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Abstract

A finite group of order n is said to have the distinct divisor property
(DDP) if there exists a permutation gy, . . ., g, of its elements such that
gl-_lgzurl =+ gj_lng for all 1 <4 < j < n. We show that an abelian
group is DDP if and only if it has a unique element of order 2. We
also describe a construction of DDP groups via group extensions by
abelian groups and show that there exist infinitely many non abelian
DDP groups.
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1 Introduction

A Costas array of order n is a permutation z1,...,z, of {1,2,...,n} such
that the (g) vectors (j —4,x; — x;), @ # j, are all distinct. Costas arrays
were first studied by John P. Costas for their applications in sonar and radar
[3,14]. Several algebraic constructions of Costas arrays exist for special orders
n, such as Welch, Logarithmic Welch, and Lempel constructions [8, [0} [10].
Through exhaustive computer searches, all Costas arrays of order n < 29
have been found [5]. However, the problem of finding Costas arrays for
larger orders becomes computationally very difficult. The weaker notion of
DDP permutation requires only the consecutive distinct difference property



ie., xjp1 —x; # x4 — x; for all 1 <@ < j < n. By recursive constructions,
an abundance of DDP permutations can be found, at least 2", of order n [1J.
In this paper, we are interested in a notion slightly stronger than DDP.

Definition 1. A DDP sequence mod a positive integer n is a permutation
2o, ..., Ty_1 of the elements of Z, = Z/nZ such that xo = 0 and z;,1 — x; #
xj41 —x; (modn) foral 0 <i<j<n-—1L1

The first example of a DDP sequence mod 12 was introduced by F. H.
Klein in 1925 as the all-interval twelve-tone row, series, or chord

F,E,C,A,G,D, Ab, Db, Eb, Gb, Bb, Cb,

named the Mutterakkord (mother chord) [12]. In integers mod 12, this se-

quence reads
0,11,7,4,2,9,3,8,10,1,5,6,

and the sequence of consecutive differences mod 12 is given by 11, 8, 9, 10,7,
6, 5, 2, 3, 4, 1, which are all distinct. By 1952, there were 18 known examples
of all-interval series [6]. In 1965, IBM 7094 listed all of the 3856 examples of
all-interval rows [2]. Another example of an eleven-interval, twelve-tone row
is the Grandmother chord, invented by Nicolas Slonimsky in 1938 [14].
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Figure 1: An image of the Mother chord and Grandmother chord in Slonimsky’s
Thesaurus of Scales and Melodic Patterns (p. 185).

The grandmother chord has the additional property that the intervals are
odd and even alternately, and the odd intervals decrease by one whole-tone,
while the even intervals increase by one whole-tone. In integers mod 12, the
grandmother chord is

0,11,1,10,2,9,3,8,4,7,5,6,

where the sequence of consecutive differences mod 12 is given by 11, 2, 9, 4,
7,6, 5,8, 3,10, 1. Inspired by Slonimsky’s grandmother chord, we define
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the Slonimsky sequence modulo n by letting

i/2 if 7 is even;

n—(i+1)/2 ifiis odd. (1)

S; = (_1)2'“/21 = {

Then the sequence s, ..., S,_1 is a DDP sequence modulo n if and only
if n is even. If xq,...,x,_1 is a DDP sequence modulo n, then the sequence
rTo, ..., T,_1 is also a DDP sequence modulo n for each r with ged(r, n) = 1.
Therefore, there are at least ¢(n) DDP sequences mod an even integer n.

The numbers of DDP sequences mod even integers are given by the sequence
17, ]

A141599 1 1,2,4,24,288, 3856, 89328, 2755968, 103653120, . . ...

There are no DDP sequences mod odd n (see Lemma [10]).
In our next definition, we generalize Definition [1} which pertains to the
group (Zn,+), to any finite group G.

Definition 2. Let G be a finite group with n elements. We say a permutation
9oy - -+, gn—1 of elements of G has the distinct divisor property (DDP) or
9o,--->gn_1 is a DDP sequence, if gy = 1g and g; 'g;y1 # g;lgjﬂ for all
0 <7< j<n—1. Theset of all DDP sequences in G is denoted by Og. We
say G is a DDP group if Og # 0.

