
Congruences modulo primes of the Romik
sequence related to the Taylor expansion of

the Jacobi theta constant θ3

Robert Scherer

April 10, 2019

Abstract

Recently, Romik determined in [9] the Taylor expansion of the
Jacobi theta constant θ3, around the point x = 1. He discovered a
new integer sequence, (d(n))∞n=0 = 1, 1,−1, 51, 849,−26199, . . . , from
which the Taylor coefficients are built, and conjectured that the num-
bers d(n) satisfy certain congruences modulo various primes. In this
paper, we prove some of these conjectures, for example that d(n) ≡
(−1)n+1 (mod 5) for all n ≥ 1, and that for any prime p ≡ 3 (mod 4),
d(n) vanishes modulo p for all large enough n.

1 Introduction

1.1 The sequence (d(n))∞n=0 and the main result

In this paper we will prove a list of congruences, modulo certain prime num-
bers, satisfied by the integer-valued Romik sequence, which is defined below
and whose first several terms are given by

(d(n))∞n=0 = 1, 1,−1, 51, 849,−26199, 1341999, 82018251, 18703396449, . . .

(see also [11]). Specifically, we will show:

Theorem 1. (i) d(n) ≡ 1 (mod 2) for all n ≥ 0,

(ii) d(n) ≡ (−1)n+1 (mod 5) for all n ≥ 1, and
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(iii) if p ≡ 3 (mod 4), then d(n) ≡ 0 (mod p) for all n > p2−1
2
.

This proves half of Conjecture 13 (b) in [9], where the sequence (d(n))
was first introduced. (The half of the statement that we don’t prove is that
for primes p = 4k + 1, the sequence (d(n))∞n=0 mod p is periodic, although
Theorem 1 is a specific example of this phenomenon in the case p = 5.)

The sequence (d(n)) is defined in terms of the Jacobi theta constant θ3,
which is the holomorphic function defined on the right half-plane by

θ3(x) = 1 + 2
∞∑
n=1

e−πn
2x (Re(x) > 0). (1)

θ3 satisfies the modular transformation identity

θ3

(
1

x

)
=
√
x θ3(x), (2)

which implies that the function ϑ defined on the upper half-plane by ϑ(τ) =
θ3(−iτ) is a weight 1

2
modular form with respect to a certain subgroup of

SL2(Z) (see [10, Ch. 4] and [3, p. 100]). The numbers d(n) arise in the
following way.

Definition 2 (Romik [9]). Define the function σ on the unit disk by

σ(z) =
1√

1 + z
θ3

(
1− z
1 + z

)
, (3)

and define the sequence (d(n))∞n=0 by

d(n) =
σ(2n)(0)

AΦn
,

where Φ =
Γ( 1

4)
8

128π4 , and A = θ3(1) =
Γ( 1

4)√
2π3/4 .

Thus the numbers (d(n))∞n=0 are the Taylor coefficients, modulo trivial
factors, of σ at 0. It’s not at all clear from the definition that the numbers
d(n) are integers, but this is shown to be true in [9]. Furthermore, the
connection of the sequence (d(n)) to the derivatives of θ3 at 0 can be made
explicit:

Theorem 3 (Romik [9]). For all n ≥ 0,

θ
(n)
3 (1) = A · (−1)n

4n

bn/2c∑
k=0

(2n)!(4Φ)k

2n−2k(4k)!(n− 2k)!
d(k). (4)
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1.2 Fourier and Taylor coefficients of modular forms

While the study of congruences of derivatives of modular forms is relatively
recent, congruence properties of the Fourier coefficients of modular forms
have been well-studied since the work of Ramanujan. He famously proved,
for example, that τ(n) ≡ σ11(n) (mod 691), where σ11(n) is the sum of the
11th powers of the positive divisors of n, and τ(n) denotes the nth Fourier
coefficient of the modular discriminant, ∆ (see [10, Ch.2]). Similar results
for τ with respect to other moduli are discussed in [8]. Another well-known

example is the modular function j =
E3

4

∆
, and various vanishings of the Fourier

coefficients of j modulo powers of primes are discussed in [2, Ch.4 ].
In this paper we contribute to a more recent focus on the arithmetic prop-

erties of the Taylor coefficients of modular forms. Theorem 1 (iii) is related
to a result in [6], which gives a sufficient condition for the vanishing modulo
pm (p prime, m ≥ 0) of the Taylor coefficients, with respect to a certain
differential operator, of a certain class of modular forms, not containing θ3.
We discuss not only the vanishings mod p of Taylor coefficients of θ3, but
also the result Theorem 1 (ii) regarding the periodicity of congruences mod
5. The periodicity of Taylor coefficients of modular forms does not appear
to be well-studied, and as it was further conjectured in [9] that d(n) has
periodic congruences mod p for all primes p ≡ 1 (mod 4), it is our hope that
the result given here for p = 5 will eventually give way to a proof of that
broader conjecture.

1.3 An auxiliary matrix and a recurrence for d(n)

In this subsection we recall from [9] a recurrence relation for (d(n)) in terms
of a certain infinite matrix.

Definition 4. Define the sequences (u(n))∞n=0 and (v(n))∞n=0 by u(0) = v(0) =
1 and the following recurrence relations for n ≥ 1:

u(n) = (3 · 7 · · · (4n− 1))2 −
n−1∑
m=0

(
2n+ 1

2m+ 1

)
(1 · 5 · · · (4(n−m)− 3))2 u(m)

(5)

v(n) = 2n−1 (1 · 5 · · · (4n− 3))2 − 1

2

n−1∑
m=1

(
2n

2m

)
v(m)v(n−m). (6)
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Definition 5. Define the array (s(n, k))1≤k≤n, by

s(n, k) =
(2n)!

(2k)!
[z2n]

(
∞∑
j=0

u(j)

(2j + 1)!
z2j+1

)2k

, (7)

where [zn]f(z) = [zn]
∑∞

n=0 cnz
n denotes the n′th coefficient cn in a power

series expansion for f . Also for 1 ≤ k ≤ n, define r(n, k) := 2n−ks(n, k)

Remark: The integers r(n, k) were originally defined in [9] in a different man-
ner and shown to be equivalent to 2n−k times the right-hand-side of (7). The
notation s(n, k) is new.

