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Semi-analytic expressions for the static limit of the T -matrix for electromagnetic scattering are
derived for a circular torus, expressed in both a basis of toroidal harmonics and spherical harmonics.
The scattering problem for an arbitrary static excitation is solved using toroidal harmonics, and
these are then compared to the extended boundary condition method to obtain analytic expressions
for auxiliary Q and P -matrices, from which T = PQ−1 (in a toroidal basis). By applying the basis
transformations between toroidal and spherical harmonics, the quasi-static limit of the T -matrix
block T22 for electric-electric multipole coupling is obtained. For the toroidal geometry there are
two similar T -matrices on a spherical basis, for computing the scattered field both near the origin
and in the far field. Static limits of the optical cross-sections are computed, and analytic expressions
for the limit of a thin ring are derived.

I. Introduction

The T -matrix method is a semi-analytical tool for
calculating the properties of electromagnetic or acoustic
scattering by macroscopic particles [1, 2]. The incident
and scattered electromagnetic fields are expanded
on bases of orthogonal functions, e.g. spherical
wavefunctions, and the T -matrix essentially outputs the
series coefficients of the scattered field in terms of the
known coefficients for the incident field. Typically the T -
matrix is calculated via the extended boundary condition
method which involves numerically evaluating surface
integrals, however this approach is unstable for particles
with highly non-spherical shape, and much work has been
done on determining conditions for the T -matrix to be
applicable [3]. The Rayleigh hypothesis is central to the
T -matrix formalism and is the assumption that the series
of spherical functions converge on the entire surface of the
particle, although it is known that this is not necessary
and weaker criteria have been suggested [3].
In particular, the EBCM has not been applied
successfully to a torus. Aside from the T -matrix
method, scattering by a torus has been considered
analytically in the long wavelength limit using toroidal
harmonics, the partially separable solutions to Laplace’s
equation in toroidal coordinates. Toroidal harmonics
are a relatively new tool in computational physics due
to their complexity. Also, being only partially separable
solutions makes toroidal harmonics difficult to apply to
problems even involving the torus. Toroidal harmonics
have been applied to specific problems including a
conducting torus illuminated by a low frequency plane
wave [4] or point dipole [5], and a dielectric torus in
a uniform field [6]. A detailed computational analysis
of many aspects of quasistatic scattering by single and
multiple layered tori is conducted in [7]. For conducting
tori, fairly simple series solutions can be obtained, but for
dielectric tori, the series coefficients are not explicit. The
coefficients are calculated using a three step recurrence
relation, with initial values given by a continued fraction.
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Here we use an alternative approach to this recurrence
scheme by computing the T -matrix on a basis of toroidal
harmonics. The series coefficients are then given by a
matrix inversion.

Spherical harmonics are far easier to compute, better
known and more applicable than toroidal harmonics,
so it is of interest to re-express this T -matrix on a
basis of spherical harmonics - in particular, this allows
us to compute the long wavelength limit of the T -
matrix for electromagnetic or acoustic scattering, which is
usually expressed on a basis of spherical wavefunctions.
The series relationships between spherical and toroidal
harmonics are largely unknown, exept for the low degrees:
toroidal harmonics of degree zero, corresponding to the
potential of rings of sinusoidal charge distributions, are
known as series of spherical harmonics, and spherical
harmonics corresponding to point charges and dipoles
are known as series of toroidal harmonics. In fact,
relationships for all degrees and orders have been
derived in a Russian paper from 1983 [8], although this
paper does not appear to be well known, except that
the relationships were subsequently used to study the
electrostatic interaction of a torus and a sphere [9]. Here
we re-derive these expansions and express the expansion
coefficients in a simpler form.
The document is organised as follows. Section II defines
toroidal coordinates and harmonics, and investigates the
charge distributions which generate these harmonics,
some of which are unknown. Then in section III the
scattering problem for a torus is formulated where the
incident field is assumed to be expanded as a series
of toroidal harmonics, and using the electrostatic null
field equations [10], a toroidal T -matrix is derived
which gives the scattered field also on a basis of
toroidal harmonics. Section IV presents relationships
between spherical harmonics and a new simple recurrence
for their expansion coefficients. Section V then uses
these relationships to re-expresses the T -matrix on a
spherical harmonic basis. Section VI uses these results
to compute physical quantities including capacitance,
polarizability, plasmon resonances optical cross-sections,
and obtain analytic asymptotic expressions for the T -
matrix elements in the thin ring limit.

ar
X

iv
:1

90
4.

10
80

7v
1 

 [
ph

ys
ic

s.
co

m
p-

ph
] 

 2
4 

A
pr

 2
01

9

mailto:mattmajic@gmail.com


2

II. Toroidal coordinates and harmonics

From spherical coordinates (r, θ, φ), and cylindrical
coordinates (ρ, z, φ), toroidal coordinates (ξ, η, φ) with
focal ring radius a are defined as

η = arcsin
2az√

(r2 + a2)2 − 4ρ2a2
, (1)

ξ =
1

2
log

(ρ+ a)2 + z2

(ρ− a)2 + z2
, (2)

β = cosh ξ, (3)

with η ∈ [−π, π], ξ ∈ [0,∞), β ∈ [1,∞). β corresponds
to the torus size (β = 1 is a tight torus covering all space
and β = ∞ is the focal ring) and η corresponds to the
angle subtending to the nearest point on the focal ring.
Laplace’s equation is partially separable in toroidal
coordinates, so that the solutions have an additional
prefactor. The toroidal harmonics are defined for integer
n,m as

ψmcn = ∆Qmn−1/2(β) cosnη eimφ, (4)

ψmsn = ∆Qmn−1/2(β) sinnη eimφ, (5)

Ψmc
n = ∆Pmn−1/2(β) cosnη eimφ, (6)

Ψms
n = ∆Pmn−1/2(β) sinnη eimφ, (7)

with ∆ =
√

2(β − cos η), (8)

where Pmn−1/2 and Qmn−1/2 are the Legendre functions of

the first and second kinds. The superscript v will be
used to denote c or s. We will call Ψmv

n the “ring toroidal
harmonics” and ψmvn the “axial toroidal harmonics” since
they are singular on the focal ring and z-axis respectively.
There are essentially twice as many physically applicable
toroidal harmonics as spherical harmonics - for spherical
harmonics the angular solutions Qn(cos θ) are discarded
due to their singularity at the poles, while for toroidal
harmonics, all Ψmv

n and ψmvn (for integer n,m) are smooth
on the torus. Now for insight we investigate the charge
distributions that create toroidal harmonics.

A. Charge distributions of ring toroidal harmonics
Ψmv

n

Ψmv
n are finite everywhere except β = ∞, on the focal

ring. We want to express the functions as integrals of
charge distributions on this focal ring, weighted by the
inverse distance between a point on the focal ring r′ and
an arbitrary point in space r, which is |r′ − r| = ρ2 +
a2 − 2ρa cos(φ − φ′) + z2. We start with n = 0, looking
at Ψmc

0 = ∆Pm−1/2(β)eimφ (note that Ψms
0 = 0). The

Legendre functions approaching the ring behave as

Pm−1/2(β →∞)→ (2m− 1)!!

