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A MODIFICATION OF WYTHOFF’S NIM

ROBBERT FOKKINK AND DAN RUST

Abstract. We modify Wythoff’s game by allowing an additional move.
The P -positions in our game can be derived from the table of letter
positions in the Tribonacci word. This is related to the recent solution
of the Greedy Queens in a spiral problem. Our analysis involves the
table of letter positions of arbitrary k-bonacci words. We find a mex-
rule that generates the Quadribonacci table, extending work by Duchêne
and Rigo on the Tribonacci table.

1. Splythoff’s Nim

The following take-away game is known as Wythoff’s Nim and was de-
scribed in 1907 in the Nieuw Archief voor Wiskunde [18]. The game is
played by two persons. Two piles of counters are placed on a table. The two
players alternately either take an arbitrary number of counters from a single
pile or an equal arbitrary number from both piles. The player who takes the
last counter, or counters, wins.

We modify Wythoff’s Nim by allowing the additional option of a split. If
a player takes an equal number of counters from both piles and only one pile

remains, then he can split the remaining pile into two. For instance, suppose
there are 4 counters on the first pile and 7 on the second. In this position a
player is allowed to take 4 counters from both piles and split the remainder
into piles of 1 and 2. A split is only allowed after taking counters from both
piles. A player is not allowed to take all counters from a single pile and then
split. We call this Splythoff’s Nim. We refer to the three possible moves as
single, double, and split.

A P -position is a combination of two numbers a and b that is losing for
the player that moves next. In other words, it is winning for the previous
player. Otherwise, it is called an N -position. It is obvious that:

(1) There are no moves between P -positions.
(2) Every N -position has a move to a P -position.
(3) (0, 0) is a P -position.

We reserve a for the number of counters on the smaller pile and b for the
larger pile. The set of all positions (a, b) form the vertices of a direct graph,
and the moves form the edges. The graph is connected since all games end
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at (0, 0). It is acyclic since moves remove counters: we have a partial order.
More specifically, the position p is larger than the position q iff there is a
sequence of moves from p to q.

The standard algorithm to compute the P -positions is as follows. Let
N0 be the set of all (a, b) that are neighbors of (0, 0). Delete all vertices
in N0 ∪ {0, 0} from the graph, along with their edges. Let P1 be the set of
minimal elements of the remaining digraph. Let N1 be the set of neighbors
of P1. Remove N1 ∪P1 from the graph. Etc. The set of P -positions is equal
to the union of all Pi.

Recall that for a proper subset S ⊂ N the minimal excluded value mex(S)
is the minimum of N \S. For Wythoff’s Nim, the Pi are singletons {(ai, bi)}
that can be computed with the mex operator. Let Ai = {a1, . . . , ai} and let
Bi = {b1, . . . , bi}. Then

ai+1 = mex (Ai ∪Bi)

bi+1 = ai+1 + i+ 1

One can also generate the sequence (ai, bi) from the Fibonacci substitution

0 7→ 01
1 7→ 0

which has fixed point 010010100100101 · · · known as the Fibonacci word.
The numbers ai correspond to the positions of the zeroes in this sequence.
The bi correspond to the ones. We will see that for Splythoff’s Nim the
P -positions can be derived from the Tribonacci substitution

0 7→ 01
1 7→ 02
2 7→ 0

which has fixed point ω3 = 0102010010201010201001 · · · known as the Tri-

bonacci word.

Theorem 1. Let xi, yi, and zi be the locations of the i-th 0, 1, and 2 in the

Tribonacci word. Then the i-th P -position in Splythoff’s Nim (ai, bi) is given

by ai = yi − xi and bi = zi − yi.

We shall prove this theorem first and then extend it to the k-bonacci

substitution [16]. This extension concerns integer sequences and does not
seem to have an impartial game that comes with it.

Our paper is strongly related to previous work of Duchêne and Rigo [7] on
a three-pile take-away game. The game introduced by Duchêne and Rido has
P -positions in the ‘positions table’ (defined below) of the Tribonacci word
ω3. The P -positions of Splythoff’s Nim are in the ‘difference table’ of ω3.

