
Catalan tables and a recursion relation in
noncommutative quantum field theory

Jins de Jong, Alexander Hock, Raimar Wulkenhaar

Mathematisches Institut der Westfälischen Wilhelms-Universität∗

Einsteinstr. 62, D-48149 Münster, Germany

Abstract

Correlation functions in a dynamic quartic matrix model are ob-
tained from the two-point function through a recursion relation. This
paper gives the explicit solution of the recursion by mapping it bi-
jectively to a combinatorial structure named ‘Catalan table’. As by-
product of the counting of Catalan tables we prove a combinatorial
identity for the Catalan numbers. Catalan tables have a neat descrip-
tion as diagrams of non-crossing chords and threads.

Keywords: Catalan numbers, chord diagrams, noncommutative QFT

MSC 2010: 05A19, 05C30, 81R60

1 Introduction

The quartic matrix model is defined by the following measure on the space of
self-adjoint N ×N -matrices:

dµ(Φ) =
1

Z
exp

(
−N Tr

(
EΦ2 +

λ

4
Φ4
))

dΦ , (1)

where E is a positive N ×N -matrix, λ a scalar and dΦ the standard Lebesgue
measure. It was proved in [1] that the N th moment of the measure is in the

large-N limit dominated by contributions G
(N)
b0...bN−1

(called N -point functions)
which satisfy the following recursion in terms of functions of lower order:

G
(N)
b0...bN−1

= −λ
N−2

2∑
l=1

G
(2l)
b0...b2l−1

·G(N−2l)
b2l...bN−1

−G(2l)
b1...b2l

·G(N−2l)
b0b2l+1...bN−1

(Eb0 − Eb2l)(Eb1 − EbN−1
)

, (2)

∗jinsdejong@uni-muenster.de, a hock03@uni-muenster.de, raimar@math.uni-muenster.de

1

ar
X

iv
:1

90
4.

11
23

1v
1

 [
m

at
h-

ph
]

 2
5

A
pr

 2
01

9

with N even. The bj are matrix indices which label the moments, and {Ebj}
are the eigenvalues of the positive matrix E in (1). For the purpose of this
article it is safe to set λ = −1 and to ignore it in the remainder. When not
mentioned explicitly, G(N) = G

(N)
b0...bN−1

.

The decomposition of the (N = 2k+2)-point function G
(2k+2)
b0b1...b2k+1

according

to (2) yields 2kck terms of the form

±G(2)
bpbq
· · ·G(2)

brbs

(Ebt − Ebu) · · · (Ebv − Ebw)
(3)

with p < q, r < s, t < u, and v < w. However, some of them cancel. In this
paper we answer the so far open questions: Which terms survive the cancella-
tions? Can they be explicitly characterised, without going into the recursion?
The answer will be encoded in Catalan tables, which are Catalan tuples of Cata-
lan tuples. A Catalan tuple is one of > 200 mathematical structures counted
by the Catalan numbers ck. See e.g. the online Catalan addendum [2] to [3].
The Catalan tables could also be relevant for other combinatorial problems.

The same recursive equation (2) appears in the planar sector of the 2-matrix
model for mixed correlation functions [4]. The distinction between even b2i and
odd b2i+1 matrix indices in (2) corresponds to the different matrices of the 2-
matrix model.

The paper is organised as follows. In Sec. 2 the symmetries of G(N) are
discussed. Afterwards, in Secs. 3 and 4 we introduce Catalan tuples, Catalan
tables, certain trees and operations on them. Sec. 5 is the main part of this
paper. We prove in Theorem 5.1 that the Catalan tables precisely encode the
terms in the non-crossing expansion of G(N) with specified designated node.
The Catalan numbers ck = 1

k+1

(
2k
k

)
will count various parts of our results and

will be related directly to the numbers dk = 1
k+1

(
3k+1
k

)
, which count the number

of Catalan tables, see Theorem 5.3.
Both the Catalan tables and the G(N) can be depicted conveniently as chord

diagrams with threads, which will be introduced in Appendix A. Through these
diagrams it will become clear that the recursion relation (2) is related to well-
known combinatorial problems [5, 6].

