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Abstract

We present a simple and convenient analytical formula for efficient

exact computation of the hafnian of Toeplitz matrices of a special type.

An interpretation of the obtained results is given in the language of perfect

matchings and Bessel polynomials.

Introduction

Let A = (aij) be a symmetric matrix of order n = 2m over a commutative
associative ring. Its hafnian is defined as

Hf(A) =
∑

(i1i2|...|in−1in)

ai1i2 . . . ain−1in ,

where the sum runs over all partitions of the set {1, 2, . . . , n} into disjoint pairs
(i1i2), . . . , (in−1in) up to the order of pairs, and the order of elements in each
pair. So, for example, if n = 4 then Hf(A) = a12a34 + a13a24 + a14a23. Equiva-
lently, one can define the hafnian as

Hf(A) =
1

m!2m

∑

σ∈Sn

aσ(1),σ(2) . . . aσ(n−1),σ(n),

where the sum runs over all permutations of the set {1, 2, . . . , n}. Note that
diagonal elements of the matrix are not present in the definition of the hafnian.
We will take them equal to zero for convenience. The hafnian was introduced by
E.R. Caianiello in one of his works on quantum field theory [1]. He gave the name
to the new matrix function in honor of Copenhagen (Lat. Hafnia), the place
where the idea of this mathematical concept first occurred to him. By this name
he also emphasized connection with Pfaffian introduced by A. Cayley in 19th
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century, from which the hafnian differs only by the signs of some components.
Later it became clear that the hafnian also has a useful combinatorial property
related to solving an important problem in graph theory: if M is the adjacency
matrix of an unordered graph with even number of vertices, then Hf(M) equals
the total number of perfect matchings of the graph.

Unfortunately the widespread use of the hafnian is limited by the fact that
there are no effective algorithms for its calculation in the general case. Thus, in
the recent work [2], the currently fastest exact algorithm to compute the hafnian
of an arbitrary complex n × n matrix is described. It runs in O(n32n/2) time.
And numerical benchmarks on the Titan supercomputer (the 7th place in the
Top500 ranking as June 2018) indicated that it would require about a month
and a half to compute the hafnian of a randomly generated 100× 100 complex
matrix using this algorithm.

Since in the general case calculation of the hafnian has a high computational
complexity, the problem is actual of finding efficient analytical formulas express-
ing the hafnian for special classes of matrices. Thus, in many important cases
(e.g., when considering adjacency matrices of planar graphs) one can reduce
calculation of the hafnian of a given matrix to a much more efficient calculation
of the Pfaffian for another matrix, associated with the former one by certain
simple transformations [3]. Recall that a matrix is called Toeplitz if all elements
of every of its diagonal parallel to the main one are the same. The paper [4]
presents an algorithm for calculating the hafnian of banded Toeplitz matrices
of order n and bandwidth m which runs in O(23m logn) time.

In this work we obtain an efficient analytical formula for calculating the
hafnian of Toeplitz matrices of a special type, different from the one mention
above. In a special case this formula reduces to computation of the value of the
Bessel polynomial of the corresponding degree at a certain point. Using this
formula, one can calculate the hafnian in linear time.

The main part

To begin with, consider two properties of the hafnian. The first property is
quite obvious.

Proposition 1. Let A be a symmetric matrix of order 2m over a commutative

associative ring R, and c ∈ R. Then

Hf(cA) = cmHf(A). (1)

Let Qk,n denote the set of all (unordered) k-element subsets of the set
{1, 2, . . . , n}. Let A be a matrix of order n and α ∈ Qk,n. We denote by
A[α] the submatrix of A formed by the rows and columns of A with numbers in
α, and by A(α) the submatrix of A formed from A by removing the rows and
columns with numbers in α. The following property proved in [5]:
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Proposition 2. Let A, B be symmetric matrices of order 2m. Then

Hf(A+B) =

m
∑

k=0

∑

α∈Q2k,2m

Hf(A[α])Hf(B(α)), (2)

where Hf(A[α]) = 1 if α ∈ Q0,2m, and Hf(B(α)) = 1 if α ∈ Q2m,2m.

To prove our main result, we need also one combinatorial property of path
graphs. Recall that a path graph is a graph that can be drawn so that all of
its vertices and edges lie on a single straight line and all neighboring vertices
are adjacent. We denote the path graph with n vertices by Pn (Fig. 1). Let k

1 2 3 n− 1 n

Figure 1: The path graph Pn

be a non-negative integer less than n/2, and let Ek
n denote the number of ways

to select k edges in Pn so that there are no two selected edges with a common
vertex.

Proposition 3. The value of Ek
n equals the binomial coefficient Ck

n−k.

Proof. It is obvious that one can select k different edges in Pn in Ck
n−1 ways.

Now we replace the given path graph by a new one according to the following
rule: we insert an additional edge after each of the first k − 1 selected edges,
counting left to right. As a result, we obtain a path graph with n + k − 1
vertices and k selected edges, any two of which have no common vertices (Fig.
2). It is not hard to see that such a procedure and its inverse establishes a

1 2 3 4 5

1 2 3 4 5 6 7

Figure 2: Transition between the path graphs P5 and P7 with 3 selected (in red)
edges

one-to-one correspondence between samples of k edges in a path graph with n
vertices and samples of k edges, any two of which have no common vertices, in
a path graph with n + k − 1 vertices. Therefore, Ck

n−1 = Ek
n+k−1. It follows

that Ek
n = Ck

n−k.