The importance of the preceding definition is in the following recurrence
relation for d(n) (which is used in [9] to prove that d(n) ∈ Z).

Theorem 6 (Romik [9]). For all pairs (n, k), 1 ≤ k ≤ n, both r(n, k) and
s(n, k) are integers. Furthermore, with d(0) = 1, the following recurrence
relation holds for all n ≥ 1:

d(n) = v(n)−
n−1∑
k=1

r(n, k)d(k). (8)

The proof of Theorem 1 will be based on (8) and a new formula for s(n, k),
given in Theorem 8 below. This formula will provide, among other things,
an argument different from the one in [9] that s(n, k) ∈ Z.

1.4 Structure of the paper

In the next section we will derive a formula for s(n, k) mod p that will be an
important tool in the rest of the paper. In Section 3, we prove Theorem 1,
part (i). In Sections 4 and 5 we will give proofs of parts (ii) and (iii), respec-
tively, based on the expression for s(n, k) mod p derived in Section 2, the
recursive definition (8) for d(n), and a few more facts about the congruences
of (u(n)) and (v(n)).

2 A formula for s(n, k) mod p

Before we derive the formula, we briefly recall some standard definitions
regarding partitions.

4



Let n and k be positive integers. By an unordered partition λ (of n with
k parts) we mean, as usual, a tuple of positive integers, λ = (λ1, λ2, . . . , λk),
with λi ≤ λi+1 for 1 ≤ i < k, such that

∑k
i=1 λi = n. The numbers λi are the

parts. We let Pn,k denote the set of ordered partition of n with k parts, and
we let P ′n,k ⊂ Pn,k be the set of such partitions whose parts are odd numbers.
For a given λ ∈ Pn,k, we will let ci denote the number (possibly 0) of parts
of λ whose value is i, for 1 ≤ i ≤ n. Thus, the tuple c(λ) = (c1, c2, . . . , cn)
gives an alternative description of λ, which we will use freely. (Although each
ci depends on λ, we choose not to reflect this dependence in the notation,
in order to keep it simple, and since it will always be clear from context.)
Finally, observe that

∑n
i=1 ici = n, and

∑n
i=1 ci = k, for each λ ∈ Pn,k.

Lemma 7 ([1, pp. 215-216]). For any pair (n, k) of positive integers such
that n ≥ k, and any partition λ ∈ Pn,k, the number N(λ) defined by

N(λ) =
n!∏n

i=1 i!
cici!

is an integer.

Remark: The theorem in [1] proves the stronger statement that if S is a set
with n elements, then N(λ) is the number of set partitions of S into k blocks
Bi, with |Bi| ≤ |Bi+1| for 1 ≤ i < k, such that |Bi| = λi.

Theorem 8. For any pair (n, k) of positive integers such that n ≥ k, we
have

s(n, k) =
∑

λ∈P ′2n,2k

[
(2n)!

∏2n
i=1 u

(
i−1

2

)ci∏2n
i=1 i!

cici!

]
. (9)

If P ′2n,2k is empty, then s(n, k) = 0.

Proof. From (7) we see that

s(n, k) =
(2n)!

(2k)!
[z2n]

∑
j≥1
j odd

u
(
j−1

2

)
j!

zj


2k

=
(2n)!

(2k)!

∑
(j1,j2,...,j2k)

2k∏
i=1

u
(
ji−1

2

)
ji!

, (10)
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where the sum runs over all tuples j = (j1, j2 . . . , j2k) of positive odd integers
such that

∑2k
i=1 ji = 2n (in other words, over all ordered partitions of 2n into

2k odd parts). Call the set of such tuples Λ. To each j ∈ Λ we associate
the unique unordered partition λ ∈ P ′2n,2k obtained by ordering the ji’s in
non-decreasing order, and we also associate the tuple c(λ). We can define an
equivalence relation on Λ by calling j and j′ equivalent if they map to the
same c(λ) under this association. If j maps to c(λ) = (c1, . . . , c2n) ∈ P ′2n,2k,
then it is elementary to count that the size of the equivalence class of j

is (2k)!∏2n
i=1 ci!

. Furthermore, the product
∏2k

i=1

u( ji−1

2 )
ji!

in (10), as a function of

(j1, . . . , j2k), is constant on equivalence classes, and the equivalence classes
are indexed by P ′2n,2k in the obvious way. Thus, we may rewrite (10) as

s(n, k) =
(2n)!

(2k)!

∑
λ∈P ′2n,2k

(
(2k)!∏2n
i=1 ci!

2n∏
i=1

u
(
i−1

2

)ci
i!ci

)
,

which simplifies to (9).

In light of Lemma 7 and the fact that each u(n) is an integer, we see
explicitly that s(n, k) is always an integer. Furthermore, we may reduce
mod p in (9) to immediately obtain the following formula for s(n, k) mod p.
Henceforth, if x ∈ Z, and p ≥ 2 is prime, we let xp denote the congruence
class of x modulo p.

Corollary 9. For any pair (n, k) of positive integers such that n ≥ k, and
any prime number p, we have

s(n, k)p =
∑

λ∈P ′2n,2k

[ (2n)!∏2n
i=1 i!

cici!

]
p

2n∏
i=1

[
u

(
i− 1

2

)ci]
p

 , (11)

where the multiplication in parentheses is of congruence classes, as is the
summation over P ′2n,2k.

3 Proof of Theorem 1 (i)

In the previous section we saw that s(n, k) = r(n,k)
2n−k is an integer for all

1 ≤ k ≤ n, which immediately implies that r(n, k) is even. Thus, (8) implies
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that in order to show that d(n) is odd for all n, it suffices to show that v(n)
is odd for all n. We will prove this by induction. The first few values of v(n)
are given by (v(n))∞n=0 = 1, 1, 47, 7395, . . . , which can easily be computed.
This establishes the base case.

Before proceeding with the induction step, we recall the following formula
of Legendre [7, p. 10]. For p a prime number, and n a positive integer, let
ωp(n) denote the p-adic valuation of n, meaning that ωp(n) is the largest
natural number α such that pα divides n.

