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Abstract

Leading terms of asymptotic expansions for the general complex solutions of the fifth Painlevé
equation as t→ ı∞ are found. These asymptotics are parameterized by monodromy data of the
associated linear ODE,

d

dλ
Y =

(
t

2
σ3 +

A0

λ
+

A1

λ− 1

)
Y.

The parametrization allows one to derive connection formulas for the asymptotics. We provide
numerical verification of the results. Important special cases of the connection formulas are also
considered.
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1 Introduction

We study asymptotics1 as t → ∞, <(t) = O(1), of isomonodromy deformations (with respect to
parameter t) of the following linear ODE

d

dλ
Y = A(λ, t)Y =

(
t

2
σ3 +

A0

λ
+

A1

λ− 1

)
Y. (1.1)

Here σ3 =

(
1 0
0 −1

)
and the matrices Ap (p = 0, 1) are independent of λ. This paper is a

continuation of our earlier work [1] on asymptotics of the isomonodromy deformations of system (1.1)
on the real t-axis. For convenience of the reader, we recall here the basic notation and some results
obtained in [1].

Following Jimbo and Miwa [12], we consider the following parameterization of the matrices Ap,

A0 =

(
z + Θ0

2 −u(z + Θ0)
z
u −z − Θ0

2

)
,

A1 =

 −z − Θ0 + Θ∞
2

uy
(
z + Θ0−Θ1+Θ∞

2

)
− 1
uy

(
z + Θ0+Θ1+Θ∞

2

)
z +

Θ0 + Θ∞
2

 .

Then the isomonodromy deformations of Equation (1.1) with respect to t are governed by the fol-
lowing system of nonlinear ODEs, which is called the Isomonodromy Deformation System (IDS)

t
dy

dt
= ty − 2z(y − 1)2 − (y − 1)

(Θ0 −Θ1 + Θ∞
2

y − 3Θ0 + Θ1 + Θ∞
2

)
, (1.2)

t
dz

dt
= yz

(
z +

Θ0 −Θ1 + Θ∞
2

)
− 1

y
(z + Θ0)

(
z +

Θ0 + Θ1 + Θ∞
2

)
, (1.3)

t
d

dt
log u = −2z −Θ0 + y

(
z +

Θ0 −Θ1 + Θ∞
2

)
+

1

y

(
z +

Θ0 + Θ1 + Θ∞
2

)
. (1.4)

In this system Θν (ν = 0, 1, ∞) are complex constants considered as parameters. Eliminating
function z = z(t) from Equation (1.3) by using Equation (1.2), one finds that function y = y(t)
satisfies the fifth Painlevé equation (P5):

d2y

dt2
= (

1

2y
+

1

y − 1
)(
dy

dt
)2 − dy

tdt
+

(y − 1)2

t2
(α̂y +

β̂

y
) + γ̂

y

t
+ δ̂

y(y + 1)

y − 1
, (1.5)

α̂ =
1

2

(Θ0 −Θ1 + Θ∞
2

)2
, β̂ = −1

2

(Θ0 −Θ1 −Θ∞
2

)2
, γ̂ = 1−Θ0 −Θ1, δ̂ = −1

2
. (1.6)

Together with the functions y(t), z(t), and u(t), we are also interested in the so-called ζ-function
[12, 13, 1]2, which is associated with the Hamiltonian structure for System (1.2), (1.3) and the
corresponding τ -function. Function ζ(t), in terms of functions y(t) and z(t), is defined as follows

ζ(t) = 1
4 ((Θ0 + Θ∞)2 −Θ2

1)− zt−
−
(
z − 1

y

(
z + Θ0+Θ1+Θ∞

2

))(
z + Θ0 − y

(
z + Θ0−Θ1+Θ∞

2

))
, (1.7)

∂ζ
∂t = dζ

dt = −z. (1.8)

This function has been proven to be an important object in physical and geometrical applications,
where the connection problem for its asymptotics arises in a natural way.

As in the work [1] we use for our studies the method of isomonodromy deformations: this method
is based on parametrization of asymptotics of IDS (1.2)-(1.4) via the monodromy data of system (1.1).

1The notion “asymptotics” is used throughout the paper to abbreviate the expression “the leading terms of asymp-
totic expansion”

2Function ζ(t) exactly coincides with function σ(t) introduced by Jimbo and Miwa in [12].

2



Such parametrization allows one to find the connection formulae for asymptotics of a given solution
at different singular points (in our case 0 and ∞) and at different directions in the neighborhood of
an essential singular point (in our case t → ±i∞ and t → ±∞). This parametrization is based on
asymptotic solution of the direct and inverse monodromy problems for Equation (1.1). There are
various approaches how one can achieve these goals:

(1) Combination of local asymptotic analysis of IDS with the subsequent asymptotic solution of
the direct and inverse monodromy problems. Note that IDS can always be presented as the first
order system of ODEs with the quadratic r.-h.s. with respect to unknown functions, so that local
asymptotics of those systems can be constructed in a regular way. However, the local asymptotic
analysis can be also based on various asymptotic ideas and approaches. The following asymptotic
solutions of the direct and inverse monodromy problems also can be performed by using slightly
different asymptotic methods;

(2) The inverse monodromy problem can be formulated as a matrix Riemann-Hilbert conjugation
problem in the complex plane with its further asymptotic solution with the help of the Deift-Zhou
asymptotic method;

(3) The method we use here is in general similar to (1), however, it suffers substantial differences.
We do not use any apriori information about the local asymptotic expansions for IDS (1.2)-(1.4)
or P5 (1.5). Instead, for the solution of the direct monodromy problem for Equation (1.1) some
asymptotic assumptions on the matrix elements of of Matrices (1.2) and (1.2), which are much
less detailed comparing with the local asymptotics, are assumed. These assumptions are dictated
by our ability to perform asymptotic estimates which finally lead us to asymptotic solution of the
direct monodromy problem. In curse of these calculations appears a number of such assumptions.
Then asymptotic solution of the inverse monodromy problem gives us local asymptotics of the matrix
elements together with their parameterization via the monodromy data. After that we verify, whether
thus obtained asymptotics passes all the assumptions imposed. This verification provide us with the
restrictions on monodromy data, for which our analysis is valid. So, this methodology allows one to
drop out the preliminary stage of the local asymptotic analysis of IDS. It is substantially based on
the fact that we deal with the isomonodromy deformations. We do not touch at any stage of our
asymptotic analysis either IDS (1.2)-(1.4), nor Equation (1.5). Therefore, we call this asymptotic
method as the Method of Isomonodromy Deformations.

As of now the main source of the connection results for P5 with the normalization δ < 0 on the
pure imaginary axis is the papers [7, 8] by McCoy and Tang. In these papers they consider a special
case of P5 (1.5) with the parameters θ1 = θ2 ≡ θ and θ∞ = 2n ∈ Z with the primary motivation to
serve applications related with the study of correlation functions for the 2D Ising model, level spacing
distribution in the theory of random matrices and one-particle density matrix of the one-dimensional
impenetrable Bose gas. Methodologically, for studying asymptotics as t→∞, these authors applied
the scheme (1) outlined above and for asymptotics as t→ 0 used the corresponding results obtained
by Jimbo [16]. McCoy and Tang not only proved for t→ i∞ the following asymptotics

y = δt−4ϕ+Θ∞et(1 +O(t−ε), (1.9)

where δ, φ ∈ C are parameters of the P5 transcendent, but also found the connection formulae for
asymptotics of this solution as t→ 0 and t→ +∞.

The case of P5 studied by McCoy and Tang is known to be equivalent to a special case of the
third Painlevé equation, so it is not a ”truly” fifth Painlevé transcendent. Our main motivation for
this study was to extend the connection results to the case of the true P5 transcendent by following
methodology (3) in the above list.

We also study the real reduction of the solutions; this is impossible to get real reduction from
solution (1.9).

Recently, two papers devoted to asymptotics on pure imaginary axis were published (see [10] and
[11]). In these papers the asymptotics of the general real reduction of the P5 on pure imaginary axis
were obtained. These results are in complete agreement with our Corollaries 3.2 and 3.3. Also, in
[10] and [11], the general asymptotic of the form

y(t) ∼ 1− ctσ, (1.10)
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found by Jimbo in [16], is rigorously and directly proved.
Our results are more advanced than that obtained in [10] and [11] in several aspects. First, we

establish the connection formulas which allow one to find the asymptotic parameters at infinity for
given parameters in the asymptotic expansion at zero (say, c and σ in the previous formula). This
is due to we have computed the monodromy data which is an important result in itself. Second,
we found and parameterized asymptotics of the general complex solution, not just real ones. Third,
(1.10) is not the only possible solution at zero: there is a lot of others and we give a complete list of
them for the case of general Θ-parameters. Finally, our approach is completely different: we use the
isomonodromy deformation method (IDM).

Having said this let us note that that the proof of results obtained by IDM can be justified
with the help of the scheme suggested in [5]. This scheme requires a more careful attention to
error estimates, than that presented in this paper. For the experienced reader it is clear that the
estimates possess the properties required for launching the scheme [5]. At the same time the explicit
presentation of these estimates would substantially blow up the size of the paper without adding any
new information. Since we do not provide all the details we use the word derivation, rather than the
proof in the corresponding sections. It is important to mention that there is another possibility of the
justification of asymptotics obtained by IDM, it is an application of the well-known Wasow theorem
(see Theorem 35.1 of [21]): As long as the leading term of asymptotics is obtained, one can develop
it into the complete asymptotic series (see Appendix B), after that the Wasow theorem implies the
existence of the solution of IDS with the prescribed asymptotics. In that scheme our derivation
constitutes the proof of correspondence between coefficients of the leading terms of asymptotics and
monodromy data. The latter proof does not require any special properties of the error estimates and
is enough for the justification. Here, however, we do not give the complete details for application of
the Wasow theorem, so the word derivation is correct in this sense too.

Although, there are no doubts in the correctness of IDM, surely, there might be some ad hoc
faults, in formulae because of the personal reasons, some of them indicated below, we provide our
formulae with examples of the numerical verification, which can be useful for he reader interested in
application of our results and comparison them with the results obtained by the other authors.

We also refer to the papers [10, 11] mentioned above, which contains rigorous proofs of the
asymptotic results, which coincides with special cases of our formulae.

Recently appeared a number of papers [29, 30, 31, 32] where different justification schemes for
asymptotics of the fifth Painlevé transcendents has been used. They concern the results for the real
axis we discuss in [1], we expect that they will be working for the imaginary axis too.

The paper is organized as follows. In Section 2, we define the monodromy data for Equation (1.1).
The main results are presented in Sections 3 and 7, for asymptoics as t→ i∞ and t→ 0, respectively.
In Sections 4 and 5 brief derivations of the results, stated in Theorems 3.1 and 3.3, respectively, are
presented. In Appendix A, we consider Schlesinger transformations for P5. Using these Schlesinger
transformations, we can derive Theorems 3.2 and 3.3 in an alternative way. In Appendix B, we
consider the complete asymptotic series for solutions found in Section 3, and explain how to find
the first terms of these series. In Section 6, we compare our results with those obtained in paper
[8]. Section 7 is devoted to presentation of the results for small argument, t→ 0. Comparing to our
previous paper we present a refined formula for the leading term of small t asymptotics. In Section 8
we deal with the degenerated cases of asymptotics as t→ 0.

To demonstrate how our results can be used, we consider deriving connection formulas for an
equation, we met in applications. Reader can find the details in Section 9.

This paper is written in stylistics close to that of the paper [1] published quite some time ago.
This happened because the first draft of this work was written in 1997, soon after preprints [14] and
[15] were finished. Paper [1] is the unification of these preprints, which were originally written in
different notation. So, after [1] was published in 2000 we turn back to this work to unify notation.
Interchanging of the notation required great care and large time because we have got many compli-
cated formulae. We were not able to finish this work at that time because while doing it we digressed
to some other studies of the Painlevé equations. We came back to this work only in 2013. Since the
large time past after the paper were written and the mess with the notation we decided to check our
results independently. On this way appeared Sections 9 and 10 where we considered some special
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application of our results and undertook numerical studies, respectively. At this stage the paper
took the form close to its modern state, however, we again digressed to another studies and were not
able to make the final editing. Only after we decided to separate the 1997 draft into two parts we
were able to finish the first part in April 2019. The second part of this paper completes asymptotic
description of solutions as t→ ı∞. It containes one type of asymptotics for general solutions and a
few asymptotics for special one parameter families.

It is important to mention that during this time some interesting papers devoted to the study of
asymptotics of the fifth Painlevé functions has been published [25, 26, 27, 28].

Acknowledgments. One of the authors (FA) is grateful to Andy Bennett and Lev Kapitanski,
Kansas State University, for hospitality and support. His work was partially supported by grants
#436–2978 and CMS–9813182.

2 The Manifold of Monodromy Data

In this section, we define the monodromy data [12] for Equation (1.1).
Equation (1.1) has three singular points: irregular one at the infinity and two regular singularities

at 0 and 1. We define the canonical solutions Yk = Yk(λ) of Equation (1.1) by means of their |λ| → ∞
expansions,

Yk(λ) =
|λ|→∞

(
I +O

(
1

λ

))
exp

(
λt

2
σ3 −

Θ∞
2

lnλσ3

)
, (2.1)

in the corresponding sectors

−π
2

+ π(k − 2) < arg λ+ arg t <
3π

2
+ π(k − 2), k = 1, 2, . . . . (2.2)

Henceforth, we fix the branch of lnλ in the usual way, i.e., lnλ = ln |λ|+ ı arg λ, and consider arg t
as a given number. For pure imaginary arguments arg t = ±π2 .

The canonical solutions are connected by the so called Stokes matrices,

Yk+1(λ) = Yk(λ)Sk. (2.3)

Using (2.1), one easily proves that

Yk+2(λe2πı) = Yk(λ)e−πıΘ∞σ3 . (2.4)

Equations (2.3) and (2.4) give us

Sk+2 = eπıΘ∞σ3Ske
−πıΘ∞σ3 . (2.5)

Thus, one can determine all the Stokes matrices having two of them. We choose S1 and S2 to be
these basic matrices. It follows from Equations (1.1), (2.1), (2.2), and (2.3) that matrices Sk are
independent of λ and of the following structure:

S2k =

(
1 s2k

0 1

)
, S2k+1 =

(
1 0

s2k+1 1

)
, k ∈ Z. (2.6)

The complex parameters sk (k = 1, 2, . . . ) are called Stokes multipliers. The monodromy matrix at
infinity, M∞k , for function Yk is defined by the following equation:

Yk(λe−2πı) = Yk(λ)M∞k . (2.7)

Using Equations (2.3) and (2.4), one finds

M∞k = SkSk+1e
πıΘ∞σ3 . (2.8)

In the following, we use only one of these matrices

M∞2 ≡M∞ = S2e
πıΘ∞σ3S1.
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All other matrices M∞k can be expressed in terms of M∞ via the following recurrence relation

M∞k+1 = S−1
k M∞k Sk. (2.9)

To deal with monodromy matrices at finite singularities at 0 and 1 we define a single-valued branch

of Y2. It is convenient to restrict Y2 to the domain C\([0, 1]∪ [1/2,∞e−ıπ2 ]). In this domain Y2(λ) is
a single-valued analytical function (of λ) with the following expansions at the regular singularities
λ = p, p = 0, 1:

Y2(λ) =
λ→p

∑∞
n=0 Ŷ

p
n (λ− p)n+Θpσ3/2Ep, (2.10)

Ŷ pn = Ŷ pn (t, z, y, u,Θ0,Θ1,Θ∞), Ep = Ep(t, z, y, u,Θ0,Θ1,Θ∞),

det Ŷ p0 = detEp = 1,

(Ŷ p0 )−1Ap(t)Ŷ
p
0 =

Θp
2 σ3.

We assume here that Θp 6∈ Z. If Θp is an integer the expansion is modified as it is written in [14].
The series in Equation (2.10) is convergent for |λ− p| < 1.

Using expansions (2.10), we define the monodromy matrices at the regular singular points as
follows:

Mp =
(
Ep
)−1

eπıΘpσ3Ep. (2.11)

Even though expansion (2.10) does not define Ep uniquely, the matrices Mp are defined properly.
The monodromy matrices are connected by the following cyclic relation [16]

M∞M1M0 = I. (2.12)

The matrix elements m0
ij , m

1
ij (i, j = 1, 2), Stokes multipliers, sk, k = 1, 2, and the parameters

Θ0,Θ1,Θ∞ ∈ C are called the monodromy data of Equation(1.1). It is easy to check that the data
satisfy the following relations:

detM0 = 1, detM1 = 1,

trM0 = 2 cosπΘ0, trM1 = 2 cosπΘ1, (M1M0)11 = e−πıΘ∞ . (2.13)

System. (2.13) in C8 3 (m0
11,m

0
12,m

0
21,m

0
22,m

1
11,m

1
12,m

1
21,m

1
22), for fixed Θ0,Θ1,Θ∞ ∈ C define an

algebraic variety which is called the manifold of monodromy data,M5(Θ0,Θ1,Θ∞). In terms of mp
ij ,

Eqs. (2.13) read as:

m0
11m

0
22 −m0

12m
0
21 = 1, m1

11m
1
22 −m1

12m
1
21 = 1, (2.14)

m0
11 +m0

22 = 2 cosπΘ0, m1
11 +m1

22 = 2 cosπΘ1, (2.15)

m1
11m

0
11 +m1

12m
0
21 = e−πıΘ∞ . (2.16)

Note that dimCM5(Θ0,Θ1,Θ∞) = 3. Given a point in M5(Θ0,Θ1,Θ∞) (that is matrices M0

and M1), one finds the Stokes multipliers via relations (2.8) and (2.12). Thus, M5(Θ0,Θ1,Θ∞)
completely defines all the monodromy data.

The given point (t, z, y, u,Θ0,Θ1,Θ∞) ∈ C7 defines Matrices (1.2) and (1.2) that, in its turn,
Equation (1.1). A solution to direct monodromy problem is a correspondence

(t, z, y, u,Θ0,Θ1,Θ∞)→ Equation (1.1)→M ∈M5(Θ0,Θ1,Θ∞).

An inverse map
{M, t} → (t, z, y, u,Θ0,Θ1,Θ∞),

where M ∈ M5(Θ0,Θ1,Θ∞) and t ∈ C, is a solution to inverse monodromy problem. If the
inverse monodromy problem is solvable, its solution is unique. If we demand that point M ∈
M5(Θ0,Θ1,Θ∞) does not move when we vary t, the corresponding solution of the inverse monodromy
problem, i.e., functions y = y(M, t), z = z(M, t), and u = u(M, t), are called the isomonodromy
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deformations, which means that the monodromy data do not change. The main result is that in the
case of isomonodromy deformations the functions y = y(M, t), z = z(M, t), and u = u(M, t) satisfy
Eqs. (1.2)–(1.4) [12].

Only in exceptional cases the direct and/or inverse monodromy problems can be solved explicitly.
Therefore, we have to apply asymptotic methods. In this paper we solve the direct monodromy
problem asymptotically as t → ∞ with <(t) = O(1) and, also, for t → 0. We find asymptotics,
parameterized by some complex numbers and present explicit formulas for the monodromy data in
terms of these parameters.

3 Results

The asymptotic results formulated in this section are valid in the cheese-like domains, D1
± and D2

±,
in the complex t-plane. The subscripts ± means that the positive, respectively, negative imaginary
semiaxes, beginning with some finite point, belong to the corresponding domains. The domains
with different subscripts do not intersect, the different superscripts of the domains with the same
subscripts means different locations of the holes inside the domains. An important property of these
domains is that the solution of System (1.2)–(1.4), the set of functions y(t), z(t), and u(t), as well as
their asymptotics restricted in the domains are singlevalued analytic functions. This fact is important
for justification of asymptotics as well as the study of distribution of zeroes and poles of the solutions
along the imaginary axis.

The precise definition of the domains are given in Theorems 3.1 and 3.2 below, before we specify
the branch of function tν with ν ∈ C, which we use in our domains to write our asymptotic formulae.
We define tν on the imaginary axis as e

ıπν
2 |t|ν for =(t) > 0 and e−πı

ν
2 |t|ν for =(t) < 0 and extend it

on the entire domains D1 and D2 via the analytic continuation.

Theorem 3.1. Let ϕ ∈ C and ϕ∓ Θ0

2 , ϕ−
Θ∞

2 ∓
Θ1

2 6= 0,−1,−2, . . ., and δ, û ∈ C\{0}. Denote

R1(t;ϑ) = 1− ϕ− ϑ
δtν1et

, where ν1 = 1 + Θ∞ − 4ϕ

and assume −1/2 < <(ν1) < 1. Then, for each value of the sign ± there exists the unique solution
of System (1.2)–(1.4) with the following asymptotic expansion

yt = δtν1etR1

(
t;

Θ0

2

)
R1

(
t;

Θ1 + Θ∞
2

)
+O(t−3ν1−1 ln t) +O(tν1−1 ln t),

z = −Θ0 −
(
ϕ− Θ0

2

)
R1

(
t;

Θ1 + Θ∞
2

)
+O(t−1) +O(t−3ν1−1 ln t)

= −Θ0 + Θ1 + Θ∞
2

−
(
ϕ− Θ1 + Θ∞

2

)
R1

(
t;

Θ0

2

)
+O(t−1) +O(t−3ν1−1 ln t),

u =
û

δ
·

t2ϕ
(
1 +O

(
t−1 ln t

)
+O

(
t−2ν1−1 ln t

))
R1

(
t;

Θ1 + Θ∞
2

)
+O(t−ν1−1 ln t) +O(t−3ν1−1 ln t)

,

as t→∞ and arg t→ ±π2 with t ∈ D1, where

D1 :=
{
t ∈ C, |<(t)| < r1,−π < arg t < π, |t− t0,1n | ≥ r2|t|ε−1, 0 < ε ≤ 1,∀ r1, r2 > 0

}
,

where the sequences, t0n and t1n, are infinite series (n = 1, 2, . . .) of solutions (if they exist) of the
equations

R1

(
t0n;

Θ0

2

)
= 0, R1

(
t1n;

Θ1 + Θ∞
2

)
= 0, (3.1)

with |<(t0,1n )| < r1.

Remark 3.1. The notation t → ∞ and arg t → ±π2 with t ∈ D1 means that asymptotics hold for
all rather large t ∈ D1 with either =t > 0 or, respectively, =t < 0. We recall that the functions y(t),
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z(t), u(t) have the branching point at t = 0 (cf. Section 7) so that it is important to specify the
argument of t. All error estimates depend on all the parameters: ϕ, δ, û, and Θ’s, including those
characterizing the domains D1: r1, r2, and ε. Exclusion of the negative integer values of ϕ− Θ0

2 and

ϕ − Θ1+Θ∞
2 does not follow from our derivation. This requirement is dictated by the justification

scheme outlined in the Introduction: in the case of negative integer values of these parameters one
cannot uniquely specify the corresponding solution by the monodromy data (cf. Theorem 3.3 and
Equations (2.14)–(2.16)). It does not mean that solutions with the corresponding asymptotics do
not exist: just our calculation requires a minor modification. More specifically, in this case we have
to calculate the other monodromy parameters than that given in Equations (3.4)–(3.5) below. It is
important to mention that although Theorems 3.1 and 3.2 do not refer to the monodromy data, our
way of proving them is based on the monodromy correspondence established in Theorem 3.3.

Remark 3.2. It is clear that infinite series of solutions of Equations (3.1) satisfying the condition
|<(t0,1n )| < r1 exist only in the case <(ν1) = 0. Thus, in the case <(ν1) 6= 0 the domain D1 is just a
strip along the imaginary axis (”the cheese without holes”) incised along the segment [−r1, 0]. One
can prove that for all rather large t in any circle with small enough radius (see definition of D1)
centred at zeroes of asymptotics, t0,1n , there exists one and only one zero of the Painlevé function
y(t). Therefore solutions described in Theorem 3.1 do not have poles in D1.