For odd values of n, instead of distinct consecutive differences, the se-
quence has distinct consecutive signed differences. This motivates the
following definition.

Definition 3. Let pg,...,p,—1 be a permutation of elements of an abelian
group G with pg = 0. The sequence of signed differences is defined by hy = 0
and h; = (=1)"Y(p;_1 —pi) for 1 <i <n. Wesay po, ..., Ppn_1 is a Slonimsky
sequence if the following conditions hold:

i) h; #h; forall 0 <i<j<n.
i) h; + h,_; =0 forall 0 <i<n.

iil) p; + pn_i—1 = pn_1 for all 0 < i < n, where we refer to p,_; as the last
term of the sequence.

For example, the following sequence is a Slonimsky sequence in Z:

0,6,1,5,2,4,3,


https://oeis.org/A141599

and its sequence of signed differences is 0, 1, 2, 3, 4, 5, 6. Slonimsky sequences
in odd abelian groups play an important role in constructing DDP sequences
via group extensions, and we study them in section

This is how this paper is organized. In section [2] we show that every odd
abelian group has a Slonimsky sequence. In section [3, we use the existence
of Slonimsky sequences in odd abelian groups to show that every central
extension of an even DDP group by an odd abelian group is DDP (see Cor.
. We also show that for every odd nilpotent group G and an even DDP
group K, the direct product G x K is DDP (see Theorem @ In particular,
G X Zgm is DDP for every odd nilpotent group G and every integer m > 1.

In section 4} we show that a finite abelian group is DDP if and only if it
has a unique element of order 2. We also find a lower bound on the number of
DDP sequences in an abelian group G in terms of the prime factorization of
its order. In particular, we will show that if n = 2™kl for m > 1 and relatively
prime odd integers k, [, then there are at least (2k)!~! DDP sequences modulo
the even integer n (see Cor. . Finally, in section , we will show that there
are infinitely many non abelian DDP groups.

2 Slonimsky sequences in abelian groups

In this section, we prove that every abelian odd group has a Slonimsky se-
quence. This result will only be needed in the proof of Theorem [7| and can
be skipped in a first reading. We begin with the cyclic case.

Lemma 4. Ifn is odd, then G = (Z,,+) has a Slonimsky sequence with the
last term (n —1)/2.

Proof. Let p; = (—1)"[i/2] mod nfor 0 <i <n—1. Then, for 1 <i <n-—1,
we have

hi = (1) (pim1s —pi) = (=) (=D '[(i = 1)/2] = (=1)'[i/2])

[t —1)/2] + [i/2] =1,

hence property (i) in Definition (3| holds. Moreover, h; + h,_; =i+n—i =0
(mod n) and p; + p,i—1 = (=1)[i/2] + (=) (n—i—1)/2] = (n —
1)/2 whether i is even or odd. It follows that py,...,p,_1 is a Slonimsky
sequence. O

Theorem 5. Let G = Zy,, X -+ X Ly, be an odd abelian group. Then there
exists a Slonimsky sequence in G with the last term

(m1 —1)/2,..., (mg — 1)/2).
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Proof. Proof is by induction on d. The claim for d = 1 follows from Lemma
For d > 1, let H = Zy, X -++ X Ly, , and mg = m = 2l — 1. By the
inductive hypothesis for H, there exists a Slonimsky sequence py, . .., p,_1 in
H with signed differences hy, ..., h,_1 such that

hi+ i =0, Vi€ {1,...,n—1}; 2)
it Daict = ((ma — 1)/2, ..., (ma_1 — 1)/2), Vi€ {0,...,n—1}.  (3)

In order to define the Slonimsky sequence P, ..., Py,—1 in G = H X Z,,, we
first define its sequence of signed differences g;, 1 <7 < mn, in G as follows.
For 1 <i<mn, writet =qgn+7r, where 0 <g<m-—-1land 0 <r <n-—1.
Ifr=0, welet g; = (0p,q) € HX Zy,, and if 0 <r <m — 1, we let

gi = (hy, (=) + 2[q/2]) .

