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ALL QUASITRIVIAL n-ARY SEMIGROUPS ARE REDUCIBLE

TO SEMIGROUPS

MIGUEL COUCEIRO AND JIMMY DEVILLET

Abstract. We show that every quasitrivial n-ary semigroup is reducible to
a binary semigroup, and we provide necessary and sufficient conditions for
such a reduction to be unique. These results are then refined in the case of
symmetric n-ary semigroups. We also explicitly determine the sizes of these
classes when the semigroups are defined on finite sets. As a byproduct of these
enumerations, we obtain several new integer sequences.

1. Introduction

Let X be a nonempty set and let n ≥ 2 be an integer. In this paper we are
interested in n-ary operations F ∶Xn →X that are associative, i.e., that satisfy the
following system of identities

F (x1, . . . , xi−1, F (xi, . . . , xi+n−1), xi+n, . . . , x2n−1)

= F (x1, . . . , xi, F (xi+1, . . . , xi+n), xi+n+1, . . . , x2n−1)(1)

for all x1, . . . , x2n−1 ∈ X and all 1 ≤ i ≤ n − 1. This generalisation of associativity
was originally proposed by Dörnte [4] and studied by Post [9] in the framework of
n-ary groups and their reductions. An operation F ∶Xn →X is said to be reducible
to a binary operation (resp. ternary operation) if it can be written as a composition
of a binary (resp. ternary) associative operation (see Definition 2.1).

Recently, the study of reducibility criteria for n-ary semigroups1 gained an in-
creasing interest (see, e.g., [1,5–7]). In particular, Dudek and Mukhin [5] provided
necessary and sufficient conditions under which an n-ary associative operation is
reducible to a binary associative operation. Indeed, they proved (see [5, Theorem
1]) that an associative operation F ∶Xn → X is reducible to an associative binary
operation if and only if one can adjoin a neutral element e to X for F , that is,
there is an n-ary associative extension F̃ ∶ (X⋃{e})

n
→X ⋃{e} of F such that e is

a neutral element for F̃ and F̃ ∣Xn = F . In this case, a binary reduction Ge of F
can be defined by

Ge(x, y) = F̃(x, (n − 2) ⋅ e, y) x, y ∈X.

Recently, Ackerman [1] also investigated reducibility criteria for n-ary associative
operations that are quasitrivial, i.e., operations that preserve unary relations: for
every x1, . . . , xn ∈X ,

F (x1, . . . , xn) ∈ {x1, . . . , xn}.
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1I.e., a set X endowed with an associative n-ary operation.

1

http://arxiv.org/abs/1904.05968v1


2 MIGUEL COUCEIRO AND JIMMY DEVILLET

The following result reassembles Corollaries 3.14 and 3.15, and Theorem 3.18 of [1].

Theorem 1.1. Let F ∶Xn →X be an associative and quasitrivial operation.

(a) If n is even, then F is reducible to an associative and quasitrivial binary
operation G∶X2 →X.

(b) If n is odd, then F is reducible to an associative and quasitrivial ternary
operation H ∶X3 →X.

(c) If n = 3 and F is not reducible to an associative binary operation G∶X2 →X,
then there exist a1, a2 ∈ X with a1 ≠ a2 such that a1 and a2 are neutral
elements for F ∣{a1,a2}3 .

From Theorem 1.1 (c) it would follow that if an associative and quasitrivial
operation F ∶Xn →X is not reducible to an associative binary operationG∶X2 →X ,
then n is odd and there exist distinct a1, a2 ∈ X that are neutral elements for
F ∣{a1,a2}n .

However, Theorem 1.1 (c) supposes the existence of a ternary associative and
quasitrivial operation H ∶X3 → X that is not reducible to an associative binary
operation, and Ackerman did not provide any example of such an operation.

In this paper we show that there is no associative and quasitrivial n-ary opera-
tion that is not reducible to an associative binary operation (Corollary 2.4). Hence,
for any associative and quasitrivial operation F ∶Xn → X one can adjoin a neutral
element to X . Now this raises the question of whether such a binary reduction
is unique and whether it is quasitrivial. We show that both of these properties
are equivalent to the existence of at most one neutral element for the n-ary asso-
ciative and quasitrivial operation (Theorem 3.8). Since an n-ary associative and
quasitrivial operation has at most one neutral element when n is even or at most
two when n is odd (Proposition 3.6), we also provide several enumeration results
(Propositions 3.12 and 3.14) that explicitly determine the sizes of the correspond-
ing classes of associative and quasitrival n-ary operations in terms of the size of
the underlying set X . As a by-product, these enumeration results lead to several
new integer sequences. These results are further refined in the case of symmetric
operations (Theorem 4.6).

2. Motivating results

In this section we recall some basic definitions and present some motivating
results. In particular, we show that every associative and quasitrivial operation
F ∶Xn →X is reducible to an associative binary operation (Corollary 2.4).

Throughout this paper let k ≥ 1 and x ∈ X . We use the shorthand notation[k] = {1, . . . , k} and n ⋅ x = x, . . . , x (n times), and we denote the set of all constant
n-tuples over X by ∆n

X = {(n ⋅ y) ∣ y ∈X}. Also, we denote the size of any set S by∣S∣.
Recall that an element e ∈X is said to be a neutral element for F ∶Xn →X if

F ((i − 1) ⋅ e, x, (n − i) ⋅ e) = x

for all x ∈X and all i ∈ [n].
Definition 2.1 ( [1,5]). Let G∶X2 →X , and H ∶X3 →X be associative operations.

(1) An operation F ∶Xn → X is said to be reducible to G if F (x1, . . . , xn) =
Gn−1(x1, . . . , xn) for all x1, . . . , xn ∈X , where G1 = G and

Gm(x1, . . . , xm+1) = G(x1,G(x2, . . . ,G(xm, xm+1) . . .)), for each m ∈ [n − 1].
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In this case, G is said to be a binary reduction of F .
(2) Similarly, F is said to be reducible to H if n is odd and F (x1, . . . , xn) =

Hn−3(x1, . . . , xn) for all x1, . . . , xn ∈ X , where H0 =H and

Hm(x1, . . . , xm+3) =H(x1, x2,H(x3, . . . ,H(xm+1, xm+2, xm+3) . . .)),
for each even integer m ≤ n − 3. In this case, H is said to be a ternary
reduction of F .