(−2)mπ

√
2

β
log β (9)

while ∆ →
√

2β. Approaching the focal ring, 1/β
becomes equal to the distance d from the ring. Compare

this to approaching infinitely close to a line source with
arbitrary charge distribution, where the potential goes
as 2 log d if the charge has unit density at the point of
closest approach. And the line charge distribution must
be proportional to eimφ, so we deduce that

Ψmc
0 =

(2m− 1)!!

(−2)mπ

∫ 2π

0

eimφ
′
adφ′√

r2 + a2 − 2ρa cos(φ−φ′)
. (10)

We should also check the limit as r → ∞. Here β → 1,
Pn−1/2 → 1, Pm>0

n−1/2 → 0, and ∆→ 2a/r, so we can rule

out the possibility of sources at r =∞.

For n = 1, the charge distributions are double rings - rings
with a dipole moment either pointing outward from the
origin or along the z-axis. The harmonics for n = 1 may
be generated by application of the operators ∂z = ∂/∂z
and r∂r (see appendix B 1 for details), so we apply these
to the integral expression (10):

Ψmc
1 =− 2r∂r + 1

m− 1/2
Ψmc

0

=
(2m− 3)!!

(−2)mπ

∫ 2π

0

a(a2 − r2)eimφ
′
dφ′

(r2 + a2 − 2ρa cos(φ−φ′))3/2
(11)

The charge distribution is two oppositely charged rings on
the xy-plane, one with an infinitesimally greater radius
than the other. This produces an infinitesimal charge
imbalance - a net monopole moment.
And for Ψms

1 :

Ψms
1 =

−a∂z
m− 1/2

Ψmc
0

=
(2m− 3)!!

(−2)mπ

∫ 2π

0

−2a2zeimφ
′
dφ′

(r2 + a2 − 2ρa cos(φ−φ′))3/2
(12)

This is the potential of two oppositely charged rings
with an infinitesimal separation in the z-direction. These
charge distributions are represented in figure 1.
For higher n the harmonics can be generated by repeated
application of the operator r∂r. We leave the details
for appendix B 1, but state that the toroidal harmonics
follow a recurrence relation (B14) involving r∂r, and this
recurrence is also satisfied by coefficients cmnk, smnk relating
toroidal and spherical harmonics (see (54)). We can then
deduce the differential operators that generate the nth

order harmonic from the 0th or 1st order harmonics:

Ψmc
n =

(−)n

2
cmn (r∂r)Ψ

mc
0 (13)

Ψms
n = (−)n+1 s

m
n (r∂r)

sm0 (r∂r)
Ψms

1 (14)

where cmn (r∂r) = cmnk with k → r∂r, and is a polynomial
degree n in r∂r.
The relationship above for the sinnη dependent
harmonics starts from n = 1 because Ψms

0 = 0. Also
note that smn (r∂r) always contains a factor sm0 (r∂r) so
the denominator in (14) simply cancels this.
The corresponding integral expressions for Ψmv

n are given
in operator form by applying (13) and (14) to the
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FIG. 1. Representation of the source charge configurations
for the low order ring toroidal harmonics. Red and blue
represent positive and negative charge q, and dipole moments
are denoted p. For Ψ0c

1 the slightly larger radius of the outer
ring creates an infinitesimal charge δq.

integral expression for Ψmc
0 (10) and Ψms

1 (12). However,
explicit evaluations of these derivatives do not appear to
reveal any simple patterns when explicitly evaluating the
derivatives.
These integral expressions have been checked numerically
up to n = 3.

B. Charge distributions of axial toroidal harmonics
ψmv

n

We will use heuristic arguments to derive the line source
distributions for ψmvn , which are singular on the z axis.
First consider m = 0. As in the previous section, we
use the fact that for an arbitrary line charge distribution,
close enough to the line, the potential will only depend
on the magnitude of the charge distribution at the point
of approach. So we can determine the line charge
distribution by matching it to the limit of the potential
as it approaches the line. The exact proportionality
is obtained by considering that the potential near a
line source with unit magnitude goes as 2 log(ρ). The
behaviour of the components of the toroidal harmonics
as ρ→ 0 are, using v = z/a:

lim
ρ→0

∆ =
2√

v2 + 1
(15)

lim
ρ→0

η =sign(v)acos
v2 − 1

v2 + 1
≡ η′ (16)

lim
β→1

Qn−1/2(β) = log
1√
β − 1

(17)

lim
ρ→0

1√
β − 1

=
a

ρ
(v2 + 1). (18)

Using the notation einη to deal with ψcn and ψsn
simultaneously, we see that the line source distribution
of ψcn + iψsn must be aeinη

′
/
√
v2 + 1:

ψcn + iψsn =

∫ ∞
−∞

a einη
′
dv√

v2 + 1
√
ρ2 + (z − av)2

. (19)

And for ρ → ∞, we have ψvn → 0 and there is no
contribution from sources at ρ → ∞. This is unlike
the spherical harmonics of the second kind rnQn(cos θ),
whose charge distributions are the difference between
a line source that produces an infinite potential and a

sum of multipoles at infinity of infinite strength (work
currently in progress).
Note that the function sign(v) makes the charge
distribution continuous, and that it can also be expressed
in terms of Chebyshev polynomials of the first and second
kinds Tn and Un:

einη
′

= Tn

(
v2 − 1

v2 + 1

)
+

2iv

v2 + 1
Un−1

(
v2 − 1

v2 + 1

)
. (20)

For m > 0, the charge distributions are multi-line, which
can be deduced from the eimφ dependence. For example
ψ1v
n has a charge distribution of two line sources infinitely

close together but of opposite charge. The behaviour of
the Legendre functions Qmn−1/2(β) is:

lim
ρ→0

Qmn−1/2(β) =
(−)m

2
(m− 1)!

(
a(v2 + 1)

ρ

)m
. (21)

So for m > 0 we have, ψmvn ∝ ρ−m as ρ = 0.
And in the limit ρ → ∞, we have ψmvn ∝ ρm−1. Despite
the divergence for m > 1, there is no contribution from
sources at ρ = ∞, which can be explained as follows. If
sources at ρ =∞ existed, then we can split ψmvn into its
contributions from charges on the z-axis and at ρ = ∞.
The potential due to charges at ρ = ∞, being finite at
the origin, can then be expressed as a series of regular
spherical harmonics Ŝmn = rnPmn (cos θ)eimφ of the same

m as ψmvn . However, Ŝmn (ρ → ∞) ∝ ρk where k ≥ m, so
it is impossible to express the ρm−1 dependence as a series
of Ŝmn . Therefore there cannot exist charges at ρ = ∞,
and counter-intuitively, this ρm−1 dependence must be
entirely due to the line source on the z-axis.
We can compare this to the potential near an m-fold line
charge distribution which similarly goes as ρ−m as ρ→ 0,
with integral kernel |r − r′|−2m−1. (21) also shows non-
constant z-dependence (v2 + 1)m, of which we multiplied
the charge distribution by. Putting this together gives

ψmcn + iψmsn =(2m− 1)!!a

(
−aρ

2

)m
eimφ

×
∫ ∞
−∞

(v2 + 1)m−1/2einη
′

(ρ2 + (z − av)2)m+1/2
dv (22)

Andrews ([11]- eq. 27) proved (22) via direct integration
for all m, and n = 0 (in his notation n↔ m).