Remark 3.3. Instead of taking the imaginary axis (<(t) = 0) as the axis of the domain D1 our
derivation presented below with little modifications works for a ”logarithmic deformation” of the
imaginary axis, namely, <(t) = µ1 ln |t| for any µ1 ∈ R. In this case instead of D1 we can formulate
our result in r1-neighborhood of the ”deformed imaginary axis”, which can be denoted as D1(µ1).
In this case all asymptotics announced in Theorem 3.1 are valid and the condition on ν1 should be
changed to −1/2 < µ1 + <(ν1) < 1. In the error estimates one also has to change ν1 → µ1 + ν1. It
is interesting to note that points of the logarithmic curve satisfy the asymptotic condition t→ ±ı∞
in the sense that arg t→ ±π/2 as |t| → +∞.

Because the parameter µ1 is arbitrary we can consider slightly more complicated domains, than
D1(µ1), where the asymptotics still hold, e.g., if 0 < µ1 < 3/2 we can write our asymptotics in the
r1-neighborhood of the domain bounded on the right with the logarithmic curve and on the left with
the imaginary axis. In this case the parameter <(ν1) is bounded as follows, −1/2 < <(ν1) < 1− µ1.
We can also consider domains which are bounded on the right and on the left with the logarithmic
curves with positive and negative values of the parameter µ1, or with the same sign of µ1 in the latter
case they would not contain the imaginary axis. These asymptotics in the ”logarithmic” domains
allow us to establish existence of infinite sets of zeroes, t0,1n → ±ı∞ as n→ +∞, for <(ν1) + µ1 = 0
which logarithmically (with respect to n) moving away from the imaginary axis.

Theorem 3.2. Let ϕ ∈ C and ϕ∓ Θ0

2 , ϕ−
Θ∞

2 ∓
Θ1

2 6= 0,−1,−2, . . ., and δ, û ∈ C\{0}. Denote

R2(t;ϑ) = 1− (ϕ+ ϑ)δt−ν2et, where ν2 = 1−Θ∞ + 4ϕ

and assume −1/2 < <(ν2) < 1. Then, for each value of the sign ± there exists the unique solution
of System (1.2)–(1.4) with the following asymptotic expansion

t

y
=
R2

(
t;

Θ0

2

)
R2

(
t;

Θ1 −Θ∞
2

)
δt−ν2et

+O(t−3ν2−1 ln t) +O(tν2−1 ln t),

z = −
(
ϕ+

Θ0

2

)
R2

(
t;

Θ1 −Θ∞
2

)
+O(t−1) +O(t−3ν2−1 ln t)

= −Θ0 −Θ1 + Θ∞
2

−
(
ϕ+

Θ1 −Θ∞
2

)
R2

(
t;

Θ0

2

)
+O(t−1) +O(t−3ν2−1 ln t),

u =
û

δ
t2ϕ
(
1 +O

(
t−1 ln t

)
+O

(
t−2ν2−1 ln t

))
×

×
(
R2

(
t;

Θ1 −Θ∞
2

)
+O

(
t−ν2−1 ln t

)
+O

(
t−3ν2−1 ln t

))
,
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as t→∞ and arg t→ ±π2 with t ∈ D2, where

D2 :=
{
t ∈ C, |<(t)| ≤ r1,−π < arg t < π, |t− t2,3n | ≥ r2|t|ε−1, 0 < ε ≤ 1,∀ r1, r2 > 0

}
,

where the sequences, t2n and t3n, are infinite series (n = 1, 2, . . .) of solutions (if they exist) of the
equations

R2

(
t2n;

Θ0

2

)
= 0, R2

(
t3n;

Θ1 −Θ∞
2

)
= 0, (3.2)

with |<(t2,3n )| < r1.

Remark 3.4. Remark 3.1 holds with the change D1 → D2. Remark 3.2 is also valid if one replaces:
t0,1n with t2,3n , ν1 with ν2, Theorem 3.1 with Theorem 3.2, and considers zeroes instead of poles.
Remark 3.3 also can be reformulated for the results stated in Theorem 3.2 as existence of the infinite
sequence of poles t2,3n , n = 1, 2, . . ., which diverges from the imaginary axis logarithmically. If we
introduce the parameter µ2 instead of µ1: <(t) = µ2 ln |t|, than the range of the validity of the
asymptotics in the µ-deformed domain can be described as −1/2 < −µ2 + <(ν2) < 1, and in the
error estimates we must change ν2 → ν2 − µ2.

Remark 3.5. As mentioned at the end of Section 5 and in Subsection 4.6 the results reported
in Theorems 3.1 and 3.2 continue to describe the qualitative behavior of function y beyond the
intervals of validity of the theorems, namely, for 1 ≤ <(νk) < 2, where k = 1, 2. The error estimates
in Theorem 3.k for the functions y and z equal O(t2νk−2 ln t) and O(tνk−2), respectively. Since
ν1 + ν2 = 2, then for 1 ≤ <(νk) < 2, we get 0 < <(ν3−k) ≤ 1; thus Theorem 3.(3-k) gives much
better approximation than Theorem 3.k. In the domain where at least one of the parameters νk
satisfies the condition 1 ≤ <(νk) < 2, which can be rewritten in terms of ϕ as |<(4ϕ − Θ∞)| < 1,
the first (largest) terms of asymptotics given by both Theorems 3.1 and 3.2 coincide:

y = δt−4ϕ+Θ∞et
(

1 +O
(
t|<(4ϕ−Θ∞)|−1

))
,

z = −ϕ− Θ0

2
+O

(
t|<(4ϕ−Θ∞)|−1

)
,

u =
û

δ
t2ϕ(1 +O

(
t|<(4ϕ−Θ∞)|−1

)
+O

(
t−1
)

ln(t))

Corollary 3.1. For solutions defined in Theorems 3.1 and 3.2 the corresponding ζ-function (1.7)
has the following asymptotics as t→∞, arg t→ ±π2 , and t ∈ D1 ∪ D2:

ζ =
(
ϕ+

Θ0

2

)
t− 2

(
ϕ+

Θ0

2

)(
ϕ− Θ∞ + Θ0

2

)
+

1

t

(
−δt−4ϕ+Θ∞et

(
ϕ+

Θ0

2

) (
ϕ− Θ∞ −Θ1

2

)
− 2
(
ϕ2 − Θ2

0

4

)(
ϕ− Θ∞

2

)
− 2ϕ

((
ϕ− Θ∞

2

)2

− Θ2
1

4

)
+δ−1t4ϕ−Θ∞e−t

(
ϕ− Θ0

2

)(
ϕ− Θ∞ + Θ1

2

))
+O

(
t|<(−4ϕ+Θ∞)|−2

)
.

(3.3)

Remark 3.6. The parameter ϕ in asymptotics (3.3) satisfies the condition |<(−4ϕ+ Θ∞)| < 3/2.
In the case |<(−4ϕ+ Θ∞)| < 1/2 all explicitly written terms in (3.3) larger than the error estimate;
if 1/2 ≤ |<(−4ϕ + Θ∞)| < 1 or 1 ≤ |<(−4ϕ + Θ∞)| < 3/2, then one or, respectively, two terms in
the right-hand side of Equation (3.3) are equal or smaller the error estimate and can be neglected.

Theorem 3.3. Solutions of System (1.2)–(1.4) described in Theorems 3.1 and 3.2 define the isomon-
odromy deformations of Equation (1.1) with the following monodromy data:

m1
12 =

−2πıû

Γ(1− Θ1+Θ∞−2ϕ
2 )Γ(Θ1−Θ∞+2ϕ

2 )
, (3.4)

m0
21 =

−2πıδe−πıΘ∞

ûΓ(1− Θ0−2ϕ
2 )Γ(Θ0+2ϕ

2 )
. (3.5)
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If asymptotic expansions of solutions in these theorems are understood to be given for arg t → π
2 ,

then
m1

11 = e2πıϕ−πıΘ∞ , (3.6)

if arg t→ −π2 , then

m0
11 = e−2πıϕ. (3.7)

Corollary 3.2. Denote

ıΘ01 ≡ γ̂ = 1−Θ0 −Θ1 and ı ω1 ≡ ν1 = 1 + Θ∞ − 4ϕ.

Assume that Θ01 and ω1 as well as the coefficients of Equation (1.5), α̂ and β̂, are real and(
ω1 −Θ01

2

)2

> 2β̂.

Then the solution defined in Theorem 3.1 is real for the pure imaginary values of t, namely, y(t) ≡
ỹ(τ), t = ıτ , ỹ(τ) ∈ R for τ ∈ R, and its asymptotics as t → ∞ and arg t → επ/2 (ε = ±1) can be
rewritten as follows:

ỹ(τ) =
τ→ε∞

1

τ

ω1 −Θ01

2
+

√(
ω1 −Θ01

2

)2

− 2β̂ sin (τ + ω1 ln |τ |+ arg δ) +O
(

ln τ

τ

) , (3.8)

where δ is the parameter introduced in Theorem 3.1. For real solutions with asymptotics (3.8) |δ| is
given by the relation

2|δ| e−
επω1

2 =

√(
ω1 −Θ01

2

)2

− 2β̂ > 0.

Corollary 3.3. Denote

ıΘ01 ≡ γ̂ = 1−Θ0 −Θ1 and ı ω2 ≡ ν2 = 1−Θ∞ + 4ϕ.

Assume that Θ01 and ω2 as well as the coefficients of Equation (1.5), α̂ and β̂, are real and(
ω2 −Θ01

2

)2

> −2α̂.

Then the solution defined in Theorem 3.2 is real for the pure imaginary values of t, namely, y(t) ≡
ỹ(τ), t = ıτ , ỹ(τ) ∈ R for τ ∈ R, and its asymptotics as t → ∞ and arg t → επ/2 (ε = ±1) can be
rewritten as follows:

1

ỹ(τ)
=

τ→ε∞
−1

τ

ω2 −Θ01

2
+

√(
ω2 −Θ01

2

)2

+ 2α̂ sin (τ − ω2 ln |τ |+ arg δ) +O
(

ln τ

τ

) , (3.9)

where δ is the parameter introduced in Theorem 3.1. For real solutions with asymptotics (3.9) |δ| is
given by the relation

2e−
επω2

2

|δ|
=

√(
ω2 −Θ01

2

)2

+ 2α̂ > 0.

4 Derivation I

In this Section we asymptotically, as t→∞, solve the direct monodromy problem for Equation (1.1)
by making several assumptions on asymptotical behavior of its coefficients. First of all, we do all
our calculations in the cheese-like strip domain along the imaginary axis. There are two real positive
parameters characterizing this domain: the half-width of the strip, δ1 > 0, and the radius of its
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holes, δ2 > 0. These parameters are assumed to be fixed in the course of the calculations so that the
error estimates depend on these parameters. These holes are assumed to contain possible poles of y
and z, and zeroes of y, to avoid problems with the estimates of coefficients of Equation (1.1). The
exact location of the centres of these holes are unknown in the ”first round” of our calculations, we
assumed only the conditions on the functions y and z imposed below (4.1) and (4.2). In the ”second
round” of calculations we put centres of the holes exactly at zeroes and poles of the leading term of
asymptotics which we find at the end of the first round.

The notation t → ±i∞ more precisely means that we are taking a limit along any path in the
cheese-like domain: |<t| < δ1 and =t→ ±∞. The choice of the path is not important because of the
Painlevé property of System (1.2)–(1.3). All our functions of t, say, y(t), z(t), u(t) etc. are assumed
to be analytic continuation from the positive real axis. These functions have only two singular
points at 0 and ∞. After we make a cut along the negative real semiaxis the analytic continuations
mentioned above are correctly defined. The zeroes and poles of the coefficients of Equation (1.1), if
any, can be located only in the holes of the strip domain.

Our main assumptions on the coefficients in this Section are as follows:

|z| < O(t), (4.1)

O
(
t−1
)
<|y| < O(t). (4.2)

These asymptotic restrictions are assumed to be valid in the closure of the cheese-like domain. We
use them in most calculations in this section. Some further restrictions will appear in course of
calculations and will be clearly indicated in the corresponding places3 Let us explain our convention
for the use of the o and O notation: When we write w = o(1) we actually mean that there exists
some C > 0 and ε > 0 such that |w| ≤ C|t|−ε, notation O(ta) < |w| < O(tb) with a < b means that
C|t|a+ε ≤ |w| ≤ C|t|b−ε.

In this section the direct monodromy problem is solved asymptotically for Equation (1.1) with
coefficients in some classes of functions analytic in the cheese-like strip domain and satisfying certain
asymptotic conditions. Some of these conditions have a form of simple systems of algebraic equations
that can be uniquely resolved to explicitly give the leading terms of asymptotics for the functions.
One proves that thus obtained solution satisfies all the other conditions imposed in the process of
solving of the direct monodromy problem. Now when we have explicit formulae for asymptotics
we can check that all our error estimates smoothly depends on the monodromy parameters. In
particular, the estimates hold under small local variations of the monodromy data. Due to the way
our asymptotics are obtained and because they are parameterized with the monodromy data, we can
say that they represent an asymptotic solution of the inverse monodromy problem.

It is not immediately obvious that any asymptotic solution of the inverse monodromy problem
represents an asymptotic expansion of some solution of the system (1.2)–(1.4). However, there is a
justification scheme [5] that allows one to prove (exact) solvability of the corresponding monodromy
problem as long as its asymptotic solution is obtained via the method explained above.

To simplify the notation we perform the following gauge transformation,

Y2 = u
1
2σ3Y u−

1
2σ3 . (4.3)

Then we observe that function Y satisfies equation (1.1) but with u = 1. We will compute the
monodromy data for function Y . For matrices Ap, p = 0, 1, with u = 1, we use the same notation,
Ap. The function u will be restored in the final formulae for the monodromy data.

Another convention we follow is that in course of calculations we use notation ϕ for function
ϕ(t,Θ0,Θ1,Θ∞). This function has the following asymptotic evaluation as t → ∞, ϕ = ϕ̃ + o(1),
where ϕ̃ ∈ C is a parameter, i.e., independent of t and Θ’s variables. In formulation of the results of
solution of the inverse monodromy problem we use a simpler notation ϕ in the sense of ϕ̃.

The reader will find below two types of equalities: exact and asymptotic. All asymptotic equalities
with respect to t in this section are understood as t→∞ in the cheese-like strip domain; in case an

3 The radius of holes (δ2) is fixed as a positive parameter, however it is important to note that this radius can be

chosen even merging, δ2 = O
(
t−ε

)
, 0 < ε < 1/2. We do not use this fact here.
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asymptotic equality is understood in some other sense, say, with respect to λ the latter is explained.
We also use notation ≈ to indicate asymptotic equalities modulo lesser terms.

4.1 WKB-method

To obtain the monodromy data in terms of parameters of asymptotic expansion for large pure
imaginary t, we apply the WKB-method.

Let us start from the exact formula for l2(λ) = −(1/t2) detA

l2(λ) =
1

4t2λ2(λ− 1)2
× (4.4)

×
(
t2
∏
p=0,1

(λ− p)2 + 4λ(λ− 1)(tϕ− tλΘ∞
2

) +
∑
p=0,1

Θ2
1−p(λ− p)2

)
,

where

ϕ = −z − Θ0

2
+

1

t
tr(A1A0). (4.5)

In addition to (4.1) and (4.2), we will also suppose that

ϕ = O(1). (4.6)

Due to this, we may rewrite l(λ) so that

l ≡ l(λ) =
t→∞

1

2
+

1

λ(λ− 1)t

(
ϕ− λΘ∞

2

)
+O

(
1

t2λ2

)
+O

(
1

t2(λ− 1)2

)
(4.7)

The error estimate in Equation (4.7) is valid provided the following redefinition of ϕ is made,

ϕ→ ϕ+ 2ϕ (2ϕ− θ∞) /t.

This redefinition is assumed below. It does not effect on the following calculations since we calculate
ϕ up to the order o(1).

Then, we define

F0(λ) = t

∫
l(λ) dλ. (4.8)

Clearly this function is defined up to an arbitrary function of t, which does not play any role because
in the following we consider the definite integral (see Equation (4.16)). It is obvious that there exists
function F0(λ) with the following asymptotics as t→∞

F0(λ) =
λt

2
+ ϕ ln(λ− 1)− ϕ lnλ− Θ∞

2
ln(λ− 1) + o(1). (4.9)

provided t(λ−p) ≥ |t|ε for p = 0, 1 and 0 < ε < 1. Here lnλ = ln |λ| as arg λ = 0 and ln(λ−1)→ lnλ
as λ→∞. We need the following asymptotic expansions of function F0(λ)

F0(λ) =
λt

2
− Θ∞

2
lnλ+O(

1

λ
) as λ→∞, (4.10)

F0(λ) =
λt

2
− ϕ lnλ+ πıϕ− Θ∞

2
πı+O(λ) as λ→ 0, (4.11)

F0(λ) =
t

2
+

(λ− 1)t

2
+ (ϕ− Θ∞

2
) ln(λ− 1) +O(λ− 1) as λ→ 1. (4.12)

To simplify our notation we do not write in Equations (4.10)–(4.12) the t-estimate from Equa-
tion (4.9), because it does not contribute to the final result, however we have to keep in mind the
domain on the λ-plane where it is valid.
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We impose one more condition on the functions y and z,

t−2z2(y − 1

y
) = o (1/tq) (4.13)

for some q ∈ (0, 1). Condition (4.13) does not neither follow nor contradict conditions (4.1) and (4.2):
it means just a special relation between asymptotic values of the functions y and z. A posteriori we
know that q = 1/2, however, at this stage we do not fix it.

Then, in the domain t(λ− p) = O(tε), where ε > 1− q and p = 0, 1, the following estimate takes
place

F1(λ) ≡ −t−2 1

2
({A1A0}11 − {A1A0}22)

∫
(2l(l +A11t

−1)λ2(λ− 1)2)−1dλ ≈ (4.14)

≈ −t−2z2(y − 1

y
)

∫
(2l(l +A11t

−1)λ2(λ− 1)2)−1dλ = o(1). (4.15)

The definition of F1 contains the same ambiguity as the one for F0, so that the comment to Esti-
mate (4.15) is analogous to the one after Equation (4.8).

We use the following representation of WKB-formula ([1])

Ψq(λ) = T (λ) exp
{(
F0(λ) + F1(λ)− F0(λ∗q)− F1(λ∗q)

)
σ3

}
, λ∗q ∈ Γq, (4.16)

T (λ) =
ı√

2l(l +A11t−1)

(
lσ3 + A

t

)
,

where Γq is the so-called Stokes domain (see, e.g. [1]) and λ∗q is an arbitrary fixed point from Γq.
The paths of integration in Equation (4.16) with Fp(λ), p = 0, 1, defined in Equations (4.8) and
(4.14), should be taken in Γq. Here, however, we do not consider in detail the definition of the Stokes
graph, because the turning points in our case coalesce with the singular points and for our purposes
we can formulate the result in a simpler way (see Theorem (4.1)).

We fix T in such a way that T → ıσ3 as λ → ∞, arg λ = 0. Due to (4.13), the term with F1 is
of order o(1) and can be ignored.

Let us write the asymptotic expansions we need

l(λ) =
1

2
+O(

1

λ
) as λ→∞,

l(λ) =
1

2
+O((λt)−1) +O(t−1) as λ→ 0,

l(λ) =
1

2
+O

(
((λ− 1)t)−1

)
+O

(
t−1
)

as λ→ 1.

In the region (λ− p)t = O (tε), ε > 0, we have

T ∼
(

1 0
1
yt (z + Θ0+Θ1+Θ∞

2 ) −1

)
+ o(1) as λ→ 0, (4.17)

T ∼ y
1
2σ3

(
1 −z−Θ0

yt

0 −1

)
y−

1
2σ3 + o(1) as λ→ 1, (4.18)

where we impose one more assumption,
zy

t
= o(1). (4.19)

For the large λ,
T ∼ σ3 + o(1) as λ→∞. (4.20)

Hereafter, if two expressions are connected by the symbol “∼”, then they are equal up to a scalar
nonzero multiplier.

Instead of defining the Stokes domains, we formulate the following theorem.
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Theorem 4.1. Assume that coefficients of Equation (4.3) satisfy the following conditions: (4.1),
(4.2), (4.6), (4.13), and (4.19). Then, for any j ∈ Z there exists a solution Ψj(λ) of Equation (4.3)
with the following asymptotic expansion at large pure imaginary t,

Ψj(λ) = T (λ) exp
{(
F0(λ)− F0(λ∗j )

)
σ3

}
(4.21)

on the ray arg(λt) = π
2 + π(j − 2), |λt| ≥ |t|εm , εm = 1 − q where q ∈ (0, 1). Point λ∗j lies on the

same ray.

4.2 A model equation for solutions near the singular points

As usual, the WKB-asymptotic fails near the singular points. In the neighborhood of these points,
we need another approximation. To find it, we introduce the model functions Yi(k, σ;x). Slightly
modified, these functions can be found in [16]. They satisfy the following linear differential equation

∂xYi(k, σ;x) =

(
1

2
σ3 +

1

2x

(
−k σ − k
σ + k k

))
Yi(k, σ;x). (4.22)

Asymptotic expansions of these solutions in the sectors

−π
2

+ π(i− 2) < arg x <
3π

2
+ π(i− 2)

are as follows

Yi(k, σ;x) =
(
1 +O

(
x−1

))
exp

{
x

2
− k

2
lnx

}
σ3

They define the functions Yi(k, σ;x) uniquely. Following the standard method (see, for instance, [1]),
we define the monodromy parameters for Equation (4.22).

The solutions Yi(k, σ;x) of Equation (4.22) are connected by Stokes matrices Si(k, σ)

Yi+1(k, σ;x) = Yi(k, σ;x)Si(k, σ). (4.23)

All the Stokes matrices can be found via S1(k, σ) and S2(k, σ) using the relation

Si+2(k, σ) = eπıkσ3Si(k, σ)e−πıkσ3 .

For S1 and S2 we have

S1(k, σ) =

(
1 0

s1(k, σ) 1

)
, S2(k, σ) =

(
1 s2(k, σ)
0 1

)
.

The Stokes multipliers si(k, σ), i = 1, 2, are given by explicit formulae:

s1(k, σ) = − 2πı

Γ(1− σ−k
2 )Γ(σ+k

2 )
, s2(k, σ) = − 2πıeπık

Γ(1− σ+k
2 )Γ(σ−k2 )

.

We choose function Y2(k, σ;x) as the “main” basic function. The explicit construction for this
function is given by M. Jimbo

Y2(k, σ;x) =

=

(
eπı(1−k)/2W(1−k)/2,σ/2(e−πıx) − 1

2 (σ − k)W(−1+k)/2,σ/2(x)
− 1

2 (σ + k)eπı(1−k)/2W−(1+k)/2,σ/2(e−πıx) W(1+k)/2,σ/2(x)

)
x−

1
2 .

Here W · , · ( · ) is the Whitteker function. The asymptotic expansion as x→ 0 is given as follows

Y2(k, σ;x) = Gkσ(1 +O(x))x
1
2σσ3Ckσ, (4.24)
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where

Gkσ =
1√
σ

(
1
2 (σ − k) −1
1
2 (σ + k) 1

)
,

Ckσ =
√
σ

 −Γ(−σ)

Γ(1−σ−k2 )
e−πı(σ+k)/2 −Γ(−σ)

Γ(1−σ+k
2 )

−Γ(σ)

Γ(σ+k
2 )

eπı(σ−k)/2 Γ(σ)

Γ(σ−k2 )

 .

We introduce the following monodromy matrix

M(k, σ) = C−1
kσ e

πıσσ3Ckσ

and find

M(k, σ) =

(
e−πık 2πı

Γ(1−σ+k
2 )Γ(σ−k2 )

2πıe−πık

Γ(1−σ−k2 )Γ(σ+k
2 )

2 cosπσ − e−πık

)
. (4.25)

Also, we will need another monodromy matrix related to Y3(k, σ;x):

M3(k, σ) =

(
−eπık + 2 cosπσ m3

12
2πıe−πık

Γ(1−σ−k2 )Γ(σ+k
2 )

eπık

)
.