Now we can formulate and prove the main result.
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Theorem 1. Let R be a commutative associative ring with unit element, and

a, b ∈ R. Consider a symmetric matrix Ta,b of order 2m whose elements on the

main diagonal are zero, the elements on the subdiagonal and on the superdiag-

onal are equal to a, and all others elements are equal to b:

Ta,b =













0 a b

a
. . .

. . .

. . .
. . . a

b a 0













. (3)

Assuming 00 = 1, the following equality holds:

Hf(Ta,b) =

m
∑

k=0

(a− b)m−kbk
(m+ k)!

k!(m− k)!2k
. (4)

Proof. Let Jq denote a symmetric matrix of order 2m whose elements on the
main diagonal are zero, and all others elements equal q. Directly from the
definition of the hafnian it follows that

Hf(Jq) = qm
(2m)!

m!2m
. (5)

Let Uq denote the matrix of order 2m whose elements on the subdiagonal and
on the superdiagonal are equal to q, and all others elements are zeros. Since
Ta,b = Jb+Ua−b, we can write the following chain of equalities using the formulas
(1), (2), and (5):

Hf(Ta,b) = Hf(Jb + Ua−b) =

m
∑

k=0

∑

α∈Q2k,2m

Hf(Jb[α])Hf(Ua−b(α)) =

=

m
∑

k=0

(a− b)m−kbk
(2k)!

k!2k

∑

α∈Q2k,2m

Hf(U1(α)).

(6)

Here we use the fact that Jb[α] has the same form as the initial matrix Jb, i.e.,
Jb[α] is a symmetric matrix of order 2k whose elements on the main diagonal
are zeros, and all others elements are equal to b.

Let uij denote the elements of (0, 1)-matrix U1. If α ∈ Q2k,2m, then the
matrix U1(α) has the order 2m− 2k, and, by the definition,

∑

α∈Q2k,2m

Hf(U1(α)) =
∑

α∈Q2k,2m

∑

P

ui1i2 . . . ui2m−2k−1i2m−2k
, (7)

where the inner sum runs over all partitions P of the set {1, 2, . . . , 2m}\α into
disjoint pairs (i1i2), . . . , (i2m−2k−1i2m−2k) up to an order of pairs and an order
of elements in each pair. Since only the elements ui,i+1 and ui+1,i of U1 are equal
to 1, the term ui1i2 . . . ui2m−2k−1i2m−2k

in the sum (7) equals 1 if and only if each
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pair in the partition (i1i2), . . . , (i2m−2k−1i2m−2k) consists of two neighboring
indexes, otherwise this term equals zero. It follows that the sum (7) equals the
number of different ways to select in the set {1, 2, . . . , 2m} a collection of m− k
disjoint pairs (i1, i1+1), . . . , (im−k, im−k+1), up to an order of pairs. And this
is nothing else than the number of ways to select m− k edges in the path graph
P2m so that any two edges do not have common vertices. By Proposition 3 this
number equals Cm−k

2m−m+k = Cm−k
m+k . Thus substituting this value in (6), we get

the desired expression:

Hf(Ta,b) =
m
∑

k=0

(a− b)m−kbk
(2k)!

k!2k
Cm−k

m+k =
m
∑

k=0

(a− b)m−kbk
(m+ k)!

k!(m− k)!2k
.

Now we make a few comments about the result. Let a, b be non-negative
integers, and let Ga,b denote the graph with the adjacency matrix Ta,b. If one
draws Ga,b in the form of an arc diagram, then the neighboring vertices will be
connected by a arcs while all the other pairs of vertices by b arcs. In this case
the formula (4) expresses the number of perfect matchings of the graph Ga,b.

Let a = 0, b = 1. The graph G0,1 with n vertices is the complement of the
path graph Pn (Fig. 3). And it is not hard to see that perfect matchings of the
graph G0,1 with 2m vertices are loopless linear chord diagrams with m chords
considered in [6]. From (4) we get

Hf(T0,1) =

m
∑

k=0

(−1)m−k (m+ k)!

k!(m− k)!2k
. (8)

Thus, the formula (8) expresses the number of loopless linear chord diagrams
with m chords (the sequence A278990 in [7]).

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

Figure 3: The graph G0,1 with six vertices and all its perfect matchings

Consider now the graph G2,1. If one calculates by (4) the hafnian of its
adjacency matrix for consecutive m, starting with m = 1, we get the sequence:

2, 7, 37, 266, 2431, 27007, . . .
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Its k-th member equals the number of perfect matchings of the graph G2,1 with
2k vertices (Fig. 4). Note that this sequence has the notation A001515 in [7],

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Figure 4: The graph G2,1 with four vertices and all its perfect matchings

however its description does not contain the interpretation given here.
Recall (see [8], [9]) that the Bessel polynomial of degree m is a polynomial

of the form:

ym(x) =

m
∑

k=0

(m+ k)!

k!(m− k)!

(x

2

)k

.

It follows from (4) that the hafnian of the matrix Tb+1,b of order 2m equals the
value of the Bessel polynomial of degree m at x = b:

Hf(Tb+1,b) = ym(b).

This is a rather curious and unexpected fact, the explanation of which is not
clear so far.

Conclusion

We obtained a simple analytical formula for efficient exact calculation of the
hafnian of Toeplitz matrices of the special type (3). Based on this formula, it is
not hard to write an algorithm which calculates the hafnian of a matrix of order
n in O(n) time. The resulting formula can be used to find the number of per-
fect matchings of special graphs, for example, complements of the path graphs.
Along the way, we established an intresting connection between the hafnian of
Toeplitz matrices and the Bessel polynomials. This connection requires more
detailed study. Also, one could try, using the above methods, to find effective
analitical formulas for calculating hafnians of other types of Toeplitz matrices.
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