III. T -matrix for a torus on a toroidal harmonic
basis

Consider a circular torus with major radius R0, minor
radius r0 and relative permittivity to the surroundings
ε as shown in figure 2. The surface is defined by the
aspect ratio β = β0 = R0/r0, and the focal ring radius

is a =
√
R2

0 − r20. The torus is excited by an arbitrary
external electric potential Ve, and we want to determine
the scattered potential Vs (where Vo = Ve + Vs), and
internal potential Vi. The boundary conditions are:

Vi = Vo, ε
∂Vi
∂β

=
∂Vo
∂β

, at β = β0. (23)
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FIG. 2. Above: Parameters defining the torus including
relative permittivity to the surroundings ε. Below:
relationships between toroidal geometry and the separable
toroidal coordinate system.

The fields are assumed to be expanded in terms of toroidal
harmonics as

Ve =

∞∑
n=0

∞∑
m=−∞

∑
v=c,s

amvn ψmvn , (24)

Vi =

∞∑
n=0

∞∑
m=−∞

∑
v=c,s

bmvn ψmvn , (25)

Vs =

∞∑
n=0

∞∑
m=−∞

∑
v=c,s

cmvn Ψmv
n . (26)

In this section we derive the matrix relations between the
incident, scattered, and internal expansion coefficients.
In general the boundary conditions are difficult to solve,
and may lead to an inhomogeneous three term recurrence
relation with initial conditions given by an infinite
continued fraction [6]. Instead we will use the boundary
integral equation formulation to find an analogue of the
T -matrix in toroidal coordinates. The boundary integral
equations are derived from Green’s second identity on the
torus surface S [12]:

ε− 1

4π

∫
S

∂Vi(r
′)

∂n′
1

|r− r′|
dS′ =

{
Ve(r)−Vi(r) r ∈ V
−Vs(r) r /∈ V.

(27)

where ∂/∂n′ is the derivative with respect to the surface
normal and dS is the infinitesimal surface element. In
the T -matrix approach, Green’s function 1/|r − r′| is
expanded as a series of separable harmonics; here we use

toroidal harmonics:

1

|r− r′|
=

1

2πa

∞∑
m=−∞

∞∑
n=0

∑
v=c,s

εn(−)m

×

{
ψmvn (r)Ψ−m,vn (r′) r ∈ V
Ψmv
n (r)ψ−m,vn (r′) r /∈ V

(28)

with εn =

{
1 n = 0

2 n > 0
.

We now insert this and the expansions of the potentials
into the integral equation(27), and equate the coefficients
of the toroidal harmonics. For example, equating the
coefficients of ψmcn (r) for r inside the torus leads to
(dropping the integration primes):

εn(−)m
ε− 1

8π2a

∞∑
k=0

∫
S

∂

∂n
{∆Qmk−1/2(β0)[bmck cos(kη)+

bmsk sin(kη)]}∆P−mn−1/2(β0) cos(nη)dS = amcn − bmcn .

(29)

The sum over m has been omitted because the torus is
rotationally symmetric and only terms with the same
m in the expansions of the Vi and G survive the
integration. This decouples the problem for each m.
Furthermore, the integration is over an even interval of
η so sin(kη) cos(nη) integrates to zero, decoupling the
sine and cosine expansion coefficients. The relationships
between the expansion coefficients can be formulated with
infinite dimensional matrices:

amv=Q̄mvbmv, cmv=P̄mvbmv, cmv=T̄mvamv,

for m ∈ Z, v = c, s, (30)

which are analogous to the P, Q, T -matrices in the T -
matrix method for scattering of waves. amv are 1 × N
(N being the numerical truncation order) column vectors
containing the elements amvn for fixed m, v. When
convenient the superscripts m and v will be omitted.
For a conducting torus, ε → ∞ and the T -matrix T̄ =
T̄∞ is diagonal:

[T̄∞]mvnk = −
Qmn−1/2(β0)

Pmn−1/2(β0)
δnk (31)

which is equivalent to well known solutions for conducting
tori, see for example [13].
For general ε, the integral equations 27 allow us to
calculate P̄ and Q̄, while T̄ is obtained from

T̄ = P̄Q̄−1. (32)

We now look for analytic expressions for the matrix
elements, we have

∂

∂n
=
−∆2 sinh ξ

2a

∂

∂β
, dS =

4a2 sinh ξ

∆4
dηdφ. (33)
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Then Q̄c becomes (using (29)):

Q̄mcnk =δnk −
ε− 1

2π
P−mn−1/2(β0)εn

×
[
∂Qmk−1/2(β0)

∂β0

∫ π

−π
cos(nη) cos(kη)dη

+
1

2
Qmk−1/2(β0)

∫ π

−π

cos(nη) cos(kη)

β0 − cos η
dη

]
. (34)

The first integral is simple:∫ π

−π
cos(nη) cos(kη)dη = 2π

δnk
εn

, (35)

and the second integral evaluates to∫ π

−π

cos(nη) cos(kη)

cosh ξ0 − cos η
dη = π

e−|n−k|ξ0 + e−(n+k)ξ0

sinh ξ0
. (36)

See appendix A for proof. For Q̄s the integrals are∫ π

−π
sin(nη) sin(kη)dη = πδnk(1− δn0), (37)

and∫ π

−π

sin(nη) sin(kη)

cosh ξ0 − cos η
dη = −π e

−|n−k|ξ0 − e−(n+k)ξ0
sinh ξ0

. (38)

The matrix elements are then

Q̄mcnk = δnk− (ε−1) sinh2ξ0P
−m
n−1/2(β0)

[
∂β0Q

m
n−1/2(β0)δnk

+
εn
2
Qmk−1/2(β0)

e−|n−k|ξ0 + e−(n+k)ξ0

2 sinh ξ0

]
, (39)

Q̄msnk = δnk− (ε−1) sinh2ξ0P
−m
n−1/2(β0)

[
∂β0

Qmn−1/2(β0)δnk

× (1− δn0)−Qmk−1/2(β0)
e−|n−k|ξ0 − e−(n+k)ξ0

2 sinh ξ0

]
. (40)

A similar derivation shows that P̄ is related to Q̄ by

P̄ = T̄∞(Q̄− I) (41)

for all m, v. Hence the T -matrix can also be expressed as

T̄ = T̄∞(I− Q̄−1). (42)

We suspect this form applies to the T -matrix for any
particle whos geometry is a coordinate of a coordinate
system with partially-separable solutions to Laplace’s
equation. in particular for bispherical coordinates
(currently a work in progress). T̄ may be calculated via
(32) or (42); both give the same numerical accuracy.
To avoid possible numerical instability in inverting
Q̄m=0,c, the matrix should be transposed, inverted then
transposed back.