2 Symmetries

The two-point function is symmetric, G
(2)
bpbq

= G
(2)
bqbp

. Because there is an even
number of antisymmetric factors in the denominator of each term, it follows
immediately that

G
(N)
b0b1...bN−1

= G
(N)
bN−1...b1b0

. (4)

2

Our aim is to prove cyclic invariance G
(N)
b0b1...bN−1

= G
(N)
b1...bN−1b0

. We proceed by
induction. Assuming that all n-point functions with n ≤ N − 2 are cyclically
invariant, it is not difficult to check that

G
(N)
b0b1...bN−1

=

N−2
2∑
l=1

G
(2l)
b0...b2l−1

·G(N−2l)
b2l...bN−1

−G(2l)
b1...b2l

·G(N−2l)
b0b2l+1...bN−1

(Eb0 − Eb2l)(Eb1 − EbN−1
)

= −
N−2

2∑
l=1

G
(N−2l)
b0bN−1...b2l+1

·G(2l)
b2l...b1

−G(N−2l)
bN−1...b2l

·G(2l)
b2l−1...b1b0

(Eb0 − Eb2l)(Eb1 − EbN−1
)

=

N−2
2∑

k=1

G
(2k)
b0bN−1...bN−2k+1

·G(N−2k)
bN−2k...b1

−G(2k)
bN−1...bN−2k

·G(N−2k)
b0bN−2k−1...b1

(Eb0 − EbN−2k
)(EbN−1

− Eb1)

= G
(N)
b0bN−1...b1

= G
(N)
b1...bN−1b0

. (5)

The transformation 2l = N − 2k and the symmetry (4) are applied here to
rewrite the sum. This shows cyclic invariance.

Although the N -point functions are invariant under a cyclic permutation
of its indices, the preferred expansion into surving terms (3) will depend on
the choice of a designated node b0, the root. Our preferred expansion will have
a clear combinatorial significance, but it cannot be unique because of

1

Ebp−Ebq
· 1

Ebq−Ebr
+

1

Ebr−Ebp
· 1

Ebp−Ebq
+

1

Ebq−Ebr
· 1

Ebr−Ebp
= 0 . (6)

These identities must be employed several times to establish cyclic invariance
of our preferred expansion.

3 Catalan tuples

Definition 3.1 (Catalan tuple). A Catalan tuple ẽ = (e0, . . . , ek) of length
k ∈ N0 is a tuple of integers ej ≥ 0 for j = 0, . . . , k, such that

k∑
j=0

ej = k and
l∑

j=0

ej > l for l = 0, . . . , k − 1 .

The set of Catalan tuples of length |ẽ| := k is denoted by Ck.

For ẽ = (e0, . . . , ek) it follows automatically that ek = 0 and e0 > 0, if k > 0.

Example 3.2. We have C0 = {(0)}, C1 = {(1, 0)} and C2 = {(2, 0, 0), (1, 1, 0)}.
All Catalan tuples of length 3 are given in the first column of Table 1.

Composition of Catalan tuples is possible. In fact, many of them can be
defined. For our purpose, two compositions are relevant.

3

Definition 3.3 (◦-composition). The composition ◦ : Ck×Cl → Ck+l+1 is given
by

(e0, . . . , ek) ◦ (f0, . . . , fm) := (e0 + 1, e1, . . . , ek−1, ek, f0, f1, . . . , fm) .

No information is lost in this composition, i.e. it is possible to uniquely retrieve
both terms. In particular, ◦ cannot be associative or commutative. Consider
for a Catalan tuple ẽ = (e0, . . . , ek) partial sums pl : Ck → {0, . . . , k} and maps
σa : Ck → {0, . . . , k} defined by

pl(ẽ) := −l +
l∑

j=0

ej , for l = 0, . . . , k − 1 , (7)

σa(ẽ) := min{l | pl(ẽ) = a} .

Then

ẽ = (e0, . . . , ek) = (e0 − 1, e1, . . . , eσ1(ẽ)) ◦ (eσ1(ẽ)+1, . . . , ek) . (8)

Because σ1(ẽ) exists for any ẽ ∈ Ck with k ≥ 1, every Catalan tuple has unique
◦-factors. Only these two Catalan tuples, composed by ◦, yield (e0, . . . , ek).
This implies that the number ck of Catalan tuples in Ck satisfies Segner’s
recurrence relation

ck =
k−1∑
m=0

cmck−1−m

together with c0 = 1, which is solved by the Catalan numbers ck = 1
k+1

(
2k
k

)
.