Theorem 10 (Legendre). For any positive integer n,

ωp(n!) =
n− sp(n)

p− 1
,

where sp(n) is the sum of the digits in the base-p expansion of n.

Assume now the induction hypothesis that v(m) is odd for all m < n.
We first consider the case that n is odd. Throughout the proof we will use
the notation A ≡ B, for A,B ∈ Z, to mean that A and B have the same
parity. We apply the induction hypothesis to simplify the expression in (6),
obtaining

v(n) ≡ 1

2

n−1∑
m=1

(
2n

2m

)
=

n−1
2∑

m=1

(
2n

2m

)
.

Then we apply twice the famous identity of Pascal, which says that for 1 ≤
k ≤ n,

(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1

)
. Thus we obtain

v(n) ≡
n−1
2∑

m=1

[(
2n− 2

2m

)
+ 2

(
2n− 2

2m− 1

)
+

(
2n− 2

2m− 2

)]

≡

 n−1
2∑

m=1

(
2n− 2

2m

)+

 n−1
2∑

m=1

(
2n− 2

2m− 2

)
=

(
2n− 2

n− 1

)
+

 n−1
2∑

m=1

(
2n− 2

2m

)+ 1 +

 n−1
2∑

k=1

(
2n− 2

2k

)
≡
(

2n− 2

n− 1

)
+ 1,
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which is odd, since
(

2k
k

)
is even for all k ≥ 1. Now assume that n is even.

Similarly to the odd case, we have

v(n) ≡
n
2
−1∑

m=1

(
2n

2m

)
+

1

2

(
2n

n

)

=

 n
2
−1∑

m=1

[(
2n− 2

2m

)
+ 2

(
2n− 2

2m− 1

)
+

(
2n− 2

2m− 2

)]+
1

2

(
2n

n

)

≡
(

2n− 2

n− 2

)
+ 2

 n
2
−2∑

m=1

(
2n− 2

2m

)+ 1 +
1

2

(
2n

n

)

≡ 1 +
1

2

(
2n

n

)
+

(
2n− 2

n− 2

)
.

So to complete the proof we must show that

1

2

(
2n

n

)
≡
(

2n− 2

n− 2

)
,

for all n ≥ 1. We do this by checking separately the parity of each term.
First we claim that 1

2

(
2n
n

)
is odd iff n is a power of 2. Indeed, by Theorem

10 we have

ω2

(
1

2

(
2k

k

))
= ω2((2k)!)− 2ω2(k!)− 1

= s(k)− 1 ≥ 0,

with equality iff s2(k) = 1, iff k is a power of 2, as claimed.
Next, observe that

(
2n−2
n−2

)
is odd iff ω2

(
2n−2
n−2

)
= 0. From Theorem 10 we

see that

ω2

(
2n− 2

n− 2

)
= s2(n) + s2(n− 2)− s2(2n− 2),

which is 0 iff n and n − 2 don’t both have a 1 digit in the same place in
their binary expansions. This certainly occurs when n is a power of 2. On
the other hand, if n is not a power of 2, write the binary expansion of n as
n =

∑∞
i=0 ai2

i, and let i1 and i2 be the indices at which the first and second
1 occur in the expansion, i.e.

n = 2i1 + 2i2 + r,

8



where either r = 0 or r is divisible by 2j, for some j > i2 ≥ i1. Then

n− 2 =
(∑i1−1

i=0 2i
)

+ 2i2 + r, and we see that n and n− 2 share a 1 for their

i2’th digit; hence
(

2n−2
n−2

)
is even. This completes the proof.

4 The behavior of d(n) modulo p = 5

4.1 A formula for r(n, k) mod 5

Corollary 9 provides a flexible way to reduce s(n, k) (and hence r(n, k))
modulo p, and will be our main tool, along with the recurrence relation
(8), in studying the congruences of d(n) modulo primes p 6= 2. In the case
p = 5, the reduction (11) is particularly simple. Throughout this section the
notation A ≡ B will be shorthand for A ≡ B (mod 5).

Theorem 11 (Formula for r(n, k) mod 5). For 1 ≤ k ≤ n ≤ 5k the following
congruences hold mod 5:

r(n, k) ≡


(2n)!

( 5k−n
2 )!(n−k

2 )!5
n−k
2

if n− k is even

2(2n)!

( 5k−n−1
2 )!(n−k−1

2 )!5
n−k−1

2
if n− k is odd

(12)

If n > 5k, then r(n, k) ≡ 0.

A graphical plot of Theorem 11 shows a compelling fractal pattern (see
Figure 1 below).

Before we begin the proof, we need another lemma about the sequences
(u(n)) and (v(n)).

Lemma 12. The sequences u and v satisfy the following congruences mod
5:

(i) (v(n))∞n=0 ≡ (1, 1, 2, 0, 0, 0, 0, . . . )

(ii) (u(n))∞n=0 ≡ (1, 1, 1, 0, 0, 0, 0, . . . )

9



Figure 1: Congruences of r(n, k) mod 5, 1 ≤ k ≤ n < 120. The rows are
indexed by n, the columns are indexed by k, and the colors indicate residue
classes of r(n, k) mod 5, according to the colorbar.

Proof. From Definition 4, one can calculate by hand or with a computer
that the first few terms of the sequence (u(n))∞n=0 are 1, 6, 256, 28560, 6071040.
Furthermore, it is clear from (5) that if n ≥ 4, we have the simplified recursion

u(n) ≡
(

2n+ 1

2n− 1

)
u(n− 1)

since the term (3 · 7 · 11 · · · (4n − 1))2) vanishes, as do all of the terms in
the summation except for the term corresponding to m = n − 1. Then by
induction we see that u(n) ≡ 0 for all n ≥ 4.

Similarly the initial terms of the sequence (v(n))∞n=0 are 1, 1, 47, 7395,

10



2453425, 1399055625. For n ≥ 2 the following relation holds

v(n) ≡ −1

2

n−1∑
m=1

(
2n

2m

)
v(m)v(n−m)

so if we assume that v(k) ≡ 0 for 2 ≤ k ≤ n, then it is clear that v(n+1) ≡ 0,
and the lemma follows by induction.

