m−2, 3·2m−2+1, . . . , 2m−1,

which is obtained from the sequence 0, 1, . . . , 2m−1 by exchanging 2m−2 and
the product 3 · 2m−2, hence y0, . . . , yn−1 is a DDP sequence.

Corollary 12. If n = 2m, m ≥ 3, then |OZn| ≥ n.
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Proof. For m ≥ 3, the two DDP sequences in Lemma 11 are distinct. More-
over, rx0, . . . , rxn−1, and ry0, . . . , ryn−1, are DDP sequences for every odd
number r ∈ Zn, and the corollary follows.

Theorem 13. Let G be an abelian group. Then G is a DDP group if and
only if G has exactly one element of order 2.

Proof. In light of Lemma 10, it is left to show that if G = H × Z2m , where
m ≥ 1 and H is an odd abelian group, then G is DDP. Since H is an odd
nilpotent group and Z2m is an even DDP group by Lemma 11, the claim
follows from Theorem 9.

Corollary 14. Let c1 = 1, c2 = 2, and cm = 2m for m ≥ 3. If G =
Z2m × Zn1 × · · · × Znk

where n1, . . . , nk are odd integers and m ≥ 1, then

|OG| ≥ cm × (2n1)
2m−1−1 × (2n2)

2m−1n1−1 · · · (2nk)2
m−1n1···nk−1−1.

In particular, if an abelian group G has size 2mkl, where m ≥ 1 and k, l are
relatively prime odd integers, then |OG| ≥ (2k)l−1.

Proof. Proof is by induction on k. If k = 0, the claim follows from Lemma 11.
For the inductive step, let G = Znk+1

×H, where by the inductive hypothesis

|OH | ≥ cm × (2n1)
2m−1−1 × (2n2)

2m−1n1−1 · · · (2nk)2
m−1n1···nk−1−1.

By Theorem 7, we have

|OG| ≥ (2nk+1)
(|H|−1−e)/2|OH |,

where e is the number of elements of order 2. It follows from G = Z2m ×
Zn1 × · · · × Znk

that one has e = 1, and the claim follows. The last claim of
the Corollary 14 follows from G ∼= Z2m × Zk × Zl.

5 The non abelian case

Computer searches show that the smallest non abelian DDP group is the
dihedral group D5, which has 320 DDP sequences. If we present D5 in terms
of generators and relations as

D5
∼= 〈a, b | a5 = b2 = 1, aba = b〉,

an example of a DDP sequence in D5 is

1, a, a3, ba3, a2, b, a4, ba4, ba2, ba,

12



with the corresponding sequence of distinct divisors

1, a, a2, ba, b, ba2, ba4, ba3, a3, a4.

The group D6 has 3072 DDP sequences, and the alternating group on four
elements A4 has 2304 DDP sequences.

Computer searches also confirm that D7 is a DDP group, and we conjec-
ture that Dn is a DDP group for all n ≥ 5. As we noted in Lemma 10, an
abelian group of odd order is not DDP. However, the next example shows
that in the non abelian case, DDP groups of odd order do exist.

Example 15. Consider the smallest non abelian group of an odd order, that
is let G = Z7 o Z3 be the non abelian group of order 21. In generators and
relations, G is given by

G ∼= 〈a, b | a7 = b3 = 1, a2b = ba〉.

The following sequence is a DDP sequence in G:

1, a, ba6, ba2, a3, a5, b, b2a4, ba4, b2a2, ba5, ba3, a6, b2a3, ba, b2, b2a6, a2, b2a, b2a5, a4,

where the sequence of distinct divisors is given by

1, a, ba2, a3, b2a6, a2, ba, ba4, b2a3, b, b2a, a5, b2, b2a5, b2a2, ba3, a6, ba6, b2a4, a4, ba5.

The next lemma provides a construction of DDP groups via semidirect
products. Consider for example the semidirect product G = Z9oφZ6, where
φ : Z6 → Aut(Z9) is defined by

φt(j) :=


j if t ≡ 0 (mod 3);

4j if t ≡ 1 (mod 3);

7j if t ≡ 2 (mod 3).

Then G is a DDP group by the following lemma.

Lemma 16. Let φ : Zn → Aut(Zm) be a group homomorphism such that
1 +φs(1) is a generator of Zm for all s ∈ Zn. If m is odd and n is even, then
Zm oφ Zn is a DDP group.

Proof. Consider the projection π : Zm oφ Zn → Zn with ker(π) = Zm × {0}.
The claim follows from Theorem 7 if we show that αgα = g ⇒ α = 0 for all
α ∈ Zm × {0} and g ∈ Zm oφ Zn. Let g = (r, s) and α = (k, 0). Then

αgα = (k, 0)(r, s)(k, 0) = (r + k + φs(k), s) 6= (r, s),

since k+φs(k) 6= 0 for all k 6= 0; otherwise, k(1+φs(1)) = 0 which contradicts
the assumption.
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Finally, we show that there exist infinitely many non abelian DDP groups.

Theorem 17. Let p be a prime with p ≡ 3 (mod 4) and let t be a primitive
root modulo p. Then Zpoφ Zp−1 is a DDP group, where φ : Zp−1 → Aut(Zp)
is given by φs(x) = t2sx. In particular, there exist infinitely many non abelian
DDP groups.

Proof. We first show that t2s is not congruent to −1 modulo p for every
s ∈ Zp−1. If on the contrary, t2s ≡ −1 (mod p), we have 4s ≡ 0 (mod p−1),
which implies that 2s ≡ 0 (mod p − 1) since p ≡ 3 (mod 4). But then
t2s ≡ 1 (mod p), which is a contradiction. It follows that 1 + φs(1) 6= 0 for
all s ∈ Zp−1, and the claim follows from Lemma 16.
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