The literature on modifications of Wythoff’s Nim is huge. We briefly
discuss it in the final section of our paper. An extensive bibliography on
Wythoff’s game can be found in [5].
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2. The P -positions

We generate a table with two rows A and B and infinitely many columns.
Each natural number appears exactly once in the table. We add a row B−A

on top of the table, and also a row A+B below. We let ∆ and Σ respectively
denote these two rows.

∆ 1 2 4 5 6 7 9 10 11 13 · · ·
A 1 3 4 6 7 9 10 12 14 15 · · ·
B 2 5 8 11 13 16 19 22 25 28 · · ·
Σ 3 8 12 17 20 25 29 34 39 43 · · ·

Table 1. The table of A and B alongside their sum and difference

For any set S ⊂ N let Si be the subset of its least i elements. The columns
of the table are generated by

δi+1 = mex (∆i ∪ Σi)

ai+1 = mex (Ai ∪Bi)

bi+1 = ai+1 + δi+1

σi+1 = ai+1 + bi+1

It follows from the definitions that all four sequences are strictly increasing.
Since A and ∆ are defined by a mex relation, both ∆,Σ and A,B are par-
titions of N. A is sequence A140100 and B is sequence A140101 in Sloane’s
On-Line Encyclopedia of Integer Sequences. These two sequences arise from
the Greedy Queens in a spiral problem, which has recently been solved by
Dekking, Shallit, and Sloane [4]. The table also appears in the study of a
take-away game on three piles by Duchêne and Rigo [7].

We write δ(a, b) = b−a and σ(a, b) = a+ b. A single preserves either a or
b. A double preserves δ(a, b). A split preserves σ(a, b). The following result
is immediate.

Lemma 1. If there is a move from (a, b) to (a′, b′) then either {a, b}∩{a′, b′}
or {δ(a, b), σ(a, b)} ∩ {δ(a′, b′), σ(a′, b′)} is non-empty.

Observe that {a, b} is a multiset if a = b and that {δ(a, b), σ(a, b)} is a
multiset if a = 0. These are exactly the positions with a move to (0, 0).
In other words, these are the positions in N0. The complement of P0 ∪ N0

consists of all positions (m,n) such that m > 0 and m 6= n. Each of these
can be moved to (1, 2) within two moves. This proves that P1 = {(1, 2)}.
The folllowing lemma generalizes this observation.

Lemma 2. Pi = {(ai, bi)}.

Proof. Assuming that the statement is true for all Pi up to Pk for a fixed
k ≥ 1. We prove that it is true for Pk+1. Let Mk be the set of all (m,n)
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with a move to Pi for some i ≤ k. CLAIM: these are exactly the positions
such that one of the following holds:

(i) {m,n} intersects Ak ∪Bk.
(ii) {δ(m,n), σ(m,n)} intersects ∆k ∪ Σk.

If (i) holds, then m or n occurs as a coordinate in (ai, bi) for some i ≤ k. If
m = bi then ai < n and reduce n to ai. If m = ai and n > bi then reduce n

to ai. If m = ai and b < ni then δ(m,n) < δi. In this case, n −m is equal
to δj or σj for some j < i. In the first case, there is a double from (m,n)
to Pj . In the second case, there is a split from (m,n) to Pj . If n = bi and
m > ai then reduce m to ai. If n = bi and m < ai then m is equal to aj or
bj for some j < i. In this case, there is a single from (m,n) to Pj . If n = ai
then m = aj or m = bj for some j < i and there exists a single to Pj. This
takes care of case (i).

We now consider case (ii) in which {δ(m,n), σ(m,n)} intersects some
{δj , σj} for j ≤ k. If m ≤ ak then we are in case (i), which we already
settled. We may therefore assume that m > ak. If δ(m,n) = δj then there
is a double to Pj . If δ(m,n) = σj then there is a split to Pj . If σ(m,n) = δj
then m ≤ aj which contradicts our assumption that m > ak. Finally, if
σ(m,n) = σj, then n < bj since m > aj, It follows that δ(m,n) < δj and
we have a double to Pi for some i < j. All positions that satisfy (i) or (ii)
have a move to a Pj for some j ≤ k. Conversely, Lemma 1 implies that each
position that admits such a move satisfies either (i) or (ii). We conclude that
the claim holds.