Example 3.4. We have (1, 0) = (0) ◦ (0), (2, 0, 0) = (1, 0) ◦ (0), (1, 1, 0) =
(0) ◦ (1, 0) and (3, 1, 0, 0, 2, 0, 0) = (2, 1, 0, 0) ◦ (2, 0, 0).

The other composition of Catalan tuples is a variant of the ◦-product.

Definition 3.5 (•-composition). The composition • : Ck×Cl → Ck+l+1 is given
by

(e0, . . . , ek) • (f0, . . . , fl) = (e0 + 1, f0, . . . , fl, e1, . . . , ek) .

As in the case of the composition ◦, Definition 3.3, no information is lost
in the product •. It is reverted by

ẽ = (e0, . . . , ek) = (e0 − 1, e1+σe0−1(ẽ), . . . , ek) • (e1, . . . , eσe0−1(ẽ)) . (9)

Because σe0−1(ẽ) exists for any ẽ ∈ Ck with k ≥ 1 (also for e0 = 1 where
σe0−1(ẽ) = k), every Catalan tuple has a unique pair of •-factors.

4

Example 3.6. We have (1, 0) = (0) • (0), (2, 0, 0) = (1, 0) • (0), (1, 1, 0) =
(0) • (1, 0) and (3, 1, 0, 0, 2, 0, 0) = (2, 0, 2, 0, 0) • (1, 0).

Out of these Catalan tuples we will construct three sorts of trees: pocket
tree, direct tree, opposite tree. They are all rooted planar trees. Pocket tree
and direct tree are the same, but their rôle will be different. Their drawing
algorithms are given by the next definitions.

Definition 3.7 (direct tree, pocket tree). For a Catalan tuple (e0, . . . , ek) ∈ Ck,
draw k + 1 vertices on a line. Starting at the root l = 0:

• connect this vertex to the last vertex (m < l) with an open half-edge;

• if el > 0: el half-edges must be attached to vertex l;

• move to the next vertex.

For direct trees, vertices will be called nodes and edges will be called threads; they
are oriented from left to right. For pocket trees, vertices are called pockets.

Definition 3.8 (opposite tree). For a Catalan tuple (e0, . . . , ek) ∈ Ck, draw
k + 1 vertices on a line. Starting at the root l = 0:

• if el > 0: el half-edges must be attached to vertex l;

• if el = 0:

- connect this vertex to the last vertex (m < l) with an open half-edge;

- if this vertex is now not connected to the last vertex (n ≤ m < l) with an
open half edge, repeat this until it is;

• move to the next vertex.

For opposite trees, vertices will be called nodes and edges will be called threads;
they are oriented from left to right.

Examples of these trees can be seen in Figure 1 and Table 1. It will be ex-
plained in Sec. 5 how these trees relate to the recursion relation (2). Especially
the pocket trees will often be depicted with a top-down orientation, instead of
a left-right one.

DT:

OT:

• • • • • • • • • • • • • • •� �� �� �� �� �� �� �' $� �� �� �� �' $' $

• • • • • • • • • • • • • • •� �� �
' $' $' $' $
' $� �� �� �' $� �� �� �

Figure 1: Direct tree (upper) and the opposite tree (lower) for the Catalan tu-
ple (6, 0, 0, 1, 3, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0) = (5, 0, 0, 1, 3, 0, 0, 0, 2, 2, 0, 0, 0, 0)◦(0) =
(5, 0, 1, 3, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0) • (0).

5

Catalan tuple pocket tree direct tree opposite tree

(3,0,0,0) •
• • •�� @@ • • • •
����'$

• • • •
����'$

(2,1,0,0)
•

• •
•

�� @@
• • • •
����� �

• • • •
����'$

(2,0,1,0)
•

• •
•

�� @@
• • • •
������

• • • •
����� �

(1,2,0,0) •
•

•

•�� @@ • • • •
������

• • • •
����'$

(1,1,1,0)

•
•
•
•

• • • •
������

• • • •

'$����
Table 1: The Catalan tuples and the corresponding trees for k = 3.