The entry m3
12, which we do not use in the following text, can be computed with the help of the

relation detM3(k, σ) = 1.

4.3 Singular point λ = 1

In the neighborhood of the point λ = 1, we can rewrite Equation (4.3) as

∂λY (λ) =

(
t

2
σ3 +A0 +

A1

λ− 1
+O(λ− 1)A0

)
Y (λ).

Divide this equation by t and introduce the variable x = (λ−1)t. Then, function Y (1)(x) = Y (λ)
satisfies the equation

∂xY
(1)(x) =

(
1

2
σ3 +

A0

t
+
A1

x
+O(x)

A0

t2

)
Y (1)(x).

We introduce function Y (2) = y−
1
2σ3Y (1), which satisfies the equation

∂xY
(2)(x) =

((
1
2 β1

o(1) − 1
2

)
+
Ã1

x
+O(x)

Ã0

t2

)
Y (2)(x),

where we used Assumption (4.19) and denoted β1 = − z+Θ0

yt .

To obtain the basic equation (4.22), we transform the first matrix in the right-hand side of the

previous equation to the diagonal form substituting Y (2) = T1Y
(3) =

(
1 −β1

0 1

)
Y (3). Then, Y (3)

satisfies the following equation

∂xY
(3)(x) ≈

(
1

2
σ3 +

Â1

x

)
Y (3)(x).

Here,
Â1 = T−1

1 y−
1
2σ3A1y

1
2σ3T1.

Since

det Â1 = detA1 = −Θ2
1

4
, (4.26)

15



we see that parameter σ in the model equation should be taken equal to Θ1. Then from the equation
on Y (3), namely from the diagonal element in Â1, we can find parameter k in the model equation:

k ≡ k1 = 2

(
z +

Θ0 + Θ∞
2

+ β1

(
Θ0 + Θ1 + Θ∞

2

))
= −2ϕ1 + Θ∞,

ϕ1 = −z − Θ0

2
+
z + Θ0

ty

(
z +

Θ0 + Θ1 + Θ∞
2

)
. (4.27)

So, we know that σ and k in the model equation are Θ1 and k1 = −2ϕ1 + Θ∞ correspondingly,
but we still do not have model equation, because {Â1}21 6= σ+k

2 . We transform the equation by a

diagonal matrix: Y (3) = ρ
1
2σ3

1 Y (4) and find that Y (4) satisfies the following equation:

∂xY
(4)(x) ≈

(
1

2
σ3 +

1

2x

(
−k1 Θ1 − k1

Θ1 + k1 k1

))
Y (4)(x),

that is the model equation (4.22). Parameter ρ1 should be taken as follows:

ρ1 = −1− β1 = −1 +
z + Θ0

yt
. (4.28)

We also assume that ϕ1 = O(1), which is consistent with Theorem 3.1.
Now, the standard proof [6] allows us to formulate the following Theorem.

Theorem 4.2. For any j ∈ Z, there exist a solution Y(j)(1, λ) of Equation (4.3) with the following
asymptotic expansion as |(λ− 1)t| < |o(t)|

Y(j)(1, λ) ≈ y 1
2σ3T1ρ

1
2σ3

1 Yj(Θ1, k1; (λ− 1)t), (4.29)

Corollary 4.1. In the region, (λ− 1)t = O (tεm), 0 < εm < 1, the asymptotic expansion of function
Y(j)(1, λ) has the following form

Y(j)(1, λ) = y
1
2σ3T1ρ

1
2σ3

1

(
1 +O

(
t−εm

))
e−

k1
2 ln(λ−1)σ3t−

k1
2 σ3e

(λ−1)t
2 σ3 (4.30)

in the sector

−π
2

+ π(j − 2) < arg(λ− 1) + arg t <
3π

2
+ π(j − 2).

Corollary 4.2. In the region, (λ − 1)t = o(1), the asymptotic expansion of function Y(2)(1, λ) is
given by

Y(2)(1, λ) = y
1
2σ3T1ρ

1
2σ3

1 Gk1Θ1

(
1 +O

(
λ− 1)t

)) (
(λ− 1)t

)Θ1
2 σ3

Ck1Θ1
. (4.31)

In these statements
t−

k1
2 σ3 ≡ e−

k1
2 σ3 ln t, ln t = ln |t|+ ı arg t.

Hereafter, we will understand all multivalued logarithmic functions of t in this way.

4.4 Singular point λ = 0

The construction presented in this subsection is analogous to the one in Subsection 4.3. In particular
here we do not arrive at new restrictions on functions y and z.

In the neighborhood of the point λ = 0 we write down Equation (4.3) as follows,

∂λY (λ) =

(
t

2
σ3 −A1 +

A0

λ
+O(λ)A1

)
Y (λ).

We divide this equation by t and introduce the variable x = λt. Then, function Y (1)(x) = Y (λ)
satisfies the equation

∂xY
(1)(x) =

((
1
2 o(1)
β0 − 1

2

)
+
A0

x
+O(x)

A1

t2

)
Y (1)(x),
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where, β0 = z+(Θ0+Θ1+Θ∞)/2
ty .

To obtain the model equation (4.22), we make the substitution

Y (1) = T0Y
(2) =

(
1 0
β0 1

)
Y (2).

Then, Y (2) satisfies the equation

∂xY
(2)(x) ≈

(
1

2
σ3 +

Â0

x

)
Y (2)(x).

Here,
Â0 = T−1

0 A0T0.

Note that

det Â0 = −Θ2
0

4

and we can find the parameters σ and k in the model equation: σ = Θ0 and

k ≡ k0 = −2z −Θ0 + 2β0(z + Θ0) = 2ϕ1,

with ϕ1 defined in Equation (4.27). Now we map equation on Y (2) to the model Equation (4.22) by

making the following transformation Y (2) = ρ
1
2σ3

0 Y (3), where

1

ρ 0

= β0 − 1 =
z + (Θ0 + Θ1 + Θ∞)/2

ty
− 1. (4.32)

Then, we find that Y (3) satisfies the following equation:

∂xY
(3)(x) ≈

(
1

2
σ3 +

1

2x

(
−k0 Θ0 − k0

Θ0 + k0 k0

))
Y (3)(x),

that is exactly the model equation (4.22).
As in Subsection 4.3 we arrive at the following results:

Theorem 4.3. For any i ∈ Z, there exist a solution Y(i)(0, λ) of Equation (4.3) with the following
asymptotic expansion as λt = o(t)

Y(i)(0, λ) = T0ρ
1
2σ3

0 Yi(Θ0, k0;λt). (4.33)

Corollary 4.3. In the region, λt = O (tεm), 0 < εm < 1, the asymptotic expansion of function
Y(i)(0, λ) is given by

Y(i)(0, λ) = T0ρ
1
2σ3

0

(
1 +O

(
t−εm

))
e−

k0
2 lnλσ3t−

k0
2 σ3e

λt
2 σ3 . (4.34)

This asymptotic expansion is valid in the sector

−π
2

+ π(i− 2) < arg λ+ arg t <
3π

2
+ π(i− 2).

Corollary 4.4. In the region, λt = o(1), the asymptotic expansion of function Y(2)(0, λ) is

Y(2)(0, λ) = T0ρ
1
2σ3

0 Gk0Θ0

(
1 +O(λt)

)
(λt)

Θ0
2 σ3Ck0Θ0

. (4.35)
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4.5 Matching

We have defined the following solutions of Equation (4.3): the canonical solutions,Yi(λ); the solutions
with the WKB asymptotics, Ψi(λ); and the solutions in the proper neighbohoods of the singular
points, Y(i)(p, λ), i ∈ Z. Since all of them are solutions of the same equation, the following matrices

Li(p) = Y −1
(i) (p, λ)Ψi(λ), Ci = Ψ−1

i (λ)Yi(λ) (4.36)

are independent of λ. Due to Corollaries 4.2 and 4.4,

Y(i)(p, λ) =
λ→p

Gi(p)(λ− p)
Θp
2 σ3E(i)(p), (4.37)

where the matrices E(i)(p) are also independent of λ.
Our immediate goal is to find asymptotics of these matrices as t → ∞. After that, we find

asymptotics of the matrices Epi (see Section 2), via the following relation:

Epi = E(i)(p)Li(p)Ciu
− 1

2σ3 , (4.38)

where we restored function u (see introductory part for this Section).
For any integer i (note that the imaginary unit is denoted as ı)

Ci = −ıσ3(1 + o(1)), (4.39)

where the error estimate is a diagonal matrix. This estimation is obtained by taking asymptotics as
λ→∞ along the corresponding (to i) Stokes line in the second equation (4.36). The error estimate
is a diagonal matrix, because the off-diagonal entries would be λ–dependent.

To find asymptotics of matrices Li(p) we use their definition (4.36), where we take asymptotics
as x = (λ − p)t = O (tε) → ∞, 0 < ε < 1, along Stokes lines of the functions Yi(p, λ). Again we
have to take the diagonal part of the asymptotics because the non-trivial off-diagonal part would be
x-dependent.

Using expansions (4.31) and (4.21), with F0(λ) and T (λ) given by (4.12) and (4.18), respectively,
we want to match these solutions in the leading term. In order for the leading term the leading
terms of the matrices Li(1) not to depend on λ, the following condition should be valid

ϕ2 ≡ ϕ− ϕ1 =
yz

t

(
z +

Θ0 −Θ1 + Θ∞
2

)
− 2

t

(
z +

Θ0

2

)(
z +

Θ0 + Θ∞
2

)
= o(1). (4.40)

Assuming the above condition is true, one finds,

Li(1) = t
k1
2 σ3(ρ1y)−

1
2σ3e

t
2σ3σ3(1 + o(1)), (4.41)

where, again, the error term o(1) is a diagonal matrix. We find asymptotics of Li(0) in the similar
way, with the help of equations (4.34), (4.21), (4.12), and (4.18). The result reads

Li(0) = t
k0
2 σ3ρ

− 1
2σ3

0 eπı(ϕ−
Θ∞

2 )σ3σ3(1 + o(1)). (4.42)

Now we have enough information to calculate all the monodromy data introduced in Section 2.
We, however, are going to find a minimal set of the data which completely characterize the domain
of the monodromy manifold corresponding to our assumptions on the coefficients of Equation (1.1)
which are made in the preceding Subsections.

To simplify further relations, we need some preliminary notation. Denote Gp the upper (p=0) –
and lower (p=1) – triangular subgroups of SL(2,C) with the unit diagonal,

Gp = {g ∈ SL(2,C) : g =

(
1 (1− p)∗
p∗ 1

)
}.
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where the symbol ∗ stands for arbitrary complex number. Subgroup Gp acts on SL(2,C) via the
right multiplication. We use the same notation Gp for this action, since it cannot cause any misun-
derstanding. Note that element X12 is not changed by transformation G1, while element X21 is not
changed by G0.

Let D be a diagonal subgroup of SL(2,C). Then, for any g ∈ Gp and d ∈ D

dg = gd modGp. (4.43)

By employing this notation, the matrices E(i)(p) (see Equation (4.37)) due to Equations (4.29),
(4.33), (4.23), and (4.24), can be written as follows:

E(2)(p) = CkpΘp , (4.44)

E(3)(0) = Ck0Θ0 modG0, (4.45)

E(1)(1) = Ck1Θ1 modG1. (4.46)

Relations (4.39), (4.41), (4.42), (4.44), (4.45), and (4.46) give us information sufficient to find
asymptotics of matrices Ep (see (2.10)).

First, consider the case arg t = π
2 . Then, in the neighborhood of point λ = 1, we have: arg x =

arg(λ−1)t = π
2 for real λ > 1, arg λ = 0. Note that asymptotic expansion of Y2 is fixed at arg λ = 0.

Thus,
E1 ≡ E1

2 = Ck1Θ1
L2(1)C2u

− 1
2σ3 .

In the neighborhood of point λ = 0, we have: arg x = arg λt = 3π
2 for real λ < 0, arg λ = π. Note

that: 1) solution Y3 is fixed at arg λ = π; 2) Y2 = Y3 modG0; 3) matrices Li(p) are diagonal ones,
Li(p) ∈ D; 4) relations (4.45) and (4.43) take place. So,

E0 ≡ E0
2 = E0

3 modG0 = Ck0Θ0
L3(0)C3u

− 1
2σ3 modG0.

Now, consider the case arg t = −π2 . Then, in the neighborhood of point λ = 1, we have:
arg x = arg(λ− 1)t = −π2 for real λ > 1, arg λ = 0. Note that asymptotic expansion of Y1 is fixed at
arg λ = 0. Repeating the arguments above, we have

E1 ≡ E1
2 = Ck1Θ1L2(1)C1u

− 1
2σ3 modG1.

In the neighborhood of point λ = 0, we have: arg x = arg λt = π
2 for real λ < 0, arg λ = π. Note

that solution Y2 is fixed at arg λ = π. Thus,

E0 ≡ E0
2 = Ck0Θ0L2(0)C2u

− 1
2σ3 .

Combining all these facts together, we find

arg t =
π

2
: E1 = Ck1Θ1

t
k1
2 σ3(ρ1y)−

1
2σ3 exp

( t
2
σ3

)
u−

1
2σ3(1 + o(1)), (4.47)

E0 = Ck0Θ0t
k0
2 σ3ρ

− 1
2σ3

0 exp
(
πı
(
ϕ− Θ∞

2

)
σ3

)
u−

1
2σ3(1 + o(1)) modG0; (4.48)

arg t = −π
2

: E1 = Ck1Θ1
t
k1
2 σ3(ρ1y)−

1
2σ3 exp

( t
2
σ3

)
u−

1
2σ3(1 + o(1)) modG1, (4.49)

E0 = Ck0Θ0t
k0
2 σ3ρ

− 1
2σ3

0 exp
(
πı
(
ϕ− Θ∞

2

)
σ3

)
u−

1
2σ3(1 + o(1)). (4.50)

Note that in Equations (4.47)–(4.50) the error estimates, o(1), are diagonal matrices.
The manifold of monodromy dataM5(Θ0,Θ1,Θ∞) is three-dimensional. Thus, we are to obtain

three parameters in monodromy data. When arg t = π
2 , we can find two parameters from relation

(4.47) and one parameter from (4.48). When arg t = −π2 , we can find one parameter from relation
(4.49) and two parameters from (4.50). In both cases, one of the matrices Ep has the following
structure: Ep = CkpΘpd, where d is a diagonal matrix, d ∈ D. So, the diagonal elements of the
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corresponding monodromy matrix Mp are equal to those from (4.25). Using this remark, we find for
arg t = π

2 :

m1
11 = e2πıϕ−πıΘ∞(1 + o(1)),

m1
12 =

2πıt2ϕ−Θ∞e−tρ1yu(1 + o(1))

Γ(1− Θ1+Θ∞−2ϕ
2 )Γ(Θ1−Θ∞+2ϕ

2 )
, (4.51)

m0
21 =

2πıt2ϕe−πıΘ∞(1 + o(1))

uρ0Γ(1− Θ0−2ϕ
2 )Γ(Θ0+2ϕ

2 )
,

For arg t = −π2 , we have

m0
11 = e−2πıϕ(1 + o(1)),

m1
12 =

2πıt2ϕ−Θ∞e−tρ1yu(1 + o(1))

Γ(1− Θ1+Θ∞−2ϕ
2 )Γ(Θ1−Θ∞+2ϕ

2 )
, (4.52)

m0
21 =

2πıt2ϕe−πıΘ∞(1 + o(1))

uρ0Γ(1− Θ0−2ϕ
2 )Γ(Θ0+2ϕ

2 )
.

Since the monodromy data (4.51) and (4.52) do not depend on t, we arrive at the following asymptotic
expansions:

ye−tt4ϕ−Θ∞
ρ1

ρ0
= δ(1 + o(1)), −yue−tt2ϕ−Θ∞ρ1 = û(1 + o(1)), where δ, û ∈ C \ 0 (4.53)

are parameters (independent of t). At this point we recall our notational agreement (see the preamble
to Section 4) and consider ϕ as a complex parameter, rather than a function of t with the behavior
O(1) as t→ ı∞.

Now, substituting the first two conditions (4.53) into Equations (4.51) and (4.52), and taking into
account that the matrix elements mp

ik are independent of t, so that we can take the limit t→ ı∞, we
arrive at the results announced in Theorem 3.3. Let us note that the expressions for m1

21 and m0
21

(as functions of ϕ, δ, and û) remain the same regardless of sign of =(t). Only m1
11 and m0

11 differ.

4.6 Asymptotics of System (1.2)–(1.4)

To get the results announced in Theorem 3.1, we rewrite the first two Equations (4.53) and the one
for ϕ, (4.40), in terms of ρ0, ρ1, and ϕ1, see Equations (4.32), (4.28), and (4.27), respectively:

yt

z + Θ0
= 1− δ

ϕ− Θ0

2

ettΘ∞−4ϕ+1(1 + o(1)), (4.54)

u =
û(1 + o(1))

yt−
(
z + Θ0

) ettΘ∞−2ϕ+1, (4.55)

ϕ = −z − Θ0

2
+
z + Θ0

ty

(
z +

Θ0 + Θ1 + Θ∞
2

)
+ o(1), (4.56)

Substituting the ratio in the l.-h.s. of Equation (4.54) into Equation (4.56) we obtain a linear
algebraic equation for z. Solving it we successively obtain yt and u from Equations (4.54) and
(4.55), respectively:

yt = δ(1 + o(1))tν1et − 2ϕ+
Θ0 + Θ1 + Θ∞

2
+

(ϕ− Θ0

2 )(ϕ− Θ1+Θ∞
2 )

δ(1 + o(1))tν1et
, (4.57)

z = −ϕ− Θ0

2
+

(ϕ− Θ0

2 )(ϕ− Θ1+Θ∞
2 )

δ(1 + o(1))tν1et
, (4.58)

u =
û

δ
· t2ϕ(1 + o(1))

1−
(
ϕ− Θ1+Θ∞

2

)
δ−1(1 + o(1))t−ν1e−t

, (4.59)
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where we denoted
ν1 = Θ∞ − 4ϕ+ 1. (4.60)

Thus we get explicit expressions for y, z, and u. The same expressions, presented however in a
multiplicative form, are given in Theorem 3.1 as the leading terms of the asymptotic expansions.
According to our justification scheme outlined in Introduction to announce these formulae as asymp-
totics of the true solutions of System (1.2)–(1.4) we have to check that all our assumptions and
error estimates made in this section are valid. The latter, in fact, leads to some restrictions on our
asymptotic parameters. To find them we note that as t→ ı∞:

|yt| = O
(
|t||<(ν1)|

)
, |z| =

 O(1) <(ν1) ≥ 0,

O
(
|t|−<(ν1)

)
<(ν1) ≤ 0

Most of the calculations done in this section are valid for 0 < <(ν1) < 2, as indicated in the preamble
to this Section. However, the matching requires, see Equation (4.40), the following restriction on ν1:

−1

2
< <(ν1) < 1. (4.61)

The left inequality in (4.61) follows from the fact that for negative <(ν1) function z is growing .
This growth is bounded by the second term in Equation (4.40). Let us explain the right inequality
in (4.61). For positive <(ν1) Equation (4.40) implies ϕ2 = O

(
tν1−2

)
+O

(
t−1
)
. We demand that the

second term in asymptotics of z (see Equation (4.58)), which has the order t−ν1 , should be greater
than ϕ2. Otherwise the asymptotics of z would consists of only one constant term which contains only
one parameter and therefore gives only very rough approximation for this function, in particular, such
asymptotics does not uniquely characterize function z. At the same time the condition <(ν1) < 1
does not improve radically our asymptotics for function y, because this asymptotics is mainly defined
(see Equation (4.54)) by multiplication of the constant term in asymptotics of z+Θ0 with the growing
power term O

(
tν1
)
. Thus, one can continue to use asymptotics of y announced in Theorem 3.1 in

the region 1 ≤ <(ν1) < 2. Our numerical studies (see Section 10) confirms this observation.
Now we are ready to discuss the accuracy of approximation of function y by the asymptotics

given in Theorem 3.1. This question is intimately related with the error estimate we introduced
in (4.54) for function δ̃ ≡ δ(1 + o(1)). This estimate allows us to confirm only the largest term in
asymptotics of y in case <(ν1) 6= 0. However, as we see below, we can assert that our result gives us
up to three correct terms in asymptotics of y.

Note that the estimate (in δ̃) defines the class of functions for which we calculate the monodromy
data. Our calculations are valid for any estimate o(1) in δ̃. Therefore, to formulate the best possible
asymptotic result for the functions y and z that follows from our derivation we have to demand that
this o(1) is as small as possible. It cannot be equal to 0 because in this case Equation (4.54) would
provide us with the first integral for general solutions of the system (1.2)–(1.3) which is not possible.
At the same time there is no sense to demand that the error estimate for δ̃ is better than the one for
function ϕ, since function δ̃ appeared for the first time in Equation (4.54) in the ratio δ̃/ϕ. Therefore,
the order of the error estimate in Theorem 3.1, which follows from our derivation coincides with the
order of the estimate related with the transition from function ϕ to the parameter ϕ (see preamble
Section 4). This means that practically we can omit o(1)-term in Equation (4.54). Very similar
reasoning leads to the conclusion that the error estimate for function u in Equations (4.55) and
(4.59) can be chosen coinciding with the one for ϕ. The latter means that in all Equations (4.57)–
(4.59) we can omit o(1) terms and take into account the error that comes out from function ϕ.
The best possible error for transition from function ϕ to the parameter ϕ which comes from our
calculation coincides with O(ϕ2). The following analysis is based on this fact.

First consider positive values of <(ν1). The error estimate for function ϕ2 in this case is O
(
1/t
)
,

which gives the following error estimate for function yt in Theorem 3.1,

O
(
tν1+O(1/t) − tν1 + tν1O (1/t)

)
= O

(
tν1−1 ln t

)
. (4.62)
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Thus, because of the inequality <(ν1) − 1 < −<(ν1) which holds for 0 ≤ <(ν1) < 1/2 we see that
all three terms of asymptotics of y (Equation (4.57) without o(1) terms) are larger than the error
estimate (4.62). In the case 1/2 < <(ν1) < 1 only the two first terms of asymptotics of y are larger
than the error estimate; we note that in the whole interval 0 ≤ <(ν1) < 1 two terms of asymptotics
are larger than the error estimate for both functions y and z (see Equations (4.57) and (4.58) with
the omitted o(1) terms).

The conclusion made in the above paragraph is consistent with the complete asymptotic expan-
sions for functions y and z developed in Appendix B, namely, one can improve approximation of
function yt by adding up the following correction terms:

y10δe
ttν1−1 for

1

2
≤ <(ν1) <

2

3
and one more term

y11

(
δettν1−1

)2
for

2

3
≤ <(ν1) < 1,

where y10 and y11 are defined in Appendix B.
It is mentioned above that one can continue to use asymptotics of y given in Theorem 3.1 in

the region 1 < <(ν1) < 2. It is worth noting that for the latter values of ν1 the error estimate for
function y is O(t2ν1−2 ln t), i.e. is growing, and for z it is still vanishing, O(tν1−2). It is easy to
observe that Theorem 3.2 deliver much better approximation of y and, surely, z for these values of
ν1. At the boundary value <(ν1) = 1, the leading (growing) term of asymptotics of function y and
the leading (constant) term of asymptotics of z given by both Theorems 3.1 and 3.2 coincide. Either
result can be used for approximation of these functions: the accuracy (which one is better?) depends
on the particular solution. One has to use the correction terms given in Appendix B, especially
for approximation of function z, to achieve a ”reasonably” good asymptotic description of these
functions. The reader will find a numeric example in Subsection 10.4.