We need to show that Pk+1 is the unique minimum of the complement of
Mk. By the definition of Table 1, Pk+1 does not satisfy (i) or (ii). Therefore,
it is in the complement of Mk. Let (m,n) be any position that in the
complement of Mk. We need to show that there exists a sequence of moves
from (m,n) to Pk+1. We have that m ≥ ak+1 since m 6∈ Ak ∪Bk. We have
that δ(m,n) ≥ δk+1 since δ(m,n) 6∈ ∆k ∪ Σk. Apply a single to n to reduce
δ(m,n) to δj+1. Now apply a double to reduce m to ak+1. We have reached
Pk+1. It is the unique minimum. �

Proof of Theorem 1. The theorem is a direct consequence of Lemma 2 and
the fact that the rows A and B can be obtained as difference sequences from
the Tribonacci word. This is the main result in [4] and it is also related to
Corollary 3.6 in [7]. We will generalize these results in the next sections, in
particular see Corollary 1 below.

3. The positions table of the k-bonacci substitution

The k-bonacci substitution θk on the alphabet {0, . . . , k − 1} is given by

θk :

{

j 7→ 0 (j + 1), if j < k − 1
k − 1 7→ 0

.

The k-bonacci word ωk is the unique fixed point of this substitution. In our
analysis, k > 2 is fixed and we will often simply write θ and ω instead of θk
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and ωk. We start by recalling some well-known properties of the k-bonacci
word, before turning to the tables.

Lemma 3. The letters j > 0 are isolated in ω, i.e, each is preceded and

followed by a 0.

Proof. It follows from the definition of θ that each i > 0 is preceded by a 0.
It has to be succeeded by 0 as well, for the same reason. �

In fact, we can say much more.

Lemma 4. Starting from the empty word w−1 = ǫ, inductively define the

palindromes

wj = wj−1jwj−1.

Each j ∈ ω is preceded and succeeded by wj−1. In particular, each j occurs

in a wj at location 2j .

Proof. Each j + 1 is created from a j by a subsitution. By our induction,
each j occurs in wjjwj . Therefore, each j + 1 occurs in θ(wj)0(j + 1)θ(wj).
Observe that the final letter of θ(wj) is a 1 and therefore it is followed by a
0. We need to prove that θ(wj)0 = wj+1. This follows from:

(1)
θ(wj)0 = θ(wj−1jwj−1)0 = θ(wj−1)0(j + 1)θ(wj−1)0

= wj(j + 1)wj = wj+1.

We also obtain by induction that the length of wj−1 is equal to 2j −1, which
is why j occurs at location 2j in wj. �

Expanding equation 1 we find that

wj = θj(0)θj−1(0) · · · θ(0)0

Since wj−1 has length 2j − 1, θj(0) has length 2j , and θj(0) ends with a j,
we see that

(2) wj−1j = θj(0)

Lemma 5. Each wj is a prefix or a suffix of a wj+1.

Proof. By induction. Assume that the statement is true for j−1. Since wj−1

is followed by 0, we may even assume that wj−10 is a prefix or a suffix of
wj0. By the previous lemma, each wj is created from wj−10 by substitution.
By our assumption, wj−10 is a prefix or a suffix of wj0. Therefore, wj is a
prefix or a suffix of θ(wj0) = wj+1. �

Note that it can happen that wj is both a prefix and a suffix. Since
w0w0 = 00 occurs in ω, we have that 0 occurs as a prefix and a suffix of w1

in θ(0)θ(0)0 = 01010. Applying the substitution once more, we find that w1

is a prefix and a suffix in θ2(0)θ2(0)θ(0)0 = 01020102010, etc.

Lemma 6. For all i ∈ {0, . . . , k − 1} the letter j > 0 occurs exactly once in

θj+1(i) at location 2j .
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Proof. Thie follows from the fact that

θj+1(i) = θj(0)θj(i+ 1)

where we agree that i+1 is the empty word if i = k− 1. Equation 2 implies
that j occurs at location 2j . We only need to prove that it does not occur
in θj(i + 1). By induction we may assume that j − 1 does not occur in
θj−1(i+1). This immediately implies that j does not occur in θj(i+1). �

Lemma 6 implies that the n-th occurrence of j in ω = ω1ω2ω3 . . . is in the
n-th word of θj+1(ω1)θ

j+1(ω2)θ
j+1(ω3) . . .. For a letter j we will say that

the distance between consecutive positions of j are steps. The steps of j can
be computed from the k-bonacci word by applying θj+1.