Remark: Whereas Theorem 8 is general for all primes, the lemma we just
proved was stated for p = 5. In fact, experimental evidence suggests that
this lemma can be generalized to the statement that u(n) and v(n) are both
congruent to 0 mod p for all n ≥ p+1

2
, when p is a prime congruent to 1 mod

4. Indeed our proof in the case p = 5 is rather ad hoc and in particular
makes no use of the binomial coefficients appearing in the recursions for u
and v. In Section 4 we will prove a similar lemma for u and v in the case
p ≡ 3 (mod 4).

Proof of Theorem 11. In view of Lemma 12, we may restrict the class of
partitions that need to be considered in the summation appearing in (11).
More specifically, let P3

n,k ⊂ P ′n,k be the set of partitions of n into k parts
among the first three odd positive integers, 1, 3, 5. Since u(n) vanishes mod 5
for n > 2, and therefore u

(
i−1

2

)
vanishes mod 5 for i > 5, summands in (11)

that are indexed by partitions not in P3
2n,2k have a residue of 0 mod 5. Thus

we obtain an equivalent definition of s(n, k)5 to that in (11) if we replace the
indexing set with P3

2n,2k and adopt the convention that s(n, k)5 = 0 for pairs
(n, k) such that P3

2n,2k is empty.

Furthermore, for n = 0, 1, 2, u(n) ≡ 1. Hence, u
(
i−1

2

)
≡ 1 for i = 1, 3, 5,

and if we substitute these values of u
(
i−1

2

)
5

into (11), we obtain

s(n, k)5 =
∑

λ∈P3
2n,2k

[
(2n)!

c1!3!c3c3!5!c5c5!

]
5

, (13)

with the convention that s(n, k)5 = 0 if P3
2n,2k = ∅. The expression is already

interesting. One immediate implication is that if 5k < n, then r(n, k)5 =
s(n, k)5 = 0, since P3

2n,2k is clearly empty (see Figure 1).
To reduce the sum in (13) further, we recall that in the field of residues

modulo 5, nonzero elements are invertible; therefore, since we’ve shown that
each summand in (13) is an integer, we can replace 3! in the denominator

11



with 1 and replace 5! = 5 · 4! with 5 · (−1) without changing the value of the
summand’s residue mod 5. Thus, we have

s(n, k)5 =
∑

λ∈P 3
2n,2k

[
(2n)!(−1)c5

c1!c3!c5!

]
5

. (14)

Next, identify elements of P 3
2n,2k in the obvious way with triples (c1, c3, c5)

of non-negative integers satisfying the pair of equations{∑3
i=1 ici = 2n∑3
i=1 ci = 2k.

For a given pair (n, k), if we fix c5 to be some integer c, then this becomes
an invertible linear system with

c1 = 3k − n+ c , c3 = n− k − 2c.

There exists (c1, c3, c) ∈ P 3
2n,2k satisfying the system if and only if n ≤ 5k

and

max(0, n− 3k) ≤ c ≤
⌊
n− k

2

⌋
.

This allows us to rewrite (14) as a summation over a single index parameter:

s(n, k)5 =


bn−k

2
c∑

c=max(0,n−3k)

[
(2n)!(−1)c

(3k−n+c)!(n−k−2c)!c!5c

]
5

if n ≤ 5k

0 if n > 5k.

(15)

Our next step in the proof is to simplify (15) further by showing that the
summation depends only on the term corresponding to the largest value of the
index parameter, namely c = bn−k

2
c, because all other terms are congruent

to 0. This is the content of the next lemma.

Lemma 13. For integers 0 < k ≤ n ≤ 5k, the quantity

V (c) := ω5

(
(2n)!(−1)c

(3k − n+ c)!(n− k − 2c)!c!5c

)
,

as a function of c ∈ Z, is minimized over max(0, n− 3k) ≤ c ≤ bn−k
2
c when

c = bn−k
2
c and for no other values of c.

12



Proof. Assume n > k, as otherwise there is nothing to check. Let
c ∈ {max(0, n− 3k), · · · , bn−k

2
c − 1}, and let δ = bn−k

2
c − c > 0. Then,

V (c)− V
(⌊

n− k
2

⌋)
= V (c)− V (c+ δ)

= ω5((3k − n+ c+ δ)!)− ω5((3k − n+ c)!)

+ ω5((n− k − 2(c+ δ))!)− ω5((n− k − 2c)!)

+ ω5((c+ δ)!)− ω5(c!)

+ ω5(5c+δ)− ω5(5c).

(16)

Each line of the summation contains a difference that we would like to esti-
mate from below. To do that, we note the general fact that if a and b are
positive integers, then

ω5((a+ b)!) = ω5(a!) + ω5(b!) + ω5

((
a+ b

a

))
; hence,

ω5((a+ b)!)− ω5(a!) ≥ ω5(b!).

We also note that n−k−2(c+ δ) = n−k−2bn−k
2
c ∈ {0, 1} and n−k−2c ∈

{2δ, 2δ+ 1}. Therefore, we can bound from below each line in (16) to obtain
the estimate

V (c)− V
(⌊

n− k
2

⌋)
≥ 2ω5(δ!)− ω5((2δ + 1)!) + δ.