The toroidal T -matrix has the following symmetry
property:

T̄mvkn =
εkΓ(k −m+ 1

2 )Γ(n+m+ 1
2 )

εnΓ(k +m+ 1
2 )Γ(n−m+ 1

2 )
T̄mvnk . (43)

This can be derived from the analysis in [10], which
proves the symmetry of the T -matrix from deriving two
equivalent boundary integral equations, and applying
Green’s theorem. The T -matrix here is not exactly
symmetric due to using unnormalised basis functions.

A. Comparison to recurrence approach

The usual way to solve electrostatic problems for the
dielectric torus is to apply the boundary conditions in
differential form (23) directly to the series expansions for
the potentials (24-26), to obtain a recurrence relation for
the coefficients. This has been done for a uniform electric
field [6], and point charge [14]. For arbitrary excitation,
we get

cmvn+1Λmn+1 − cmvn
(
2β0Λmn + (ε− 1)Pmn−1/2

)
+ cmvn−1Λmn−1

= (ε− 1)
[
− amvn+1Q

m′
n+1/2 + amvn (Qmn−1/2 + 2β0Q

m′
n−1/2)

− amvn−1Qm′n−3/2
]

(44)

where Λmn = εQm′n−1/2(β0)
Pmn−1/2(β0)

Qmn−1/2(β0)
− Pm′n−1/2(β0).

(45)

The difficulty in computing the coefficients using this
scheme is finding the initial values; these are expressed as
a series of products of continued fractions. Nevertheless,
we can compare this to the T -matrix approach.
Combining this recurrence with the definition of the T -
matrix, (30) , we find

∞∑
k=0

[
T̄mvn+1kΛmn+1 − T̄mvnk

(
2β0Λmn + (ε− 1)Pmn−1/2

)
+ T̄mvn−1kΛmn−1

]
amvk

= (ε− 1)
[
− amvn+1Q

m′
n+1/2 + amvn (Qmn−1/2 + 2β0Q

m′
n−1/2)

− amvn−1Qm′n−3/2
]

(46)

which must hold for any set of coefficients amvn . In
particular if we choose an excitation with amvn = δnp, a
recurrence for the elements of the toroidal T -matrix can
be found:

T̄mvn+1pΛ
m
n+1 − T̄mvnp

(
2β0Λmn + (ε− 1)Pmn−1/2

)
+ T̄mvn−1pΛ

m
n−1

= (ε− 1)
[
δnp(Q

m
p−1/2 + 2β0Q

m′
p−1/2)

− (δn+1p + δn−1p)Q
m′
p−1/2

]
. (47)

Which has been used as a check for the T -matrix.
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IV. Relationships between spherical and toroidal
harmonics

In order to express the T -matrix on a basis of spherical
harmonics, we need series relationships between spherical
and toroidal harmonics. We define the regular and
irregular solid spherical harmonics as:

Ŝmn =
( r
a

)n
Pmn (cos θ)eimφ, (48)

Smn =
(a
r

)n+1

Pmn (cos θ)eimφ. (49)

In the appendix we derive the following linear
relationships between spherical and toroidal harmonics:

Ψmc
n =

∞∑
k=m

cmnkP
−m
k (0)

{
(−)nŜmk r < a

Smk r > a
(50)

Ψms
n =

∞∑
k=m

smnkP
−m
k+1(0)

{
(−)nŜmk r < a

−Smk r > a
(51)

Ŝmn =
1

π


Pmn (0)

∞∑
k=0

εk
2
c−mkn ψ

mc
k n+m even

−Pmn+1(0)

∞∑
k=1

s−mkn ψ
ms
k n+m odd.

(52)

Smn =
1

π


Pmn (0)

∞∑
k=0

εk
2

(−)kc−mkn ψ
mc
k n+m even

Pmn+1(0)

∞∑
k=1

(−)ks−mkn ψ
ms
k n+m odd

(53)

cmnk, s
m
nk are rational numbers defined by recurrence:(

n−m+
1

2

)
cmn+1,k= (2k + 1)cmnk +

(
n+m− 1

2

)
cmn−1,k

(54)

and the same for smnk. The initial values are

cm0k =
(2m− 1)!!

2m−1
, cm1k = − (2m− 3)!!

2m−1
(2k + 1),

sm0k = 0, sm1k = − (2m− 3)!!

2m
(k +m+ 1).

(55)

(the double factorial can be extended to odd negative
integers via recurrence, or equivalently through the
gamma function). Note for m < 0:

c−mnk =
Γ(n−m+ 1

2 )

Γ(n+m+ 1
2 )
cmnk,

s−mnk =
Γ(n−m+ 1

2 )

Γ(n+m+ 1
2 )

k −m+ 1

k +m+ 1
smnk. (56)

The Legendre functions at 0 are, for m ∈ Z

Pmn (0) =

(−)(n−m)/2 (n+m− 1)!!

(n−m)!!
n+m even

0 n+m odd.

(57)

It is interesting that for m = 0, the series (50) starts
from k = 0 regardless of n; these toroidal harmonics all
have non-zero monopole moment.

Existence of expansions

Toroidal harmonics do not follow the same notion of
internal and external as do spherical or say spheroidal
harmonics. We have shown that the ring toroidal
harmonics Ψmv

m can be written as a series of either internal
or external spherical harmonics. This is due to the fact
that they are finite at both the origin and at r = ∞.
However the axial toroidal harmonics ψmvn are singular at
the origin and infinity, so cannot be expanded as a series
of spherical harmonics at all 1. Also, neither internal
and external spherical harmonics can be expressed as
a series of ring harmonics Ψmv

n . This is because a
series of ring harmonics can only converge outside some
toroidal boundary, and this boundary must enclose the
singularities of the function being expanded - the external
spherical harmonics Smn are singular at the origin, so
this toroidal boundary must cover the origin and thus
extend to all space, while the internal spherical harmonics
Ŝmn cannot be expanded for a similar reason - the torus
must extend to all space to cover the “singularity” at
r = ∞. Contrarily, both internal and external spherical
harmonics can be expanded with axial toroidal harmonics
ψmvn , because a series of axial toroidal harmonics will
converge inside some torus - for the internal spherical
harmonics, this toroidal boundary may extend up to
infinity since the functions are continuous in all space. For
external spherical harmonics the toroidal boundary may
extend to the origin. To check this we can determine the
boundary of convergence of expansions (52) and (53) from
the behaviour of the kth term in the series as k →∞. The
Legendre functions grow as [15] pg 191 ((58) is presented
for completeness):

lim
k→∞

Pmk−1/2(cosh ξ) =
kmekξ√

(2k − 1) sinh ξ
(58)

lim
k→∞

Qmk−1/2(cosh ξ) =

√
π(−k)me−kξ√
(2k − 1) sinh ξ

(59)

while c−mkn and s−mkn are bounded by the sequence ek+1 =
2n+1
k ek + ek−1 (with the same initial values), which itself

grows slower than k2n+1. So the series coefficients decay
geometrically as e−kξ, and ξ > 0 everywhere except the
z-axis and r = ∞, so the series converge everywhere,
although converge slowly near the z axis and also for large
r. In these cases the series terms grow significantly in
magnitude before converging, which sacrifices accuracy
because the series can only be accurate to the last digit
of the largest term in the series. This causes problems in
dealing with extremely tight tori.