As we will see, every associative and quasitrivial operation F ∶Xn → X is re-
ducible to an associative binary operation. To show this, we will make use of two
auxiliary results.

Lemma 2.2 ( [5, Lemma 1]). If F ∶Xn →X is associative and has a neutral element
e ∈X, then F is reducible to the associative operation Ge∶X2 →X defined by

(2) Ge(x, y) = F (x, (n − 2) ⋅ e, y), for every x, y ∈X.

Lemma 2.3. Let H ∶X3 →X be an associative and quasitrivial operation.

(a) If a1, a2 ∈X are two distinct neutral elements for H ∣{a1,a2}3 , then

H(a1, a1, x) =H(x, a1, a1) = x =H(x, a2, a2) =H(a2, a2, x), x ∈X.

(b) If a1, a2 ∈ X are distinct neutral elements for H ∣{a1,a2}3 , then both a1 and
a2 are neutral elements for H.

Proof. (a) Let x ∈ X . We only show that H(a1, a1, x) = x, since the other
equalities can be shown similarly. Clearly, the equality holds when x ∈{a1, a2}. So let x ∈ X ∖ {a1, a2} and, for a contradiction, suppose that
H(a1, a1, x) = a1. By the associativity and quasitriviality of H , we then
have

a1 = H(a1, a1, x) = H(a1,H(a1, a2, a2), x)
= H(H(a1, a1, a2), a2, x) = H(a2, a2, x) ∈ {a2, x},

which contradicts the fact that a1, a2 and x are pairwise distinct.
(b) Suppose to the contrary that a1 is not a neutral element for H (the other

case can be dealt with similarly). By Lemma 2.3(a) we have thatH(a1, a1, y) =
H(y, a1, a1) = y for all y ∈ X . By assumption, there exists x ∈ X ∖ {a1, a2}
such that H(a1, x, a1) = a1. We have two cases to consider.
● If H(a2, x, a2) = x, then by Lemma 2.3(a) we have that

H(x, a2, a1) = H(H(x, a1, a1), a2, a1) = H(x, a1,H(a1, a2, a1))
= H(x, a1, a2) = H(H(a1, a1, x), a1, a2)
= H(a1,H(a1, x, a1), a2) = H(a1, a1, a2) = a2.

Also, by Lemma 2.3(a) we have that

x = H(x, a1, a1) = H(H(a2, x, a2), a1, a1)
= H(a2,H(x, a2, a1), a1) = H(a2, a2, a1) = a1,

which contradicts the fact that x ≠ a1.
● If H(a2, x, a2) = a2, then by Lemma 2.3(a) we have that

H(x,x, a2) = H(x,H(a2, a2, x), a2)
= H(x, a2,H(a2, x, a2)) = H(x, a2, a2) = x,
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and

H(a1, x, x) = H(a1,H(x, a1, a1), x)
= H(H(a1, x, a1), a1, x) = H(a1, a1, x) = x.

By Lemma 2.3(a) we also have that

x = H(x, a2, a2) = H(H(a1, x, x), a2, a2)
= H(a1,H(x,x, a2), a2) = H(a1, x, a2)
= H(a1,H(x, a1, a1), a2) = H(H(a1, x, a1), a1, a2) = H(a1, a1, a2) = a2,

which contradicts the fact that x ≠ a2. �

We can now prove the main result of this section.

Corollary 2.4. Every associative and quasitrivial operation F ∶Xn →X is reducible
to an associative binary operation.

Proof. Let F ∶Xn → X be an associative and quasitrivial operation. If n is even,
then by Theorem 1.1(a) we have that F is reducible to an associative and quasitriv-
ial binary operation. Also, if n is odd, then by Theorem 1.1(b) we have that F is
reducible to an associative and quasitrivial operation H ∶X3 → X . Now, suppose
that H is not reducible to an associative binary operation. Then, by Theorem
1.1(c) there exist two distinct elements a1, a2 ∈ X such that a1 and a2 are neutral
elements for H ∣{a1,a2}3 . Also, by Lemma 2.3 we have that a1 and a2 are neutral
elements for H . Finally, by Lemma 2.2 we have that H is reducible to an associative
binary operation which contradicts the assumption that H is not reducible to an
associative binary operation. �

We now present some geometric considerations of quasitrivial operations. The
preimage of an element x ∈ X under an operation F ∶Xn →X is denoted by F −1[x].
When X is finite, i.e. X = [k], we also define the preimage sequence of F as the
nondecreasing k-element sequence of the numbers ∣F −1[x]∣, x ∈ [k]. We denote this
sequence by ∣F −1∣.

Recall that the contour plot of an operation F ∶ [k]n → [k] is the undirected
graph CF = ([k]n,E), where E = {{x,y} ∣ x ≠ y and F (x) = F (y)}. We say that
two tuples (x1, . . . , xn), (y1, . . . , yn) ∈ [k]n are F -connected (or simply connected)
if they are connected in the graph CF .
Lemma 2.5. An operation F ∶ [k]n → [k] is quasitrivial if and only if it is idempo-
tent2 and each (x1, ..., xn) ∈ [k]n ∖∆n

[k] is connected to some (n ⋅ x) ∈∆n
[k].

Proof. Clearly, F is quasitrivial if and only if it is idempotent and for any (x1, ..., xn) ∈[k]n ∖∆n
[k] there exists i ∈ {1, ..., n} such that F (x1, ..., xn) = xi = F (n ⋅ xi). �

Lemma 2.6. Let F ∶ [k]n → [k] be a quasitrivial operation. Then, for each x ∈ [k],
we have ∣F −1[x]∣ ≤ kn − (k − 1)n.
Proof. Let x ∈ [k]. Since F ∶ [k]n → [k] is quasitrivial, it follows from Lemma 2.5
that the point (n ⋅x) is at most connected to all (x1, ..., xn) ∈ [k]n with at least one
component equal to x. A simple counting argument shows that there are exactly
kn − (k − 1)n such points. �

2An operation F ∶Xn →X is idempotent if F (n ⋅ x) = x for all x ∈X.
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Recall also that an element z ∈X is said to be an annihilator for F if

F (x1, ..., xn) = z

for all (x1, ..., xn) ∈ Xn with at least one component equal to z.