4 Catalan tables

A Catalan table is a ‘Catalan tuple of Catalan tuples’:

Definition 4.1 (Catalan table). A Catalan table of length k is a tuple Tk =
〈ẽ(0), ẽ(1), . . . , ẽ(k)〉 of Catalan tuples ẽ(j), such that (1 + |ẽ(0)|, |ẽ(1)|, . . . , |ẽ(k)|),
the length tuple of Tk, is itself a Catalan tuple of length k. We let Tk be the set
of all Catalan tables of length k. The constituent ẽ(j) in a Catalan table is called
the j-th pocket.

Of particular relevance will be the pocket tree of the Catalan tu-
ple (1 + |ẽ(0)|, |ẽ(1)|, . . . , |ẽ(k)|) associated with the Catalan table Tk =
〈ẽ(0), ẽ(1), . . . , ẽ(k)〉. We will show in Sec. 5 that a Catalan table contains all in-
formation about individual terms in the expansion (3) of the N -point function
G(N).

Example 4.2. We have

T1 = {〈(0), (0)〉} ,
T2 = {〈(1, 0), (0), (0)〉, 〈(0), (1, 0), (0)〉}
T3 = {〈(2, 0, 0), (0), (0), (0)〉, 〈(1, 1, 0), (0), (0), (0)〉, 〈(1, 0), (1, 0), (0), (0)〉,

〈(1, 0), (0), (1, 0), (0)〉, 〈(0), (2, 0, 0), (0), (0)〉, 〈(0), (1, 1, 0), (0), (0)〉,
〈(0), (1, 0), (1, 0), (0)〉} .

6

Later in Fig. 2 and 3 we give a diagrammatic representation of the Catalan
tables in T2 and T3, respectively.

Recall the composition ◦ from Definition 3.3 and the fact that any Catalan
tuple of length ≥ 1 has a unique pair of ◦-factors. We extend ◦ as follows to
Catalan tables:

Definition 4.3 (♦-operation). The operation ♦ : Tk × Tl → Tk+l is given by

〈ẽ(0), . . . , ẽ(k)〉♦〈f̃ (0), . . . , f̃ (l)〉 := 〈ẽ(0) ◦ f̃ (0), ẽ(1), . . . , ẽ(k), f̃ (1), . . . , f̃ (l)〉 .

Now suppose the Catalan table on the right-hand side is given. If the 0th

pocket has length ≥ 1, then it uniquely factors into ẽ(0) ◦ f̃ (0). Consider

k̂ = σ1+|f̃ (0)|
(
(1 + |ẽ(0) ◦ f̃ (0)|, |ẽ(1)|, . . . , |ẽ(k)|, |f̃ (1)|, . . . , |f̃ (l)|)

)
. (10)

By construction, k̃ = k so that ♦ can be uniquely reverted. Note also that
Catalan tables 〈(0), ẽ1, . . . , ẽk〉 do not have a ♦-decomposition.

Example 4.4. We have 〈(2, 0, 0), (0), (0), (0)〉 = 〈(1, 0), (0), (0)〉♦〈(0), (0)〉 and
〈(1, 1, 0), (0), (0), (0)〉 = 〈(0), (0)〉♦〈(1, 0), (0), (0)〉. Later in Ex. 4.10 and Fig-
ure 4 we consider the Catalan table 〈(2, 0, 0), (1, 1, 0), (0), (0), (0), (1, 0), (0)〉 =
〈(1, 0), (1, 1, 0), (0), (0), (0)〉♦〈(0), (1, 0), (0)〉. Another example will be given in
Ex. A.2.

The composition • of Catalan tuples is extended as follows to Catalan
tables:

Definition 4.5 (�-operation). The operation � : Tk × Tl → Tk+l is given by

〈ẽ(0), . . . , ẽ(k)〉�〈f̃ (0), . . . , f̃ (l)〉 := 〈ẽ(0), ẽ(1) • f̃ (0), f̃ (1), . . . , f̃ (l), ẽ(2), . . . , ẽ(k)〉 .

If the 1st pocket has length ≥ 1, it uniquely factors as ẽ(1)• f̃ (0), and we extract

l̂ := σ|ẽ(0)|+|ẽ(1)|+1

(
(1+|ẽ(0)|, |ẽ(1)•f̃ (0)|, |f̃ (1)|, . . . , |f̃ (l)|, |ẽ(2)|, . . . , |ẽ(k)|)

)
. (11)

By construction l̂ = l, and � is uniquely reverted. Note also that Catalan
tables 〈ẽ0, (0), ẽ2, . . . , ẽk〉 do not have a �-decomposition.