1 They can neither be expressed as a series of spherical harmonics
of the second kind, rnQn(cos θ) or r−n−1Qn(cos θ) which are
also singular on the z axis. This is due to differences in parity
about z
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V. T -matrix on a spherical harmonic basis

We now apply the linear basis transformations between
toroidal and spherical harmonics to express the T -matrix
on a basis of spherical harmonics.
Because of the hole in the torus, the incident and
scattered fields may both be expandable on interior or
exterior spherical harmonics (see sec. V A). First we look
at the standard case where the external field is expanded
on regular spherical harmonics and the scattered field will
be expanded on irregular harmonics. The potentials are
now assumed to have the following expansions:

Ve =

∞∑
m=−∞

∞∑
n=|m|

Amn Ŝ
m, (60)

Vi =

∞∑
m=−∞

∞∑
n=|m|

Bmn Ŝ
m, (61)

Vs =

∞∑
m=−∞

∞∑
n=|m|

Cmn S
m
n , (62)

the sum over n can be written in matrix notation so that

Ve =
∑
m

AT Ŝ, (63)

Vi =
∑
m

BT Ŝ, B = Q−1A, (64)

Vs =
∑
m

CTS, C = TA. (65)

where for example A,Ŝ are 1×N (N being the numerical
truncation order) column vectors containing the elements

Amn or Ŝmn for all n ≥ 0, for a fixed m, and Q,T are
the N ×N Q-and T -matrices. The vectors and matrices
start their index from n = 0 despite that the spherical
harmonics are zero for n < m; this is to have the same
dimensionality as the toroidal-basis matrices which start
from n = 0.
We can then apply the linear relationships between
spherical and toroidal harmonics, expressed in matrix
notation:

Ŝ = Mc
rψ

c + Ms
rψ

s, (66)

Ψc = Nc
iS, Ψs = Ns

iS, (67)

where the elements of matrices M and N can be
determined from (50,51,52) to be

[M c
r ]mnk =

εk
2π
Pmn (0)c−mkn ,

[Ms
r ]mnk =

−1

π
Pmn+1(0)s−mkn ,

[N c
i ]mnk = P−mk (0)cmnk,

[Ns
i ]mnk = −P−mk+1(0)smnk. (68)

The subscripts r, i stand for regular or irregular (referring
to the type of spherical harmonic), and the superscripts

c, s refer to cosine or sine of η.
Applying (66) to Ve:

Ve =
∑
m

AT [Mc
rψ

c + Ms
rψ

s] (69)

and obtaining Vs via the toroidal-basis T -matrix solution
(30):

Vs =
∑
m

AT [Mc
r(T̄

c)TΨc + Ms
r(T̄

s)TΨs]. (70)

Then expanding the toroidal functions back into spherical
harmonics with (67):

Vs =
∑
m

AT [Mc
r(T̄

c)TNc
i + Ms

r(T̄
s)TNs

i ]S. (71)

Comparing this to (65), and noting that CT = ATTT ,
the T -matrix is found to be

T = (Nc
i )
T T̄c(Mc

r)
T + (Ns

i )
T T̄s(Ms

r)
T . (72)

Tmnk = 0 for n + k odd as expected for particles
with reflection symmetry about z. In the paper [9]
that analysed the electrostatic interaction between a
conducting torus and a partial spherical shell, they use
what is effectively the T -matrix for the conducting torus
(eq. (32)), expressed on a spherical basis as part of a
kernel of an integral equation.
Here we have not used normalised spherical basis
functions, and as a consequence T is not symmetric
for m > 0. The quasistatic limit of the conventional
symmetric electromagnetic T -matrix in [2] can be
obtained from:

lim
k1→0

T 22,m
nk =

−i(k1a)n+k+1

(2n− 1)!!(2k − 1)!!

×

√
(n+ 1)(k + 1)

nk(2n+ 1)(2k + 1)

(n+m)!(k −m)!

(n−m)!(k +m)!
Tmnk (73)

where k1 is the wavenumber in the surrounding medium.

A. Interior/exterior T -matrices

In the above derivation we assumed that the external
potential was created by a source that could be expanded
as a series of regular spherical harmonics, but because
the torus excludes the origin, the external field may come
from near the origin (for example a point source at the
origin) and irregular harmonics must be used instead.
Similarly, to compute the scattered field near the origin,
a regular basis must be used. The T -matrix derived above
applies only if Ve is expanded on Ŝmm and Vs is expanded
on Smn , and we denote this matrix T(r → i). Following
similar derivations, expressions for the other matrices can
be found, and all four variations of these T -matrices are

T(r → i) = (Nc
i )
T T̄c(Mc

r)
T + (Ns

i )
T T̄s(Ms

r)
T

T(r → r) = (Nc
r)
T T̄c(Mc

r)
T + (Ns

r)
T T̄s(Ms

r)
T

T(i→ r) = (Nc
r)
T T̄c(Mc

i )
T + (Ns

r)
T T̄s(Ms

i )
T

T(i→ i) = (Nc
i )
T T̄c(Mc

i )
T + (Ns

i )
T T̄s(Ms

i )
T (74)
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The transformation matrices not already defined in (68)
differ only in alternating signs, and are

[M c
i ]mnk =

εk(−)k

2π
Pmn (0)c−mkn ,

[Ms
i ]mnk =

(−)k

π
Pmn+1(0)s−mkn ,

[N c
r ]mnk = (−)nP−mk (0)cmnk,

[Ns
r ]mnk = (−)nP−mk+1(0)smnk. (75)

For example, T(r → r) applies if the source is outside the
torus’ circumscribing sphere, and if the scattered field is
to be evaluated near the hole.
For a conducting torus two pairs of these T -matrices in
(74) are identical. Mathematically it is straightforward
to show that T(i → r) = T(r → i). Physically this is
because the problem for a conductor does not distinguish
the scattered and external/incident fields - the problem
of determining the incident field from the scattered is the
same as determining the scattered from the incident. And
T(r → r) = T(i → i), which can be shown by applying
radial inversion about the sphere of radius a centred at
the origin. The geometry transforms as r → a2/r which
preserves the torus, while potentials transform as V →
(a/r)V (r → a2/r), so Ŝmn ↔ Smn . This argument only
applies to the conducting torus since permittivity also
transforms as ε→ (a2/r2)ε.
From the static T -matrix we can make deductions of
the applicability of the full-wave T -matrix. Since the
high order limit of the spherical wave functions tends
towards the solid spherical harmonics, the boundaries
of convergence of the full wave solution are identical to
that for the quasistatic solution. It is not possible to
compute the scattered field in a spherical annulus around
the mid section of the torus r ∼ a, due to the singularity
of the scattered field. Even in the case of a charged
conducting torus (constant external potential), it can
be shown that both the interior and exterior spherical
harmonic solutions diverge in the annulus a < r < R0.
This is analogous to spheroids with high aspect ratio -
there is a region near the spheroid where the fields cannot
be expressed using spherical basis functions.