The positions table for the Quadribonacci word is given below. Each
row Xj contains the locations of j in ω. The steps between the letter j

ω4 0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 0

X0 1 3 5 7 9 11 13 15 16 18 20 22 24 26 28 30

X1 2 6 10 14 17 21 25 29 31 35 39 43 46 50 54 58

X2 4 12 19 27 33 41 48 56 60 68 75 83 89 97 104 112

X3 8 23 37 52 64 79 93 108 116 131 145 160 172 187 201 216

Table 2. The positions table for the Quadribonacci word

are the differences between consecutive entries in Xj . The steps between
columns are vectors and one quickly verifies that each such step is one of
the four vectors (2, 4, 8, 15), (2, 4, 7, 14), (2, 3, 6, 12), (1, 2, 4, 8), depending on
the corresponding letter in the k-bonacci word. For instance, the difference
between the fourth and the fifth column (and the twelfth and the thirteenth)
is (2, 3, 6, 12) because 2 is the fourth letter (and twelfth) in ω4. For the
positions table of the general k-bonacci word, the result is as follows.

Lemma 7. Let ℓj(i) be the length of θj+1(i). The positions table can be

generated from the vector valued substitution

(3) ν : i 7→











ℓ0(i)
ℓ1(i)

...

ℓk−1(i)











The initial column of the table contains increasing powers of 2, starting from

20, and the n + 1-th column is generated from the n-th column by adding

ν(ωk
n).

Proof. By Lemma 6 the letter j first occurs in θj+1(ωk
0 ) at position 2j . That

is why the first column of the table contains the powers of two. Since j

occurs at the same location in θj+1(i), independent of i, each row Xj has
step sizes ℓj(i). �
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The length ℓj(i) is minimal if i = k− 1, in which case it is equal to 2j . If
i 6= k − 1 then ℓ(i) > 2j . This means that 2j is the minimal step between
consecutive elements in Xj . The minimal step occurs at columns that are
headed by the letter k − 1 in ω. For instance, in the Quadrobonacci table,
the step at the eighth column is minimal because the eighth letter in ω4 is a
3.

Lemma 8. Both Xj+1−2j and Xj+1+2j are subsets of Xj and their union

is equal to Xj . An element of Xj can be written as m + 2j and n − 2j

exactly if m is taken from a k− 1-column in the positions table, and n is its

successor.

Proof. Suppose that j + 1 occurs at location m ∈ Xj+1. By Lemma 4 we
have that both m− 2j and m+2j are elements of Xj . Hence Xj+1− 2j and
Xj+1 + 2j are subsets of Xj.

Say h ∈ Xj , i.e., j occurs at location h in ω. Each j occurs in a wj , which
is either a prefix or a suffix of a wj+1. Within wj , j occurs in the middle
location 2j . Since wj is a palindrome, the distance between j and j + 1 in
wj+1 = wjj +1wj is the same for the prefix and the suffix. That distance is
equal to 2j . Therefore, h ∈ Xj+1 ± 2j .

A number in Xj can be written as a sum and a difference if it occurs in a
step of size 2j+1 in Xj+1. These steps occur at the k − 1-columns. �

4. The difference table

The rows in the positions table form a partition of N by definition. Re-
markably, this also holds for the rows of the difference table, which has rows
∆j = Xj+1 − Xj that we put alongside the k-bonacci word, as illustrated
below. That is, these rows ∆j again form a partition of N.

ω4
0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 0

∆0
1 3 5 7 8 10 12 14 15 17 19 21 22 24 26 28

∆1
2 6 9 13 16 20 23 27 29 33 36 40 43 47 50 54

∆2
4 11 18 25 31 38 45 52 56 63 70 77 83 90 97 104

Table 3. The difference table for the Quadribonacci word

It follows from Lemma 7 and Equation 3 that the difference table can be
derived from ω. The step between columns is

(4)











ℓ1(i)− ℓ0(i)
ℓ2(i)− ℓ1(i)

...
ℓk−1(i)− ℓk−2(i)











Lemma 9. For each 1 ≤ h ≤ k − 1 and each letter i

ℓh(i) = 2ℓh−1(i)− δk−1

h+i ,
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where δij is Kronecker’s delta.