Remark 1. A neutral element need not be unique when n ≥ 3 (e.g., F (x1, x2, x3) ≡
x1+x2+x3 (mod 2) on X = Z2). However, if an annihilator exists, then it is unique.

Proposition 2.7. Let F ∶ [k]n → [k] be a quasitrivial operation and let z ∈ [k].
Then z is an annihilator if and only if ∣F −1[z]∣ = kn − (k − 1)n.
Proof. (Necessity) If z is an annihilator, then we know that F (i ⋅ z, xi+1, ..., xn) = z
for all i ∈ [n], all xi+1, ..., xn ∈ [k] and all permutations of (i ⋅ z, xi+1, ..., xn). Thus,(n ⋅ z) is connected to kn − (k − 1)n points. Finally, using Lemma 2.6 we get∣F −1[z]∣ = kn − (k − 1)n.

(Sufficiency) If ∣F −1[z]∣ = kn − (k − 1)n, then by Lemma 2.5 we know that (n ⋅ z)
is connected to the kn − (k − 1)n points (x1, ..., xn) ∈ [k]n containing at least one
component equal to z. Thus, we have F (i ⋅ z, xi+1, ..., xn) = z for all i ∈ [n], all
xi+1, ..., xn ∈ [k] and all permutations of (i ⋅z, xi+1, ..., xn), which shows that z is an
annihilator. �

Remark 2. By Proposition 2.7, if F ∶ [k]n → [k] is quasitrivial, then each element x
such that ∣F −1[x]∣ = kn − (k − 1)n is unique.

3. Criteria for unique reductions and some enumeration results

In this section we show that an associative and quasitrivial operation F ∶Xn →X

is uniquely reducible to an associative and quasitrivial binary operation if and only
if F has at most one neutral element (Theorem 3.8). We also enumerate the class of
associative and quasitrivial n-ary operations which leads to a previously unknown
sequence in the OEIS (Proposition 3.14). Let us first recall a useful result from [6].

Lemma 3.1. ( [6, Proposition 3.5]) Assume that the operation F ∶Xn → X is
associative and reducible to associative binary operations G∶X2 →X and G′∶X2 →
X. If G and G′ are idempotent or have the same neutral element, then G = G′.

From Lemma 3.1, we immediately get a necessary and sufficient condition that
guarantees unique reductions for associative operation that have a neutral element.

Corollary 3.2. Let F ∶Xn →X be an associative operation that is reducible to as-
sociative binary operations G∶X2 →X and G′∶X2 →X that have neutral elements.
Then, G = G′ if and only if G and G′ have the same neutral element.

Using the construction (2) in Lemma 2.2, Corollary 3.2, and observing that

(i) a binary associative operation has at most one neutral element,
(ii) the neutral element of a binary reduction G∶X2 → X of an associative

operation F ∶Xn →X is also a neutral element for F , and
(iii) if e is a neutral element for an associative operation F ∶Xn →X andG∶X2 →

X is a reduction of F , then Gn−2((n − 1) ⋅ e) is the neutral element for G,

we can generalise Corollary 3.2 as follows.

Proposition 3.3. Let F ∶Xn → X be an associative operation, and let EF be the
set of its neutral elements and RF of its binary reductions. If EF ≠ ∅, then the
mapping σ∶EF → RF defined by σ(e) = Ge is a bijection. In particular, e is the
unique neutral element for F if and only if Ge is the unique binary reduction of F .
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As we will see towards the end of this section, the size of EF , and thus of RF , is
at most 2 whenever F is quasitrivial (see Proposition 3.6).

Let Q2
e(X) denote the class of associative and quasitrivial operations G∶X2 →X

that have a neutral element e ∈ X , and let A2
e(X) denote the class of associative

operations G∶X2 → X that have a neutral element e ∈ X and that satisfy the
following conditions:

● G(x,x) ∈ {e, x} for all x ∈X ,
● G(x, y) ∈ {x, y} for all (x, y) ∈X2 ∖∆2

X ,
● there exists at most one element x ∈ X ∖ {e} such that G(x,x) = e and
G(x, y) = G(y, x) = y for all y ∈X ∖ {x, e}.

It is not difficult to see that Q2
e(X) ⊆ A2

e(X). Actually, we have that G ∈ Q2
e(X) if

and only if G ∈ A2
e(X) and ∣G−1[e]∣ = 1.

Proposition 3.4. Let F ∶Xn → X be an associative and quasitrivial operation.
Suppose that e ∈X is a neutral element for F .

(a) If n is even, then F is reducible to an operation G ∈ Q2
e(X).

(b) If n is odd, then F is reducible to the operation Ge ∈ A2
e(X).

Proof. (a) By Theorem 1.1(a) we have that F is reducible to an associative and
quasitrivial binary operation G∶X2 →X . Finally, we observe that Gn−2((n− 1) ⋅ e)
is the neutral element for G.

(b) By Theorem 1.1(b) we have that F is reducible to an associative and qua-
sitrivial ternary operation H ∶X3 → X . Clearly, e is also a neutral element for H .
Furthermore, by Lemma 2.2 we have that H is reducible to an associative operation
Ge∶X2 →X of the form (2) and that e is also a neutral element for Ge. Since H is
quasitrivial, it follows from (2) that Ge(x,x) ∈ {x, e} for all x ∈X .

Let us show that Ge(x, y) ∈ {x, y} for all (x, y) ∈X2 ∖∆2

X . Note that Ge(x, e) =
Ge(e, x) = x for all x ∈ X ∖ {e}, since e is a neutral element for Ge. So suppose to
the contrary that there are distinct x, y ∈ X ∖{e} such that Ge(x, y) /∈ {x, y}. Since
Ge is a reduction of H and H is quasitrivial, we must have Ge(x, y) = e. But then,
using the associativity of Ge, we get

y = Ge(e, y) = Ge(Ge(x, y), y) = Ge(x,Ge(y, y)) ∈ {Ge(x, y),Ge(x, e)} = {e, x},
which contradicts the fact that x, y, and e are pairwise distinct.