An application of Theorem 10 now yields

V (c)− V
(⌊

n− k
2

⌋)
≥ 2

δ − s5(δ)

4
− 2δ + 1− s5(2δ + 1)

4
+ δ

= δ − s5(δ)

2
+

1

4
(s5(2δ + 1)− 1)

> δ − s5(δ)

≥ 0,

where the last two inequalities amount to the simple fact that for p prime,
any integer k ≥ 1 satisfies 1 ≤ sp(k) ≤ k. We’ve shown that V (c) assumes
its smallest value uniquely at c = bn−k

2
c.
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Proof of Theorem 11, continued. By the lemma, all of the summands in (15),
except the one indexed by c = bn−k

2
c, must vanish mod 5, since they have

positive valuation. The remaining summand may or may not vanish. In any
case, we have the following simplified formula for s(n, k)5, 1 ≤ k ≤ n ≤ 5k.

s(n, k) ≡


(2n)!(−1)

n−k
2

( 5k−n
2 )!(n−k

2 )!5
n−k
2

if n− k is even

(2n)!(−1)
n−k−1

2

( 5k−n−1
2 )!(n−k−1

2 )!5
n−k−1

2
if n− k is odd

(17)

Now we want to translate this into a formula for r(n, k)5 = 2n−k5 s(n, k)5.
The congruence of (n − k) modulo 4 determines the congruence of 2n−k

modulo 5, as well as the sign of (−1)
n−k
2 (respectively (−1)

n−k−1
2 ) in the case

n − k is even (respectively odd). However, it turns out that we need only
consider parity, since one can check routinely that

2n−k(−1)
n−k
2 ≡ 1 (mod 5) if n− k is even, and

2n−k(−1)
n−k−1

2 ≡ 2 (mod 5) if n− k is odd.

Combined with (17), this completes the proof of Theorem 11. �

4.2 Proof of Theorem 1 (ii)

Now that we have a nice expression for r(n, k)5, we return to the main ob-
jective of this section, proving Theorem 1 (ii).

Lemma 14. In order to prove Theorem 1 (ii), it suffices to prove the follow-
ing: For n ≥ 3, ∑

n
5
≤k≤n
k even

r(n, k) ≡
∑

n
5
≤k≤n
k odd

r(n, k) ≡ 0. (18)

Proof. Assume that (18) holds. Then∑
n
5
≤k≤n

r(n, k)(−1)k =
∑

n
5
≤k≤n
k even

r(n, k)−
∑

n
5
≤k≤n
k odd

r(n, k) ≡ 0.

14



Subtracting r(n, n)(−1)n from the left and right sides, we obtain∑
n
5
≤k≤n−1

r(n, k)(−1)k ≡ r(n, n)(−1)n+1. (19)

Now a quick application of Theorem 11 shows that r(n, n) ≡ 1 for all n
(in fact, it’s not hard to deduce from (7) and the fact that u(1) = 1 that
r(n, n) = 1 for all n), and we have also observed above that r(n, k) ≡ 0 when
5k < n. Therefore, from (19) we obtain

n−1∑
k=1

r(n, k)(−1)k ≡ (−1)n+1. (20)

We will now prove by induction that d(n) ≡ (−1)n+1 for n ≥ 1. The cases
n = 1 and n = 2 can be checked directly, since d(1) = −1 and d(2) = 51.
Also from (8) and Lemma 12, we see that when n ≥ 3, the following holds:

d(n) ≡ −
n−1∑
k=1

r(n, k)d(k).

Thus, if n ≥ 3 and we assume the induction hypothesis that d(k) ≡ (−1)k+1

for all 1 ≤ k < n, it follows that

d(n) ≡ −
n−1∑
k=1

r(n, k)(−1)k+1 ≡
n−1∑
k=1

r(n, k)(−1)k.

But the right-hand-side is congruent to (−1)n+1, by (20). This verifies the
induction step. Thus, the truth of (18) implies Theorem 1 (ii).

We will now use some concepts from group theory to verify (18). For
n a positive integer, let Sn denote the symmetric group on n letters, and
recall that every element of Sn has a unique decomposition as a product of
disjoint cycles. Let Xn be the set of elements x ∈ Sn such that x5 = 1. For
any non-negative integer k ≤ n, let Xk

n denote the set of elements x ∈ Sn
such that x can be written as a disjoint product of k five-cycles and n− 5k
one-cycles. Then

Xn =

bn
5
c⋃

k=0

Xk
n . (21)

The connection to Theorem 11 is the following:

15



Lemma 15. For n ≥ 3,

(a.) |X2n| =
∑

n
5
≤k≤n

n−k even

(2n)!(
5k−n

2

)
!
(
n−k

2

)
!5

n−k
2

,

(b.) 2(2n)(2n− 1)(2n− 2) · |X2n−3| =
∑

n
5
≤k<n

n−k odd

2(2n)!(
5k−n−1

2

)
!
(
n−k−1

2

)
!5

n−k−1
2

.

Proof. First we observe that Xk
n is a conjugacy class in Sn with cardinality

|Xk
n| =

n!

(n− 5k)!k!5k
(22)

(see e.g. [4, Prop. 11 and Exercise 33 in Sec. 4.3]).
Fix n ≥ 3. Observe from (22) that if n−k is even, then the expression on

the right-hand-side of (12) is precisely
∣∣∣X n−k

2
2n

∣∣∣ . Also, from (21) we see that

|X2n| =
∑

0≤k≤ 2n
5

|Xk
2n|.

Therefore, to prove part (a.) of the lemma, we must show that the quantity
n−k

2
assumes every value in the set T1 = {0, 1, · · · , b2n

5
c} exactly once as k

ranges over the set T2 = {k : dn
5
e ≤ k ≤ n, n − k even}. This is not hard

to see, since the change of variable k 7→ n−k
2

maps n to 0, and is linear with
first difference −2, while both T1 and T2 have the same cardinality, as one
can deduce from a simple analysis of the cases of the congruence mod 5 of n.

Similarly, if n − k is odd, then the expression on the right-hand-side of

(12) is 2(2n)(2n− 1)(2n− 2) ·
∣∣∣X n−k−1

2
2n−3

∣∣∣, and

|X2n−3| =
∑

0≤k≤ 2n−3
5

|Xk
2n−3|.

So to prove part (b.) we must show that the quantity n−k−1
2

assumes every
value in the set {0, 1, · · · , b2n−3

5
c} exactly once as k ranges over {k : dn

5
e ≤

k ≤ n − 1, n − k odd}. This can be deduced from the change of variables
k 7→ n−k−1

2
and the same type of argument as before.
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We see from Lemma 15 that if n > 3 is even, then |X2n| is congruent to∑
n
5
≤k≤n
k even

r(n, k), and an integer multiple of |X2n−3| is congruent to
∑

n
5
≤k≤n
k odd

r(n, k).