Example 4.6. We have 〈(0), (2, 0, 0), (0), (0)〉 = 〈(0), (1, 0), (0)〉�〈(0), (0)〉 and
〈(0), (1, 1, 0), (0), (0)〉 = 〈(0), (0)〉�〈(1, 0), (0), (0)〉. Later in Ex. 4.10 and Fig-
ure 4 we consider the Catalan table 〈(2, 0, 0), (1, 1, 0), (0), (0), (0), (1, 0), (0)〉 =
〈(2, 0, 0), (0), (0), (1, 0), (0)〉�〈(1, 0), (0), (0)〉. Another example will be given in
Ex. A.3.

Notice that there is only one condition that determines whether a Catalan
table T = 〈ẽ(0), . . . , ẽ(k)〉 has a ♦-reversion and/or a �-reversion. These are
|ẽ(0)| ≥ 1 and |ẽ(1)| ≥ 1 respectively. The following definition explains how to
obtain a term of G(N) out of a Catalan table.

7

Definition 4.7. To a Catalan table Tk+1 = 〈ẽ(0), ẽ(1), . . . , ẽ(k+1)〉 ∈ Tk+1 with
N/2 = k + 1 we associate a monomial [T]b0,...,bN−1

in Gblbm and 1
Ebl′
−Ebm′

as

follows:

1. Build the pocket tree for the length tuple (1 + |ẽ(0)|, |ẽ(1)|, . . . , |ẽ(k+1)|) ∈
Ck+1. It has k + 1 edges and every edge has two sides. Starting from the
root and turning counterclockwise, label the edge sides in consecutive order1

from b0 to bN−1. An edge labelled blbm encodes a factor Gblbm in G
(N)
b0,...,bN−1

.

2. Label the k + 2 vertices of the pocket tree by P0, . . . , Pk+1 in consecutive
order1 when turning counterclockwise around the tree. Let v(Pm) be the
valency of vertex Pm (number of edges attached to Pm) and Lm the distance
between Pm and the root P0 (number of edges in shortest path between Pm
and P0).

3. For every vertex Pm that is not a leaf, read off the 2v(Pm) side labels of edges
connected to Pm. Draw two rows of v(Pm) nodes each. Label the nodes
of the first row by the even edge side labels in natural order, i.e. starting at
the edge closest to the root and proceed in the counterclockwise direction.
Label the nodes of the other row by the odd edge side labels using the same
edge order. Take the m-th Catalan tuple ẽ(m) of the Catalan table. If Lm
is even, draw the

{
direct

opposite

}
tree encoded by ẽ(m) between the row of

{
even
odd

}
nodes. If Lm is odd, draw the

{
opposite
direct

}
tree encoded by ẽ(m) between the

row of
{
even
odd

}
nodes. Encode a thread from bl to bm in the direct or opposite

tree by a factor 1
Ebl
−Ebm

.

Remark 4.8. In proofs below we sometimes have to insist that one side label
of a pocket edge is a particular bk, whereas the label of the other side does not
matter. Is such a situation we will label the other side by bk. Note that if bk
is
{
even
odd

}
then bk is

{
odd
even

}
.

Remark 4.9. For the purpose of this article it is sufficient to mention that an
explicit construction for the level function Lm : Ck+1 → {0, . . . , k} exists.

Example 4.10. Later in Fig. 4 we give a diagrammatic representation of the
Catalan table 〈(2, 0, 0), (1, 1, 0), (0), (0), (0), (1, 0), (0)〉 ∈ T6. Its length tuple is
(3, 2, 0, 0, 0, 1, 0) ∈ C6, which defines the pocket tree:

xP0

x x xP1
P4

P5

x x xP2 P3 P6

�
�

�
�

�
�

��

b0

b1
b2

b5

@
@
@
@
@
@
@@

b8
b11

b9
b10

b6 b7

@
@
@
@

b3
b4

1This is the same order as in [3, Fig. 5.14].

8

The edge side labels encode

Gb0b5Gb1b2Gb3b4Gb6b7Gb8b11Gb9b10 .