We first show that g, ..., gmn_1 is @ permutation of elements of GG. Suppose
gi = gj, where i = gn+r and j =pn+t. If r =0, then g; = g, = (On,q)
which implies that ¢ = 0, hence g; = (0g,p), and so p = ¢ = ¢ = j. Thus,
suppose that r,¢ # 0. It follows from ¢, = g; that h, = h;, and so r =¢. It
also follows from g; = g; that (—1)% + 2[¢/2] = (=1)?1 +2[p/2]. If p—¢q
is odd, we conclude that |2[¢/2] — 2[p/2]| = 2I, which is a contradiction,
since 2[p/2],2[q/2] € {0,2,...,2l — 2}. If p — ¢ is even, we conclude that
2[q/2] = 2[p/2], which implies that p = g = i = j. Therefore, go, ..., gmn_1
is a permutation of elements of G.

Next, we define P, = ZZZO(—l)kgk and show that Py, ..., Ph._1 1S a
Slonimsky sequence in G. A simple induction shows that for ¢« = qn + r with
0<g<m—-—1land 0 <r <n-—1, we have

(pr,q/2) if ¢ is even and r is even;
P (pr, =1 — q/2) if ¢ is even and r is odd;
") (par1, —(g+1)/2) if ¢ is odd and r is even;
(pn—r_1, =L+ (¢+1)/2) if qis odd and r is odd.
We need to show that Fy,..., P,,—1 is a permutation of elements of G.

Suppose that P; = P; for i = gn +r and j = pn +t. If r,t are both even
or both odd, from P; = P;, we conclude that p = ¢. Thus, without loss of
generality, suppose that p is even and ¢ is odd. Then p, = p,_,_1 and so
t = n—r—1 which implies that ¢ and r are both even or both odd. If they are
both odd, then p/2 = —I+(g+1)/2 modulo m, and if they are both even, then
—l—p/2 = —(q+1)/2 modulo m. In either case we gave p/2— (¢+1)/2 = —I
(mod m), which is a contradiction since 1 —1 <p/2—(¢+1)/2 <1 —2.



Next, we show that g; + g =0forall 1 <i<mn—1. Let i = gn+r,
where 0 < g <n—1and 0 < r < m — 1. So we can write mn — 1 =
(m—q—1)n+n—r. Suppose r # 0. Then

gi +gmn—z = (hru (_1)ql + 2|_Q/2-|)+ (hn—r7 (_1)m—q—1l + 2|_(m —q— 1)/21) :
Since h, + h,_, = 0 and m — 1 is even, this simplifies to

If r =0, then g; = (0,¢) and one writes mn — i = (m — ¢)n. Therefore,
Gmn—i = (0,m — ¢q) which again leads to ¢; + ¢mn—i = (0,0).

Finally, we claim that P, + Pp,—i—1 = ((m1—1)/2,...,(mgs—1)/2) for all
i€{0,...,mn—1}. We have p, + pr—1 = ((m1 —1)/2,...,(mg_1 — 1)/2)
for all r =0,...,m — 1 by the inductive hypothesis. Let ¢ = gn 4+ r, and so
mn—i—1=(m—-—qg—1)n+n—r—1.1If ¢ is even and r is odd, then

P+ Prp—ic1 = (pr + Pp—r—1, (m —1)/2)
=((m1—1)/2,...,(mg_1—1)/2,(m —1)/2).

The claim in other cases follows similarly. O]

3 Central extensions

In this section, we describe a construction of DDP sequences via group
extensions. Let GG be a group extension of H by N i.e., suppose that
1 - N =G5 H — 1is a short exact sequence. We will describe an
algorithm to [ift a DDP sequence in H to GG. By a lift of the DDP se-
quence hy,...,hy in H to G, we mean a DDP sequence gi,..., g, such
that 7w(g;) = h; fori=1,...|H]|.

It turns out that in order for our algorithm of lifting a DDP sequence
from H to G work, the group N = ker(7) must contain no real elements of
G except the identity.

Definition 6. An element h € G is said to be a real element of G if there
exists ¢ € G such that g7thg = h~!. We denote the set of real elements of

G by R(G).