Now, suppose that there exists x ∈ X ∖ {e} such that Ge(x,x) = e and let
y ∈X ∖ {x, e}. Since

y = Ge(e, y) = Ge(Ge(x,x), y) = Ge(x,Ge(x, y)),
we must have Ge(x, y) = y. Similarly, we can show that Ge(y, x) = y.

To complete the proof, we only need to show that such an x is unique. Suppose
to the contrary that there exists x′ ∈X ∖ {x, e} such that Ge(x′, x′) = e. Since x,x′

and e are pairwise distinct and

x′ = Ge(e, x′) = Ge(Ge(x,x), x′) = Ge(x,Ge(x,x′)),
and

x = Ge(x, e) = Ge(x,Ge(x′, x′)) = Ge(Ge(x,x′), x′),
we must have x = Ge(x,x′) = x′, which yields the desired contradiction. �
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Clearly, if an associative operation F ∶Xn → X is reducible to an operation
G ∈ Q2

e(X), then it is quasitrivial. The following proposition provides a necessary
and sufficient condition for F to be quasitrivial when G ∈ A2

e(X)∖Q2
e(X).

Proposition 3.5. Let F ∶Xn → X be an associative operation. Suppose that F is
reducible to an operation G ∈ A2

e(X) ∖Q2
e(X). Then, F is quasitrivial if and only

if n is odd.

Proof. To show that the condition is necessary, let x ∈ X∖{e} such that G(x,x) = e.
If n is even, then F (n ⋅ x) = Gn

2
−1(n2 ⋅G(x,x)) = e, contradicting quasitriviality.

So let us prove that the condition is also sufficient. Note that G ∈ A2
e(X)∖Q2

e(X),
and thus we only need to show that F is idempotent. Since F is reducible to G, we
clearly have that F (n ⋅ x) = x for all x ∈ X such that G(x,x) = x.

Let y ∈X ∖ {e} such that G(y, y) = e. Since n is odd, we have that

F (n ⋅ y) = G(y,Gn−1

2
−1 (n − 12

⋅G(y, y))) = G(y, e) = y.
Hence, F is idempotent and the proof is now complete. �

Observe that the operation F ∶Zn
2 → Z2 defined by

F (x1, . . . , xn) ≡ n

∑
i=1

xi (mod 2), x1, . . . , xn ∈ Z2,

is quasitrivial if and only if n is odd. This also illustrates the fact that an associative
and quasitrivial n-ary operation that has 2 neutral elements does not necessarily
have a quasitrivial reduction. Indeed, G(x1, x2) ≡ x1+x2 (mod 2) and G′(x1, x2) ≡
x1 + x2 + 1 (mod 2) on X = Z2 are two distinct reductions of F but neither is
quasitrivial.

Also, it is not difficult to see that the operation F ∶Zn
n−1 → Zn−1 defined by

F (x1, . . . , xn) ≡ n

∑
i=1

xi (mod (n − 1)), x1, . . . , xn ∈ Zn−1,

is associative, idempotent, symmetric3 and has n − 1 neutral elements. However,
this number is much smaller for quasitrivial operations.

Proposition 3.6. Let F ∶Xn →X be an associative and quasitrivial operation.

(a) If n is even, then F has at most one neutral element.
(b) If n is odd, then F has at most two neutral elements.

Proof. (a) By Theorem 1.1(a) we have that F is reducible to an associative and
quasitrivial binary operation G∶X2 → X . Suppose that e1, e2 ∈ X are two neutral
elements for F . Since G is quasitrivial we have

e2 = F ((n − 1) ⋅ e1, e2) = G(Gn−2((n − 1) ⋅ e1), e2)
= G(e1, e2) = G(e1,Gn−2((n − 1) ⋅ e2)) = F (e1, (n − 1) ⋅ e2) = e1.

Hence, F has at most one neutral element.
(b) By Theorem 1.1(b) we have that F is reducible to an associative and qua-

sitrivial ternary operation H ∶X3 →X . For a contradiction, suppose that e1, e2, e3 ∈
X are three neutral elements for F . Since H is quasitrivial, it is not difficult to see

3An operation F ∶Xn → X is symmetric if F (x1, . . . , xn) is invariant under any permutation
of x1, . . . , xn.
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that e1, e2, and e3 are neutral elements for H . Also, by Proposition 3.4(b) we have
that H is reducible to the operations Ge1 ,Ge2 ,Ge3 ∈ A2

e(X). In particular, we have

Ge1(e2, e3) = Ge1(Ge1(e1, e2), e3) =H(e1, e2, e3) = Ge2(Ge2(e1, e2), e3) = Ge2(e1, e3)
and

H(e1, e2, e3) = Ge3(e1,Ge3(e2, e3)) = Ge3(e1, e2).
Hence, H(e1, e2, e3) ∈ {e2, e3} ∩ {e1, e3} ∩ {e1, e2}, which shows that e1, e2, e3 are
not pairwise distinct, and thus yielding the desired contradiction. �

Corollary 3.7. Let F ∶Xn →X be an operation. Then, F is associative, quasitriv-
ial, and has two neutral elements e1, e2 ∈ X if and only if n is odd and F is reducible
to exactly the two operations Ge1 ,Ge2 ∈ A2

e(X) ∖Q2
e(X).

Proof. (Necessity) This follows from Propositions 3.3, 3.4, and 3.6 together with
the observation that Ge1(e2, e2) = e1 and Ge2(e1, e1) = e2.

(Sufficiency) This follows from Propositions 3.3 and 3.5. �

We can now state and prove the main result of this section.

Theorem 3.8. Let F ∶Xn →X be an associative and quasitrivial operation and let
G∶X2 →X be a binary reduction of F . The following assertions are equivalent.