Therefore, in order to verify that (18) holds for all even n, it suffices to show
that |X2n| and |X2n−3| are both congruent to 0, when n > 3. This follows
from a theorem of Frobenius (see e.g. [5]).

Theorem 16 (Frobenius). Let G be a finite group whose order is divisible by
a positive integer m. Then m divides the cardinality of the set of solutions x
in G to the equation xm = 1.

Since Xn is precisely the set of solutions to the equation x5 = 1 in Sn,
the theorem implies that |X2n| ≡ |X2n−3| ≡ 0 for even n > 3. Similarly, if

n > 3 is odd, then |X2n| is congruent to
∑

n
5
≤k≤n
k odd

r(n, k), and an integer multiple

of |X2n−3| is congruent to
∑

n
5
≤k≤n
k even

r(n, k), and we again apply Theoerem 16.

Finally, if n = 3 we can check the validity of (18) by directly computing from
(12) that r(3, 1)5 = 45, r(3, 2) = 05, and r(3, 3) = 15. This verifies (18) for
all n ≥ 3 and finishes the proof of Theorem 1 (ii).

5 Vanishing of d(n) modulo primes p = 4k + 3

5.1 A vanishing theorem for u(n) and v(n)

Throughout Section 5, p will always denote a prime congruent to 3 mod 4,
A ≡ B will be shorthand for A ≡ B (mod p), and we define n0 := p2−1

2
. We

begin with a theorem about the congruences of (u(n)) and (v(n)) modulo p,
similar to Lemma 12 above.

Theorem 17. The sequences (u(n))∞n=0 and (v(n))∞n=0 satisfy

(i)

u

(
p− 1

2

)
≡ 0,

(ii)
u(n) ≡ 0 for n ≥ n0,
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(iii)
v(n) ≡ 0 for n > n0.

We first prove a lemma that will be used repeatedly, then we prove the
theorem in three parts.

Lemma 18. If a, b ∈ Z and p2 ≤ a ≤ b+ p2 − 1 ≤ 2p2 − 2, then
(
a
b

)
≡ 0.

Proof. The hypothesis implies that b ≤ p2 − 1 and a− b ≤ p2 − 1. It follows
that

ωp(b!(a− b)!) =

⌊
b

p

⌋
+

⌊
a− b
p

⌋
≤ a

p
.

Meanwhile, since a ≥ p2

ωp(a!) ≥
⌊
a

p

⌋
+ 1 >

a

p
,

and therefore ωp
((
a
b

))
> 0.

Proof of Theorem 17 (i). By (5), we have

u

(
p− 1

2

)
= (3 · 7 · · · (2p− 3))2

−

p−1
2
−1∑

m=0

(
p

2m+ 1

)[
1 · 5 · · ·

(
4

(
p− 1

2
−m

)
− 3

)]2

u(m).

(23)

The product (3 · 7 · · · (2p− 3))2 contains as factors all positive integers that
are congruent to 3 mod 4 and less than 2p + 1, and p is such a number.
Furthermore

(
p
m

)
≡ 0 for 1 ≤ m < p, so the sum in (23) also vanishes mod

p.

Proof of Theorem 17 (ii). Set n1 = 3(p+1)
4

< n0. Referring to (5), observe

that 3 · 7 · · · (4n− 1))2 ≡ 0 for n ≥ p+1
4

, so in particular for n ≥ n0. Observe
also that 0 ≡ 1 · 5 · · · (4(n−m)− 3) if n−m ≥ n1. It follows that if n ≥ n0,
we have the following truncated summation for u(n):

u(n) ≡
n−1∑

m=n−n1+1

(
2n+ 1

2m+ 1

)
(1 · 5 · · · (4(n−m)− 3))2u(m). (24)
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We will also use the fact that(
2n+ 1

2m+ 1

)
≡ 0 (25)

for n0 ≤ n ≤ n0 + n1 − 2 and n0 − n1 + 1 ≤ m ≤ n0 − 1, which follows
from Lemma 18. Indeed, the assumptions on n in (25) imply that

p2 = 2n0 + 1 ≤ 2n+ 1 ≤ 2n0 + 2n1 − 3 ≤ 2p2 − 2,

and hence

p2 +
3

2
(p+ 1) + 2 = 2n0 − 2n1 + 3 ≤ 2m+ 1 ≤ 2n0 − 1 = p2 − 2.

But p2 + 3
2
(p+1)+2 ≥ (2n+1)−p2 +1, for n ≤ n0 +n1−2. In brief, Lemma

18 applies with a = 2n+ 1 and b = 2m+ 1, verifying (25).
It follows that u(n0) ≡ 0, since (25) implies that all of the binomial

coefficients in (24) vanish mod p when n = n0. Now suppose that

u(n0) ≡ u(n0 + 1) ≡ · · · ≡ u(n0 + k − 1) ≡ 0,

for some k such that 1 ≤ k ≤ n1 − 2. This supposition, along with (24)
implies that

u(n0 + k) =

n0+k−1∑
m=n0+k−n1+1

(
2(n0 + k) + 1

2m+ 1

)
(1 · 5 · · · (4(n0 + k −m)− 3))2

=

n0−1∑
m=n0+k−n1+1

(
2(n0 + k) + 1

2m+ 1

)
(1 · 5 · · · (4(n0 + k −m)− 3))2.

By (25) all the binomial coefficients in the sum vanish; hence u(n0 + k) ≡ 0.
Since k was arbitrary, we can conclude that u(n) ≡ 0 when n0 ≤ n ≤
n0 + n1 − 2.

Finally, observe that (24) shows that u(n)p is a sum involving only those
values of u evaluated at integers in [n − n1 + 1, n − 1]; if these values of
u vanish mod p, then so does u(n). Therefore, if one can show that u(n)
vanishes mod p for n1 − 1 consecutive values of n, then by induction u(n)
must vanish mod p for all larger n. But we’ve already shown above that
u(n) vanishes for n ∈ [n0, n0 +n1− 2], so it follows that u(n) vanishes for all
n ≥ n0.
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Proof of Theorem 17 (iii). Referring to the recursive definition for v(n) in
(6), observe that 1 · 5 · · · (4n − 3) ≡ 0 for n ≥ 3p+3

4
and hence for n ≥ n0.