Let N be a normal subgroup of GG. If the only real element of G in N is
lg ie., NNR(G) = {lg}, then

Vh € N\{1g} Vg € G : hgh # ¢, (4)
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or equivalently, for abelian N,
Vg eG Vhl,hg eN:h % hy = hlghl 7£ hgghQ.

If N is contained in the center of G, then N NR(G) = {1¢} is equivalent to
N having odd order.

Theorem 7. Let 71 : G — H be an epimorphism such that ker(w) is an
abelian group of odd order m with ker(m) N R(G) = {1¢}. If H is an even
DDP group, then G is an even DDP group. More precisely, let py, ..., pn_1 be
a DDP sequence in H. Then there exist at least (2m)™~1=9/2 DDP sequences
Py, ..., Pun_1 in G such that m(P;) = p; for alli =0,...,n — 1, where e is
the number of elements of order 2 in H. In particular

10¢| > |0y x (2m)"—179)/2,

Proof. Let pg,...,pn_1 be a DDP sequence in H. We define hg = 1y and
h, = p;tp. for 1 <r < n — 1. We define a bijection o : {0,...,n — 1} —
{0,...,n—1} by letting o(r) to be the unique number in {0,...,n—1} such
that ko) = h,'. Let

I={0<r<n-1:0(r)=r},
and let A be a set obtained by including exactly one of r or o(r) for every

r€40,...,n—1}\7, and define B ={0,...,n — 1}\(AUI). Clearly, 0 € 1
and there are 2("11D/2 choices for A.

Let also ag,aq,...,q,_1 be a Slonimsky sequence in N = ker(r); such
a special DDP sequence exists by Theorem |5, since N has odd order. Let
Bo, - - -, Bm—1 be the sequence of signed differences. Let us denote the element

Qm—1 by yn. By the definition of Slonimsky sequence, one has

QiQp—1—i = YN = U1, VO <7 <m—1 (5)
BiBm—i =0y, V1<i<m-—1 (6)

In order to define the sequence F, ..., P,.,_1, we first define its sequence
of consecutive differences g, ..., gmn_1 as follows. For each r € A, we let g,
be an arbitrary element of 7~!(h,). Also, if r € A, we define

gt if r + o(r) is odd;
Gor) = § Yng, 'yn  if r and o(r) are both odd; (7)

yv' 9 yy' if r and o(r) are both even.



To define g, for r € I, choose f. € m~'(h,) to be arbitrary. Then one can
show that

71 (h,) = {aifra; | i€ {1,...,m} and o; € N},

and hence there exists v, € N such that ! = v, fv,, since 7(f,!) = h, =
r+1
7(f,). Then, choose w, € N such that w? = vry](\,_l) ’ , and let g, = w, frw,.

It follows from this definition that

r

1 yngryn  if r €I is even;
yﬁlgryﬁl if r € I is odd.

Next, we define g; for all n < ¢ < mn — 1. The idea is to present
9o, - - -, Gmn—1 as a union of m blocks each containing n elements so that
7w maps each block onto H, alternating in increasing (for even blocks) or
decreasing (for odd blocks) order of indices. To be more precise, by the
Euclidean algorithm, there exist unique integers 0 <r <n—1and 0 < g <
m — 1 such that i =ng+7r. Ilf r =0, let g; = 3,. If r > 1, let

-1 . . . .
Qg if ¢ is odd and r is odd;
agtg, st if g is odd and r is even;
9i = 1 1 P . (8)
Q. groy if ¢ is even and r is odd;
Gy 0y if ¢ is even and 7 is even.

We claim that the sequence P, = HZ:O g, 0 < i < mn—1,is a DDP
sequence. We prove by induction on 0 < ¢ < mn — 1 that for ¢« = nq + r, we
have

P, 10y if ¢ is odd and r is odd;

P Pn_r_lagl if ¢ is odd and r is even,; ()
! P.a! if ¢ is even and 7 is odd;
P, if ¢ is even and r is even.