Proof. We defined ℓh(i) as the word length after h+1 substitutions starting
from i. Each letter is doubled by our substitution unless it is the final
letter. Therefore, the equation says that θh(i) contains no final letter unless
k − 1 = h + i, in which case it contains one final letter. The substitution
raises each letter by one, adding a zero. If we start from i, the only letter
that reaches the final letter is produced by i → i + 1 → · · · . It reaches the
final letter after k − 1 − i substitutions. Hence, we have one non-doubling
letter if h = k − 1− i. �

We already observed that ℓh(i) > ℓh(k − 1) if i < k − 1. Therefore
ℓh(i) − ℓh−1(i) ≥ ℓh−1(k − 1) = 2h−1. It follows that the minimal step
in ∆h−1 is equal to 2h−1. Again, the minimal step occurs at the columns
marked by k − 1. However, the minimal steps do not exclusively occur in
these columns. For instance, in the Quadribonacci table the minimal step in
the first row is 1. It occurs in columns marked by 2 and 3.

Lemma 10. ∆j+1 − 2j and ∆j+1 + 2j are subsets of ∆j and their union is

equal to ∆j . An element of ∆j can be written as m+2j and n−2j exactly if

m is taken from a k− 1-column in the positions table, and n is its successor.

Proof. By Lemma 5 we have

∆j = Xj+1−Xj =
(

Xj+2 − 2j+1 ∪Xj+2 + 2j+1
)

−
(

Xj+1 − 2j ∪Xj+1 + 2j
)

By the alternating property, this is equal to
(

Xj+2 −Xj − 2j+1 + 2j
)

∪
(

Xj+2 −Xj+1 + 2j+1 − 2j
)

which is ∆j+1 − 2j ∪∆j+1 + 2j �

Lemma 11. The rows in the difference table are disjoint as sets. That is,

∆i ∩∆j = ∅ if i 6= j.

Proof. Suppose j > i. By iterating Lemma 10 we find that each element of
∆i is in some ∆j ± 2j−1 ± . . . ± 2i. The minimal step size in ∆j is 2j and
2j−1 + . . .+ 1 < 2j . Therefore, ∆i and ∆j are disjoint. �

Theorem 2. The rows in the difference table form a partition of N.

Proof. We only need to prove that the rows cover N. By iterating Lemma 10
each ∆i is the union of all ∆k−2±2k−2± . . .±2i, with ∆k−2 the bottom row
of our table. The union of the rows is equal to the union of ∆k−2 + n for
all integers n that can be written as ±2k−2 ± . . . ± 2i for some i and some
choice of the signs. Here we take n = 0 if i = k − 2. It is not hard to verify
that each n ∈ {−2k−2 + 1, . . . , 2k−2 − 1} admits such an expansion. Hence,
it suffices to prove that the maximal step in ∆k−2 is 2k−1 − 1.

By Lemma 9 and Equation 4 the steps in ∆k−2 are given by

ℓk−1(i) − ℓk−2(i) = ℓk−2(i)− δi0.

This is maximal if i = 0 or i = 1, when it is indeed equal to 2k−1 − 1. �
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5. The double-difference table

We continue by differencing the differences

d∆i = ∆i+1 −∆i

and collect these as rows in a double-difference table. For good measure, we
also add a bottom row containing the sum

Σ = ∆0 + . . .+∆k−2.

We call this the sum row and we call the other rows the difference rows. We
add the k-bonacci word ω as a headline, since the increments of the columns
are ruled by this word. If k = 3, i.e., Tribonacci, we have only one difference
row and one sum row. It turns out that these are the ∆ and Σ of Table 1.

ω4
0 1 0 2 0 1 0 3 0 1 0 2 0 1 0 0

d∆0
1 3 4 6 8 10 11 13 14 16 17 19 21 23 24 26

d∆1
2 5 9 12 15 18 22 25 27 30 34 37 40 43 47 50

Σ 7 20 32 45 55 68 80 93 100 113 125 138 148 161 173 193

Table 4. The double-difference table for the Quadribonacci word

Lemma 9 implies that the step between columns is

(5)











ℓ2(i) − 2ℓ1(i) + ℓ0(i)
...