For vertex P0, at even distance, we draw direct and opposite tree encoded in
ẽ(0) = (2, 0, 0):

• • •
b0 b6 b8

� �� �
• • •
b5 b7 b11

� �� �
For vertex P1, at odd distance, we draw opposite and direct tree encoded in
ẽ(1) = (1, 1, 0):

• • •
b0 b2 b4

� �� �
• • •
b5 b1 b3

� �� �
For vertex P5, at odd distance, we draw opposite and rooted tree encoded in
ẽ(5) = (1, 0):

• •
b8 b10

� �
• •
b11 b9

� �
They give rise to a factor

1

(Eb0 − Eb6)(Eb0 − Eb8)(Eb0 − Eb4)(Eb2 − Eb4)(Eb8 − Eb10)

× 1

(Eb5 − Eb7)(Eb5 − Eb11)(Eb5 − Eb1)(Eb1 − Eb3)(Eb11 − Eb9)
.

5 The recursion in Catalan tables

The following theorem shows that the Catalan tables correspond bijectively to
the terms in the expansion of the recursion relation (2).

Theorem 5.1. The recursion (2) of N-point functions in the quartic matrix
model (1) has the explicit solution

G
(N)
b0...bN−1

=
∑

T∈Tk+1

[T]b0...bN−1
,

where the sum is over all Catalan tables of length N/2 = k + 1 and the mono-
mials [T]b0...bN−1

are described in Definition 4.7.

Proof. We proceed by induction in N . For N = 2 the only term in the 2-point
function corresponds to the Catalan table 〈(0), (0)〉 ∈ T1. Its associated length
tuple (1, 0) encodes the pocket treev
vb0 b1

9

whose single edge corresponds to a factor Gb0b1 . The Catalan tuples of both
pockets have length 0, so that there is no denominator.

For any contribution to G(N) with N ≥ 4, encoded by a length-N/2 Catalan
table TN/2, it must be shown that TN/2 splits in one or two ways into smaller
Catalan tables whose corresponding monomials produce TN/2 via (2). There
are three cases to consider.

[I] Let Tk+1 = 〈(0), ẽ(1), . . . , ẽ(k+1)〉 ∈ Tk+1 with N/2 = k + 1.
It follows from Definition 4.5 that there are uniquely defined Catalan tables
Tl = 〈f̃ , ẽ(2), . . . , ẽ(l+1)〉 ∈ Tl and Tk−l+1 = 〈(0), ẽ, ẽ(l+2), . . . , ẽ(k+1)〉 ∈ Tk−l+1

with ẽ(1) = ẽ • f̃ and consequently Tk−l+1�Tl = Tk+1. The length l = l̂ is
obtained via (11). Recall that Tk+1 cannot be obtained by the ♦-composition
because the zeroth pocket has length |(0)| = 0. By induction, Tl encodes a

unique contribution [Tl]b1...b2l to G
(2l)
b1...b2l

, and Tk−l+1 encodes a unique contri-

bution [Tk−l+1]b0b2l+1...bN−1
to G

(N−2l)
b0b2l+1...bN−1

. We have to show that

−
[Tl]b1...b2l [Tk−l+1]b0b2l+1...bN−1

(Eb0 − Eb2l)(Eb1 − EbN−1
)

agrees with [Tk+1]b0...bN−1
encoded by Tk+1. A detail of the pocket tree of Tk+1

sketching P0, P1 and their attached edges isvP0������vP1

�
�
��

�
�
�
�

A
A
A
A
A

H
HHHH

b0
bN−1

b1

b1

bN−2

bN−2

b2l

b2l+1
b2l+1

b2l

(12)

Only the gluing of the direct and opposite tree encoded by ẽ = (e0, . . . , ep)
with the direct and opposite tree encoded by f̃ = (f0, . . . , fq) via a thread
from b0 to b2l and a thread from bN−1 to b1 remains to be shown; edge sides
encoding G(2) and all other pockets are automatic. A symbolic notation is used
now to sketch the trees. Horizontal dots are used to indicate a general direct
tree and horizontal dots with vertical dots above them indicate an opposite
tree. Unspecified threads are indicated by dotted half-edges. The four trees
mentioned above are depicted as

OTẽ =
• • . . .