Consider now negative values of <(ν1) for general solutions:

−1/2 < <(ν1) < 0, ϕ−Θ0/2, ϕ− (Θ1 + Θ∞)/2 6= 0.

In this case ϕ2 = O
(
t−2ν1−1

)
, therefore, the error estimate in both formulae for yt and z in Theo-

rem 3.1 is of the order t−3ν1−1 ln t. Both function yt and z have exactly the same leading term of
asymptotics (here we again refer to Equations (4.57) and (4.58)) proportional to t−ν1 . Therefore, in
the region −1/4 < <(ν1) ≤ 0 all three terms of asymptotics for function yt and two terms for function
z are larger than the error estimate. In the case −1/3 < <(ν1) ≤ −1/4 two terms of asymptotics for
functions yt and z are larger than the error estimate. Finally, for −1/2 < <(ν1) ≤ −1/3 only the
largest terms of asymptotics for yt and z are larger than the corresponding error estimates.

5 Derivation II

In this section we outline some basic steps which lead to Theorem 3.2. The scheme of the proof and
major steps of calculations are the same as in the previous section. Therefore here we outline only
modifications that are needed for the case under consideration.

The major assumptions on the coefficients of Equation (1.1) are as follows:

|z| < O(t), O
(
t−1
)
< 1/|y| < O (t) . (5.1)

In fact, these conditions are equivalent to those given by Equations (4.1) and (4.2) in Section 4. In
this section we continue to use the conventions about symbols O(·) and o(·) made in the paragraph
below Equations (4.1) and (4.2).

Therefore, we do not need to change anything in the WKB-method, except for asymptotics of
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matrix T (λ):

T ∼
(

1 y
t (−z + −Θ0+Θ1−Θ∞

2 )
0 −1

)
+ o(1) as λ→ 0,

T ∼ y
1
2σ3

(
1 0
yz
t −1

)
y−

1
2σ3 + o(1) as λ→ 1,

T ∼ σ3 + o(1) as λ→∞.

The reason for this change is the following assumption on the functions z and y,

z

yt
= o(1),

which we use now instead of Assumption (4.19). For solution in the neighborhood of λ = 1, we have
the same result as above (see Theorem 4.2 and Corollaries 4.1, and 4.2), but now:

T1 =

(
1 0
β1 1

)
, β1 =

zy

t
, and ρ1 = 1/(β1 − 1). (5.2)

For solution in the neighborhood of the point λ = 0, we have the same result as above (see Theorem
4.3 and Corollaries 4.3, 4.4), but now:

T0 =

(
1 −β0

0 1

)
, β0 =

y

t
(−z + (Θ1 −Θ0 −Θ∞)/2), and ρ0 = −1− β0. (5.3)

The matching goes exactly as before. In particular, for matrices Li(1) and Li(0) we get exactly
the same expressions (4.41) and (4.42), respectively, but with ρ1 and ρ0 defined in (5.2) and (5.3).
Proceeding exactly as in Section 4, we arrive at formulas (4.51) and (4.52) for the monodromy data.

Next, we introduce asymptotic parameters, δ and û by formulae (4.53), with the corresponding
parameters ρ1 and ρ0.

The asymptotic parameter ϕ is defined in Equation (4.5). However, due to the conditions (5.1),
Equation (4.40) should be changed to

ϕ2 ≡ ϕ− ϕ1 =
z + Θ0

ty

(
z +

Θ0 + Θ1 + Θ∞
2

)
− 2

t

(
z +

Θ0

2

)(
z +

Θ0 + Θ∞
2

)
= o(1). (5.4)

Now, using definitions for ρ1 and ρ0, (5.2) and (5.3), and condition (5.4), we can write an analog of
system (4.54)–(4.56):

e−ttν2

δ(1 + o(1))
=
y

t

(
z − t

y

)(
z − t

y
+

Θ0 −Θ1 + Θ∞
2

)
, (5.5)

−ue−ttν2−2ϕ = û

(
z − t

y

)
(1 + o(1)), (5.6)

ϕ = −z − Θ0

2
+
yz

t

(
z +

Θ0 −Θ1 + Θ∞
2

)
+O

(
z2

t

)
+O

(
z2

ty

)
, (5.7)

where
ν2 = 4ϕ−Θ∞ + 1.

Opening the parenthesis in Equations (5.5) and (5.7) and substituting the term yz2/t in Equa-
tion (5.7) by its expression obtained from Equation (5.5) one finds

z − t

y
= ϕ+

Θ1 −Θ∞
2

− e−ttν2

δ(1 + o(1))
. (5.8)

Here we include the error estimate from Equation (5.7) into the notation ϕ as agreed in preamble of
Section 4. Substituting z − t/y given by Equation (5.8) into Equation (5.6) we get the leading term
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of asymptotics for function u in Theorem 3.2. Making the same substitution into Equation (5.5) we
obtain

t

y
=
δ(1 + o(1))

e−ttν2

(
e−ttν2

δ(1 + o(1))
− ϕ− Θ1 −Θ∞

2

)(
e−ttν2

δ(1 + o(1))
− ϕ− Θ0

2

)
. (5.9)

Now factoring out from the parentheses in Equation (5.9) the term e−ttν2

δ(1+o(1)) we get the leading

term of asymptotics for t/y presented in Theorem 3.2. Substituting the latter asymptotics into
Equation (5.8) we obtain asymptotics for z. Finally, asymptotics for u immeditely follows from
Equations (5.6) and (5.8). Thus the analog of System (4.57)–(4.59) reads:

t

y
=

e−ttν2

δ(1 + o(1))
− 2ϕ− Θ0 + Θ1 −Θ∞

2
+

(
ϕ+

Θ1 −Θ∞
2

)(
ϕ+

Θ0

2

)
δ(1 + o(1))ett−ν2

z = −ϕ− Θ0

2
+

(
ϕ+

Θ1 −Θ∞
2

)(
ϕ+

Θ0

2

)
δ(1 + o(1))ett−ν2

u = −û(1 + o(1))t−ν2+2ϕet
(
ϕ+

Θ1 −Θ∞
2

− tν2e−t

δ(1 + o(1))

)
Reasoning similar to the one presented in Subsection 4.6 shows that to find the best error estimate
that comes from our derivation we can put all o(1)-estimates in the above formulae to be of the same
order as ϕ2 (see (5.4)). Therefore, we have to come back to the error estimate hidden in ϕ. The
analysis, which is very similar to the one at the end of Section 4 for the parameter ν1, implies similar
restriction for the parameter ν2,

−1

2
< <(ν2) < 1.

We can make a comment analogous to the one at the end of Section 4: since asymptotics of y is
growing in the region 1 ≤ <(ν2) < 2 the leading term of asymptotics for y is still satisfactory,
although the asymptotics for y given in Theorem 3.1 works better. The situation is worse for
function z because only the constant term of asymptotics remains larger than the error estimate for
1 ≤ <(ν2) < 2. So in the domain 1 < <(ν2) < 2, one has to use the result given in Theorem 3.1. In
case, <(ν2) = 1 either Theorem can be used but to get a good approximation one has to employ the
correction terms (see Appendix B).

6 Comparison with the results by McCoy and Tang

In this section, we compare our results with the ones obtained in paper [8]. The authors of [8]
considered the case Θ∞ = 2n ∈ Z+, Θ0 = Θ1 = Θ. We discuss here only the principal case Θ∞ = 0,
since the case n > 0 can be treated as application of the Bäcklund transformations (see Theorem A.1)
to the principal one. In particular, the monodromy matrices for n > 0 coincide with those for n = 0.
McCoy and Tang obtained the following asymptotic expansion as t→∞ and arg t = −π2 (x̂ = ı t4 ):

A0
11 = − ı

4

dσ0

dx̂
= z +

Θ

2
,

z = −ık − Θ

2
, σ0(x̂) = 4kx̂+O(1) (6.1)

y =
2k + ıΘ

2k − ıΘ
e−4ıs, s = x̂+ x̃0 + k ln x̂, (6.2)

In paper [8] two parameters k and A = 4k are used. In [7, 8] parameter δ = −8, whereas we fix
δ = −1/2 (see Equation (1.5)). We use notation x̂, instead of x in [7, 8], because in Section 10
we denote x = ıt for =t < 0. There is an obvious relation x̂ = x/4, which should be used in the
comparison of our results with those obtained in [7, 8]. In Equations (6.1) and (6.2) we simplify
the notation by using only the parameter k. These results agree with our asymptotic expansions
providing the asymptotic parameters are related as

ık = ϕ, δ =
2ϕ−Θ

2ϕ+ Θ
e−4ıx̃0

( ı
4

)−4ϕ

, (6.3)
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where (ı/4)−4ϕ ≡ e−2πıϕ44ϕ.
Now we turn to parametrization of the asymptotics by the monodromy data. In [8] McCoy and

Tang expressed the monodromy data in terms of the parameters Ip, which in our notation are defined
as follows,

Ip =
mp

11(Y )− e−πıΘ

mp
11(Y )− eπıΘ

, p = 0, 1, (6.4)

where Y is a canonical solution of Equation (1.1) and mp
11(Y ), is the (11)-element of the monodromy

matrix, Mp(Y ), corresponding to the singular point λ = p. While analyzing their paper [9] devoted
to the connection formulae for asymptotics of solutions on the real axis, we observed in [1] that the
monodromy parameter I0 was calculated for solution Y = Y3 (in our notation), while the parameter
I1 was given for Y = Y1. The same remark concerns the imaginary case considered in [8]. By using
the formulae presented in Section 2 one finds that in terms of our monodromy data the parameters
Ip are given by the following expression:

Ip =
m1−p

11 (Y )− eπıΘ

m1−p
11 (Y )− e−πıΘ

, p = 0, 1. (6.5)

The parameters Ip as calculated by McCoy and Tang (see Equations (2.53) and (2.68) in [8]) are:

I1 = eπıΘ
sinπ(ık + Θ

2 )

sinπ(ık − Θ
2 )

(6.6)

I0 =
C− + 4−ıke−2πke

πıΘ
2

Γ(ık+ Θ
2 )

Γ(−ık+ Θ
2 )

C− − 4−ıke−2πke−
πıΘ

2
Γ(1+ık−Θ

2 )

Γ(1−ık−Θ
2 )

, (6.7)

C− = − 2πıe−4ıx̃043ıke−πk

Γ(1 + ık + Θ
2 )Γ(ık − Θ

2 )
. (6.8)

Substituting into Equation (6.5) (for p = 1) m0
11 given by Equation (3.7) and taking into account

the first equation (6.3) we see the complete agreement of our results with equation (6.6).
The parameter I0 is more complicated: By making use of Equation (2.16) and the results for the

monodromy data presented in Theorem 3.3, we rewrite our monodromy parameter m1
11 as follows:

m1
11 =

1−m0
21m

1
12

m0
11

= e2πıϕ(1−X),

X ≡ m0
21m

1
12 = − 4π2δ

Γ2(1 + ϕ− Θ
2 )Γ2(ϕ+ Θ

2 )
,

Now, Equation (6.5) (for p = 0) allows us to present the monodromy parameter I0 in the following
way:

I0 =
X + eπıΘe−2πıϕ − 1

X + e−πıΘe−2πıϕ − 1
. (6.9)

In its turn, Equations (6.7) and (6.8) obtained for I0 by McCoy and Tang ([MT]) can be rewritten
with the help of relations (6.3) and the well-known identities for the Gamma-function in terms of X:

I0[MT ] =
−X + eπıΘe−2πıϕ − 1

−X + e−πıΘe−2πıϕ − 1
.

So, for I0 we have an agreement only up to the sign of X or, equivalently, the sign of the parameter δ
or function y. If we are to keep the sign of δ unchanged, then to get I0 = I0[MT ] we can alternatively
demand that either I0 = 1, or X = 0, which is equivalent (we recall that δ 6= 0) to one of the following
conditions:

I0 = 1 : Θ = 0,±1,±2, . . . , (6.10)

X = 0 : ϕ+
Θ

2
= 0,−1,−2, . . . , or ϕ− Θ

2
= −1,−2, . . . . (6.11)
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Thus, contrary to the case of real argument t, where our parametrization of the quantities I0 and
I1, after being associated to the canonical solutions Y3 and Y1, respectively, coincides with the
parametrization obtained by McCoy and Tang (see [1]), for pure imaginary t these parameterizations
coincide only up to the sign of X in I0.

Finally, we comment on the connection formulae for the asymptotics. To get the connection
formulae McCoy and Tang employ asymptotics of the fifth Painlevé transcendent as t→ 0 obtained
by Jimbo in [16]. The latter asymptotics were parameterized by the monodromy data of the canonical
solution Y2 in our notation (see Section 2). Thus asymptotics as t→ ı∞ and t→ ı0 in [8] appear to be
parameterized by the monodromy data of Y1, Y3 and Y2, respectively. Hence, the connection formulae
obtained by McCoy and Tang could be correct only in a special situation when all three canonical
solutions coincide, Y1 = Y2 = Y3, or, in other words, the Stokes multipliers vanish, s1 = s2 = 0.
Since Θ∞ = 0 it means that the monodromy matrix M∞ = I and the corresponding monodromy
group of Equation (1.1) is commutative. For their connection formulae on the pure imaginary axis
to be correct one should additionally demand one of the conditions (6.10) or (6.11).

In Subsection 10.3 we consider a numerical solution of IDS (1.2)-(1.4) corresponding to nontrivial
Stokes multipliers, s1, s2, and observe a good agreement with our connection results, while the
connection formulae by McCoy and Tang do not show the correct asymptotic behavior.

7 Asymptotic expansions for t→ 0

In this section arg t is fixed in the standard way, in particular, arg t = 0 for t > 0. Moreover, arg t
is assumed to be bounded as t → 0. Let σ be a complex number. It will be convenient to use the
following notations:

b(σ) =
Θ1 + Θ0 + σ

2
, c(σ) =

Θ1 −Θ0 + σ

2
, d(σ) =

Θ∞ + σ

2
, a(σ) = b(σ)c(σ). (7.1)

Theorem 7.1. Let σ, s2, r ∈ C\{0} and <σ ∈ [0, 1). Let also Θ0,Θ1 6∈ Z. Then there exists the
unique solution of System (1.2)–(1.3) with the following asymptotic expansion as t→ 0:

y =
(a(σ) + s2d(−σ)a(−σ)tσ)(b(σ) + s2d(σ)b(−σ)tσ)

(a(σ) + s2d(σ)a(−σ)tσ)(b(σ) + s2d(−σ)b(−σ)tσ)
+

+
1−Θ1 −Θ0

(1− σ)2
t+O(t1+<σ) +O(t2−<σ), (7.2)

z =
(c(σ) + s2d(σ)c(−σ)tσ)(b(σ) + s2d(−σ)b(−σ)tσ)

σ2s2tσ
+

+ 2

(
b(σ)c(σ)

σ2(1− σ)s2tσ

)2

t+O(t1−<σ) +O(t2−3<σ), (7.3)

u = −rtΘ∞
(
b(σ) + s2d(−σ)b(−σ)tσ

b(σ) + s2d(σ)b(−σ)tσ

)
(1 +O(t)). (7.4)

Corollary 7.1. Function ζ(t), corresponding to the solution of System (1.2)–(1.4) defined in Theo-
rem 7.1, has the following asymptotic expansion as t→ 0:

ζ(t) =
1

4
(σ2 −Θ2

1 + Θ2
0 + 2Θ0Θ∞)− (Θ1 + σ)2 −Θ2

0

4s2σ2(1− σ)
t1−σ +

t

4σ2
(2Θ0σ

2+

+ Θ∞(Θ2
0 −Θ2

1 + σ2))− s2(Θ2
∞ − σ2)((Θ1 − σ)2 −Θ2

0)

16σ2(1 + σ)
t1+σ +O

(
|t|2−2<σ) . (7.5)

Remark 7.1. If 0 < <σ < 1, then the asymptotic expansion for function y = y(t) can be rewritten
as follows:

y =
t→0

1 +
σ2s2b(−σ)

a(σ)
tσ +

1−Θ1 −Θ0

(1− σ)2
t+O(t2<σ) +O(t2−<σ).
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Remark 7.2. Small t-expansion of the τ -function related to ζ as,

ζ(t) ≡ t d
dt

log τ(t) + (Θ0 + Θ∞)t/2 + ((Θ0 + Θ∞)2 −Θ2
1)/4, (7.6)

has been obtained by Jimbo [16]. We independently derived our results by a similar but slightly
different method and presented it in terms of the functions y, z, u, and ζ in [1]. The latter result,
together with the asymptotics at infinity, allows one to find the connection formulae for function u,
that cannot be obtained from Jimbo’s result. The present form of small t-asymptotics (Theorem 7.1)
we announced in paper [2], however the error estimates in that paper were correctly written only
for 0 < <σ ≤ 1/2. In this paper we have added additional error estimates (see the last terms in
Equations (7.2) and (7.3)) which work for the interval 1/2 < <σ < 1. Now the estimates cover
the whole semi-open interval, 0 ≤ <σ < 1. The origin of this mistake is not related with the
isomonodromy deformation method which gives only the leading terms of the asymptotics together
with the error estimates in the form O

(
t1+δ

)
, δ > 0, without specification of the dependence of δ on σ.

Formally, these estimates looks similar to the first error estimates in Equations (7.2) and (7.3). The
explicit form (in terms of σ) of these ”isomonodromy error estimates” are obtained via substitution
of the corresponding asymptotic expansions into the isomonodromy deformation system (1.2) and
(1.3) where the terms important for the parameter σ in the interval (1/2, 1), the last estimates in
Equations (7.2) and (7.3), were just overlooked although they have the required form O

(
t1+δ

)
.

Theorem 7.2. Assume Θ0,Θ1, b(σ), b(−σ), c(σ), c(−σ), d(σ), and d(−σ) /∈ Z. Then the solution of
System (1.2)–(1.4) defined in Theorem 7.1 generates an isomonodromy deformation of Equation (1.1)
with the following monodromy data:

mp
11 =

1

d̂

(
e−

πı
2 σm̂p

11

π
sinπd(−σ)− e

πı
2 σm̂p

22

π
sinπd(σ)−

− e−
πı
2 σm̂p

21

ŝ2Γ(1 + d(−σ))Γ(1− d(σ))
− ŝ2e

πı
2 σm̂p

12

Γ(d(σ))Γ(−d(−σ))

)
,

mp
22 =

1

d̂

(
−e

πı
2 σm̂p

11

π
sinπd(σ) +

e−
πı
2 σm̂p

22

π
sinπd(−σ)+

+
e−

πı
2 σm̂p

21

ŝ2Γ(1− d(σ))Γ(1 + d(−σ))
+

ŝ2e
πı
2 σm̂p

12

Γ(−d(−σ))Γ(d(σ))

)
,

mp
12 =

re
πı
2 Θ∞

d̂

(
m̂p

22 − m̂
p
11

Γ(−d(−σ))Γ(1− d(σ))
− m̂p

21

ŝ2Γ2(1− d(σ))
+

ŝ2m̂
p
12

Γ2(−d(−σ))

)
,

mp
21 =

e−
πı
2 Θ∞

rd̂

(
m̂p

22 − m̂
p
11

Γ(d(σ))Γ(1 + d(−σ))
+

m̂p
21e
−πıσ

ŝ2Γ2(1 + d(−σ))
− ŝ2m̂

p
12e

πıσ

Γ2(d(σ))

)
,

s2 = − 2πıreπıΘ∞

Γ(1− d(σ))Γ(−d(−σ))
, s1 = − 2πır−1

Γ(1 + d(−σ))Γ(d(σ))
. (7.7)

In the previous formulas:

d̂ = −e
πı
2 Θ∞

π
sinπσ, m̂p

ij = {M̂p}ij , p = 0, 1, ŝ2 = s2 Γ(σ)

Γ(−σ)
,

M̂0 = − ı

sinπσ

(
− cosπΘ1 + eπıσ cosπΘ0 −e−πıσp̂

−eπıσ q̂ cosπΘ1 − e−πıσ cosπΘ0

)
,

M̂1 = − ı

sinπσ

(
− cosπΘ0 + eπıσ cosπΘ1 p̂

q̂ cosπΘ0 − e−πıσ cosπΘ1

)
,

p̂ =
Γ(1 + σ)

Γ(1− σ)

2π2

Γ(1+b(σ))Γ(−b(−σ))Γ(1+c(σ))Γ(−c(−σ))
,

q̂ = −Γ(1− σ)

Γ(1 + σ)

2π2

Γ(1+b(−σ))Γ(−b(σ))Γ(1+c(−σ))Γ(−c(σ))
.
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Remark 7.3. Multiplying expressions for the Stokes multipliers s2 and s1 in (7.7) one finds

2 cos πσ = 2 cos πΘ∞ + s1s2e
−πΘ∞ . (7.8)

This equation means that to define parameter σ for all monodromy data we have to allow <σ ∈ [0, 1].
The case <σ ∈ (0, 1) and <σ = 0 with =σ 6= 0, modulo some restrictions on the parameters Θk

where k = 0, 1, t, and ∞ is served by Theorems 7.1 and 7.2.
The case <σ = 1 and the restrictions mentioned in the previous sentence are studied in part II

of this work.
We finish this section by considering the case σ = 0 with certain restrictions on the parameters

Θ0 and Θ1.

Theorem 7.3. Let Θ0,Θ1 6∈ Z. Let also ŝ1 ∈ C and r ∈ C\{0}. Then there exists a solution of
system (1.2)–(1.3) with the following asymptotic expansion as t→ 0:

z = −dbc(ln t+ ŝ1)2 + (bc+ (b+ c)d)(ln t+ ŝ1)− d− b+ ε,

u = −rtΘ∞ db(ln t+ ŝ1)− b− d+ ε

db(ln t+ ŝ1)− 1
2 + ε

, ε = O
(
t ln4 t

)
,

y =
(−dbc(ln t+ ŝ1) + db+ bc+ cd+ ε)(b(ln t+ ŝ1)− 1 + ε)

(−bc(ln t+ ŝ1) + b+ c+ ε)(db(ln t+ ŝ1)− b− d+ ε)
.

Here b = b(0) = Θ1+Θ0

2 , c = c(0) = Θ1−Θ0

2 , and d = d(0) = Θ∞
2 .

Corollary 7.2. Function ζ(t), corresponding to the solution of system (1.2)–(1.4) defined in the
Theorem 7.3, has the following asymptotic expansion as t→ 0:

ζ(t) =− bc+ (b− c)d+ t(ln t+ ŝ1)(dbc(ln t+ ŝ1)− db− bc− cd− 2bcd)+

t(b+ d+ db+ bc+ cd+ 2dbc) +O
(
t2 ln4 t

)
.

Theorem 7.4. The solution of system (1.2)–(1.4) described in Theorem 7.3 defines isomonodromy
deformation of Equation (1.1) with the following monodromy data:

s1 = − 2πı

rΓ
(
1 + Θ∞

2

)
Γ
(

Θ∞
2

) , s2 = − 2πıreπıΘ∞

Γ
(
1− Θ∞

2

)
Γ
(
−Θ∞

2

) .
m1

11 = cosπΘ1 + 2ıe−ıd̂
((
ω sin d̂− e−ıd̂

)
w1 − 1

2e
−ıd̂ sin(b̂+ ĉ)− ı cos d̂ sin b̂ sin ĉ

)
,

m1
22 = cosπΘ1 − 2ıe−ıd̂

((
ω sin d̂− e−ıd̂

)
w1 − 1

2e
−ıd̂ sin(b̂+ ĉ)− ı cos d̂ sin b̂ sin ĉ

)
,

m0
11 = cosπΘ0 − 2ıe−ıd̂

((
ω sin d̂− eıd̂

)
w1 − 1

2e
ıd̂ sin(b̂+ ĉ) + sin d̂ cos b̂ cos ĉ

)
,

m0
22 = cosπΘ0 + 2ıe−ıd̂

((
ω sin d̂− eıd̂

)
w1 − 1

2e
ıd̂ sin(b̂+ ĉ) + sin d̂ cos b̂ cos ĉ

)
,

m1
12 = 2ıe−ıd̂

d2
1

(
ω sin d̂− cos d̂

)(
w1 sin d̂− cos d̂ sin b̂ sin ĉ

)
,

m0
12 = − 2ıe−ıd̂

d2
1

(
sin d̂

(
ω sin d̂− eıd̂

)
w1 − eıd̂ sin ĉ sin b̂

(
ω sin d̂− eıd̂

)
+ cos ĉ cos b̂ sin2 d̂

)
,

m0
21 = 2ıe−ıd̂d2

1

(
ωw1 + cos ĉ cos b̂

)
, m1

21 = −2ıe−ıd̂d2
1 (ω + ı)

(
w1 + ı sin b̂ sin ĉ

)
.