ℓk−1(i)− 2ℓk−2(i) + ℓk−3(i)
ℓk−1(i)− ℓ0(i)











=











ℓ0(i) − δk−1

2+i
...

ℓk−3(i) − δk−1

k−1+i

ℓk−1(i) − ℓ0(i)











The minimum step occurs at (k−1)-columns, where ℓh(i)− δk−1

h+2+i
= ℓh(k−

1) = 2h and ℓk−1(k − 1) − ℓ0(k − 1) = 2k−1 − 1. The maximum step in the

final difference row is ℓk−3(i)− δk−1

k−1+i
. If i ∈ {0, 1} then the length of θh(i)

is doubled at each step up to k − 2. If i > 1 then at some step it is doubled
minus one (see Lemma 9). Therefore ℓk−3(i) has maximal value 2k−3 at

i = 0, 1. Now δk−1

k−1+i = 1 if i = 0 and it is 1 at i = 1. Therefore, the step

ℓk−3(i) − δk−1

k−1+i is maximal in the columns marked by 1. Let M ⊂ d∆k−3

be the subsequence that is taken from these 1-columns.
The steps in M are sums of steps in ∆k−3 along the intermediate letters

between two 1’s. In other words, we sum the steps over the return word

[9]: the j-th word in ω that starts with a 1 and leads up to, but does not
include, the j + 1-th 1. Recall that the 1’s in ω are the second letters in the
sequence θ2(ω1)θ

2(ω2)θ
2(ω3) . . .. If ωj = i < k−2 then the j-th return word

is 10(i + 2)0. If ωj = k − 2 then the return word is 100 and if ωj = k − 1
then it is 10.

Lemma 12. The j-th step in M has length ℓk−1(ωj)− ℓ0(ωj)



10 ROBBERT FOKKINK AND DAN RUST

Proof. Suppose the letters in the j-th return word are 10(i+2)0 for i < k−2.
The sum of the steps is

ℓk−3(1) + ℓk−3(0)− 1 + ℓk−3(i+ 1) + ℓk−3(0) − 1

If we agree that ℓ(w) is the sum of ℓ over the letters in the word, and if we
denote the j-th return word by vj , then we can write this as

ℓk−3(vj)− 2 = ℓk−3(vj)− ℓ0(i)

So far, we have used i < k−2 but our notation carries over to k−2 and k−1.
By definition ℓk−3(w) is the length of θk−2(w) and vj = θ2(i) = θ2(ωj). We

find that the sum of the steps is ℓk−3(θ2(ωj))− ℓ0(ωj). �

We now repeat Lemmas 10 and 11 for the double-difference table.

Lemma 13. d∆j+1− 2j and d∆j+1+2j are subsets of d∆j and their union

is equal to d∆j. An element of d∆j can be written as m + 2j and n − 2j

exactly if m is taken from a k − 1-column in the positions table.

Proof. The same as the proof of Lemma 10, with minor editing.

d∆j = ∆j+1−∆j =
(

∆j+2 − 2j+1 ∪∆j+2 + 2j+1
)

−
(

∆j+1 − 2j ∪∆j+1 + 2j
)

By the alternating property, this is equal to
(

∆j+2 −∆j − 2j+1 + 2j
)

∪
(

∆j+2 −∆j+1 + 2j+1 − 2j
)

which is d∆j+1 − 2j ∪ d∆j+1 + 2j �

Lemma 14. The difference rows in the double-difference table are disjoint

as sets

d∆i ∩ d∆j = ∅ if i 6= j

Proof. Suppose j > i. By iterating Lemma 10 we find that each element of
∆i is in some d∆j ± 2j−1 ± . . .± 2i. The minimal step size in d∆j is 2j and
2j−1 + . . .+ 1 < 2j . Therefore, d∆i and d∆j are disjoint. �

Lemma 15. Let S ⊂ N be the set S = M + 2k−3. The difference rows in

the difference table form a partition of N \ S.