The claim is clearly true for all 0 < i < n — 1. Suppose the claim is true for
1 = nqg + r. Suppose that ¢ and r are both odd. The proof in all other cases
is similar. If r = n — 1 then

Py = Pigiv1 = (Poog) Bgr1 = Poaga
as claimed. If 0 <r <n—1. Then i+ 1=mnqg+ (r+ 1) and we have

P72+1 == Pigi—i—l = (Pn—r—laq)(aq_lgg_lr_laq_l) - Pn—r—2aq_1



as claimed. It follows from @ that P, # P; for 0 <i < j <mn — 1. To see
this, suppose P; = P; for ¢ = ng;+r; and j = nga+re. Suppose that ¢; and go
are even. The proof in other cases is similar. Then p,, = 7(F;) = 7(FP;) = pr,
which implies that 1 = ry = r. But then o, = (P71P)* = (P71P)*! =
0y, and so q; = g2, hence i = j.

Next, we show that g; # g; for all 0 <i < 7 < mn — 1. On the contrary,
suppose that g; = g; for ¢ = gn+r and j = pn+s where 1 <r,s < n. There
are two cases:

Case 1. p = ¢ (mod 2). If p,q are both even, then h, = 7(g;) = 7(g;) =
hs, and if p, ¢ are both odd, then h,_, = 7(g;) ™' = 7(g;) "' = hy_s. In either
case, we conclude that » = s. If r is even, this implies that a,g,0, = ;9,04
(if p,q are even) or o tg, ot = aytg ot (if p,q are odd). In either
case, since N N R(G) = {1g}, we must have p = ¢, and so i = j.

Case 2. Without loss of generality, suppose ¢ is even and p is odd. Then
aFlg.aft = aflg, ! aF'. By projecting onto H via 7, we must have h, =
h'.. Ifr=n—s eI, then r and s are both even or both odd. If they are
both even, it follows from g; = g; that azg,0q = @, 'g, ', ' which implies
that a,a; = yn, which is a contradiction, since p and ¢ have different parity.
If 7 and s are both odd, then a;'gra;' = apg; ', which leads to the same
contradiction.

Thus, suppose r € AU B. Without loss of generality, suppose r € A, and
son—s=o(r) € B. If both r and s are odd, according to Eq. we have
a ' grayt = g0y = YN 9rYy' ap, which implies a,a, = yn, a contra-
1

diction. Similarly, if 7 and s are both even, we have aggray = ;! g;(lr)oc;
a, 1yNgTyNa; !, which again implies a,c, = yn, a contradiction. If r is odd

and o(r) is even, then o 'g.o," !

_ 1,1
= & ga(r)ap
that a, = oy, a contradiction. Finally, if r is even and o(r) is odd, then
gGr 0y = ong;(%n)ap = a,¢,0y which implies that o, = o, a contradiction.
We have shown that P, ..., Py,_1 is a DDP sequence in G with 7(FP;) =
p; for all 0 < ¢ < n — 1. Recall that in constructing the set A, we have
two choices per each pair (r,o(r)). Moreover, for each r € A, we have m
choices in defining g,. It follows that there are at least (2m)l4l = (2m)—11D/2
DDP sequences which are lifts of a given DDP sequence in H. Since [ is
comprised of 15 and elements of order 2, each DDP sequence in H has at
least (2m)™=*~1)/2 lifts to G, where e is the number of elements of order 2

in H. O

= o, gt which implies

Corollary 8. Fvery central extension of an even DDP group by an odd
abelian group is a DDP group.

Proof. Let N be an odd abelian group and H be an even DDP group. Sup-



pose that 7 : G — H is an epimorphism with ker(7w) =2 N. We need to show
that G is a DDP group. Since ker(7) is an odd abelian group and, by the
definition of central extension, the normal subgroup ker(w) lies in the center
of G, one has ker(m) N Re = {1¢}, the conditions of Theorem (7| hold, hence
G is an even DDP group. O]

Theorem 9. Let G be a finite odd nilpotent group and K be an even DDP
group. Then G x K is a DDP group.