(i) G is idempotent.
(ii) G is quasitrivial.
(iii) G is unique.
(iv) F has at most one neutral element.

Proof. The implication (i)⇒ (ii) is straightforward. By Proposition 3.6 and Corol-
lary 3.7 we also have the implications ((ii) ∨ (iii)) ⇒ (iv). Hence, to complete the
proof, it suffices to show that (iv) ⇒ ((i) ∧ (iii)). First, we prove that (iv) ⇒ (i).
We consider the two possible cases.

If F has a unique neutral element e, then by Proposition 3.3 G = Ge is the unique
reduction of F with neutral element e. For the sake of a contradiction, suppose
that G is not idempotent. By Proposition 3.4 we then have that n is odd and
G ∈ A2

e(X) ∖Q2
e(X).

So let x ∈X ∖{e} such that G(x,x) ≠ x. Since G = Ge, we must have G(x,x) = e.
It is not difficult to see that F (y, (n − 1) ⋅ x) = y = F ((n − 1) ⋅ x, y) for all y ∈ X .
Now, if there is i ∈ {2, . . . , n − 1} such that

F ((i − 1) ⋅ x, e, (n − i) ⋅ x) = x,
then we have that i − 1 and n − i are both even or both odd (since n is odd), and
thus

x = F ((i − 1) ⋅ x, e, (n − i) ⋅ x) ∈ {G2(x, e, x),G2(e, e, e)} = {e},
which contradicts our assumption that x ≠ e. Hence, we have F ((i − 1) ⋅ x, e, (n −
i) ⋅ x) = e for all i ∈ {1, . . . , n}.

Since e is the unique neutral element for F , there exist y ∈ X ∖ {e, x} and
i ∈ {2, . . . , n − 1} such that

F ((i − 1) ⋅ x, y, (n − i) ⋅ x) = x.
Again by the fact that n is odd, i−1 and n− i are both even or both odd, and thus

x = F ((i − 1) ⋅ x, y, (n − i) ⋅ x) ∈ {G2(x, y, x),G2(e, y, e)} = {G2(x, y, x), y}.
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Since x ≠ y, we thus have that G2(x, y, x) = x. But then
e = G(x,x) = G(x,G2(x, y, x))
= G(G(x,x),G(y, x)) = G(e,G(y, x)) = G(y, x) ∈ {x, y},

which contradicts our assumption that x, y, and e are pairwise distinct.
Now, suppose that F has no neutral element. Let x ∈ X such that G(x,x) ≠ x,

and let y ∈X∖{x,G(x,x)}. By quasitriviality of F we have F ((n−1) ⋅x, y) ∈ {x, y}.
Also, by associativity of G and quasitriviality of F we have that

F ((n − 1) ⋅ x, y) = G(Gn−2((n − 1) ⋅ x), y)
= G(G(Gn−2((n − 1) ⋅ x),Gn−2((n − 1) ⋅ x)), y)
= G(G2n−3((2n − 2) ⋅ x), y)
= F ((n − 1) ⋅G(x,x), y) ∈ {G(x,x), y},

which implies that G(Gn−2((n − 1) ⋅ x), y) = y. Similarly, we can show that

G(y,Gn−2((n − 1) ⋅ x)) = y.
Also, it is not difficult to see that

G(Gn−2((n − 1) ⋅ x),G(x,x)) = G(x,x) = G(G(x,x),Gn−2((n − 1) ⋅ x)).
Thus Gn−2((n − 1) ⋅ x) is a neutral element for G and therefore a neutral element
for F , which contradicts our assumption that F has no neutral element.

As both cases yield a contradiction, we conclude thatGmust be idempotent. The
implication (iv) ⇒ (iii) is an immediate consequence of the implication (iv) ⇒ (i)
together with Lemma 3.1. Thus, the proof of Theorem 3.8 is now complete. �

Remark 3. We observe that an alternative necessary and sufficient condition for
the quasitriviality of a binary reduction of an n-ary quasitrivial semigroup has also
been provided in [1, Corollary 3.16].

Theorem 3.8 together with Corollary 2.4 imply the following result.

Corollary 3.9. Let F ∶Xn →X be an operation. Then F is associative, quasitrivial,
and has at most one neutral element if and only if it is reducible to an associative
and quasitrivial operation G∶X2 →X.

Recall that a weak ordering on X is a binary relation ≲ on X that is total and
transitive (see, e.g., [3]). We denote the symmetric part of ≲ by ∼. Also, a total
ordering on X is a weak ordering on X that is antisymmetric (see, e.g., [3]).

If (X,≲) is a weakly ordered set, an element a ∈X is said to be maximal for ≲ if
x ≲ a for all x ∈X . We denote the set of maximal elements of X for ≲ byM≲(X).

Given a weak ordering ≲ on X , the n-ary maximum operation on X for ≲ is the
partial symmetric n-ary operation maxn≲ defined on

Xn ∖ {(x1, . . . , xn) ∈ Xn ∶ ∣M≲({x1, . . . , xn})∣ ≥ 2}
by maxn≲(x1, . . . , xn) = xi where i ∈ [n] is such that xj ≲ xi for all j ∈ [n]. If ≲
reduces to a total ordering, then clearly the operation maxn≲ is defined everywhere
onXn. Also, the projection operations π1∶X

n →X and πn∶X
n →X are respectively

defined by π1(x1, . . . , xn) = x1 and πn(x1, . . . , xn) = xn for all x1, . . . , xn ∈ X .
Corollary 3.9 together with [8, Theorem 1] and [2, Corollary 2.3] imply the

following characterization of the class of quasitrivial n-ary semigroups with at most
one neutral element.
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Theorem 3.10. Let F ∶Xn →X be an operation. Then F is associative, quasitriv-
ial, and has at most one neutral element if and only if there exists a weak ordering
≲ on X and a binary reduction G∶X2 →X of F such that

(3) G∣A×B =
⎧⎪⎪⎨⎪⎪⎩
π1∣A×B or π2∣A×B, if A = B,

max2≲ ∣A×B , otherwise,
∀A,B ∈X/ ∼.