Here

b̂ = πb(0) = π
Θ1 + Θ0

2
, ĉ = πc(0) = π

Θ1 −Θ0

2
, d̂ = πd(0) = π

Θ∞
2
, d2

1 = − 2π

rΘ∞

e−
πı
2 Θ∞

Γ2
(

Θ∞
2

) , (7.9)

ω =
1

π
(ŝ1 − ψ(b+ 1)− ψ(c+ 1)− ψ(d+ 1) + 4ψ(1)) , ψ(z) ≡ d

dz
ln Γ(z), (7.10)

w1 = ω sin b̂ sin ĉ− sin(b̂+ ĉ).
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Remark 7.4. The results stated in the last two theorems can be obtained by the repetition of
the calculation scheme outlined in our previous paper [1], but with the asymptotics of the special
functions involved there corresponding to the case σ = 0. Instead, we, following Jimbo (see [16]),
consider the limit σ → 0 by making the following substitution, ŝ = 1+ŝ1σ where ŝ = −s2(Θ∞+σ)/2,
in the results stated in Theorems 7.1, Corollary 7.1, and 7.2, respectively. Strictly speaking, to make
the results obtained in Theorem 7.3 and Corollary 7.2 via this limiting procedure rigorous, we have
to study the dependence of the error estimates in Theorem 7.1 and Corollary 7.1 not only as t→ 0
but also as σ → 0. Concerning the latter estimates no details are given neither in Jimbo’s paper, nor
in our work [1]. Our result is based on the conjecture that the σ → 0 limit of the k-th term in the
small t-expansion of the ζ-function, ζ =

t→0

∑∞
k=0 t

k
∑
|l|≤k aklt

lσ (the inner sum), can be estimated

as O
(

ln2k t
)

. In principle, we do not need to prove this conjecture in case we use the derivation of

the results stated in Theorems 7.3, Corollary 7.2 via the ”first principles”. The limiting procedure
is simpler in the sense of derivation, but requires a proof of the additional nontrivial result. The
limiting procedure in the monodromy data of Theorem 7.2 is the straightforward application of the
l’Hopitale rule which is formulated as Theorem 7.4.

Remark 7.5. Jimbo in [16], presented small-t asymptotics of P5 only in terms of the τ -function
(see Equation (7.6)) our asymptotic formulae in terms of the functions y(t), z(t), u(t), and ζ(t) are
equivalent (with the same comment about u(t) as in Remark 7.2) to Jimbo’s one. To see this we have
to make one more calculation, because Jimbo didn’t write explicitly the monodromy matrices, like
we do in Theorems 7.4 and 7.2, instead he presented the analogs of our matrices Ep (see Section 2)
modulo left and right diagonal multipliers. So, below we give some details which explain how one
can get Jimbo’s monodromy for σ = 0.

To obtain this monodromy data (corresponding to the case σ = 0), we use formulas for Ep from
our previous paper (see [1], Section 10, page 1834):

Ep = Êps−σ3CΘ∞σR,

where R is a diagonal matrix independent of σ. Let us note that lim
σ→0

Ep = 0 (up to scalar multiplier).

To apply the l’Hopitale rule, we need to compute the first derivative of Ep with respect to σ

(Ep)′ = (Êp)′s−σ3CΘ∞0R−
s′

s
Êps−σ3σ3CΘ∞0R+ Êps−σ3C ′Θ∞σR.

Here and in the list of formulae below, the prime denotes the derivative with respect to σ taken at
σ = 0. Moreover, all objects that are functions of σ are assumed taken at σ = 0, e.g.: d = d(0) =
Θ∞/2, s2 = s2(0) = −2/Θ∞ (see Remark 7.4), etc:

s′

s = − 1
4d + ŝ1

2 ,

Êp = diag{∗, ∗}
(

1 −1
1 −1

)
, (Êp)′ = diag{lp11, l

p
22}σ3Ê

pσ3,

C ′Θ∞σ = σ3CΘ∞0σ3 diag{−πı2 + ψ(d)
2 ,−ψ(−d)

2 }−
−2ψ(1) diag{1, 0}CΘ∞0 + 1

2dσ3 diag{1, 0}CΘ∞0σ3,

CΘ∞0 = 1√
d
d−

1
2σ3

(
1 −1
−1 1

)
diag{ e

−πıd

Γ(d) ,
1

Γ(−d)},

where function ψ is defined in the second equation (7.10) and

l011 =
πı

2
− ψ(1) +

ψ(1 + c)

2
+
ψ(−b)

2
, l022 = −πı

2
+ 2ψ(1)− ψ(1 + b)

2
− ψ(−c)

2
,

l111 = −ψ(1) +
ψ(−c)

2
+
ψ(−b)

2
, l122 = ψ(1)− ψ(1 + c)

2
− ψ(1 + b)

2
.
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Using the well-known identities for function ψ(x) (see [4]):

ψ(1 + x) = ψ(x) +
1

x
, ψ(1 + x) = ψ(−x)− π cotπx,

we arrive at the following expressions for the matrices Ep at σ = 0:

E0 =

(
−ω + cot b̂ ω − ı− cot b̂− cot d̂

−ω + cot ĉ ω − ı− cot ĉ− cot d̂

)
diag

{
e−πıd

Γ(d)
,

r

Γ(−d)

}
,

E1 =

(
−ω − ı+ cot b̂+ cot ĉ ω − cot b̂− cot ĉ− cot d̂

−ω − ı ω − cot d̂

)
diag

{
e−πıd

Γ(d)
,

r

Γ(−d)

}
.

Now, writing cot(·) as cos(·)/ sin(·) and putting the matrix elements of E0 and E1 to common
denominators, then getting rid of these denominators by factorizing Ep p = 0, 1 with the help of
left and right diagonal matrices such that the numerators do not change, and, finally, omitting the
left diagonal matrices (as they do not effect the monodromy matrices) one arrives at the following
expressions for the corresponding matrix elements:

Ẽ0
11 = d1

(
s1 sin

π

2
(Θ1 + Θ0)− π cos

π

2
(Θ1 + Θ0)

)
,

Ẽ0
12 =

1

d1

(
(s1 − πı) sin

π

2
(Θ1 + Θ0) sin

π

2
Θ∞ − sin

π

2
(Θ1 + Θ0 + Θ∞)

)
,

Ẽ0
21 = d1

(
s1 sin

π

2
(Θ1 −Θ0)− π cos

π

2
(Θ1 −Θ0)

)
,

Ẽ0
22 =

1

d1

(
(s1 − πı) sin

π

2
(Θ1 −Θ0) sin

π

2
Θ∞ − sin

π

2
(Θ1 −Θ0 + Θ∞)

)
.

Ẽ1
11 = d1

(
(s1 + πı) sin

π

2
(Θ1 + Θ0) sin

π

2
(Θ1 −Θ0)− π sinπΘ1

)
,

Ẽ1
12 =

1

d1

((
s1 sin

π

2
Θ∞ − π cos

π

2
Θ∞

)
sin

π

2
(Θ1 + Θ0) sin

π

2
(Θ1 −Θ0)− π sinπΘ1 sin

π

2
Θ∞

)
,

Ẽ1
21 = d1 (s1 + πı) , Ẽ1

22 =
1

d1

(
s1 sin

π

2
Θ∞ − π cos

π

2
Θ∞

)
,

here matrices Ẽp coincide with Ep for p = 0, 1, respectively, modulo left diagonal factors. Parameter
d1 is given in the last equation of (7.9), the sign of d1 is not important, since the monodromy matrices
(see Theorem 7.4) depend on d2

1. The formulae for Ẽp exactly coincide with the corresponding
matrices obtained by Jimbo [16] modulo the scalar multiplier d1, which is not given in the paper
[16].

8 Degeneration in the general formulas for asymptotics as
t→ 0

Here we show how short-t asymptotics of some known particular solutions can be obtained with
the help of the results presented in Section 7. We discuss in this section some limiting procedures
when two or more parameters simultaneously and consistently tends to some singular points of the
formulae presented in the previous section. The parameters which limits we consider parameterize
both the monodromy data and the asymptotics of the corresponding solutions. The formulae for the
monodromy data are explicit so that the limiting procedures are chosen such that the limiting set
of the monodromy data exists. This set of the monodromy data define a solution of IDS (1.2)–(1.4).
This statement follows from the justification scheme for asymptotics obtained by the isomonodromy
deformation method [5], which can be applied for the large-t asymptotics. Then these solutions can
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be analytically continued into the neighborhood of t = 0 and so we can discuss their asymptotics as
t→ 0. In our derivation of the results in Section 7 we didn’t study the dependence of the asymptotic
estimates as the functions of the parameters which we are going to send to some limiting values.
Therefore, there appears a question concerning their behavior in these limits. In fact, it is clear that
these estimates cannot be unbounded because it would mean existence of a singularity for all rather
small t which cannot be the case because of the Painlevé property. The only problem that may occur
in the limiting procedure with the small-t asymptotics is that the error estimates may become equal
or larger than the leading term. In the last case, we cannot get a definite asymptotics directly from
our results. In this section we consider only the situations when the leading term of asymptotics
after the limiting procedure is larger than the error estimate. In following Section 9 we consider a
case when in the limiting procedure the order of the error estimate in the limit coincide with the
order of the leading term.

The parameters which are not involved in the limiting procedure are assumed to take general
values, i.e., such values that all functions and expressions with these parameters are properly defined
at these values.

Note that asymptotic expansions of functions and monodromy data in the theorems of Section 7
are not changed under the formal substitution

σ′ = −σ, (s2)′ =
4

Θ2
∞ − σ2

1

s2
, r′ =

Θ∞ − σ
Θ∞ + σ

r. (8.1)

Due to this invariance, we introduce parameters better suited for the change σ → −σ:

ŝ = −Θ∞ + σ

2
s2, r̂ =

r

d(σ)
.

In these notations, the substitution (8.1) can be written as:

σ′ = −σ, ŝ′ =
1

ŝ
, r̂′ = r̂.

When we formulated our main monodromy results for t→ 0 we excluded the cases when b(±σ),
c(±σ), or d(±σ) ∈ Z. In this section we outline how one could overcome this difficulty and cover the
part of the manifold of monodromy data where these assumptions fail.

Our approach is to: a) explain the cases when functions b, c or d become zeroes and then b) use
the results on the Schlesinger transformations to reduce the cases of integer b, c or d to the case
when one of these linear combinations is zero. Let us look at asymptotic expansions of functions
y(t), z(t), and u(t) in Theorem 7.1. These expansions can become degenerate in the following cases:

1. b(σ) = 0,

2. c(σ) = 0,

3. d(σ) = 0.

Degeneration with b(−σ) = 0, c(−σ) = 0, or d(−σ) = 0 can be reduced to the previous case, using
transformation (8.1). Now we will specify what we mean by degeneration. We define the three types
of complete degeneration:

1c b(σ)→ 0, s2 → 0, b(σ)/s2 → 0

2c c(σ)→ 0, s2 → 0, c(σ)/s2 → 0,

3c d(σ)→ 0, s2 →∞, d(σ)s2 → 0

and the three types of partial degeneration:

1p b(σ)→ 0, s2 → 0, lim b(σ)/s2 6= 0,

2p c(σ)→ 0, s2 → 0, lim c(σ)/s2 6= 0,
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3p d(σ)→ 0, s2 →∞, lim d(σ)s2 6= 0.

In the partial degenerations we arrange the limiting procedure such that the finite limits of the
rations in the items above exist.

Theorem 8.1. The following monodromy data correspond to complete degeneration 1c and 2c:

mp
11 = − e

−πı
2

Θ∞

sin2 πσ
{e−πı2 Θ∞(− cosπΘ1−p + cosπΘp cosπσ)+

+e
πı
2 Θ∞(− cosπΘp + cosπΘ1−p cosπσ)},

mp
22 = − e

−πı
2

Θ∞

sin2 πσ
{e−πı2 Θ∞(cosπΘ1−p − cosπΘp cosπσ)+

+e
πı
2 Θ∞(− cosπΘ1−p cosπσ + cosπΘp cos 2πσ)},

mp
12 = 2ır

sin2 πσ
cosπΘ1−p−cosπΘp cosπσ

Γ(−d(−σ))Γ(1−d(σ)) ,mp
21 = 2ıe−πıΘ∞

r sin2 πσ
cosπΘ1−p−cosπΘp cosπσ

Γ(d(σ))Γ(1+d(−σ))

Parameter σ is defined by equation b(σ) = 0 or c(σ) = 0 depending on degeneration scheme 1c or
2c, respectively.

Corollary 8.1. Let r ∈ C\{0}. There exists a solution of system (1.2)–(1.4) with the following
asymptotics as t→ 0:

y = 1 +O(t),

z = −Θ0(Θ∞ + Θ0 + Θ1)

2(Θ0 + Θ1)
+O(t),

u = −rtΘ∞Θ∞ − σ
Θ∞ + σ

(1 + o(1))

The monodromy data from Theorem 8.1 with σ = −Θ0 −Θ1, b(σ) = 0 degeneration 1c, correspond
to this solution.

Corollary 8.2. Let r ∈ C\{0}. There exists a solution of system (1.2)–(1.4) with the following
asymptotics as t→ 0:

y =
Θ∞ −Θ0 + Θ1

Θ∞ + Θ0 −Θ1
+O(t),

z =
Θ0(Θ∞ + Θ0 −Θ1)

2(Θ1 −Θ0)
+O(t),

u = −rtΘ∞(1 + o(1)).

The monodromy data from (8.1) with σ = Θ0 − Θ1, c(σ) = 0 degeneration 2c, correspond to this
solution.

Before concidering degeneration 3c we find partial degeneration 3p.

Corollary 8.3. There exists a solution of system (1.2)–(1.3) with the following asymptotic expansion
as t→ 0:

y = c(−σ)
b(σ)+sf b(−σ)tσ

a(σ)+sfa(−σ)tσ +O(t),

z = 1
σ2 d(−σ)b(−σ)c(σ) +

sf t
σ

σ2 c(−σ)d(−σ)b(−σ) +O(t) =

= 1
4Θ∞

(Θ2
1 − (Θ0 + Θ∞)2) + sf

(Θ1+Θ∞)2−Θ2
0

4Θ∞
tσ +O(t),

u = −r̂tΘ∞
(
sfd(−σ)b(−σ)tσ

b(σ)+sf b(−σ)tσ +O(t)
)
.
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The following monodromy data corresponds to this solution

mp
11 = − e

−πı
2

Θ∞

sin2 πσ
{e−πı2 Θ∞(− cosπΘ1−p + cosπΘp cosπσ)+

+e
πı
2 Θ∞(− cosπΘp + cosπΘ1−p cosπσ)} − 1

d̂

s̃2e
πı
2
σm̂p12

Γ(−Θ∞) ,

mp
22 = − e

−πı
2

Θ∞

sin2 πσ
{e−πı2 Θ∞(cosπΘ1−p − cosπΘp cosπσ)+

+e
πı
2 Θ∞(− cosπΘ1−p cosπσ + cosπΘp cos 2πσ)}+ 1

d̂

s̃2e
πı
2
σm̂p12

Γ(−Θ∞) ,

mp
12 = r̂e

πı
2 Θ∞ s̃2m̂

p
12d̂
−1Γ−2(−Θ∞),

mp
21 = e−

πı
2

Θ∞

r̂d̂

( m̂p22−m̂
p
11

Γ(1+Θ∞) +
m̂p21e

−πıσ

s̃2Γ2(1+Θ∞)−s̃2m̂
p
12e

πıσ
)
.

Here s̃2 = sf
Γ(σ)

Γ(−σ) and d̂ is the same as in Theorem 7.2. The Stokes multipliers are as follows:

s2 = 0, s1 =
2πsf

r̂Γ(1 + Θ∞)
.

The previous formulas were obtained in the following way. Let us denote

s2d(σ) = sf .

Make limit transition as d(σ) → 0 in formulas for functions y and z. Replace r with the adjusted
parameter r̂ introduced in the beginning of the section. Then, we obtain formulae for function u.
Make the same substitution in the monodromy data and perform the limit transition. As a result,
we arrive to the formulae above.

Remark 8.1. The partial degeneration d(−σ) = 0 gives a similar result but with s1 = 0 and s2 6= 0.

Remark 8.2. Partial degenerations 1p and 2p is easy to obtain just by looking at formulae given
in Theorems 7.1 and 7.2. Introduce parameters: b̂ = b(σ)/s2 or ĉ = c(σ)/s2, respectively, and make
a limit s2 → 0. We leave this analysis as a simple exercise for the readers.

Now to get complete degeneration case 3c we have to make the following limit in the results
presented in Corollary 8.3

sf → 0, r̂sf → r̃ ∈ C.

Corollary 8.4. There exists a solution of system (1.2)–(1.3) with the following asymptotic expansion
as t→ 0:

y =
Θ1 −Θ0 + Θ∞
Θ1 −Θ0 −Θ∞

+O(t),

z =
1

4Θ∞
(Θ2

1 − (Θ0 + Θ∞)2) +O(t),

u = −r̃Θ∞
(

Θ0 + Θ1 + Θ∞
Θ0 + Θ1 −Θ∞

+O(t1+Θ∞)

)
.

The following monodromy data corresponds to this solution

mp
11 = − e−

πı
2

Θ∞

sin2 πΘ∞
{e−πı2 Θ∞(− cosπΘ1−p + cosπΘp cosπΘ∞)+

+e
πı
2 Θ∞(− cosπΘp + cosπΘ1−p cosπΘ∞)},

mp
22 = − e

−πı
2

Θ∞

sin2 πσ
{e−πı2 Θ∞(cosπΘ1−p − cosπΘp cosπσ)+

+e
πı
2 Θ∞(− cosπΘ1−p cosπσ + cosπΘp cos 2πσ)},

mp
12 = − r̃Θ∞m̂

p
12

πd̂
e
πı
2 Θ∞ sin(πΘ∞),

mp
21 = − m̂p21

r̃Θ∞πd̂
e
πı
2 Θ∞ sin(πΘ∞),

Here d̂ is the same as in Theorem 7.2. Both Stokes multipliers in this case vanish, s1 = s2 = 0.
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Remark 8.3. We recall that in basic Theorems 7.1 and 7.2 the real part of parameter σ belongs to the
semi-interval [0, 1). Therefore, in the resultas obtained above we have the corresponding restrictions
on the parameters Θ’s. Say, in Corollary 8.4 put σ = −Θ∞, thus <Θ∞ ∈ (−1, 0]. If we consider
another complete degeneration, d(−σ) → 0, then we find the same formulae but <Θ∞ ∈ [0, 1). In
Section 9 we consider in detail the case Θ∞ = −1, Θ0 = Θ1 = 1/2. For the general values of Θ∞ the
result of Corollary 8.4 can be extended with the help of the Bäcklund trnasformations considered in
Appendix A. Analogous comments apply to Corollaries 8.1 and 8.2.

Remark 8.4. Functions y and z obtained in Corollaries 8.1, 8.2, and 8.4 are regular at t = 0 and
the correction term is evaluated as O(t). In fact all these solutions are holomorphic at t = 0, so that
the corresponding solutions of System (1.2)–(1.3) are meromorphic functions. We omit a detailed
proof of this statement because these solutions were studied in paper [19].

Now we outline the second step of our approach to finding the asymptotic behavior of solutions
for parameters satisfying the conditions: b(±σ) ∈ Z, c(±σ) ∈ Z, and d(±σ) ∈ Z. These special cases
can be characterized in terms of the Stokes multipliers:

1. s1s2 = 2eπıΘ∞(− cosπΘ∞ + cosπ(Θ0 + Θ1)) ⇒ b(±σ) ∈ Z,

2. s1s2 = 2eπıΘ∞(− cosπΘ∞ + cosπ(Θ0 −Θ1)) ⇒ c(±σ) ∈ Z,

3. s1s2 = 0 ⇒ d(±σ) ∈ Z.

Above we considered the cases b(±σ) = 0, c(±σ) = 0, and d(±σ) = 0. It is already mentioned in
Remark 8.3 that the case d(±σ) ∈ Z can be treated with the help of application to asymptotics for
d(±σ) = 0 the Bäclund transformations considered in Appendix A. These transformations shift Θ∞
by even integers which means an arbitrary integer shift of d(±σ). It is well-known that analogous
transformation is easy to write for Θ0 and Θ1, which generate an integer shift of b(±σ) = 0 and
c(±σ) = 0 together with the corresponding asymptotics.

8.1 Case <σ = 1 and σ = 1

Theorem 8.2. Let δ, h, r ∈ C\{0} and <δ ∈ [0, 1), There exists a solution of system (1.2)–(1.4) with
the following asymptotic expansion as t→ 0

y = 1 + y1t+O(t2−2<δ), z =
w +O(t1−2<δ)

2y2
1

1

t
.

Here

y1 = 1
h
ϕ
δ2 t
−δ + ϕ

δ2 + h
4

(
1− δ2

ϕ2

)
ϕ
δ2 t

δ,

w = δ−ϕ
h

ϕ
δ2 t
−δ + 1− ϕ2

δ2 − (δ + ϕ)h4
(
1− δ2

ϕ2

)
ϕ
δ2 t

δ,

ϕ = 1−Θ0 −Θ1.

Asymptotic expansion of function u = u(t) as t→ 0 is given by the following formula:

u = −rtΘ∞
(
1 + t1−δϕ

hδ2(1−δ) ( δ−ϕ2 −Θ1)+

+ t
2 −

tϕ
δ2 (ϕ2 +Θ1)− t1+δhϕ

4δ2(1+δ) (1− δ2

ϕ2 )( δ+ϕ2 + Θ1) +O(t2−2δ)
)
.

The corresponding monodromy data are given by formulas from Theorem 7.2, where parameters are

δ = 1− σ, h =

(
1−Θ0 −Θ1

2(1− σ)2σ2s2

)(
(Θ1 + σ)2 −Θ2

0

Θ1 + Θ0 − σ

)
.

Remark 8.5. Function ζ(t), corresponding to solution of system (1.2)–(1.4), described in Theorem
8.2, has the following asymptotics as t→ 0

ζ(t) = δ +
1

4
((1− δ)2 + Θ2

0 −Θ2
1 + 2Θ0Θ∞) +

2ϕδ

htδ(δ − ϕ)− 2ϕ
+O(t).
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Theorem 8.3. Let h1 ∈ C. Then, there exists a solution of system (1.2)–(1.3) with the following
asymptotics as t→ 0

y = 1 + y1t+O(t2), z =
w

2y2
1

1

t
+O(1).

where

y1 =
1

2ϕ
− ϕ

2
(ln t+ h1)2, w =

1

2
(1 + ϕ(ln t+ h1))2.

Asymptotic expansion of function u = u(t) as t→ 0 is given by the following formula:

u = −rtΘ∞
{

1 + Θ1

2 (ϕ− 1
ϕ )t+ Θ1ϕt

2 ((ln t+ h1)− 1)2+

+ t
4

{
ϕ(ln t+ h1)(ϕ(ln t+ h1) + 2− 2ϕ) + 1− 2ϕ+ 2ϕ2

}
+O(t2 lnm t)

}
.