Proof. Let Zy < Zy < --- < Z, = G be the upper central series of G. We
prove by a finite reverse induction on 0 < i < n that (G/Z;) x K is a DDP
group. The claim is clearly true for ¢ = n. Suppose we have proved that
(G/Zi+1) x K is DDP for 0 < i < n and we show that (G/Z;) x K is DDP.
Consider the epimorphism

G

ii—XK-)
8 ZZ Z’H‘l

X K, 7Tz(9+Zz; k’) = (g+Zi+1, k’)

induced by the inclusion Z; < Z; ;1. By the inductive hypothesis G/(Z;11) X
K is DDP. Moreover, ker(m;) = (Z;11/Z;) x {1k} which is contained in the
center of G/Z; x K. Tt then follows from Corollary [§ that (G/Z;) x K is
DDP. When ¢ = 0, we conclude that G x K is DDP. O

4 The abelian case

In this section, we determine all finite abelian DDP groups. We begin with
describing an obstruction to the existence of a DDP sequence in the abelian
case. For an abelian group G, we use Og (or simply 0) to denote its identity
element.

Lemma 10. If G is an abelian DDP group, then it has a unique element of
order 2.

Proof. Let x1,...,x; be a DDP sequence in G. Then we have

k—1
—r +ap, = Z —T; + T = Zg. (10)
i=1 geCG

Now let us assume to the contrary that either G has odd order or it has
more than one element of order 2. Firstly, if G has odd order, we have

2) 0ca 9 =2 gcc 9t 2 gec(—9) = Og, and (10) implies that x; = 1, which
is not allowed. Secondly, if G has more than one element of order 2, then
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one can write G = Z,, X Z, X H for even integers m,n, and an abelian group
H. But then

Zg = (mn|H\/2,mn|H|/2,ng h) = (0z,,,0z,,0n) = 0g € G,
geG heH

since ) ., @ = n(n —1)/2 = n/2 modulo n and 2}, ., h = 0. Now it
follows again from that

—T1 + T = Og,
which contradicts the assumption that zy, ..., x; are distinct. O
In the next Lemma we consider the group (Z,, +) where n = 2™.

Lemma 11. Let n = 2™, where m is a positive natural number. Then the
following statements hold.

a) The sequence x; = i(i+1)/2, 0 <i <n—1, is a DDP sequence modulo
n for allm > 1.

b) The sequence

i+ 1))2 if0<i<2m2or3.2m2 << 2m
Vi 02 2m ifem << 3.9m2,

is a DDP sequence modulo n for all m > 2.

Proof. Since x;41 — x; = i + 1, part (a) is equivalent to the claim that
i+ i(i+1)/2 is a bijection on Z,. If n = 2™, then the map i — (i + 1)/2
is a bijection modulo n. To see this, let j € Z, be arbitrary. Then 85 + 1 is
a quadratic residue modulo 2™*3 [13, Thm. 5-1]. Hence there exists i € Z,
such that 8 +1 = (2¢ +1)? (mod 2)™"3 and so j =i(i + 1)/2 (mod n). It
follows that i — i(i + 1)/2 is onto, hence a bijection, on Z,.

For part (b), one verifies that the sequence of consecutive differences of

Yo, - - -, Yn—1 1s given by
0’ 17 27 e 72m_2_]‘7 32m_27 2m_2+17 e 73'2m_2_]—7 2m_27 32m_2+17 R 72m_]-7

which is obtained from the sequence 0, 1,...,2™ —1 by exchanging 2™~2 and
the product 3 - 2™72 hence o, ..., y,_1 is a DDP sequence. O

Corollary 12. If n = 2™, m > 3, then |Oy,| > n.
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Proof. For m > 3, the two DDP sequences in Lemma [11] are distinct. More-
over, rxg, ..., Tp_1, and ryp,...,ry,_1, are DDP sequences for every odd
number r € Z,, and the corollary follows. O]

Theorem 13. Let G be an abelian group. Then G is a DDP group if and
only if G has exactly one element of order 2.

Proof. In light of Lemma [10}, it is left to show that if G = H X Zym, where
m > 1 and H is an odd abelian group, then G is DDP. Since H is an odd
nilpotent group and Zym is an even DDP group by Lemma the claim
follows from Theorem [9l O

Corollary 14. Let ¢y = 1, ¢co = 2, and ¢, = 2™ form > 3. If G =
Ligm X Lig, X =+ X Ly, where ny, ..., ny are odd integers and m > 1, then

|OG| > Cm X (2n1)2m71—1 X (2n2)2m—1n1—1 .. <2nk)2m71n1~--nk_1—1.