Moreover, when X = [k], then the weak ordering ≲ is uniquely defined as follows:

(4) x ≲ y ⇔ ∣G−1[x]∣ ≤ ∣G−1[y]∣, x, y ∈ [k].
Now, let us illustrate Theorem 3.10 for binary operations by means of their

contour plot. We can always represent the contour plot of any operation G∶ [k]2 →[k] by fixing a total ordering on [k]. In Figure 1 (left), we represent the contour
plot of an operation G∶X2 →X using the usual total ordering ≤ on X = {1,2,3,4}4.
It is not difficult to see that G is quasitrivial. To check whether G is associative
suffices by Theorem 3.10 to find a weak ordering ≲ on X such that G is of the form
(3). In Figure 1 (right) we represent the contour plot of G using the weak ordering
≲ on X defined by (4). We observe that G is of the form (3) for ≲ and thus by
Theorem 3.10 it is associative.

✲

✻

1 2 3 4

1

2

3

4

r r r r

r r r r

r r r r

r r r r
✄ �

✂ ✁

✲

✻

2 4 3 1

2

4

3

1

r r r r

r r r r

r r r r

r r r r

Figure 1. An associative and quasitrivial binary operation G on
X = {1,2,3,4}.

An operation F ∶Xn → X is said to preserve ≤ if F (x1, . . . , xn) ≤ F (x′1, . . . , x′n),
whenever xi ≤ x′i for all i ∈ [n]. Some associative binary operations G∶X2 →X are
≤-preserving for any total ordering onX (e.g., G(x, y) = x for all x, y ∈ X). However,
there is no total ordering ≤ on X for which an operation G ∈ A2

e(X) ∖ Q2
e(X) is

≤-preserving. A typical example is the binary addition modulo 2 over {0,1}.
Proposition 3.11. If G ∈ A2

e(X)∖Q2
e(X), then there is no total ordering ≤ on X

that is preserved by G.

Proof. Let e ∈ X be the neutral element for G and let x ∈X∖{e} such that G(x,x) =
e. Suppose to the contrary that there exists a total ordering ≤ on X such that G is
≤-preserving. Since G is ≤-preserving, if x < e, then e = G(x,x) ≤ G(x, e) = x which
contradicts our assumption. The other case yields a similar contradiction. �

Remark 4. It is not difficult to see that any ≤-preserving operation F ∶Xn → X

has at most one neutral element. Therefore, by Corollary 2.4 and Theorem 3.8 we
conclude that any associative, quasitrivial, and ≤-preserving operation F ∶Xn → X

4To simplify the representation of the connected components, we omit edges that can be
obtained by transitivity.
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is reducible to an associative, quasitrivial, and ≤-preserving operation G∶X2 → X .
For a characterization of the class of associative, quasitrivial, and ≤-preserving
operations G∶X2 →X , see [2, Theorem 4.5].

We now provide several enumeration results that provide the sizes of the classes
of associative and quasitrivial operations that were considered above. Recall that
for any integers 0 ≤ ℓ ≤ k, the Stirling number of the second kind {k

ℓ
} is defined by

{k
ℓ
} = 1

ℓ!

ℓ

∑
i=0

(−1)ℓ−i(ℓ
i
) ik.

For any integer k ≥ 0, let q2(k) (resp. qn(k)) denote the number of associative and
quasitrivial binary (resp. n-ary) operations on [k]. For any integer k ≥ 1, we denote
by q2e(k) the cardinal of Q2

e([k]). Also, we denote by a2e(k) the cardinal of A2
e([k]).

By convention, we set a2e(1) = 1. In [2] the authors solved several enumeration
problems concerning associative and quasitrivial binary operations. In particular,
they computed q2(k) (see [2, Theorem 4.1]) as well as q2e(k) (see [2, Proposition
4.2]). These sequences were also introduced in the OEIS [10] as A292932(k) and
A292933(k). The following result summarizes [2, Theorem 4.1] and [2, Proposition
4.2].

Proposition 3.12. For any integer k ≥ 0, we have the closed-form expression

q2(k) = k

∑
i=0

2i
k−i

∑
ℓ=0

(−1)ℓ (k
ℓ
){k − ℓ

i
}(i + ℓ)! , k ≥ 0,

where q2(0) = q2(1) = 1. Moreover, for any integer k ≥ 1, we have q2e(k) = k q2(k−1).
Proposition 3.13. For any integer k ≥ 2, we have a2e(k) = kq2(k − 1) + k(k −
1)q2(k − 2).
Proof. We already have that Q2

e([k]) ⊆ A2
e([k]). Now, let us show how to construct

an operation F ∈ A2
e([k]) ∖ Q2

e([k]). There are k ways to choose the element
x ∈ [k] such that F (x,x) = e and F (x, y) = F (y, x) = y for all y ∈ [k] ∖ {x, e}.
Then we observe that the restriction of F to ([k] ∖ {x})2 belongs to Q2

e([k − 1]),
so we have q2e(k − 1) possible choices to construct this restriction. This shows
that a2e(k) = q2e(k) + kq2e(k − 1). Finally, by Proposition 3.12 we conclude that
a2e(k) = kq2(k − 1) + k(k − 1)q2(k − 2). �

Let qne (k) (resp. qn¬e(k)) denote the number of associative and quasitrivial n-
ary operations that have exactly one neutral element (resp. that have no neutral
element) on [k] for any integer k ≥ 1. Also, let qne1,e2(k) denote the number of
associative and quasitrivial n-ary operations that have two neutral elements on [k]
for any integer k ≥ 1. Clearly, qn(1) = 1 and qne1,e2(1) = 0.
Proposition 3.14. For any integer k ≥ 1 we have qne (k) = q2e(k) and qn¬e(k) =
q2(k) − q2e(k). Also, for any integer k ≥ 2 we have

qne1,e2(k) = { 0 if n is even

(k
2
)q2(k − 2) if n is odd.

and

qn(k) = { q2(k) if n is even

q2(k) + (k
2
)q2(k − 2) if n is odd.
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Proof. By Theorem 3.8 we have that the number of associative and quasitrivial n-
ary operations that have exactly one neutral element (resp. that have no neutral el-
ement) on [k] is exactly the number of associative and quasitrivial binary operation
on [k] that have a neutral element (resp. that have no neutral element). This num-
ber is given by q2e(k) (resp. q2(k)− q2e(k)). Also, by Corollary 3.7 and Propositions