Proof. We only need to prove that the difference rows cover N \ S. By
iterating Lemma 13 each d∆i is the union of all d∆k−3 ± 2k−4 ± . . . ± 2i,
with d∆k−3 the final difference row of our table. The union of the rows is
equal to the union of d∆k−3 + n for all integers n that can be written as
±2k−3 ± . . .± 2i for some i and some choice of the signs. As before we have
n ∈ {−2k−4+1, . . . , 2k−4−1}, which is a set of 2k−3−1 consecutive elements.
The maximal step in d∆k−3 is 2k−2, which occurs in the 1-columns. All other
elements are covered. �

Theorem 3. The rows in the double-difference table form a partition of N.
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Proof. By Lemma 12 the sequences S and Σ have equal steps. We only
need to show that they have the same initial element. The initial element
of Σ is the sum of the initial elements of the difference sequences. This is
ℓk−1(0)− ℓ0(0) = 2k−1−1. The initial element of M is the second element of
d∆k−3. The first element is 2k−3 and the second element is 2k−3+ ℓk−3(0)−
1 = 2k−3+2k−2−1. Finally, the initial element of S is 2k+3+2k−3+2k−2−1 =
2k−1 − 1. Indeed, S and Σ have the same initial element. �

6. Generating the Quadribonacci table from a mex-rule

We defined k-bonacci tables and showed that their rows partition N. We
now consider a method for generating these tables. A mex-rule for the posi-
tions table of the Tribonacci word appeared as Theorem 3.1 in [7]. We derive
a mex-rule for the Quadribonacci word.

We denote the elements of the difference sequence ∆j by a
j
1
, a

j
2
, . . . and

the elements of d∆j by b
j
1
, b

j
2
, . . .. Recall our notation that Xi contains the

first i entries of the sequence X.

Lemma 16. a0i+1
= mex

(

∆0
i ∪∆1

i ∪ · · · ∪∆k−2

i

)

.

Proof. The rows partition N and therefore mex
(

∆0
i ∪∆1

i ∪ · · · ∪∆k−2

i

)

oc-

curs in one of the rows. The columns are strictly increasing, therefore this
element occurs in the first row. It has to be the next element in that row,
since rows are increasing. �

By the same argument we find

Lemma 17. b0i+1
= mex

(

d∆0
i ∪ d∆1

i ∪ · · · ∪ d∆k−3

i ∪ Σ
)

.

We can now complete the proof of Theorem 1.

Corollary 1. The rows in Table 1 are identical to the difference table of

the Tribonacci word. The header and the footer are identical to the double-

difference table.

Proof. If k = 3 there are only two rows in the difference table. The previous
two lemmas suffice to construct these tables. We have a2i = a1i + b1i and
b2i = a1i + a2i . These are the mex-rules that generate Table 1. �

For the Tribonacci word, we can thus generate the columns of the tables
one step at a time. We will now describe a column generation for the Quadri-
bonacci word, but we do not have such a procedure for k-bonacci words with
k > 4.

Lemma 18. The bottom row of the k-bonacci positions table can be written

as a sum

Xk−1 = E +X0 + . . . +Xk−1

where E denotes the enumerating sequence 1, 2, 3, . . ..
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Proof. This is true for the initial column. Each next column is an increment
by the vector in Equation 3. We need to show that

ℓk−1(i) = 1 + ℓ0(i) + . . .+ ℓj−2(i)

This is a consequence of the following observation. Suppose you start from 1
and double each time, except once, when you double and subtract one. Then
the final number is the sum of the other numbers. We leave the verification
to the reader. The equality above follows from the observation for i < k− 1.
In that case, we have ℓ0(i) = 2 and each next ℓj(i) is doubled, unless k − 1
appears in θj(i), which happens once. If i = k − 1 then ℓj(k − 1) = 2j and
again the equation holds. �

According to this lemma it suffices to generate the first three rows of the
Quadribonacci table, and compute the fourth row as a sum. These three
rows can be derived from the first two rows of the difference table, which can
be derived from the first row of the double-difference table, which follows
from the mex rule. That is the idea behind Theorem 4 below, in which we
generate all three tables of the Quadribonacci word simultaneously.

We write x
j
i for the elements of the positions table.