Remark 8.6. Function ζ(t), corresponding to solution of system (1.2)–(1.4), described in Theorem
8.2, has the following asymptotics as t→ 0

ζ(t) =
1

4
(1 + Θ2

0 −Θ2
1 + 2Θ0Θ∞) +

ϕ

ϕ(ln t+ h1)− 1
+O(t).

Let us briefly describe the derivation of Theorems 8.2 and 8.3. Theorem 8.2 gives us, in particular,
case <σ = 1, σ 6= 1. Theorem 8.3 corresponds to the case σ = 1. It is easy to see that y =
1 + y1t(1 +O(t)), z = z−1

t (1 +O(t)), with O(tε) < |y1|, |z−1| < O(t−ε) and sufficiently small ε > 0
give valid asymptotic expansion for system (1.2)–(1.3). For y1 and z−1 we have the following system:

tẏ1 = 1− ϕy1 − 2z−1y
2
1 ,

tż−1 = ϕz−1 + 2z2
−1y1.

There are three types of solutions of this system:

1. a rational function of tδ, where <δ = 0;

2. a rational function of ln t;

3. a fixed point, that is y1, z−1 = const.

Theorem 8.2 corresponds to case 1), Theorem 8.3 corresponds to case 2), and Theorem 8.5 (see
below) corresponds to case 3).

The monodromy data were obtained as follows. It is easy to see that formulas from Theorem 7.2
are not degenerate when <σ = 1, σ 6= 1. So we can use them for solutions described in Theorems
8.2 and 8.3. The only thing to find is parameter s2. However, it can be easily seen that formulas
from Theorem 8.2 become formulas from Theorem 7.2, if we put δ = 1 − σ, <δ > 0. Therefore,
formulas from Theorem 8.2 are valid in interval 0 ≤ <δ < 1. Then, to achieve the correspondence
with function y(t) from Theorem 7.1, parameters s2 and h should be connected as it is stated in
Theorem 8.2.

To write the monodromy data for σ = 1 (δ = 0), we need the following notations

Ê0
f (δ) =

(
e
πı
2

(1−δ)

Γ(1+c(δ−1))Γ(−b(1−δ)) − e−
πı
2

(1−δ)

Γ(1+c(1−δ))Γ(−b(δ−1))

e
πı
2

(1−δ)

Γ(−c(1−δ))Γ(1+b(δ−1)) − e−
πı
2

(1−δ)

Γ(c(δ−1))Γ(1+b(1−δ))

)
,

Ê1
f (δ) =

(
− 1

Γ(−c(1−δ))Γ(−b(1−δ))
1

Γ(−c(δ−1))Γ(−b(δ−1))

− 1
Γ(1+c(δ−1))Γ(1+b(δ−1))

1
Γ(1+c(1−δ))Γ(1+b(1−δ))

)
,

Cf (δ) =

(
− e−πıd(1−δ)

Γ(1+d(δ−1)) − 1
Γ(1−d(1−δ))

− e
−πıd(δ−1)

Γ(d(1−δ))
1

Γ(−d(δ−1))

)
.
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Theorem 8.4. Solution of system (1.2)–(1.4), defined in Theorem 8.3, generates the following
monodromy data

Ep =
d

dδ

(
Êpf (δ) diag{ 1

s0(δ − 1)
(1− s1

2
δ), s0(1 +

s1

2
δ)}Cf (δ)

)∣∣
δ=0

diag{1, r}.

Here

s0 =
1

2

√
(Θ1 + 1)2 −Θ2

0, h1 = − 2(1 + Θ1)

(Θ1 + 1)2 −Θ2
0

+ 2− s1 −
1

Θ1 + Θ0 − 1
.

So, the matrices Ep are given. The monodromy matrices Mp can be found from their definition:

Mp = (Ep)−1eπıσ3ΘpEp.

Theorem 8.5. There exists solution of system (1.2)–(1.3) with the following asymptotics as t→ 0

y = 1 +
t

1−Θ1 −Θ0
+O(t2), z = O(1).

Monodromy data from Theorem 7.2, with σ = 2−Θ0 −Θ1, correspond to this solution.

Theorem 8.5 can be derived as follows. Let us put δ = −1 + Θ0 + Θ1 = −ϕ and tend h→∞ in
formulas from Theorem 8.2. Let us note that this solution was already described among the special
solutions above.

9 Special Meromorphic Solution

As an illustration of how one can use the results for monodromy data to derive the connection
formula, we consider an example. The example will also clarify how the degeneration procedure,
discussed in the previous section, can be performed in particular cases.

In this section we assume that the coefficients of Equation (1.5) are fixed as follows:

α =
l2

8
, β = − l

2

8
, γ = 0, δ = −1

2
, l ∈ Z+ (9.1)

There is a quadratic auto transformation of Equation (1.5) which maps these coefficients into the
following ones:

α =
l2

2
, β = 0, γ = 4, δ = 0,

This equation can be also mapped into the complete third Painlevé equation (see, e.g., [20]).

Proposition 9.1. For any l ∈ Z+ and all ∈ C there exists the unique solution of Equation (1.5) with
the following asymptotics as t→ 0,

y(t) = −1 +

∞∑
l

alkt
k (9.2)

In fact the solution is holomorphic in some neighborhood of t = 0, so that Expansion (9.2) is
nothing but the Taylor series. The proof can be done in a straightforward way: substitution of the
Expansion (9.2) into Equation (1.5) to obtain the recurrence relations for the coefficients alk. Then
one observes that the recurrence allows one to uniquely present alk as the polynomials of the first
coefficient all. Then the Wasow theorem provide us with the existence of the solution. The further
analysis of the recurrence relation allows one to prove convergence of Expansion (9.2), which also
implies the uniqueness.

Let us mention some properties of Solution (9.2). We also consider the corresponding Taylor
expansion of function z(t):

z(t) =
l − 1

4
− t

8
+

∞∑
k=l

clkt
k, cll = − l + 1

8
all, (9.3)

the coefficients clk for k ≥ l are polynomials of all.
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Remark 9.1. We do not write explicitly expansion for function ζ(t), see Equation (1.7), because
it can be easily obtained via Equation (1.8) by integration of Expansion (9.3). The constant of
integration is l(l − 1)/4.

Properties of Expansions (9.2) and (9.3) depend on parity of the number l:
If l is even, then y(t) is even (as the function of t), so that al2m+1 = 0 for all m ∈ Z+. The

function z(t) is neither odd nor even, however, the first odd coefficients also vanish cl2m+1 = 0 for

l/2 ≤ m ≤ l − 1. Note that cl2l+1 =
(all)

2

32 .

If l is odd, then al2m = 0 for l+1
2 ≤ m ≤ l − 1, while a2l = − (all)

2

2 . The corresponding function

z(t) + 1−l
4 is an odd function of t, i.e., cl2m = 0 for all m ∈ Z+.

If we put all = 0, then y(t) = −1. It is the simplest rational solution of Equation (1.5). It is known
[22] that all rational solutions with the asymptotics −1+O (1/t) as t→∞ can be obtained from this
elementary solution via application of the Bäcklund transformations. Some of these solutions has at
t = 0 the Taylor expansion of the form (9.2), however, in these cases the coefficients of Equation (1.5)
differ from (9.1). As follows from [22] y(t) = −1 is the only case when Solution (9.2) is rational.

An interesting question is whether Solution (9.2) is a truly transcendental Painlevé function in
the sense of Umemura (see [23]). For Equation (1.5) this question was analysed in [24]. However,
these results are not formulated in terms of the Expansion (9.2) and therefore require additional
investigation.

There are a few different ways of how to choose parameters Θk corresponding to coefficients (9.1),
see Equations (1.6). Our choice is

Θ0 =
1

2
, Θ1 =

1

2
, Θ∞ = −l. (9.4)

As follows from [24] for even l there are no classical solutions, apart from the trivial one y(t) = −1.
So, we consider the odd values of l. If l = 1, then Θ0 + Θ1 + Θ∞ = 0; so that we can put in
System (1.2), (1.3) z(t) = 0 and find y(t) as a solution of the Riccati equation. After that we have
to check whether there is a solution of the Riccati equation with Expansion (9.2) at t = 0. Omitting
elementary details we find that such solution y(t) ≡ y1(t) exists and is unique,

y1(t) =
I1 (t/2) + I0 (t/2)

I1 (t/2)− I0 (t/2)
, z1(t) = 0, (9.5)

here In(·) for n = 0, 1 is the modified Bessel function of the first kind [33]. Solution (9.5) has the
following Taylor expansion at t = 0,

y1(t) = −1− t

2
− t2

8
− t3

64
+

t5

3072
+O

(
t6
)
.

Comparing it with Expansion (9.2) we find a1
1 = −1/2.

To proceed further we have to apply to Solution (9.5) the second Bäcklund transformation given
in Theorem A.1 (see Appendix A). In this way, by mathematical induction, we find that for all odd
l there exists only one classical solution yl(t) zl(t) of System (1.2), (1.3), which can be presented
explicitly in terms of the modified Bessel functions with the Taylor Expansion (9.2). In particular,

y3(t) = −1− t3

192
+

t5

12288
+O

(
t6
)
, z3(t) =

1

2
− t

8
+

t3

384
− t5

16384
+O

(
t7
)
,

y5(t) = −1− t5

61440
+

t7

5898240
+O

(
t8
)
, z5(t) = 1− t

8
+

t5

81920
− t7

5898240
+O

(
t9
)
.

Corresponding values of the parameters a3
3 = − 1

192 = − 1
3·26 , a5

5 = − 1
61440 = − 1

3·5·212 .

Conjecture 9.1. Solution (9.2) with odd l is classical iff all = − 1
l!22l−1 .

The corresponding monodromy matrices are upper triangular and can be calculated with the help
of Section 8.
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Because of the restriction 0 ≤ <σ ≤ 1, see Sections 7 and Subsection 8.1, we cannot directly
apply our results to Solution (9.2) for general l ∈ Z+. However, as we show below, the case l = 1 is
tractable with the help of Sections 7, 8 and Appendix B. The general case of odd l can be further
treated with the help of the Bäcklund transformations, see Appendix A. As for the even values of l
they also can be studied within the framework presented in this paper but with the help of a different
”initial solution”. The case of l > 1 is interesting in view of applications, however, it goes far beyond
our goals in this paper and will be considered elsewhere.

In fact, even in the case l = 1 solutions show different behavior as t → ∞ depending on the
value of a1

1. For the illustrative purposes we choose the case a1
1 = −2. The reader can find numeric

illustration of the theoretical results obtained in this section in Subsection 10.4. With the help of
Maple Code we can be more specific about the asymptotic expansion at t = 0 of the main object of
our study in this section:

y(t) = −1− 2t− 2t2 − 31

16
t3 − 15

8
t4 − 2833

1536
t5 − 2789

1536
t6 +O(t7). (9.6)

One can notice that the first terms in this expansion are negative. So it rises a natural question:
whether all coefficients of this expansion are negative? The following Statement can be confirmed by
mathematical induction applied to the recurrence relation for coefficients a1

1 obtained via substitution
of Expansion (9.2) into Equation (1.5).

Statement 9.1. All polynomials a1
k(a1

1) have real coefficients. For large values of a1
1 these polyno-

mials have the following asymptotics as a1
1 →∞:

a1
k(a1

1) =

(
−1

2

)k−1

(a1
1)k +O

(
(a1

1)k−2
)
.

Consider

a1
5(a1

1) =
a1

1

16

(
(a1

1)4 − 5

16
(a1

1)2 +
1

192

)
.

The largest root of this polynomial is

R =
1

24

√
90 + 6

√
177 = 0.5429868659 . . . .

Numerical studies suggest the following

Conjecture 9.2. All zeroes of all polynomials a1
k(a1

1) lie inside the circle of radius R centered at
the origin of the complex plain.

This conjecture together with Statement 9.1 implies that for real a1
1 < −R all coefficients of

Expansion (9.2) are negative, while for a1
1 > R their signs alternate.

Remark 9.2. Define a mapping of the sequence {sign(a1
k)} into the set {0, 1}, say, the minus sign

goes to 0 and the plus sign to 1. Denote this sequence of zeroes and ones as εk. Then our result can
be formulated as follows: for a1

1 > R εk = 0, for a1
1 > R ε2n+1 = 1 and ε2n = 0, n ∈ Z+. It is an

interesting problem to study the sequences {εk} for a1
1 ∈ [−R,R]. For example, in the ”integrable”

case, a1
1 = −1/2, the corresponding sequence {εk} is periodic with the minimal period 54.

9.1 Monodromy data

Here we calculate the monodromy data for y(t) defined by Equation (9.6). Comparing the general
asymptotic behavior of y(t) as t → 0 (7.2) with Expansion (9.2) we see that the only possibility to
get it is to consider a limit σ → 1. The functions defining Asymptotics (7.2) for our choice of
Θ-parameters (9.4) read:

b(σ) =
1 + σ

2
, c(σ) =

σ

2
, d(σ) = −1− σ

2
, a(σ) =

σ(1 + σ)

4
. (9.7)
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Therefore, we see that b(±σ) ∈ Z, d(±σ) ∈ Z. These conditions show that here we meet much
”deeper” degeneration procedure rather than that considered in Section 8. It suggests that it is
more reliable to do the direct degeneration of the results presented in the main Theorems 7.1 and
7.2, rather than further degeneration of the results of Section 8. In the intermediate degenerations
considered in this section it was assumed that the conditions b(±σ) ∈ Z, d(±σ) ∈ Z, and σ = 1 do
not hold simultaneously.

Before making the limit procedure we recall that first we have to: 1) freeze t in Equations (7.2)–
(7.3); 2) choose Θ-parameters according to Equations (9.4); and 3) make the limit transition σ → 1.

Since y(0) = −1 we see that the only way we can achieve it is to send parameter s2 →∞. More
carefully examining the limit, we find that in fact we have to assume that

s2 =
s2

0

(1− σ)2
, s2

0 ∈ C \ {0}, σ → 1,

where the parameter s2
0 6= 0 is a complex number. After this assumption Equations (7.2)–(7.3) imply:

y(t) = −1 +O(t), z(t) = o
(
t−1
)
, u(t) =

r̂s2
0

2
(1 +O(t)) , r̂ =

r

1− σ
, r̂ ∈ C \ {0}. (9.8)

We put o
(
t−1
)

as the estimate for z because we know small-t expansion of the τ -function obtained

by Jimbo [16]. The estimate O
(
t3−2<σ), can be traced from the corresponding term O

(
t3−3σ

)
in the

expansion of the τ -function, see Equations (7.6) and (1.8). This term contains the factor s2(1− σ)2

in the denominator. After two differentiations, this term gains an additional factor (1− σ)2, so that
the factor 1/s2 kills this term in the limit. This mechanism is analogous to disappearance of the
explicitly written term (see Equation (7.3)) of the order O

(
t1−2σ

)
. Since we know that Solution (9.2)

is the only solution with the property y(0) = −1+O(t), then in fact z(t) is given by (9.3) with l = 1.
Now we perform the limit in the formulas for the monodromy data given in Theorem 7.2. Per-

forming the limit σ → 1 in Equations (7.7) with the help of relations for d(σ) given in (9.7) and r̂
from (9.8), we see that the Stokes multipliers vanish,

s1 = s2 = 0. (9.9)

Further we calculate the limits for the monodromy matrices. For the intermediate matrices M̂p we
find M̂0 = M̂1. This, together with Conditions (9.9) imply:

M0 = M1,
(
M0
)2

= −I, M∞ = −I. (9.10)

The matrix elements

mp
11 = −mp

22 = − ı
4

(
4s2

0 +
1

s2
0

)
, mp

12 =
ır̂

2

(
4s2

0 −
1

s2
0

)
, mp

21 = − ı

8r̂

(
4s2

0 −
1

s2
0

)
, (9.11)

where p = 0, 1. This completes calculation of the monodromy data.
Now we have to find how the monodromy data relate to the Taylor expansion of y(t) at t = 0.

Equations (9.8) do not allow us to find it. We can perform the limit more carefully and find that:

y =
t→0
−1 +

s2
0

2
tσ +O(σ − 1) +O

(
t1+σ

)
+O

(
t2−<σ

)
.

All the estimates above depend on σ and t. Our purpose is to put σ = 1. Why would the last two
estimates remain finite at this limit? If they (one of them) would blow up, then it means that the
monodromy data (9.11) does not correspond to any solution of P5. On the other hand, from the
derivation of asymptotics at the point of infinity we know that there is a solution of P5 corresponding
to these monodromy data.

The last estimate looks ”dangerous”, since in the limit it may contribute to the second term
of asymptotics. So, in fact, the σ-dependence of the last estimate requires further investigations.
This estimate can be obtained explicitly in two ways, either directly from Equation (1.5) or via
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Equation (1.3) and with the help of asymptotics for the function z. Another way is the direct
calculation of the monodromy data for this solution via Equation (1.1).

Since all these calculations looks cumbersome, we probably present them somewhere, here we
announce the correct result and suggest an indirect proof.
Proposition 9.2.

a1
1 =

s2
0

2
+

1

8s2
0

=
i

2
mp

11, (9.12)

Proof. Note that mp
12 and mp

21 depend on the parameter r̂ whilst functions y(t) and z(t) do not.

So, a1
1 may depend only on the quadratic combination, mp

21m
p
12 = −1 + (mp

11)
2
. Thus a1

1 should
be an entire function of mp

11. On the other hand, the inverse function mp
11(a1

1) also should be an
entire function. It means (see Theorem 4.3 of [34]), that a1

1 = C1m
p
11 + C2, where C1 and C2 are

some constants. For a1
1 = 0 we have mp

11 = 0, see Corollary 3 and Proposition 3 (item (1)) of
[3]. Thus C2 = 0. In the case a1

1 = −1/2, the monodromy matrices are diagonal which implies
s2

0 = ±1/2, see the last two Equations (9.11). Our case corresponds to the lower triangular case:
z = 0, Θ0 + Θ1 + Θ∞ = 0, of Equation (1.1), the other one corresponds to the upper triangular:
z = −Θ0, −Θ0 − Θ1 + Θ∞ = 0. The monodromy element, say, m0

11 in our case is defined by the
monodromy of the function λΘ0/2 and equals e2πı/4 = ı, in the upper triangular case m0

11 is defined
by the monodromy of the function λ−Θ0/2, which is e−2πı/4 = −ı. Using this fact we arrive at
Equation (9.12).

In Subsection 10.4 we provide a numeric evidence of Equation (9.12). For for Solution (9.6) with
a1

1 = −2. The key monodromy data for this solution are as follows:

m1
11 = m0

11 = −m1
22 = −m0

22 = 4ı.

9.2 Asymptotics as t→ +∞
Since we have explicit formulae for solution for parameter a1

1 = −1/2 (see Equation (9.5)), we begin
with the asymptotics for this case:

y1(t) =
t→+∞

−2t+ 2 +

∞∑
n=1

an
(2t)n

+O
(
t−∞

)
, (9.13)

where a1 = 3, a2 = 18, a3 = 153, a4 = 1638. In general an is a sequence of positive integers counting
the number of Feynman diagrams in a problem in quantum electrodynamics (see sequence A005412
of [35]). The series is divergent,

an
2n

=
4

π
· n!

n− 1/2

(
1 +O

(
1

n2

))
.

The complete asymptotic expansion can be written as a transseries with exponentially small terms.
The estimate above can be obtained with the help of this expansion.

Here, to give an instructive example we consider only the case of a1
1 < 0. Obviously, for the

real values of a1
1 our solution is real for real t. In this subsection we apply the results obtained in

paper [14]. In that paper asymptotics as t → +∞ of solutions were parameterized via auxiliary
parameters v̂ and β0. We use general formulae, Equations (3.5) of [14], and substitute there our
particular monodromy data obtained in Subsection 9:

β0 =
1

2πı
ln
(
1 + (mp

11)2
)

=
1

2πi
ln
(
1− (4a1

1)2
)
, (9.14)

v̂ =

√
2π

2a1
1

2β0 exp (πβ0/2)

Γ(β0)
=

√
πı 2β0

Γ(β0)
√

sin(πβ0)
. (9.15)

We see that if −1/2 < a1
1 < 0 parameters β0 and v̂ are defined uniquely in terms of the initial data

a1
1, where the branch of ln is fixed in a natural way: <β0 = 0. In terms of β0, parameter v̂ is fixed
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up to a sign which causes no problem because asymptotics are invariant under this change. In this
case we have to use the results reported in Theorems 3.1 and 3.2 of [14]. In particular, it means
that our solution is regular on the real positive semiaxis and the asymptotics of functions y(t) and
z(t) the reader can find in Theorem 3.1. Theorem 3.2 gives us the asymptotics of the corresponding
function ζ(t).

Consider the case a1
1 < −1/2 in a more detail. First we have to choose the real part of β0 so that

one of the Theorems 3.1 or 4.1 would be applicable. It fixes uniquely parameter β0 as follows,

β0 =
1

2
− ı

2π
ln(4(a1

1)2 − 1).

This equation implies that we are in the situation described by Theorem 4.1 of [14]. It means that in
this case our solution has infinite number of poles on the positive semiaxis. According to Theorem
4.1 function y(t) has the following asymptotics in the proper cheese-like domain,

y =
cos2 x̃

sin2 x̃
+O

(
1

t

)
, x̃ =

t

4
+ γ ln t+ ψ.

where

γ =
1

4π
ln
(
4(a1

1)2 − 1
)
, ψ = − 1

2ı
ln

(
− v̂√

2
eπı/4

)
=
π

4
+ γ log 2 +

1

2
arg Γ(β0). (9.16)

The last equality holds because the quantity under the logarithm is unimodular. The reader can find
the corresponding asymptotics of function z(t) and ζ(t) in Theorem 4.1 and Corollary 4.1 of [14],
respectively.

The numeric values for the parameters γ and ψ corresponding to Solution (9.6) (with a1
1 = −2)

are as follows:

γ =
ln(15)

4π
= 0.21549978 . . . , ψ = 1.27729163 . . . . (9.17)

9.3 Transform t→ −t
Since general solutions of System (1.2)–(1.4) are not singlevalued, transformation t→ −t should be
considered for analytic continuation of functions y(t), z(t), and u(t) for arg t→ arg t+π(2k− 1), for
all k ∈ Z. However, the solution we are interested in is a very special one, and is in fact singlevalued,
we consider only the case k = 1. Here we present formulae which are valid for the general solution
of System (1.2)–(1.4). The purpose of this transformation is that the analytic continuation of any
solution at the point −t can be presented in terms of another solution of this system at the original
point t. To uniquely define the latter solution we consider action of this transformation not only on
the space of the solutions but also on the manifold of monodromy data.

We refer to the definition of the canonical solutions Yk(λ) given in Section 2, but here we use
an extended notation to reflect their dependence on the coefficients of Equation (1.1). As one can
easily see, transform t→ −t induces the following transformation of the canonical solutions:

Yk(λ; t, z, y, u,Θ0,Θ1,Θ∞) = σ1Ỹk+1(λ; t̃, z̃, ỹ, ũ, Θ̃0, Θ̃1, Θ̃∞)σ1 k ∈ Z,

where ỹ = ỹ(t̃), z̃ = z̃(t̃), ũ = ũ(t̃) and

t̃ = −t, arg t̃ = π + arg t, Θ̃p = Θp, Θ̃∞ = −Θ∞,

z̃(t̃) = −z(t)−Θ0, ũ(t̃) = 1
u(t) , ỹ(t̃) = 1

y(t) ,

ζ̃(t̃) = ζ(t)−Θ0t−Θ0Θ∞.