3.12 and 3.13 we have that qne1,e2(k) = a
2

e
(k)−q2

e
(k)

2
= (k

2
)q2(k−2). Finally, by Propo-

sition 3.6 we have that qn(k) = qn¬e(k)+ qne (k)+ qne1,e2(k) = q2(k)+ (k2)q2(k− 2). �

Table 1 provides the first few values of all the previously considered sequences5.

k q2(k) q2e(k) qn¬e(k) qne1,e2(k) qn(k) a2e(k)
1 1 1 0 0 1 1
2 4 2 2 1 5 4
3 20 12 8 3 23 18
4 138 80 58 24 162 128
5 1 182 690 492 200 1 382 1 090
6 12 166 7 092 5 074 2070 14 236 11 232

OEIS A292932 A292933 Axxxxxx Axxxxxx Axxxxxx Axxxxxx

Table 1. First few values of q(k), qe(k), qn¬e(k), qne1,e2(k), qn(k)
and a2e(k)

4. Symmetric operations

Recall that an operation F ∶Xn → X is said to be symmetric if F (x1, . . . , xn) is
invariant under any permutation of x1, . . . , xn. In this section we refine our previous
results to the subclass of associative and quasitrivial operations that are symmetric,
and present further enumeration results accordingly.

We first recall and establish some auxiliary results.

Fact 4.1. Suppose that F ∶Xn →X is associative and surjective6. If it is reducible
to an associative operation G∶X2 →X, then G is surjective.

Lemma 4.2. ( [6, Lemma 3.6]) Suppose that F ∶Xn →X is associative, symmetric,
and reducible to an associative and surjective operation G∶X2 → X. Then G is
symmetric.

Proposition 4.3. If F ∶Xn → X is associative, quasitrivial, and symmetric, then
it is reducible to an associative, surjective, and symmetric operation G∶X2 → X.
Moreover, if X = [k], then F has a neutral element.

Proof. By Corollary 2.4, F is reducible to an associative operation G∶X2 →X . By
Fact 4.1 and Lemma 4.2, it follows that G is surjective and symmetric.

For the moreover part, we only have two cases to consider.

● If G is quasitrivial, then by [2, Theorem 3.3] it follows that G has a neutral
element, and thus F also has a neutral element.

5In view of Corollary 3.7, we only consider the case where n is odd for qn
e1,e2

(k) and qn(k).
6i.e., onto
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● If G is not quasitrivial, then by Proposition 3.6 and Theorem 3.8 F has in
fact two neutral elements. �

Proposition 4.4 ( [1, Corollary 4.10]). An operation F ∶Xn → X is associative,
quasitrivial, symmetric, and reducible to an associative and quasitrivial operation
G∶X2 →X if and only if there exists a total ordering ⪯ on X such that F =maxn

⪯
.

Proposition 4.5. An operation F ∶ [k]n → [k] is associative, quasitrivial, symmet-
ric, and reducible to an associative and quasitrivial operation G∶ [k]2 → [k] if and
only if it is quasitrivial and ∣F −1∣ = (1,2n − 1, . . . , kn − (k − 1)n).
Proof. (Necessity) Since G is quasitrivial, it is surjective and hence by Lemma 4.2
it is symmetric. Thus, by Theorem 4.4 there exists a total ordering ⪯ on X such
that G(x, y) =max2

⪯
(x, y) for all x, y ∈ [k].

(Sufficiency) We proceed by induction on k. The result clearly holds for k = 1.
Suppose that it holds for some k ≥ 1 and let us show that it still holds for k + 1.
Assume that F ∶ [k + 1]n → [k + 1] is quasitrivial and that

∣F −1∣ = (1,2n − 1, . . . , (k + 1)n − kn).
Let ⪯ be the total ordering on [k + 1] defined by

x ⪯ y if and only if ∣F −1(x)∣ ≤ ∣F −1(y)∣,
and let z = maxk+1

⪯
(1, . . . , k + 1). Clearly, F ′ = F ∣([k+1]∖{z})n is quasitrivial and

∣F ′−1∣ = (1,2n − 1, . . . , kn − (k − 1)n). By induction hypothesis we have that F ′ =
maxn

⪯
′ , where ⪯′ is the restriction of ⪯ to ([k + 1] ∖ {z})n. By Proposition 2.7,∣F −1[z]∣ = (k + 1)n − kn and thus F =maxn

⪯
. �

We can now state and prove the main result of this section.

Theorem 4.6. Let F ∶Xn →X be an associative, quasitrivial, symmetric operation.
The following assertions are equivalent.

(i) F is reducible to an associative and quasitrivial operation G∶X2 →X.
(ii) There exists a total ordering ⪯ on X such that F is ⪯-preserving.
(iii) There exists a total ordering ⪯ on X such that F =maxn

⪯
.

Moreover, when X = [k], each of the assertions (i) − (iii) is equivalent to each of
the following assertions.

(iv) F has exactly one neutral element.
(v) ∣F −1∣ = (1,2n − 1, . . . , kn − (k − 1)n).

Furthermore, the total ordering ⪯ considered in assertions (ii) and (iii) is uniquely
defined as follows:

(5) x ⪯ y if and only if ∣F −1[x]∣ ≤ ∣F −1[y]∣, x, y ∈ [k].
Moreover, there are k! operations satisfying any of the conditions (i) − (v).