VI. Derived physical quantities

We now use the T -matrix formulation to derive physical
quantities.

A. Capacitance and dipolar response of conducting
torus

The capacity C of a conducting torus held at a uniform
potential V0 can be deduced from the induced charge Q,
and is related to T 0

00:

C = 4πε0aT
0
00, (76)

T 0
00 = − 2

π

∞∑
q=0

εq
Qq−1/2(β0)

Pq−1/2(β0)
. (77)

FIG. 3. Relative resonant permittivities of tori of aspect ratio
β0 = R0/r0. The dashed (solid) curves correspond to the
resonances of T̄c (T̄s), which are symmetric (antisymmetric)
about the torus plane. Resonances are labelled with mode
number l in order of increasing ε. The antisymmetric s modes
start at l = 1. The top left plot shows the strong resonances
that only occur for T̄c. The other plots show the next three
strongest resonances for both v = c, s; these resonances tend
towards ε = −1, for all values of m, v, β0. The matrix size
used in calculations ranged from N = 250 for β0 = 1.01 to
N = 12 for β0 = 5.

And for the dipole polarizability α we consider a uniform
field along a cartesian axis, exciting dipole moment p in a
conducting torus. The polarizability is related to T 0

11, T
1
11:

pw = αwwEw, w = x, y, z, (78)

αzz = 4πε0a
3T 0

11, (79)

αxx = αyy = 4πε0a
3T 1

11, (80)

where

T 0
11 = −16

π

∞∑
q=1

q2
Qq−1/2(β0)

Pq−1/2(β0)
, (81)

T 1
11 =

1

π

∞∑
q=0

εq(4q
2 − 1)

Q1
q−1/2(β0)

P 1
q−1/2(β0)

. (82)

These results agree with [16].

VII. Plasmon resonances

From the explicit expressions for the toroidal matrices
in (40), we can calculate the values of ε that produce a
plasmon resonance, where the potential is infinite. These
are ε = εmvl for l = 0, 1, 2..., m = 0, 1, 2..., v = c, s, where
we have replaced the index n with l to highlight that the
modes do not excite toroidal harmonics of a single degree
n. The index l instead orders these in terms of magnitude.
These can be found from the condition det(Q̄) = 0, and
it can be shown that εmvl = 1− 1/λmvl where λmvl are the
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eigenvalues of Q̂mv where Q̄mv = I − (ε − 1)Q̂mv. Note

that Q̂ is independent of ε.
In figure 3 the conditions for resonances are plotted as a
function of aspect ratio β0, and agree with the continued
fraction approach [17], [18], [7]. Also, these results
confirm the discussion of [19] claiming that the m = 0
resonances exist, even though they were not obtained in
[18] or [17].

A. Optical cross sections

The cross sections are obtained from the elements of
the full-wave T -matrix [2]. In the small particle limit,

only the dominant terms T 22,m
11 for m = 0, 1 contribute.

For example we look at the orientation averaged cross-
sections:

lim
k1→0

〈Cext〉 = −2π

k21
Re{T 22,0

11 + 2T 22,1
11 }, (83)

lim
k1→0

〈Csca〉 =
2π

k21

(
|T 22,0

11 |2 + 2|T 22,1
11 |2

)
, (84)

with

lim
k1→0

T 22,0
11 = −i(k1a)3

32

3π

∞∑
n=0

∞∑
k=0

nk T̄m=0,s
nk , (85)

lim
k1→0

T 22,1
11 = i(k1a)3

2

3π

∞∑
n=0

∞∑
k=0

εk(4n2 − 1)T̄m=1,c
nk .

(86)

The extinction cross-section is plotted in figure 4 for
various nano-tori and appear consistent with results from
[20–22]. The dominant response comes from T 22,1

11 -
excitation along the xy- plane - this is the l = 0,m =
1 plasmon resonance in figure 3. We cannot see the
resonances for l ≥ 1 that occur for small negative epsilon
due to the considerable imaginary part of the dielectric
function of gold. On the other hand, T 22,0

11 is almost
negligible and has no resonance.

VIII. Thin ring limit

We can find analytic results for the matrix elements in
the thin ring limit. The limits of the Legendre functions
are [15]

Pm−1/2(β0)→
√

2/(πβ0)

Γ(−m+ 1
2 )

[
log(8β0)− 2

m∑
p=1

1

2n− 1

]
m ≥ 0 (87)

Pmn−1/2(β0)→ (n− 1)!(2β0)n−1/2
√
πΓ(n−m+ 1

2 )
, n > 0 (88)

Qmn−1/2(β0)→
(−)m

√
πΓ(n+m+ 1

2 )

n!(2β0)n+1/2
, (89)

FIG. 4. Extinction cross sections for a sphere and gold nano-
tori in water. The dielectric function of gold was taken from
eq. (E.2) of [23], and εwater = 1.77. The radiative correction
has been applied.

and we will need Qm−1/2(β0) to second order:

Qm−1/2(β0)→ π(−)m(2m− 1)!!

2m
√

2β0

[
1 +

4m2 + 3

16β2
0

]
. (90)

which can be obtained from its hypergeometric function
definition. (87) agrees with [13] as β → ∞ for m =
0, 1, 2, ..., but is more accurate. It can be shown that the
toroidal Q-matrices in this limit are lower triangular -
Q̄mcnk = Q̄msnk = 0 for n < k, with

Q̄
mcs
nk → δnk

ε+ 1

2
+ (1− δnk)(1± δk0)

× ε− 1

4

Γ(k +m+ 1
2 )

Γ(n+m+ 1
2 )

(n− 1)!

k!
n ≥ k, n 6= 0

Q̄mc00 → 1 +
ε− 1

β2
0

4m2 + 1

8

[
log(8β)− 2

|m|∑
p=1

1

2p− 1

]
Q̄ms00 = 1 ∀β0. (91)

In the goal of finding results for the T -matrix, we
introduce the R-matrix R = Q−1, which has the
following limit:

R̄
m,cs
nk →

2δnk
ε+ 1

+ (1− δnk)

(
1 + εδk0
1− δk0

)
ε− 1

(ε+ 1)n−k+1

×
Γ(k +m+ 1

2 )

Γ(n+m+ 1
2 )

n−1∏
p=k+1

(
ε− 1

2
+ p(ε+ 1)

)
,

n ≥ k, n 6= 0
(92)

This expression for R̄ is the inverse of Q̄ in (91), i.e.∑∞
p=0 Q̄npR̄pk = δnk, which can be proven with the help

of Mathematica. To obtain a result for the T -matrix entry
Tm00 , it is also necessary to include the second order for
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the element Rmc00 :

R̄mc00 → 1− ε− 1

ε+ 1

2m2(ε+1)+1

4β2
0

[
log(8β)− 2

|m|∑
p=1

1

2n− 1

]
R̄ms00 = 1 ∀β0. (93)

The second order for R̄mc00 is obtained by including the 2nd
order element Qmc01 (above the diagonal) and inverting the
matrix consisting of just the top left 2× 2 block of Q̄mc.
Then the T -matrix (94) is obtained through (42):

T̄mvnk →(−)m
πΓ(n+m+ 1

2 )Γ(n−m+ 1
2 )

n!(n− 1)!(2β0)2n
(R̄mvnk − δnk)

n ≥ k, n 6= 0

T̄mc00 →−
π2

8

ε− 1

ε+ 1

2m2(ε+ 1) + 1

β2
0

T̄msn0 = T̄ms0k = 0. (94)

The upper diagonal entries of T̄mv with n ≤ k can be
obtained from the symmetry property of the toroidal
T -matrix (43). In this limit there is just one resonance
at ε = −1, consistent with the trends seen in figure 3 for
large β0. All elements have been checked numerically
against the exact matrix elements in section III.