The monodromy data are transformed as follows:

s̃1 = e−2πıΘ∞s2, s̃2 = s1,

M̃p = σ1S1M
pS−1

1 σ1, p = 0, 1,∞
(9.18)
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There is another transformation t→ −t for IDS (1.2) -(1.4):

t̃ = −t, arg t̃ = π + arg t, Θ̃p = Θ1−p, Θ̃∞ = Θ∞,

z̃(t̃) = −z(t)− 1

2
(Θ0 + Θ1 + Θ∞), ũ(t̃) = y(t)u(t)e−t+πıΘ∞ , ỹ(t̃) =

1

y(t)
,

ζ̃(t̃) = ζ(t)− 1

2
(Θ0 + Θ1 + Θ∞)t+

1

2
(Θ1 −Θ0)(Θ0 + Θ1 + Θ∞).

(9.19)

The corresponding transformation of the monodromy data can be found with the help of the following
transformation for the canonical solutions:

Ỹk(λ̃; t̃, z̃, ỹ, ũ, Θ̃0, Θ̃1, Θ̃∞) = exp

(
− t

2
σ3 +

πıΘ∞
2

σ3

)
Yk(λ; t, z, y, u,Θ0,Θ1,Θ∞). (9.20)

Here we assumed that
λ̃ = 1− λ, arg λ̃ →

λ→∞
arg λ− π.

The other tilde-variables are defined in Equations (9.19). Equation (9.20) imply the following relation
for the monodromy data:

M̃∞ = M∞, M̃0 = M1, M̃1 = M1M0(M1)−1.

For our solution (see Equations (9.10)) we have M0 = M1 so that M̃p = Mp for p = 0, 1,∞. This
is consistent with the fact that Solution (9.2)

ỹ(t̃) = y(t̃), z̃(t̃) = z(t̃).

The last equality holds because of the relation Θ0 + Θ1 + Θ∞ = 0. Thus functions ỹ and z̃ are just
the analytic continuation of y(t) and z(t) and, therefore have the same monodromy data.

9.4 Asymptotics as t→ −∞
Here we apply the first transformation considered in the previous subsection to find asymptotics of
solution (9.2) as t → −∞. The monodromy data for our solution are given in Equations (9.9) and
(9.11). Using Equations (9.18) we find that

s̃1 = s̃2 = 0, M̃0 = M̃1 = σ1M
0σ1.

In particular we have m̂p
11 = −m0

11 for p = 0, 1. On the other hand

ỹ(t̃) =
1

y(t)
= y(−t) = y(t̃)

So, the functions y and ỹ coincide for all arguments, but have different monodromy data! It is
explained by the fact that Θ̃∞ = −Θ∞ = 1, therefore the corresponding functions z̃ and z are
different. It is solutions of IDS (1.2)–(1.4), rather than solutions of Equation (1.5), which are
characterized uniquely by the monodromy data.

Now consider y1(t). Using Asymptotics (9.13) we find,

y1(t) =
t→−∞

1

y1(−t)
= −

∞∑
n=1

bn
(−2t)n

+O
(
t−∞

)
,

b1 = 1, b2 = 2, b3 = 7, b4 = 38, b5 = 286, b6 = 2756, . . .

where the asymptotic expansion is of the same type as (9.13). It is given by a divergent series, all
numbers bn, are positive integers representing sequence A094664 of [35] with the following asymp-
totics,

bn
2n

=
1

π
· n!

n− 1/2

(
1 +O

(
1

n

)2
)
.
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The complete expansion can be presented as transeries with exponentially small terms. In fact, our
calculation represent an explicit relation between sequences A005412 A094664 of [35] which possibly
was not observed earlier.

Turning to the general value of the initial data a1
1, we note that

β̃0 = β0, ˜̂v = −v̂,

where β̃0 and ˜̂v are the parameters defined for the solution ỹ, z̃, and ũ via Equations (9.14) and
(9.15) with the corresponding monodromy data. Since these parameters define asymptotic behaviour
of our solution we conclude that qualitatively on the negative semiaxis the solution behaves similar
to on the positive one.

Explicit asymptotics for −1/2 < a1
1 < 0 can be found with the help of Theorems 3.1 and 3.2 of

[14]. In the case a1
1 < −1/2 the asymptotics is given in Theorem 4.1 of [14]. For example, in the last

case,

y(t) =
t→∞

sin2( t4 − γ ln(−t)− ψ)

cos2( t4 − γ ln(−t)− ψ)
+O

(
1

t

)
,

where γ and ψ are given by Equations (9.16). For the numerical values of β0 and γ for a1
1 = −2 see

(9.17).

9.5 Asymptotics for pure imaginary t

With the help of explicit formula (9.5) one finds:

y1(t) =
t→+ı∞

ıet − ıet

2t
(1− 2ı sinh t) +O

(
1

t2

)
, (9.21)

y1(t) =
t→−ı∞

−ıet +
ıet

2t
(1 + 2ı sinh t) +O

(
1

t2

)
(9.22)

Consider now the asymptotics as t→ +ı∞ for the general initial data a1
1 < 0. We see from (9.12)

that argmp
11 = π

2 . Theorem 3.3 implies:

ϕ =
1

2πı
ln
(
−m1

11

)
= −1

4
+ ıκ, κ = − 1

2π
ln(−2a1

1), (9.23)

δ = − 1

4π2

(
1− eπı(4ϕ+1)

)
Γ

(
ϕ+

5

4

)
Γ2

(
ϕ+

3

4

)
Γ

(
ϕ+

1

4

)
. (9.24)

With the help of the duplication formula for the gamma function we can rewrite δ as follows,

δ = ı2−4ıκe−2πκ sinh(2πκ)

2πκ
Γ2(1 + 2ıκ).

Both parameters ν1 and ν2 introduced in Theorems 3.1 and 3.2 satisfy the condition <ν1 = <ν2 =
1, which is the boundary value for their applicability. It was mentioned in Remark 3.5 that in fact
these theorems are valid beyond these boundary values. In this case we can apply either Theorem
for construction of the asymptotics. Suppose we consider Theorem 3.1. Numerics presented in
Subsection 10.4 show that the leading term δtν1−1et (see Theorem 3.1) delivers quite satisfactory
approximation of the function y(t). So the terms O (1/t) are not needed, at least, for description
of the qualitative behavior of y(t). At the same time the leading term of z(t) in this case is just a
constant, therefore even for understanding of the qualitative behavior of z(t) we need the the terms
O (1/t).

In our case (<ν1 = 1) asymptotics presented in Theorem 3.1 does not allow one to get O (1/t)-
terms correctly for both functions y(t) and z(t). The result presented there contains some O (1/t)-
terms but not all the terms of this order. To get these terms we included Appendix B, where we
presented the complete asymptotic expansions for y(t), z(t), and ζ(t) for large pure imaginary t
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corresponding to both Theorems 3.1 and 3.2. Following a notation introduced in Appendix B we
denote,

α = δtν1−1et ≡ δt−(4ϕ+1)et. (9.25)

For arg t = π/2 we have |α| = |δ|e2πκ = 1. Putting t = ı|t| we rewrite α in terms of κ,

α = ıeıω, ω = |t| − 4κ ln(2|t|) + 2 arg Γ(1 + 2ıκ).

Substituting the values for Θ-parameters into Equations (B.4) and (B.5) we arrive at the following
asymptotics:

y(t) =
t→+ı∞

α

(
1 +

1

t

(
(2ϕ+ 1)α+

(
3

4
(4ϕ+ 1)2 − 1

2

)
− 2ϕ

α

)
+O

(
1

t2

))
, (9.26)

z(t) =
t→+ı∞

(
ϕ+

1

4

)(
−1 +

1

t

((
ϕ+

3

4

)
α+

(
ϕ− 1

4

)
α

)
+O

(
1

t2

))
. (9.27)

We also present these asymptotics in terms of {κ, ω}-variables:

y(t) =
t→+ı∞

ıeıω
(

1 +
ı

|t|

(
1

2
+ 12κ2 + sinω + 4κ cosω)

)
+O

(
1

|t|2

))
, (9.28)

z(t) =
t→+ı∞

−ıκ
(

1 +
2κ sinω − cosω

|t|
+O

(
1

|t|2

))
. (9.29)

The last asymptotics reflects the fact that for pure imaginary t: |y(t)| = 1 and <z(t) = 0.
Asymptotics of y(t) for κ = 0 (9.28) coincides with (9.21). We recall that in this case z1(t) ≡ 0,

which is consistent with (9.29).
Numerical values for a1

1 = −2:

ϕ+
1

4
= ıκ = ı0.22063560 . . . , δ = −3.48631745 . . .+ ı1.96101774 . . . . (9.30)

Now consider asymptotics for the negative imaginary axis (arg t = −π2 ). Asymptotics for y(t) in
this case can be calculated via the symmetry considered in Subsection 9.3, since our special solution
y(t) does not depend on the sign of Θ∞ = ±1. However, the corresponding function z(t) depends
on this sign. Therefore, to get asymptotics in this case we again address Theorems 3.1 and 3.3 and
Appendix B. To distinguish from the previous case we denote basic parameters as ϕ− and δ−. Then
Theorem 3.3 implies:

ϕ− = − 1

2πı
ln(m0

11) = − 1

2πı
ln(−ı2a1

1) = −1

4
− ıκ = ϕ.

Here (·) denotes complex conjugation of the parameter (·). Parameter δ− is given by Equation (9.24)
but with ϕ→ ϕ, therefore δ− = δ.

The conditions on parameters ν1 and ν2 in Theorems 3.1 and 3.2, respectively, do not depend
on the imaginary part of ϕ, so we conclude that asymptotics of functions y(t) and z(t) as t→ −ı∞
are given by r.-h.s. of Equations (9.26) and (9.26) with ϕ→ ϕ and α→ α−, where α− is defined by
Equation (9.25) with ϕ→ ϕ and δ → δ−. Turning to {κ, ω}-variables we have to put t = −ı|t|, then
α− = α and asymptotics of functions y(t) and z(t) as t→ −ı∞ are given by the complex conjugation
of Equations (9.28) and (9.29), respectively.

10 Numerical Verification

The purpose of this section is twofold: 1) To check the absence of any occasional mistakes in the
formulae presented in this paper, and 2) To visualize solutions of the fifth Painlevé equation and
related functions.
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The results of our numerical verifications are presented on figures. In the online version of the
paper, graphs of numerical solutions are given in red colors while graphs of their large-t asymptotics
are plotted in green. In the early version of the paper the numerical calculations were done with the
help of MATHEMATICA code. In this version we redid these calculations with MAPLE code for the
purpose of presenting additionally the connection results for function u, which were absent before.
Inclusion of u makes verification more complete. This function appears also in some applications and
helps to calculate asymptotics of some interesting integrals with functions y and z. On the newly
produced figures we presented the plots on intervals closer to the origin, so that the reader can see
when the functions achieve their asymptotic behavior.

In this section we use the following notation:

t ≡ ±ıx with x > 0 iff arg t = ±π
2
.

Assuming that argument of t is fixed as above we denote

ỹ(x) ≡ y(±ıx), z̃(x) ≡ z(±ıx), ũ(x) ≡ u(±ıx).

In numerical calculations we choose the point x0 in the neighborhood of x = 0, where we take initial
data, for the numeric calculation of the solution under investigation. The solution is defined by
taking some particular values for parameters σ, s2, and r, defining asymptotic behavior of solutions
as t→ 0, see Section 7. Using asymptotics presented in Theorem 7.1 we calculate the corresponding
initial data. Thus it is clear that the closer x0 to the origin the better initial data correspond to
the chosen parameters. On the other hand the closer x0 to the origin the more precision is required
in the calculations, which increases the time of calculations. The reader can notice that choice of
x0 varies between computations, which is done intentionally. For some solutions to get a reliable
result we have to choose the initial point x0 by a factor 10−6 closer to the origin, than for some
others. So the choice of x0 is an important issue in the calculations. In all examples presented in
this section parameter x0 is chosen with some margin for error. It means that making it 5–10 times
larger wouldn’t result in a visible change of the graphs. Similarly, making it smaller also does not
have a noticeable visual effect on the plots (while certainly changing slightly the numerical values).

Note that for the solution considered in Subsection 10.4 we used a different scheme of calculations
which allows for x0 to be zero.

We conclude the introductory part of this section by giving some details on settings for MAPLE
and Mathematica codes we used.

In MAPLE code for most of the calculations the value of parameter Digits 10–14 is enough. The
word ‘enough’ in the previous sentence means that by making x0 smaller and increasing the accuracy
of calculations we cannot notice any visual change in the plots. For producing of the pictures we set
this parameter to 16. We used the standard dsolve procedure with parameters abserr = relerr = e−12

and maxfun = −1. For plotting we used procedure plots[odeplot] with numpoints = 600. The
increase of accuracy with the help of these parameters does not effect any how on visual quality of
the plots though may results in substantial increase of the time of calculations.

The original plots were produced with MATHEMATICA code. In the process of numerically
solving the ODE we have to use arbitrary-precision arithmetic. We solve System (1.2), (1.3) via ND-
Solve command with parameters WorkingPrecision at 40 and MaxSteps set to Infinity. As explained
in documentation on NDSolve, the parameters PrecisionGoal and AccuracyGoal are set to half of
WorkingPrecision by default. Thus, in our case they are set to 20. We have to specify the terminal,
or final, point xf = 1000. For calculations with such accuracy in most cases after x = 50 we were
not able to distinguish the plots of the numerical solutions and their large-t asymptotics. So that we
used markers on the curves to show that it is actually two curves rather than one.

In presentation of numerical values we give only the first 9 digits after the decimal point. In fact,
as follows from above we have done our calculations with the better accuracy. In case a numerical
value of some parameter is given with a less amounts of digits it means that it is its exact value.
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10.1 Generic Case: Theorem 3.1, =t > 0

In this subsection we present two examples of solutions whose asymptotics on positive imaginary
semi-axis can be constructed with the help of Theorem 3.1.

For our first numerical run we fix the formal monodromies as follows:

Θ0 = 0.7, Θ1 = 0.3, Θ∞ = 0.4

and take the parameters defining asymptotics as t→ 0 as follows

σ = 0.32, s = 0.3.

We use the leading terms of asymptotics given in Theorem 7.1 to calculate the initial data for
the numerical solutions at x0 = 10−4:

ỹ(x0) = 0.994568108 . . .− ı0.002959252 . . . , z̃(x0) = −47.584547341 . . .+ ı26.986260774 . . . ,

u(x0) = r(−0.020313259 . . .− ı0.014746818 . . .).

To calculate the parameters ϕ and δ defining, according Theorems 3.1 and 3.2, the large-t asymp-
totics of the functions ỹ(x) and z̃(x) we have first to find the monodromy data with the help of
Theorem 7.2. According to Theorem 3.3 we need only the following data:

m1
11 = 12.437589470 . . .+ ı6.650948445 . . . , m1

12 = rı9.125827299 . . . ,

m0
21m

1
12 = −61.163346517 . . .+ ı188.241424656 . . . .

Now, Theorem 3.3 implies:

ϕ = 0.278154042 . . .− ı0.421199315 . . . , δ = −4.554462477 . . .+ ı6.135670701 . . . ,

û = r(−0.319233835 . . .− ı2.211728624 . . .).

Note that by Theorem 3.3 ϕ (see Equation (3.6)) is defined via logarithms. Namely, <ϕ is defined
mod Z. To fix it uniquely we have to calculate parameters ν1 and ν2 given in Theorems 3.1 and 3.2:

ν1 = 0.287383828 . . .+ ı1.684797263 . . . , ν2 = 1.712616171 . . .− ı1.684797263 . . .

and check whether one of the numbers <νk, k = 1, 2, fits the interval (−1/2, 1). In our case <ν1 fits
the interval, while <ν2 does not. If neither number <νk is within the interval, we have, using the
ambiguity mod Z in ϕ, to adjust one of them to fit the interval (−1/2, 1). If such adjustment is
not possible for a given value of ϕ, then the reader is addressed to part II of this work.

In our case we are in conditions of Theorem 3.1. So that the large-t asymptotics have to be
calculated with the help of this Theorem.

The results of the calculations (with r = 1) are presented on Figs. 1-6. The range of calculations
on all figures was from x = 5 to 300. Since qualitative large-t behavior of functions y and z is obvious
from Figures 1-4, we bounded the range of the plot by x = 200. Function u shows a more interesting
behavior so we plotted it on the whole range it was calculated.

Now we consider the second case. Since the scheme of calculations is exactly the same we present
only numerical values of the parameters and the resulting graphs.

Θ0 = 0.3, Θ1 = 0.4, Θ∞ = −0.8

σ = 0.1, s = 3.5, x0 = 10−5.

Initial values for the numerical solution:

y(x0) = 0.266805303 . . .+ ı0.358746453 . . . , z(x0) = −0.330124183 . . .− ı0.161506133 . . .

u(x0) = r(12944.541090242 . . .+ ı18240.855333418 . . .).
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Figure 1: Real part of y: large-t asymptotics and numerical solution

Figure 2: Imaginary part of y: large-t asymptotics and numerical solution

47



Figure 3: Real part of z: large-t asymptotics and numerical solution

Figure 4: Imaginary part of z: large-t asymptotics and numerical solution
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Figure 5: Real part of u: large-t asymptotics and numerical solution

Figure 6: Imaginary part of u: large-t asymptotics and numerical solution
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Figure 7: Real part of y: large-t asymptotics and numerical solution

The monodromy data:

m1
11 = −3.948973870 . . .+ ı1.218498193 . . . , m1

12 = rı8.666566605 . . . ,

m1
12m

0
21 = 13.008291429 . . .− ı9.451076940 . . . .

The parameters of asymptotics as t→ +∞:

ϕ = 0.052366192 . . .− ı0.225829516 . . . , δ = 0.221777960 . . .+ ı1.344890970 . . . ,

û = r(−1.459177245 . . .− ı0.519203287 . . .).

The parameters νk are as follows:

ν1 = −0.009464771 . . .+ ı0.903318064 . . . , ν2 = 2.009464771 . . .− ı0.903318064 . . . ,

which implies that we have to use again Theorem 3.1. The results of calculations (r = 1) are
presented on Figs. 7-12. Here we plotted the solutions on a small segment [2, 30], to show how the
large-t asymptotics approximate the solution at finite interval. The settings indicated in preamble
to this section allows one to plot the solutions far beyond x = 300. On Figures 11-12 we see that
function u has poles approaching the positive imaginary semi-axis as t→ +ı∞.

10.2 Generic case: <Θ0 > 1, =t < 0

In this subsection we check our asymptotic results for the case when the real part of one of the
formal monodromies is greater than 1. In most cases this situation can be served (at least formally)
with the help of the symmetry groups acting in the space of solutions of IDS (1.2)–(1.4). Therefore,
it is enough to restrict real parts of formal monodromies within the segment [0, 1]. Such type of
restrictions very often are imposed in studies of the Painlevé equations. However, application of the
symmetries to asymptotics is often related with cumbersome calculations. Moreover, sometimes in
these calculations it is not enough to deal only with the leading term of the asymptotics, because the
corresponding terms may cancel, so that one has to keep a few minor terms in asymptotic expansion
to get the correct result. At the same time none of our results includes this limitation on the real
parts of the formal monodromies. Therefore, it is reasonable to demonstrate the validity of our
asymptotic results in the situation beyond the limitations on real parts of the formal monodromies.
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Figure 8: Imaginary part of y: large-t asymptotics and numerical solution

Figure 9: Real part of z: large-t asymptotics and numerical solution
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Figure 10: Imaginary part of z: large-t asymptotics and numerical solution

Figure 11: Real part of u: large-t asymptotics and numerical solution
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Figure 12: Imaginary part of u: large-t asymptotics and numerical solution

The set of formal monodromies for this subsection is as follows:

Θ0 = 1.65, Θ1 = 0.28, and Θ∞ = 0.37.

The choice of the parameters defining asymptotics as t→ −0ı is the same as in the first example of
the previous subsection:

σ = 0.32, s = 0.3.

It is an experimental fact that the construction of the numerical solution with the scheme explained
in preamble of this section requires to take the initial point closer to the origin, namely, x0 = 10−10.
Note that in this case variable x > 0 is defined as t = −ıx.

The initial values of the numerical solution:

ỹ(x0) = 0.999993054 . . .+ ı0.000003817 . . . , z̃(x0) = −89006.808677592 . . .− ı48934.551891324 . . . ,

ũ(x0) = r(−0.000166764279 . . .+ ı0.000109542161 . . .).

The monodromy data of the solution reads:

m0
11 = 2.060665876 . . .+ ı20.909643615 . . . , m1

12 = −rı15.422245661 . . . ,

m0
21m

1
12 = −174.927577207 . . .+ ı404.233780229.

The parameters defining asymptotics as t→ −ı∞ are as follows:

ϕ = −0.234365609 . . .+ ı0.484633675 . . . , δ = 40.943218924 . . .+ ı12.639857745 . . . ;

û = r(−4.935514833 . . .+ ı1.264358256 . . .), (10.1)

ν1 = 2.307462436 . . .− ı1.938534700 . . . , ν2 = −0.307462436 . . .+ ı1.938534700 . . . . (10.2)

As follows from Equation (10.2) we are within the conditions of Theorem 3.2. Note that parameter
ϕ here is calculated via Equation (3.7). The corresponding asymptotic and numerical solutions are
plotted on the Figs. 13-18.

The accuracy of calculations (see the preamble to this section) allows one to build plot of the
numerical solution which visually coincides with its large-t asymptotics far beyond x = 300. Specif-
ically, we present plots on segment [1, 50], where the reader still can see difference between the
numerical solution and the asymptotics.
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Figure 13: Real part of y: large-t asymptotics and numerical solution

Figure 14: Imaginary part of y: large-t asymptotics and numerical solution
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Figure 15: Real part of z: large-t asymptotics and numerical solution

Figure 16: Imaginary part of z: large-t asymptotics and numerical solution
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Figure 17: Real part of u: large-t asymptotics and numerical solution

Figure 18: Imaginary part of u: large-t asymptotics and numerical solution
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10.3 Numerical Illustration to Section 6

In Section 6 we compared our formulae with those obtained in [7, 8]. Here we consider a particular
example with both non vanishing Stokes multipliers.

The formal monodromies in this subsection are as follows:

Θ0 = Θ1 = 0.73, Θ∞ = 0.

Here we choose asymptotic parameters in a different way comparing to the previous subsections,
namely,

σ = 0.4, ϕ = −0.15. (10.3)

The first parameter defines branching of the solution at t = 0 the second one - branching of the
solution at the point at infinity. As in Subsection 10.2 consider the negative imaginary semi-axis,
t = −xı with x > 0. Theorem 3.3 implies that the parameter ϕ determines

m0
11 = 0.587785252 . . .+ ı0.809016994 . . . .

In the case =t > 0 with the help of the same theorem one calculates monodromy parameter m1
11.

Next, Theorem 7.2 shows that the parameter s2 defining the solution of IDS (1.2)–(1.3) as t → 0
can be determined as a solution of a quadratic equation, which means that in the generic situation
(including our case) there are two solutions with parameters (10.3). We choose one of these solutions

s2 = −0.164128459 . . .+ ı0.856228483 . . . , s = 0.594848223 . . .+ ı0.719703320 . . . .

We started with t0 = −10−8ı = −x0ı resulting in initial conditions

ỹ(x0) = 1.000106557 . . .+ ı0.000227040 . . . , z̃(x0) = 897.545278538 . . .− ı1912.844754835 . . . ,

ũ(x0) = r(−0.999946706151 . . .+ ı0.000113501986 . . .).

Parameters σ, s2, and r with the help of Theorem 7.2 allow one to find all the monodromy data:

m1
12 = r(−1.869666176 . . .− ı0.261514312 . . .), m0

21m
1
12 = 3.427261874 . . .+ ı0.977888928 . . . ,

s1 = − ı
r

1.175570504 . . . , s2 = −rı1.175570504 . . . . (10.4)

Thus, actually, both Stokes multipliers do not vanish.
Now, using Theorem 3.3, we find

δ = −5.237640067 . . .− ı1.494437957 . . . , û = r(0.323288043 . . .− ı2.311310283 . . .).