Furthermore, if n = n0 + 1 and 1 ≤ m ≤ n0, then Lemma 18 applies with
a = 2n and b = 2m and hence

(
2n
2m

)
≡ 0. Therefore, v(n0 + 1) ≡ 0.

Now let n > n0 be arbitrary, and assume as an induction hypothesis that
v(k) ≡ 0 for all n0 < k < n. Then

v(n) ≡ −1

2

n−1∑
m=1

(
2n

2m

)
v(m)v(n−m). (26)

If n ≥ 2n0, then n−m > n0 for all values of the summation index m, so by
the induction hypothesis v(n−m) vanishes mod p and so does the sum. So
assume that n ≤ 2n0. Then we may restrict the sum in (26) to index values
m ∈ [n − n0, n0], since for other values of m either m > n0 or n −m > n0.
However, for any such m, we can apply Lemma 18 with a = 2n and b = 2m,
since p2 ≤ 2n and 2n − p2 + 1 ≤ 2m ≤ 2n0 = p2 − 1. It follows that every
binomial coefficient in (26) vanishes mod p and so does v(n). Induction on
n > n0 completes the proof.

5.2 Proof of Theorem 1 (iii)

We begin with a lemma that provides a means for proving the theorem.

Lemma 19. If r(n, k) ≡ 0 for all pairs (n, k) such that 1 ≤ k ≤ n0 < n,
then Theorem 1 (iii) is true.

Figure 2 below gives an illustration of the lemma’s hypothesis in the case
p = 7.

Proof. Equation (8) and Theorem 17 imply that if n > n0 then

d(n) ≡ −
n−1∑
k=1

r(n, k)d(k).

If we assume the hypothesis of the lemma, then

d(n0 + 1) ≡ −
n0∑
k=1

r(n0 + 1, k)d(k) ≡ 0,
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Figure 2: Congruences of r(n, k) mod 7, 1 ≤ k ≤ n < 60. The rows are
indexed by n, and the colors indicate residue classes of r(n, k) mod 7, ac-

cording to the colorbar. Note that n0 = p2−1
2

= 24 for p = 7. The submatrix
(r(n, k))1≤k≤n0<n, where r(n, k) vanishes by Theorem 20, is emphasized.

since all the summands vanish mod p; moreover for general n > n0,

d(n+ 1) ≡ −
n∑

k=n0+1

r(n, k)d(k).

Therefore, if we assume that d(k) ≡ 0 for all k such that n0 + 1 ≤ k ≤ n,
then d(n+1) ≡ 0. It follows by induction that d(n) ≡ 0 for all n > n0, which
is the statement of Theorem 1 (iii).

As we did in Section 4, for p = 5, we would now like to restrict the
class of partitions that we need to consider in (11), for p ≡ 3 (mod 4). Let
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P∗2n,2k ⊂ P ′2n,2k denote the set of partitions λ whose parts are all less than p2,
and such that no part of λ is equal to p, i.e. cp = 0. Theorem 17 implies that
we may replace the index set in the summation (11) with P∗2n,2k, since any

partition λ ∈ P ′2n,2k \ P∗2n,2k must contain a part λi such that u
(
λi−1

2

)
p

= 0

and hence will contribute 0 to the sum. In other words,

s(n, k)p =
∑

λ∈P∗2n,2k

[ (2n)!∏2n
i=1 i!

cici!

]
p

2n∏
i=1

[
u

(
i− 1

2

)ci]
p

 . (27)

The key to using formula (27) is the following theorem.

Theorem 20. Let (n, k) be such that 1 ≤ k ≤ n0 < n. Let λ = (c1, c2, . . . , c2n)
be a partition in P∗2n,2k. Then,

ωp

(
(2n)!∏2n
i=1 i!

cici!

)
> 0. (28)

The theorem implies, by (27), that r(n, k) = 2n−ks(n, k) vanishes mod p
for 1 ≤ k ≤ n0 < n, and in view of Lemma 19 will complete the proof of
Theorem 1 (iii). We record as a lemma a few facts about arithmetic that will
be used freely in the proof of Theorem 20.

Lemma 21. Let r and s be positive integers with base-p expansions

r =
∞∑
i=1

rip
i and s =

∞∑
i=1

sip
i.

Then the following are true:

(i) sp(r + s) ≤ sp(r) + sp(s), with equality iff there are no carries when r
is added to s in base p, iff ri + si ≤ p− 1 for all i.

(ii)
∞∑
i=1

(ri + si) ≥ sp

[
∞∑
i=1

(ri + psi)

]
(iii) sp(rp) = sp(r) always, and sp(r) = r iff r ≤ p− 1.
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Proof. Statements (i) and (iii) are trivial. We use them to verify (ii).

∞∑
i=1

(ri + si) ≥ sp

(
∞∑
i=1

ri

)
+ sp

(
∞∑
i=1

si

)

= sp

(
∞∑
i=1

ri

)
+ sp

(
p
∞∑
i=1

si

)

≥ sp

(
∞∑
i=1

ri + p

∞∑
i=1

si

)

= sp

[
∞∑
i=1

(ri + psi)

]
.

Proof of Theorem 20. Let λ = (c1, c2, . . . , c2n) ∈ P∗2n,2k. For each i, 1 ≤ i ≤
2n, let ci = ai0 +ai1p be the base-p expansion of ci, and let i = bi0 + bi1p be the
base-p expansion of i. (The exponents are indices, and the fact that there
are at most two digits in each expansion follows from the conditions k ≤ n0

and λi < p2 for all i.)
By Theorem 10,

ωp

(
(2n)!∏2n
i=1 i!

cici!

)
(p− 1) = 2n− sp(2n)−

2n∑
i=1

[ci(i− sp(i)) + (ci − sp(ci))]

=
2n∑
i=1

sp(i)ci +

[
2n∑
i=1

(sp(ci)− ci)

]
− sp(2n),

where the last equality comes from the fact that 2n =
∑2n

i=1 ici. We expand
all the terms in the last line base-p, obtaining

ωp

(
(2n)!∏2n
i=1 i!

cici!