An important feature is that the top left 2×2 square
of T̄mc are all order β−20 , while all other entries decay
quickly as β0 → ∞, meaning that toroidal modes of
degrees 0 and 1 dominate both the excitation and
response. For T̄ms, there is only one dominant element,
Tms11 .

We can now evaluate the static dipolar polarizabilities
per unit volume, to O(β−20 ), using (85,86) with (94):

αring
zz → 2

ε− 1

ε+ 1
, (95)

αring
xx →

ε+ 3

2

ε− 1

ε+ 1
. (96)

These produce reasonable accuracy (. 10%) for aspect
ratios β0 & 5, but fail when |ε| >> β0. It is interesting
to compare these to the polarizabilities of a thin prolate
spheroid, or needle:

αneedle
zz → ε− 1, (97)

αneedle
xx → 2

ε− 1

ε+ 1
. (98)

αring
zz , αneedle

xx apply when the long dimension of the wire
is perpendicular to the applied electric field, and in fact
both are of the form α⊥ = 2(ε− 1)/(ε+ 1). On the other
hand αring

xx and αneedle
zz both diverge as ε→∞, where the

long dimension of the wire is aligned with the electric
field. αneedle

zz is of the form α|| = ε − 1. Intuitively,

for αring
xx the ring is half aligned perpendicular and half

parallel to the incident field, so that αring
xx = (α⊥+α||)/2.

Numerical tests show that for very large ε and very thin
rings, the approximate expressions for R̄m,c break down,
particularly for m = 0. For analysis of the thin ring limit
for conducting tori, see [13].

IX. Conclusion

The problem of a dielectric torus in an arbitrary
electrostatic field has been solved semi-analytically, and
expressions are found for the T -matrix on both a toroidal
and spherical harmonic basis. For this, new forms of
the series relationships between spherical and toroidal
harmonics were derived. Resonant permittivities are
calculated from the eigienvalues of a matrix and agree
with results from solving a continued fraction equation.
Fully analytic assymptotic expressions are given in the
conducting and thin ring limits. The T -matrix has
then been transformed on to a basis of solid spherical
harmonics so that the incident and reflected fields are also
expressed as sums of spherical harmonics. This matrix
has then been converted to a basis of spherical wave-
functions to coincide with the limit of the time-harmonic
T -matrix governing electric multipole interactions, T22.
These results prove the existence of the T -matrix for such
a complex shape, atleast in the small size limit. For any
bounded scatterer, the scattered field is expandable on a
basis of outgoing spherical wave functions that converge
outside the circumscribing sphere, and by linearity of the
Helmholtz equation, the expansion coefficients are related
to the coefficients of the incident field. Therefore the
T -matrix method should be applicable for any bounded
scatterer. It is also found that for a scatterer that
excludes the origin, similar T -matrices can be defined
depending on whether the source is near or far from
the torus hole and whether the scattered field is to be
evaluated near or far from the origin.
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A. Evaluation of the surface integral (36)

First we express the integral using the product formula:∫ π

−π

cos(nη) cos(kη)

cosh ξ − cos η
dη =

1

2

∫ π

−π

cos((n+ k)η)

cosh ξ − cos η
dη

+
1

2

∫ π

−π

cos((n− k)η)

cosh ξ − cos η
dη (A1)

We make the substitution z = eiη. Following the method
of [24] (lemma 8.3) with minor changes we can rewrite
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one of these integrals as∫ π

−π

cos(pη)

cosh ξ − cos η
dη

=

∫
|z|=1

2i
zp + z−p

sinh ξ

(
1

z − eξ
− 1

z − e−ξ

)
dz (A2)

There are two poles inside the integration path, a simple
pole at z = e−ξ and a pole of order p at z = 0. Applying
the residue theorem we find:∫ π

−π

cos(pη)

cosh ξ − cos η
dη =

2πe−pξ

sinh ξ
. (A3)

Then combine this with (A1) to obtain (36). The proof
of (38) is similar.

B. Derivations of the relationships between
spherical and toroidal harmonics

1. Expansions of toroidal harmonics

We can first obtain the expansions of toroidal harmonics
Ψmc

0 in terms of spherical harmonics Smn , Ŝ
m
n , by equating

two expansions of Green’s function. For points r1 and
r2 with r1 < r2 , the spherical harmonic expansion of
Green’s function is [25]

1

|r1 − r2|
=

∞∑
m=−∞

(−)m
∞∑

n=|m|

rn1
rn+1
2

Pmn (u1)P−mn (u2)

× cosm(φ1−φ2), (B1)

note P−mn = (−)m (n−m)!
(n+m)!P

m
n . In this document Pmk (u)

are defined without the phase (−)m.
Also we have the ’cylindrical’ expansion which converges
in all space[26]:

1

|r1 − r2|
=

1

π
√
ρ1ρ2

∞∑
m=−∞

Qm−1/2(χ12) cosm(φ1 − φ2),

χ12 =
ρ21 + ρ22 + (z1 − z2)2

2ρ1ρ2
(B2)

which converges for all r1 6= r2. Note Qn−m−1/2 =

Qnm−1/2.

Evaluating both (B1) and (B2) at ρ2 = a, z2 = 0 (⇒ u2 =

0, r2 = a, χ12 = χ = β/
√
β2 − 1), and equating the mth

term gives for r < a:√
a

ρ
Qm−1/2(χ) = π

∞∑
k=|m|

(−)mP−mk (0)
( r
a

)k
Pmk (u)

(B3)

Similarly the expansion for r > a can be found by setting
ρ1 = a, z1 = 0 in (B1) and (B2):√
a

ρ
Qm−1/2(χ) = π

∞∑
k=|m|

(−)mP−mk (0)
(a
r

)k+1

Pmk (u)

(B4)

Despite the appearance, the left hand side is actually
proportional to a toroidal harmonic Ψmc

0 . This can
be seen by application of the Whipple formulae, which
expressed in toroidal coordinates read as

∆Pmn−1/2(β) =
(−)n2/

√
π

Γ(n−m+ 1
2 )

√
a

ρ
Qnm−1/2(χ) (B5)

∆Qmn−1/2(β) =
(−)nπ

√
π

Γ(n−m+ 1
2 )

√
a

ρ
Pnm−1/2(χ). (B6)

And for toroidal harmonics of negative order:

P−mn−1/2 =
Γ(n−m+ 1

2 )

Γ(n+m+ 1
2 )
Pmn−1/2

Q−mn−1/2 =
Γ(n−m+ 1

2 )

Γ(n+m+ 1
2 )
Qmn−1/2 (B7)

We may then rewrite the expansions (B3,B4) as

∆Pm−1/2(β) =
2
√
π(−)m

Γ(−m+ 1/2)

∞∑
k=|m|

P−mk (0)

×


( r
a

)k
Pmk (u) r < a(a

r

)k+1

Pmk (u) r > a

(B8)

which is (50) for n = 0. (B8) has been generalized to the
Helmholtz equation (harmonic time dependence), as a
spherical wave function expansion of a circular ring with
current distribution expressed as a Fourier series [27].