Finally, we calculate parameters ν1 and ν2 (see Theorems 3.1 and 3.2):

ν1 = 1− 4ϕ = 1.60, ν2 = 1 + 4ϕ = 0.4.

Thus we see that we are within the applicability of Theorem 3.2. The results of comparison of the
numerical and large-t asymptotics for functions: ỹ(x), z̃(x), and ũ(x) with r = 1 are presented on
Figs. 19–24. On these figures we compare numerical solution with its large-t asymptotics on the
segment [1, 100]. As usual we ensure that the accuracy in initial data for numerical solution is such
that its plot visually coincides with the plot of asymptotics on the distances far beyond x = 300.

Now, we consider the connection formulae for asymptotics which are obtained in [7, 8].
As mentioned in Section 6 our results may coincide in some important particular cases, specifically

when Θ∞ ∈ 2Z, Θ0 = Θ1 = Θ ∈ Z and, at least, one of the Stokes multipliers s1 or s2 vanishes. For
the complete match of all connection results both Stokes multipliers should vanish, s1 = s2 = 0. In
the last case there is no difference between solutions Y1, Y2, and Y3, then we observe an agreement
between our results and those of [7, 8]. In particular, a solution of Equation (1.5), describing the
one-particle reduced density matrix of the one-dimensional impenetrable Bose gas [17], belongs to
this special case.
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Figure 19: Real part of y: large-t asymptotics and numerical solution

Figure 20: Imaginary part of y: large-t asymptotics and numerical solution
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Figure 21: Real part of z: large-t asymptotics and numerical solution

Figure 22: Imaginary part of z: large-t asymptotics and numerical solution
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Figure 23: Real part of u: large-t asymptotics and numerical solution

Figure 24: Imaginary part of u: large-t asymptotics and numerical solution
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As follows from Equation (7.8) if one of the Stokes multipliers vanishes, then σ = 0. For the solu-
tion considered in this subsection σ 6= 0 (see Equation (10.3)), therefore our asymptotic predictions
will disagree with those following from papers [7, 8].

In paper [8] the connection formulae are given in terms of the monodromy data, like in our work.
In paper [7] the connection formulae are presented directly: the parameters of asymptotics at infinity
are given in terms of the parameters of asymptotics as t→ 0. We tried both types of the connection
formulae.

We begin with the connection formulae presented in [8]. In Section 6 we explained that the
authors of [8] parameterise the large-t asymptotics (=t < 0) in terms of the quantities Ip which are
related with the monodromy data via Equation (6.4). We use the definition of the monodromy data
given in Section 2 and obtained the following expressions for the Stokes multipliers in terms of Ip:

s2 = e−iπ(Θ0+Θ1)×

−eiπ(Θ0+Θ∞)(I0 − 1) + eπi(2Θ0+Θ1)(I1 − 1)− eπiΘ1I0(I1 − 1) + eπi(Θ0+2Θ1+Θ∞)(I0 − 1)I1

m0
21(I0 − 1)(I1 − 1)

s1 = −m0
21e

πiΘ∞ ×

eπi(Θ0+2Θ1)(I0 − 1)− eπi(Θ1+Θ∞)(I1 − 1) + eπi(2Θ0+Θ1+Θ∞)I0(I1 − 1)− eπiΘ0I1(I0 − 1)

eπiΘ∞ − eπi(2Θ0+Θ∞)I0 − eπi(Θ0+Θ1)(I0 − 1)(I1 − 1)− eπi(2Θ1+Θ∞)I1 + eπi(2Θ0+2Θ1+Θ∞)I0I1
.

For the case Θ0 = Θ1 = Θ, Θ∞ = 0, studied in [7]-[8], they simplify to:

s1 = m0
21e

πiΘ I0I1 − 1

1− e2πiΘI0I1
, s2 = e−πiΘ(1− e2πiΘ)

1− I0I1

(I0 − 1)(I1 − 1)m0
21

. (10.5)

For the particular numerical case studied here Equation (6.4) implies:

I0(MT ) = 1.056514170 . . .+ ı1.198380092 . . . , I1(MT ) = 1.338535154 . . .− ı0.824893015 . . . .

Substituting these values into Equation (10.5) with r = 1 we find

s1 = s2 = −ı1.175570504 . . . ,

which confirms the values of the Stokes multipliers (10.4) calculated directly.
It is worth reminding that for connection formulae, if we want to remain within the results

of [7]-[9], the parameters Ip should be (in our notation) adjusted as explained in Section 6 (see
Equation (6.5)). With parameters Ip understood in that way we would find:

I0(adj) = 0.541451276 . . .+ ı0.333677733 . . . , I1(adj) = 0.413939912 . . .− ı0.469522666 . . . .

Calculating the Stokes multipliers with the help of I0(adj) and I1(adj) via (10.5) with r = 1 we get

s1(adj) = −0.661221513 . . .+ ı0.718177045 . . . , s2(adj) = ı1.175570504 . . .

As expected, we obtain different Stokes multipliers.
To get the large-t asymptotics as suggested in [8] we have to calculate parameters k and x̃0 (see

Section 6) Equations (6.6)–(6.8). First we do it with the help of I0(MT ) and I1(MT ):

k = k(MT ) = 0.079933525 . . .− ı0.158878848 . . . ,

x̃0 = x̃0(MT ) = 0.745125463 . . .− ı0.350495266 . . . .

The plot of the large-t asymptotics corresponding to these parameters calculated with the help of
Equation (6.2) is presented on Figure 25. Comparing this plot with the ones presented on Figure 19
we see the main discrepancy is that the function on Figure 25 is decaying while it should grow.

We also tried in this case the direct connection formulae given in [7] (see Equations (2.3) and
(2.14)–(2.17) of [7]). We applied the scheme of calculations adopted in this paper: first with the help
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Figure 25: <y: the large-t asymptotics for pure imaginary negative t obtained in [8]

of the initial value found above (ỹ(x0) and σ = 0.4) we calculated, with the help of Equation (2.3)
of [7], the parameter Ŝ, then parameters k and x̃0 by means of Equations (2.14)–(2.17)of [7]. Thus
obtained k and x̃0 differ with k(MT ) and x̃0(MT ) obtained above. Nevertheless, the qualitative
behavior of asymptotics is the same as on Figure 25. The difference in the values of the parameters
could be explained because our small-t asymptotics, being formally equivalent to the one used in [7],
in fact, in most cases numerically is more precise. It is not an obstacle in usage of Equation (2.3) of
[7], but the point x0 for calculation of initial value should be chosen closer to the origin, which may
require a higher precision of calculations.

We also calculated the plots of asymptotics of y for parameters I0(adj) and I1(adj). In this case
asymptotic parameters are as follows:

k = k(adj) = ı0.15, x̃0 = x̃0(adj) = −0.619264010 . . .+ ı0.413313056 . . . .

We have further (pure experimentally) adjusted parameter x̃0(adj), namely, we changed x̃0(adj) →
x̃0(adj) + π/4. On Figures 26 and 27 we compared asymptotics of [8], adjusted as explained above,
with the ones presented in this work. In the online version our asymptotics colored in green while
those of [7] are blue. At first glance, asymptotics for <y looks quite satisfactory, while for =y there
is some discrepancy which also does not look fatal. Because one may hope that the higher order
terms may further correct the situation. However, as we see above our asymptotic formulae from
Theorems 3.1 and 3.2, gives good numeric approximations starting from quite small values of t;
Asymptotics (6.2) works at these values of t not that good. We compared the solutions on the
interval x ∈ [2, 30] and observed significant disagreement between adjusted solutions from [7] and
the numerical results. Of course, the interval [2, 30] may not be asymptotically ”large enough” yet.
Therefore, we compared asymptotics in segment x ∈ [800, 820] where they are supposed to coincide
(visually) with the numerical solution. At least with the growth of x both curves should approach
each other. However, the difference between the curves looks ”stable” with variation of x within the
range x ∈ [400, 1200]. This corresponds with what is written in Section 6. As explained in Section 6,
the adjustment suggested there does not repair the situation, one have to put zero at least one of the
Stokes multiplier. So, Figures 26 and 27 provide us an illustration to the conclusions of Section 6.

10.4 The Special Meromorphic Solution

In this subsection we deal with the solution studied in Section 9. Since it is a very special solution we
have here an opportunity to to choose a different numeric scheme and not the one used in previous
subsections. We put t = ıx, with x ∈ R. We also assume a1

1 ∈ R. Then the second transformation
in Subsection 9.3 implies:

y(t)y(t) = 1, z(t) = −z(t),
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Figure 26: <y: Large-t asymptotics for pure imaginary negative t: Theorem 3.2 vs the adjusted one
from [8]

Figure 27: =y: Large-t asymptotics for pure imaginary negative t: Theorem 3.2 vs the adjusted one
from [8]
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where the bar denotes complex conjugation. We recall that y(0) = −1 and z(0) = 0, therefore we
make the following change of variables:

y(t) = −eıφ(x), z(t) = ıxw(x),

where φ(x) and w(x) are realvalued functions of real variable x.
Taking into account that Θ0 = Θ1 = 1/2 and Θ∞ = −1 we rewrite System (1.2), (1.3) as follows:

x
dφ

dx
= x+ 8xw cos2 φ

2
− sinφ,

x
dw

dx
= w(cosφ− 1 + 2xw sinφ).

The main difference in numeric calculation of this solution comparing with the previous examples is
that we can take the initial condition exactly at x = 0:

φ(0) = 0, w(0) = −1 + 2a1
1

8
.

On Figures 28 and 29 we present the plots of real and imaginary parts of solution y(t) for a1
1 = 2,

respectively. Each figure contains two plots: the numerical plot and asymptotic one. To plot
asymptotics of y(t) we use only the leading term denoted as α, see Equation (9.25) in Subsection 9.5.
We see that the leading term of the large x-asymptotics gives already a very good approximation as
early as x = 2.5. A rather remarkable property of that example is that there is no visible transition
interval from the behavior of y(t) at t → 0 to its large t-behavior. Since the leading asymptotic

Figure 28: <y; the numerical plot starts at the point with the coordinates (0,−1).

term of z(t) is a constant we used the explicit form of the oscillating correction term (O(1/t)), to
compare it with the numerical solution on Figure 30.
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Figure 29: =y; the numerical plot approach the point with the coordinates (0, 0) from below; the
asymptotical one — from above.

Figure 30: =z; the numerical plot approach the point with the coordinates (0, 0). The plot of
asymptotics starts at x = 1.
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A Appendix: Schlesinger transformations

Here for completeness we present the Schlesinger transformations of Equation (1.1) together with
the corresponding Bäcklund transformations of IDS (1.2)-(1.4), which we use in this paper.

We denote Yk, k ∈ Z, the canonical solution of Equation (1.1) corresponding to the set of variables
t, λ, y, z, u,Θ0,Θ1,Θ∞, the notation Ỹk states for the canonical solution of Equation (1.1) but with
variables: t, λ, ỹ, z̃, ũ, Θ̃0, Θ̃1, Θ̃∞. The Schlesinger transformation maps Yk to Ỹk such that both
solutions have the same monodromy data, except the formal monodromy at the point at infinity
which is shifted by ±2. Due to these properties the Schlesinger transformations are called sometimes
the discrete isomonodromy transformations.

In transformation presented below in Theorem A.1 the original non-tilde variables might be
arbitrary. In that case the tilde variables represent just a covariant transformation of Equation (1.1).
As long as we require dependence of the tilde variables on t, such that they satisfy IDS (1.2)-(1.4),
the corresponding monodromy data are independent of t (continuous isomonodromy deformations).
Obviously, in that case the monodromy data for Ỹk are also independent of t, so that the Schlesinger
transformations generate the so-called Bäcklund transformations for solutions of IDS (1.2)-(1.4), i.e.,
the discrete and continuous isomonodromy flows commute.

Theorem A.1. There exists the following Schlesinger transformation of Equation (1.1)

Yk =


p

β
+ λ −β
1

β
0

 Ỹk,

β =
t

A1
21 +A0

21

, p = −β
t

(Θ∞ + 1 + βA1
21),

Θ̃∞ = Θ∞ + 2, Θ̃0 = Θ0, Θ̃1 = Θ1,

where A0
21 and A1

21 are the corresponding elements of matrices A0 and A1, respectively, defined for
the non-tilde variables.

z̃ = −z −Θ0 −
(Θ∞ + 1)z

z − 1

y

(
z +

Θ0 + Θ1 + Θ∞
2

) +

tz

(
z +

Θ0 + Θ1 + Θ∞
2

)
y

(
z − 1

y

(
z +

Θ0 + Θ1 + Θ∞
2

))2 ,

ỹ =
1

y
· z̃ + Θ0

z
·
z +

Θ0 + Θ1 + Θ∞
2

z̃ +
Θ0 −Θ1 + Θ̃∞

2

,

ũ = u · zt2

z̃ + Θ0
· 1(

z − 1

y

(
z +

Θ0 + Θ1 + Θ∞
2

))2 .

There exists the following inverse Schlesinger transformation of Equation (1.1)

Yk =

 0
1

β

−β p

β
+ λ

 Ỹk,

β = − t

A1
12 +A0

12

, p = −β
t

(Θ∞ − 1− βA1
12),

Θ̃∞ = Θ∞ − 2, Θ̃0 = Θ0, Θ̃1 = Θ1,
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z̃ = −z −Θ0 −
(Θ∞ − 1)(z + Θ0)

z + Θ0 − y
(
z +

Θ0 −Θ1 + Θ∞
2

) − ty (z + Θ0)

(
z +

Θ0 −Θ1 + Θ∞
2

)
(
z + Θ0 − y

(
z +

Θ0 −Θ1 + Θ∞
2

))2 ,

ỹ =
1

y

z + Θ0

z̃

z̃ +
Θ0 + Θ1 + Θ̃∞

2

z +
Θ0 −Θ1 + Θ∞

2

,

ũ = u · z + Θ0

z̃t2
·

(
z̃ − 1

ỹ

(
z̃ +

Θ0 + Θ1 + Θ̃∞
2

))2

.

B Appendix: Higher order terms in asymptotic expansion

We begin with the complete asymptotic expansions at large pure imaginary t corresponding to
solutions of System (1.2)–(1.3) described in Theorem 3.1. The first expansion reads:

z =
∑∞
i=0

∑i
j=−i zijt

−iαj , (B.1)

y = α
∑∞
i=0

∑i
j=−i yijt

−iαj , (B.2)

α = δt−4ϕ+Θ∞et. (B.3)

These are the formal (divergent) series with coefficients uniquely determined by substitution into
System (1.2)–(1.3) under a recurrence procedure. Below, the reader will find the first terms cor-
responding to i = 0, 1, 2 which we found with the help of MATHEMATICA code. This formal
expansion becomes asymptotic one provided 0 < <ν1 < 2, where ν1 = 1− 4ϕ+ Θ∞ is introduced in
Theorem 3.1.

The justification of these asymptotics can be obtained with the help of the scheme described in
Section 33 of [21]. The major difference is that the sector where our expansions are valid has the
vanishing angle (parameter q =∞ in [21]). This fact, however, does not destroy the proof because of
Remark 3.3, where we explain that, in fact, asymptotics is working in domains D1(µ1) rather than
only on the imaginary axis. Therefore, in case 0 < <ν1 < 2 there exists a solution of System (1.2)–
(1.3) with Asymptotics (B.1)–(B.2). Since according to Theorem 3.3 parameter α uniquely defines
the solution of System (1.2)–(1.3), the solution which exists by the application of the Wasow scheme
coincides with the one that described by the monodromy theory and there is no any other solution
with the same asymptotic expansion.

We find the coefficients of this asymptotic expansion to be:

y00 = 1, y10 = 12ϕ2 − 6ϕΘ∞ +
1

2
(Θ2
∞ −Θ2

0 −Θ2
1),

y11 = 2ϕ+
1

2
(Θ0 + Θ1 −Θ∞), y1,−1 = −2ϕ+

1

2
(Θ0 + Θ1 + Θ∞),

(B.4)

z00 = −ϕ− 1

2
Θ0, z10 = 0,

z11 = ϕ2 +
ϕ

2
(Θ0 + Θ1 −Θ∞) +

Θ0

4
(Θ1 −Θ∞),

z1,−1 = ϕ2 − ϕ

2
(Θ0 + Θ1 + Θ∞) +

Θ0

4
(Θ1 + Θ∞),

(B.5)

y22 = 3ϕ2 +
3ϕ

2
(Θ0 + Θ1 −Θ∞) +

1

4
(Θ0 + Θ2

1 + Θ2
∞ + Θ0Θ1 −Θ0Θ2 − 2Θ1Θ2),

y2,−2 = ϕ2 − ϕ

2
(Θ0 + Θ1 + Θ∞) +

Θ0

4
(Θ1 + Θ∞),
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y2,1 = 48ϕ3 + 12ϕ2(Θ0 + Θ1 − 3Θ∞ + 1)+

+ 2ϕ
(
4Θ2
∞ − 3Θ∞(Θ0 + Θ1 + 1)−Θ2

0 −Θ2
1 + 2Θ0 + 2Θ1 + 1

)
−

− Θ3
∞
2

+
Θ2
∞
2

(Θ0 + Θ1 + 1) +
Θ∞

2
(−1−Θ1 − 3Θ0 + Θ2

0 + Θ2
1)+

+ Θ0Θ1 −
Θ0 + Θ1

2
(Θ2

0 + Θ2
1 − 1),

y2,−1 = −12ϕ2 + 2ϕ(1 + 2Θ0 + 2Θ1 + 3Θ∞)−

− 1

2
(Θ1 + Θ0 + Θ∞ + Θ1Θ∞ + 2Θ0Θ1 + 3Θ0Θ∞),

y20 = 72ϕ4 − 4ϕ3(18Θ∞ − 10)− 2ϕ2(15Θ∞ + 3Θ2
0 + 3Θ2

1 − 12Θ2
∞ + 2)+

+ ϕ
(
− 3Θ3

∞ + 6Θ2
∞ + (3Θ2

1 + 2 + 3Θ2
0)Θ∞ + Θ1 − 3Θ2

0 − 3Θ2
1 + Θ0

)
+

+
Θ4
∞
8
− Θ3

∞
4
− (Θ2

0 + Θ2
1 + 1)

Θ2
∞
4

+ (Θ2
1 + 5Θ2

0 − 2Θ0)
Θ∞

4
+

+
(Θ2

0 + Θ2
1)2

8
+

(Θ0 + Θ1)2

4
,

z22 = z2,−2 = 0,

z20 = −4ϕ3 + 3ϕ2Θ∞ +
ϕ

2
(Θ2

0 −Θ2
∞ + Θ2

1)− Θ∞Θ2
0

4
,

z21 = 12ϕ4 + 2ϕ3(2 + 3Θ0 + 3Θ1 − 6Θ∞)+

+
ϕ2

2

(
7Θ2
∞ − 6(1 + Θ1 + 2Θ0)Θ∞ + 4Θ0 + 2 + 4Θ1 −Θ2

1 + 6Θ0Θ1 −Θ2
0

)
−

− ϕ

4

(
Θ3
∞ − (7Θ0 + Θ1 + 2)Θ2

∞ − (Θ2
0 + Θ2

1 − 6Θ0Θ1 − 6Θ0 − 2Θ1 − 2)Θ∞−

− 2Θ0 − 2Θ1 − 4Θ0Θ1 + Θ3
1 + Θ2

0Θ1 + Θ0Θ2
1 + Θ3

0

)
−

− Θ0

8

(
Θ3
∞ − (Θ1 + 2)Θ2

∞ − (Θ2
0 + Θ2

1 − 2Θ1 − 2)Θ∞ + (Θ2
0 + Θ2

1 − 2)Θ1

)
,

z2,−1 = −12ϕ4 + 2ϕ3(2 + 3Θ0 + 3Θ1 + 6Θ∞)+

− ϕ2

2

(
7Θ2
∞ + 6(1 + Θ1 + 2Θ0)Θ∞ + 4Θ0 + 2 + 4Θ1 −Θ2

1 + 6Θ0Θ1 −Θ2
0

)
+

+
ϕ

4

(
Θ3
∞ + (7Θ0 + Θ1 + 2)Θ2

∞ − (Θ2
0 + Θ2

1 − 6Θ0Θ1 − 6Θ0 − 2Θ1 − 2)Θ∞+

+ 2Θ0 + 2Θ1 + 4Θ0Θ1 −Θ3
1 −Θ2

0Θ1 −Θ0Θ2
1 −Θ3

0

)
−

− Θ0

8

(
Θ3
∞ + (Θ1 + 2)Θ2

∞ − (Θ2
0 + Θ2

1 − 2Θ1 − 2)Θ∞ − (Θ2
0 + Θ2

1 − 2)Θ1

)
,

z33 = z3,−3 = 0, y3,−3 = 0, y3,3 6= 0, . . . .

Substituting the above formulae into Equation (1.7) we find the following result,

ζ = (ϕ+ Θ0

2 )t− 2ϕ2 + ϕΘ∞ + Θ0

2 (Θ0 + Θ∞)+

+ 1
t

(
α(−ϕ2 + ϕ

2 (Θ∞ −Θ1 −Θ0) + Θ0

4 (Θ∞ −Θ1)) −

−4ϕ3 + 3ϕ2Θ∞ + ϕ
2 (Θ2

0 −Θ2
∞ + Θ2

1)− 1
4Θ∞Θ2

0+

+ 1
α (ϕ2 − ϕ

2 (Θ∞ + Θ1 + Θ0) + Θ0

4 (Θ∞ + Θ1))

)
+O

(
t−2

(
|α|2 + |α|−2

))
,
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which is formulated in Corollary 3.1. Up to O
(
t−2

(
|α|2 + |α|−2

))
the equality

∂ζ

∂t
= −z

is satisfied.
The leading term of asymptotics in Theorem 3.1 is valid also for negative values of <ν1. The

corresponding asymptotic expansion can be constructed as follows. Define

β = δt−4ϕ+Θ∞+1et ≡ δtν1et. (B.6)

Consider the formal series:

z =

∞∑
i=0

[ i2 ]∑
j=−i−1

ẑijt
−iβj , (B.7)

ty =

∞∑
i=0

1+[ i2 ]∑
j=−i−1

ŷijt
−iβj . (B.8)

where [·] is the integer part of a number (the integer floor). One proves that these series are asymp-
totic as t → ∞, iff −1 < <ν1 < 1. Comparing Equations (B.3) and (B.6) we see that β = tα.
Substituting this relation into Series (B.7) and (B.8), it is easy to observe that after a rearrangement
of terms they coincide with Series (B.1) and (B.2), respectively. Any partial sum of Series (B.1)
or (B.2) can be presented as a partial sum of the corresponding Series (B.7) or (B.8) with some
extra higher order terms and vice versa so that both pairs of series solve IDS (1.2) and (1.3). So,
Series (B.7) and (B.8) represent asymptotics of the same solution as Series (B.1) and (B.2) but in a
shifted domain of the parameter ν1: −1 < <ν1 < 1. We discuss this expansion in a more detail in
part II of this paper.

For the solutions defined in Theorem 3.2 we have to write another asymptotic expansions. Define

β̃ =
1

δ
t4ϕ−Θ∞+1e−t ≡ 1

δ
tν2e−t,

then for ν2 such that −1 < <ν2 < 1, the following formal series are asymptotic:

z =

∞∑
i=0

[ i2 ]∑
j=−i−1

z̃ijt
−iβ̃j ,

t

y
=

∞∑
i=0

1+[ i2 ]∑
j=−i−1

ỹijt
−iβ̃j .

For 1 < <ν2 < 2 we have to use asymptotic expansion analogous to (B.1) and (B.2):

z =
∑∞
i=0

∑i
j=−i žijt

−iα̃j , (B.9)

1

y
= α̃

∑∞
i=0

∑i
j=−i y̌ijt

−iα̃j , (B.10)

α̃ = 1
δ t

4ϕ−Θ∞e−t = β̃/t. (B.11)
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