Proof. (i)⇒ (iii). This follows from Proposition 4.4.
(iii)⇒ (ii). Obvious.
(ii)⇒ (i). By Corollary 2.4 we have that F is reducible to an associative opera-

tion G∶X2 →X . Suppose to the contrary that G is not quasitrivial. From Theorem
3.8 and Proposition 3.6, it then follows that F has two neutral elements e1, e2 ∈X .
We can suppose that e1 ≺ e2 (the other case can be dealt with similarly). Since F

is ⪯-preserving, we have that

e2 = F ((n − 1) ⋅ e1, e2) ⪯ F (e1, (n − 1) ⋅ e2) = e1,
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which yields the desired contradiction.
(iii)⇔ (v). This follows from Proposition 4.5.
(i)⇒ (iv). This follows from Theorem 3.8 and Proposition 4.3.
(iv)⇒ (i). This follows from Lemma 2.2 and Theorem 3.8.
The rest of the statement follows from [2, Theorem 3.3]. �

Now, let us illustrate Theorem 4.6 for binary operations by means of their contour
plot. In Figure 2 (left), we represent the contour plot of an operation G∶X2 →
X using the usual total ordering ≤ on X = {1,2,3,4}. In Figure 2 (right) we
represent the contour plot of G using the total ordering ⪯ on X defined by (5). We
then observe that G = max⪯, which shows by Theorem 4.6 that G is associative,
quasitrivial, and symmetric.

✲

✻
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Figure 2. An associative, quasitrivial, and symmetric binary op-
eration G on X = {1,2,3,4}.

Based on this example, we illustrate a simple test to check whether an operation
F ∶ [k]n → [k] is associative, quasitrivial, symmetric, and has exactly one neutral
element. First, use condition (5) to construct the unique total ordering ⪯ on [k]
from the preimage sequence ∣F −1∣, i.e., x ⪯ y if ∣F −1[x]∣ ≤ ∣F −1[y]∣. Then, check if
F is the maximum operation for ⪯.

We denote the class of associative, quasitrivial, symmetric operations G∶X2 →X

that have a neutral element e ∈X by QS2
e(X). Also, we denote by AS2

e(X) the class
of associative and symmetric operations G∶X2 → X that have a neutral element
e ∈X and that belong to A2

e(X). It is not difficult to see that QS2
e(X) ⊆ AS2

e(X).
In fact, G ∈ QS2

e(X) if and only if G ∈ AS2
e (X) and ∣G−1[e]∣ = 1.

For each integer k ≥ 2, let qsn(k) denote the number of associative, quasitrivial,
and symmetric n-ary operations on [k]. Also, denote by as2e(k) the size of AS2

e([k]).
From Theorems 3.8 and 4.6 it follows that qs2(k) = ∣QS2

e([k])∣ = k!. Also, it easy
to check that as2e(2) = 4. The remaining terms of the sequence are given in the
following proposition.

Proposition 4.7. For every integer k ≥ 3, as2e(k) = qs2(k) + kqs2(k − 1) = 2k!.
Proof. As observed QS2

e([k]) ⊆ AS2
e([k]). So let us enumerate the operations in

AS2
e([k]) ∖QS2

e([k]). There are k ways to choose the element x ∈ [k] such that
G(x,x) = e andG(x, y) = G(y, x) = y for all y ∈ [k]∖{x, e}. Moreover, the restriction
of G to ([k]∖ {x})2 belongs to QS2

e([k − 1]), and we have qs2(k − 1) possible such
restrictions. Thus as2e(k) = qs2(k) + kqs2(k − 1). By Theorems 3.8 and 4.6 it then
follows that as2e(k) = k! + k(k − 1)! = 2k!. �
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Let qsne (k) denote the number of associative, quasitrivial, and symmetric n-ary
operations that have exactly one neutral element on [k] for all integer k ≥ 2. Also,
let qsne1,e2(k) denote the number of associative, quasitrivial, and symmetric n-ary
operations that have two neutral elements on [k] for each integer k ≥ 2.

Proposition 4.8. For each integer k ≥ 2, qsne (k) = qs2(k) = k!. Moreover,
qsne1,e2(k) = k!

2
, and qsn(k) = 3k!

2
.

Proof. By Theorems 4.6 and 3.8 and Lemma 4.2 we have that the number of asso-
ciative, quasitrivial, and symmetric n-ary operations that have exactly one neutral
element on [k] is exactly the number of associative, quasitrivial, and symmet-
ric binary operations on [k]. By Theorems 3.8 and 4.6 this number is given by
qs2(k) = k!. Also, by Corollary 3.7, Proposition 4.7, and Theorems 3.8 and 4.6,

we have that qne1,e2(k) = as2
e
(k)−qs2(k)

2
= k!

2
and by Proposition 3.6 we have that

qn(k) = qsne (k) + qsne1,e2(k) = 3k!
2
. �

Remark 5. Recall that an operation F ∶Xn →X is said to be bisymmetric if

F (F (r1), . . . , F (rn)) = F (F (c1), . . . , F (cn))
for all n × n matrices [c1 ⋯ cn] = [r1 ⋯ rn]T ∈ Xn×n. In [6, Corollary 4.9] it was
shown that associativity and bisymmetry are equivalent for operations F ∶Xn →
X that are quasitrivial and symmetric. Thus, we can replace associativity with
bisymmetry in Theorem 4.6.

5. Conclusion

In this paper we proved that any quasitrivial n-ary semigroup is reducible to a
semigroup. Furthermore, we showed that a quasitrivial n-ary semigroup is reducible
to a unique quasitrivial semigroup if and only if it has at most one neutral element.
Finally, we characterized the class of quasitrivial (and symmetric) n-ary semigroups
that have at most one neutral element.

Note however that there exist idempotent n-ary semigroups that are not re-
ducible to a semigroup (for instance, consider the idempotent associative function
F ∶R3 → R defined by F (x, y, z) = x − y + z for all x, y, z ∈ R). This naturally asks
for necessary and sufficient conditions under which an idempotent n-ary semigroup
is reducible to a semigroup. We will seek answers for this and related questions in
future collaborations.
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Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

E-mail address: miguel.couceiro[at]{loria,inria}.fr

Mathematics Research Unit, FSTC, University of Luxembourg, 6, rue Coudenhove-

Kalergi, L-1359 Luxembourg, Luxembourg

E-mail address: jimmy.devillet[at]uni.lu

http://www.oeis.org

	1. Introduction
	2. Motivating results
	3. Criteria for unique reductions and some enumeration results
	4. Symmetric operations
	5. Conclusion
	Acknowledgements
	References