The n = 1 toroidal harmonics Ψms
1 are the potential of

a ring of dipoles pointing in the z-direction. This can be
obtained by applying the operator ∂z which transforms
a charged ring into a double ring with dipole moment in
the z-direction. Explicitly:

a
∂

∂z
Ψmc

0 =

(
m− 1

2

)
Ψms

1 . (B9)

∂z is also a ladder operator for the spherical harmonics:

a∂zŜ
m
n = (n+m)Ŝmn−1 (B10)

a∂zS
m
n = −(n−m+ 1)Smn+1 (B11)

Applying a∂z to the toroidal harmonic expansion (B8),
and noting an identity for the derivative of the Legendre
functions, leads directly to the expansion for Ψms

1 .

Ψmc
1 is the potential of a ring of dipoles oriented outwards

from the origin. To generate this we apply r∂r which
preserves harmonicity as does ∂z, but turns a ring of
charge on the xy plane into a ring of dipoles pointing
inward, plus, as it turns out, a net charge on the ring, as
noted in section II A.
Applying r∂r to the n = 0 toroidal harmonic expansion
(B8) and rearranging gives the expansion for ψmc1 . We
can now derive the expansions for general n by repeated
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application of r∂r. For the spherical harmonics, we have

r
∂

∂r
Smn = −(n+ 1)Smn (B12)

r
∂

∂r
Ŝmn = nŜmn (B13)

And applying r∂r to Ψmv
n and rearranging, making use of

the product to sum formulae for trigonometric functions
and the recurrence relation for the Legendre functions
Pmn−1/2 for increasing n, we obtain:

2r
∂

∂r
Ψmv
n =

(
n+m− 1

2

)
Ψmv
n−1 −Ψmv

n

−
(
n−m+

1

2

)
Ψmv
n+1 (B14)

By assuming some expansion coefficients cmnk, smnk for
the expansions of the toroidal harmonics as in (50,51),
we can deduce that they satisfy the recurrence relation
(54), which is sufficient to calculate the coefficients for all
n, k,m without numerical problems.
The first few orders for m = 0 are:

c00,k = 2

c01,k = 2(2k + 1)

c02,k =
16

3
(k2 + k +

3

8
)

c03,k =
32

15
(2k + 1)(k2 + k +

15

16
)

c04,k =
64

105
(4k4 + 8k3 + 15k2 + 11k +

105

32
)

c05,k =
128

945
(2k + 1)(4k4 + 8k3 +

109

4
k2 +

93

4
k +

945

64
)

s00,k = 0

s01,k = 4(k + 1)

s02,k =
8

3
(k + 1)(2k + 1)

s03,k =
64

15
(k + 1)(k2 + k +

13

16
)

s04,k =
128

105
(k + 1)(2k + 1)(k2 + k +

76

32
)

s05,k =
256

945
(k + 1)(4k4 + 8k3 +

107

4
k2 +

91

4
k +

789

64
)

Although these coefficients may be computed for all
integer n, k,m, cmnk are only relevant for k+m even, while
smnk only for k +m odd.

2. Expansions of spherical harmonics

We start by applying a trigonometric identity to
rearrange the toroidal Green’s function expansion [25] as

1

|r1 − r2|
=

∆1∆2

2πa

∞∑
m=−∞

∞∑
k=−∞

Pmk−1/2(β1)Q−mk−1/2(β2)

× [cos(kη1) cos(kη2) + sin(kη1) sin(kη2)] cosm(φ1−φ2),

β1 < β2. (B15)

We substitute the spherical harmonic expansions for
point r2 (50,51),

1

|r1 − r2|
=

∆2

2πa

∞∑
m=−∞

∞∑
k=−∞

Q−mk−1/2(β2)(−)k

×
∞∑

n=|m|

[
cos(kη2)cmknP

−m
n (0) + sin(kη2)smknP

−m
n+1(0)

]
×
(r1
a

)n
Pmn (u1) cosm(φ1 − φ2), (B16)

and compare this to the spherical expansion of Green’s
function (B1), equating the coefficients of Pmn (u1) for all
n,m. This gives the expansion of spherical harmonics
Smn , Ŝ

m
n in terms of toroidal harmonics ψmvn , as presented

in (52,53).

Looking at the low orders, for n = 0, (52) is the expansion
of a constant onto the basis of toroidal harmonics, and
is known as Heine’s expansion. And n = 0 for (53)
is simply Green’s function expansion (B15) for r1 = 0.
Also, (52),(53) have been derived for n = 1, m = 0, 1,
for analysis of low frequency plane wave scattering [4],
and point dipole scattering [5]. Some low orders of the
coefficients are

c0k0 = 2, s0k1 = 8k, (B17)

c0k2 = 8k2 + 2, s0k3 =
16

9
(4k3 + 5k), (B18)

c1k1 = −4k2 + 1, c−1k1 = −4. (B19)

These can be proven by substitution into the recurrence
formula (54).

We were unable to find a simple closed form for cmnk or
smnk, or find any links with known sequences on the OEIS.
However, in [8] these coefficients were expressed as a sum
(they used coefficients hmnk which dealt with Ψmc

n and Ψms
n

simultaneously):

hmnk =
(−)k+m

ak
[cmnkP

−m
k (0) + ismnkP

−m
k+1(0)]

=
22mm!

(2m)!
+

n∑
p=0

(−)p23p+2m(p+m)!(n+ p− 1)!

(2p)!(2p+ 2m)!(n− p)!

×
[
nPm+p

k+p (0) + i(k −m+ 1)pPm+p−1
k+p (0)

]
(B20)

which was found to have a triangular recurrence over n
and k (by application of ∂z instead of r∂r):

2i(k −m)hmn,k−1 =

(
n−m+

1

2

)
hmn+1,k − 2nhmnk

+

(
n+m− 1

2

)
hmn−1,k. (B21)

hmnk was actually generalised to consider the centre of the
spherical coordinates being translated up the z-axis - this
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is obtained essentially by replacing the 0 in Pmk (0) with
some angle. These generalised coefficients could be used

to obtain the T -matrix for the offset torus, allowing an
analytic study of stacked tori, as considered in [21].
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