Theorem 4. The following rules generate the three tables for the Quadri-

bonacci word:

a0i+1 = mex
(

∆0
i ∪∆1

i ∪∆2
i

)

b0i+1 = mex
(

d∆0
i ∪ d∆1

i ∪Σi

)

x0i+1 = mex
(

X0
i ∪X1

i ∪X2
i ∪X3

i

)

a1i+1 = a0i+1 + b0i+1

x1i+1 = x0i+1 + a0i+1

x2i+1 = x1i+1 + a1i+1

x3i+1 = x0i+1 + x1i+1 + x2i+1 + i+ 1

a2i+1 = x3i+1 − x2i+1

b2i+1 = a1i+1 + a2i+1 + a3i+1

Proof. The first and second equation follow from Lemma 16 and 17. The
third equation can be derived in an equivalent manner. The other equations
follow from Lemma 17 and the definition of the difference tables. �

Duchêne and Rigo used the difference table to derive a column generating
mex-rule for the Tribonacci table. We used the double-difference table to
do the same for the Quadribonacci table. Perhaps there is a way to use
triple-differences for the Cinquibonacci table, but this remains to be solved.
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7. Other games and other tables

Splythoff’s Nim is a simple modification of Wythoff’s Nim. What if we
modify Splythoff’s Nim and also allow a split after a single? Without go-
ing into a full analysis of this game we take a first look at its P -positions,
along with their sums and differences. The difference sequence is no longer

∆ 1 2 4 5 7 6 8 9 11 12 13 15 16 17 18 20 21
A 1 4 5 7 8 11 13 16 18 20 22 24 26 27 30 31 33
B 2 6 9 12 15 17 21 25 29 32 35 39 42 44 48 51 54
Σ 3 10 14 19 23 28 34 41 47 52 57 63 68 71 78 82 87

increasing and an analysis of this game appears to be difficult.

An appealing feature of Splythoff’s Nim is the mex-rule describing its P -
positions. The mex operation is applied to A,B and ∆,Σ separately, and
so we get separate partitions of N. What if we apply the mex operation to
all the rows, so that together they form a partition of N? One obvious way
to do this is by putting the smallest element in δ ∈ ∆, and then selecting
the next smallest element a ∈ A such that a + δ 6∈ B. As described by the
following mex-rule.

δi+1 = mex (∆i ∪Ai ∪Bi ∪ Σi)

ai+1 = mex (∆i+1 ∪Ai ∪Bi ∪ Σi ∪Bi − δi+1)

bi+1 = ai+1 + δi+1

σi+1 = ai+1 + bi+1

The resulting table appears to be a new object, which is not contained in
the OEIS. Is there a take-away game that is associated to this table?

∆ 1 4 7 9 12 14 18 21 24 27 29 32 34 36 40 42
A 2 6 8 11 13 17 19 22 26 28 30 33 35 39 41 44
B 3 10 15 20 25 31 37 43 50 55 59 65 69 75 81 86
Σ 5 16 23 31 38 48 56 65 76 83 89 98 104 114 122 130

8. Epilogue

Wythoff’s Nim has been modified in many different ways and some of these
modifications are similar to ours. Larsson [14] introduced a modification in
which one is allowed to remove counters from both piles in fixed proportions.
His analysis of the game involves ‘splitting pairs’, but this notion of splitting
is different from ours. Duchêne and Rigo [8] devised invariant games; a wide-
ranging generalization of Wythoff’s Nim. Larsson, Hegarty, and Fraenkel
showed that for every pair of complementary Beatty sequences, there exists
an invariant game which has P -positions along these sequences. This work
has been extended to non-homogeneous Beatty sequences in [3]. Splythoff’s
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Nim is not an invariant game and its P -positions are close to, but not equal
to, complementary Beatty sequences [4].

The relation between Wythoff’s Nim and Fibonacci numeration is well
known and has been extended to other Wythoff-like games by Fraenkel [11,
13]. Our game and its tables are related to Tribonacci numeration. Ta-
ble 2 and methods for generating the entries go back to Carlitz, et al. [2].
Their results were simplified and derived from the Tribonacci substitution
by Barucci, et al. [1].

We did not consider the Sprague-Grundy values of Splythoff’s Nim. It
is much harder to determine these values and even for Wythoff’s Nim this
remains an object of study [17]. Duchêne et al. [6] recently developed a pro-
found method for studying the complexity of the Sprague-Grundy function
for a general class of games. Interestingly, though unrelated to our work,
they use merging of positions instead of our splitting.

Finally, let us mention that Willem Wythoff did not only contribute a
game but also a symbol to mathematics [10].
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