In particular, if an abelian group G has size 2™kl, where m > 1 and k,l are
relatively prime odd integers, then |Og| > (2k)!~L.

Proof. Proof is by induction on k. If k = 0, the claim follows from Lemma
For the inductive step, let G = Z x H, where by the inductive hypothesis

1
10| > ¢ % (2711)27%1_1 X (2n2)2"H”1—1 . (gnk)T’Hny--nk_l—y
By Theorem [7], we have
0c| > (2nypn) 7972104,

where e is the number of elements of order 2. It follows from G = Zom X
Lo X+ X Ly, that one has e =1, and the claim follows. The last claim of
the Corollary [14] follows from G = Zgm X Zy, X 7. O

5 The non abelian case

Computer searches show that the smallest non abelian DDP group is the
dihedral group D5, which has 320 DDP sequences. If we present Ds in terms
of generators and relations as

Ds = (a,b|a®=0b*=1, aba = b),
an example of a DDP sequence in Dj is

1,a,a ba®, a? b, a*, ba*, ba?, ba,
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with the corresponding sequence of distinct divisors
1,a,a?, ba,b,ba®, ba*, ba®, a®, a*.

The group Dg has 3072 DDP sequences, and the alternating group on four
elements A, has 2304 DDP sequences.

Computer searches also confirm that D7 is a DDP group, and we conjec-
ture that D, is a DDP group for all n > 5. As we noted in Lemma an
abelian group of odd order is not DDP. However, the next example shows
that in the non abelian case, DDP groups of odd order do exist.

Example 15. Consider the smallest non abelian group of an odd order, that
is let G = Zr X Z3 be the non abelian group of order 21. In generators and
relations, G is given by

G={a,b|a" =0b=1, a*h = ba).
The following sequence is a DDP sequence in G:
1,a,ba® ba? a3, a®, b, b%a*, ba, b?a®, ba®, ba®, a8, b%a®, ba, b, b?a®, a?, b2a, b%a®, a*,
where the sequence of distinct divisors is given by
1,a,ba?, a®,b%a%, a®, ba, ba*, b*a®, b, b*a, a®, b, b%a®, b*a?, ba®, %, ba®, b?a?, a*, ba’.

The next lemma provides a construction of DDP groups via semidirect
products. Consider for example the semidirect product G' = Zg %, Zg, where
¢ Zg — Aut(Zy) is defined by

j ift=0 (mod 3);
Gu(j) =147 ift=1 (mod 3);
77 ift=2 (mod 3).
Then G is a DDP group by the following lemma.

Lemma 16. Let ¢ : Z, — Aut(Z,,) be a group homomorphism such that
1+ ¢4(1) is a generator of Z,, for all s € Z,. If m is odd and n is even, then
Loy X Ly, 15 a DDP group.

Proof. Consider the projection 7 : Z,, X Z,, — Zy, with ker(m) = Z,, x {0}.
The claim follows from Theorem [7] if we show that aga = g = a = 0 for all
a € Ly, x {0} and g € Zy, Xy Zy,. Let g = (r,s) and a = (k,0). Then

agt = (k,O)(?“,S)(/{,O) = (7‘ +k+ ¢s(k)73) # (T, S)a

since k+¢s(k) # 0 for all k& # 0; otherwise, k(14 ¢5(1)) = 0 which contradicts
the assumption. O

13



Finally, we show that there exist infinitely many non abelian DDP groups.

Theorem 17. Let p be a prime with p =3 (mod 4) and let t be a primitive
root modulo p. Then Z, X Zy,—1 is a DDP group, where ¢ : Z,— — Aut(Z,)
is given by ¢4(x) = t**z. In particular, there exist infinitely many non abelian
DDP groups.

Proof. We first show that #?* is not congruent to —1 modulo p for every
s € Zp—1. If on the contrary, t** = —1 (mod p), we have 4s =0 (mod p—1),
which implies that 2s = 0 (mod p — 1) since p = 3 (mod 4). But then
t** =1 (mod p), which is a contradiction. It follows that 1 + ¢4(1) # 0 for
all s € Z,_1, and the claim follows from Lemma |16} O
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