)
(p− 1)

=
2n∑
i=1

(bi0 + bi1)(ai0 + ai1p) +
2n∑
i=1

ai1(1− p)− sp

(
2n∑
i=1

(bi0 + bi1p)(a
i
0 + ai1p)

)
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=
2n∑
i=1

(bi0 + bi1)ai1p+
2n∑
i=1

(bi0 + bi1)ai0 +
2n∑
i=1

ai1(1− p)

− sp

(
2n∑
i=1

(bi0 + bi1p)a
i
0 +

2n∑
i=1

(bi0 + bi1p)a
i
1p

)
(29)

≥
2n∑
i=1

(bi0 + bi1)ai1p− sp

(
2n∑
i=1

(bi0 + bi1p)a
i
1p

)
+

2n∑
i=1

ai1(1− p) (30)

+
2n∑
i=1

(bi0 + bi1)ai0 − sp

(
2n∑
i=1

(bi0 + bi1p)a
i
0

)
(31)

≥ 0,

where we justify the last inequality as follows. The quantity in (31) is non-
negative by Lemma 21 (ii), and we claim that the quantity in (30) is also
non-negative. To show that, write the quantity as{[

2n∑
i=1

(bi0 + bi1)ai1

]
− sp

(
2n∑
i=1

(bi0 + bi1p)a
i
1p

)}

+

{[
2n∑
i=1

(bi0 + bi1)ai1(p− 1)

]
+

[
2n∑
i=1

ai1(1− p)

]}
.

The first bracketed term is non-negative by Lemma 21, and the second brack-
eted term is non-negative since bi0 + bi1 ≥ 1 for all i.

Suppose now that ωp

(
(2n)!∏2n

i=1 i!
cici!

)
= 0. Then the inequality that we used

to transition from (29) to (30) and (31) must be an equality, and the quantity
in (31) and the bracketed quantities above must all vanish. These facts have
a number of consequences. First, from the second bracketed quantity, observe
that for all i,

ai1(bi0 + bi1) = ai1,

so either ai1 = 0 or (b0, b1) = (1, 0) or (b0, b1) = (0, 1). Since no part of λ is
equal to p, by the definition of P∗2n,2k, the last option is not possible. We
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conclude that ai1 = 0 for all i ≥ 2. In view of this, the identity

sp

(
2n∑
i=1

(bi0 + bi1p)a
i
0 +

2n∑
i=1

(bi0 + bi1p)a
i
1p

)

= sp

(
2n∑
i=1

(bi0 + bi1p)a
i
0

)
+ sp

(
2n∑
i=1

(bi0 + bi1p)a
i
1p

)
(from the transition from (29) to (30) and (31)), can be simplified to

sp

(
2n∑
i=1

(bi0 + bi1p)a
i
0 + a1

1p

)
= sp

(
2n∑
i=1

(bi0 + bi1p)a
i
0

)
+ a1

1. (32)

Furthermore, the fact that the quantity in (31) vanishes implies that (32)
can be written as

sp

(
2n∑
i=1

(bi0 + bi1p)a
i
0 + a1

1p

)
=

[
2n∑
i=1

(bi0 + bi1)ai0

]
+ a1

1. (33)

Since we can estimate the left-hand-side by

sp

(
2n∑
i=1

(bi0 + bi1p)a
i
0 + a1

1p

)
≤ sp

(
2n∑
i=1

bi0a
i
0

)
+ sp

(
p

[
2n∑
i=1

bi1a
i
0

]
+ a1

1p

)

= sp

(
2n∑
i=1

bi0a
i
0

)
+ sp

([
2n∑
i=1

bi1a
i
0

]
+ a1

1

)

≤

[
2n∑
i=1

bi0a
i
0

]
+

[
2n∑
i=1

bi1a
i
0

]
+ a1

1,

(34)

which is the right-hand-side of (33), we must have equality throughout (34).
It follows that

sp

(
2n∑
i=1

bi0a
i
0

)
+ sp

([
2n∑
i=1

bi1a
i
0

]
+ a1

1

)
=

[
2n∑
i=1

bi0a
i
0

]
+

[
2n∑
i=1

bi1a
i
0

]
+ a1

1,

and hence, by Lemma 21 (iii), we see that[
2n∑
i=1

bi0a
i
0

]
≤ p− 1 and

[
2n∑
i=1

bi1a
i
0

]
+ a1

1 ≤ p− 1. (35)
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Recalling that 2n =
∑2n

i=1 ici, we see from (35) that

2n = a1
1p+

2n∑
i=1

(bi0 + bi1p)a
i
0

=
2n∑
i=1

bi0a
i
0 + p

[(
2n∑
i=1

bi1a
i
0

)
+ a1

1

]
≤ (p− 1) + p(p− 1)

= p2 − 1.

In conclusion, the supposition above that ωp

(
(2n)!∏2n

i=1 i!
cici!

)
= 0 led us to the

statement that 2n ≤ p2 − 1. But the theorem assumed n > n0, and hence
2n > p2 − 1. This contradiction completes the proof of Theorem 20.

The theorem, along with Lemma 19 and (27), proves Theorem 1 (iii).

5.3 Closing remarks

The inspiration for the proof above was supplied by Figure 2, from which
the statement of Theorem 20 in the case p = 7 seems obvious. It is now
interesting and natural to ask why the results for p = 5 and p = 4k + 3
are so different. Surely the difference should be reflected somewhere in the
proofs of the respective statements. The most important difference is that
u(2)5 = u

(
5−1

2

)
5

= 1, whereas u
(
p−1

2

)
p

= 0 for p = 4k = 3. Consequently,

there exist partitions in P3
2n,2k that index non-vanishing summands in (11),

and indeed those partitions with the largest possible number of 5’s are the
important ones. On the other hand, when p = 4k+3, partitions in P ′2n,2k with
parts equal to p do not contribute to the sum in (11) at all. It seems plausible,
then, that a statement similar to Theorem 17 that is general for powers pα

of primes p = 4k+ 3 would exist and be useful in proving the experimentally
evident conjecture from [9] that d(n) eventually vanishes mod pα.
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