... •
b0 b2l+1 bN−2

DTẽ = • • . . . •
bN−1 b2l+1 bN−2

DTf̃ =
• . . . •
b1 b2l

OTf̃ = • . . .
... •

b1 b2l

Here ẽ describes P1, at odd distance, so that even-labelled nodes are connected
by the opposite tree. Every edge in the pocket tree has two sides labelled br

10

and bs, where the convention of Remark 4.8 is used when the other side label
does not matter.

The first edge in the pocket tree has side labels b0bN−1 and descends from
the root pocket. The following edge is b2l+1b2l+1 where 2l+2 ≤ 2l + 1 ≤ N −2

is an even number. The final edge is bN−2bN−2 where 2l+ 1 ≤ N − 2 ≤ N − 3
is an odd number.

Next, f̃ encodes P0 in the pocket tree belonging to [Tl]b1...b2l . It lies at even

distance, but, because the labels at G
(2l)
b1...b2l

start with an odd one, the odd

nodes of f̃ are connected by the direct tree and the even nodes by the opposite
tree. Again, 2 ≤ 1 ≤ 2l denotes an even number and 1 ≤ 2l ≤ 2l − 1 an odd
number. When pasting f̃ into ẽ, the first edge remains b0bN−1, which descends
from the root. Then all edges from f̃ follow and, finally, the remaining edges
of ẽ. Thus, before taking the denominators into account, the four trees are
arranged as:

OTẽ∪OTf̃ : •
b0
• . . .

... • •
b1 b2l

• . . .
...

b2l+1

•
bN−2

DTẽ∪DTf̃ : •
bN−1

•
b1

. . . • • •
b2l+1b2l bN−2

(13)

The denominator 1
(Eb0

−Eb2l
)(EbN−1

−Eb1
)

(with rearranged sign) corresponds to a

thread between the nodes b0 and b2l and one between the nodes bN−1 and b1:

OTẽ•f̃ : •
b0
• . . .

... • •
b1 b2l

• . . .
...

b2l+1

•
bN−2

DTẽ•f̃ : •
bN−1

•
b1

. . . • • •
b2l+1b2l bN−2

(14)

The result is precisely described by ẽ • f̃ = (e0 + 1, f0, . . . , fq, e1, . . . , ep) with
Definitions 3.7 and 3.8. Indeed, the increased zeroth entry corresponds to
one additional half-thread attached to the first node bN−1 and one additional
half-thread to b0. For the direct tree the rules imply that the next node, b1,
is connected to bN−1. This is the new thread from the denominators. The
next operations are done within f̃ , labelled b1, . . . , b2l, without any change.
Arriving at its final node b2l all half-threads of f̃ are connected. The next
node, labelled b2l+1, connects to the previous open half-thread, which is the
very first node bN−1. These and all the following connections arise within ẽ

11

and remain unchanged. Similarly, in the opposite tree, we first open e0 + 1
half-threads at the zeroth node b0. Since f0 > 0, we subsequently open f0 half-
threads at the first node b1. The next operations remain unchanged, until we
arrive at the final node b2l of f̃ . It corresponds to fq = 0, so that we connect it
to all previous open half-threads, first within f̃ . However, because e0 + 1 > 0,
it is connected by an additional thread to b0 and encodes the denominator

1
Eb0
−Eb2l

. This consumes the additional half-thread attached to b0. All further

connections are the same as within ẽ. In conclusion, we obtain precisely the
Catalan table Tk+1 = 〈(0), ẽ(1) . . . ẽ(N/2)〉 we started with.

[II] Let Tk+1 = 〈ẽ(0), (0), ẽ(2), . . . , ẽ(k+1)〉 ∈ Tk+1 and N/2 = k + 1.
There are uniquely defined Catalan tables Tl = 〈ẽ, (0), ẽ(2), . . . , ẽ(l)〉 ∈ Tl
and Tk−l+1 = 〈f̃ , ẽ(l+1), . . . , ẽ(k+1)〉 ∈ Tk−l+1 with ẽ(0) = ẽ ◦ f̃ and, conse-
quently, Tl♦Tk−l+1 = Tk+1. The length l = k̂ is obtained via (10). Recall
that Tk+1 cannot be obtained by the �-composition, because the first entry
has length |(0)| = 0. By the induction hypothesis, Tl encodes a unique con-

tribution [Tl]b0...b2l−1
to G

(2l)
b0...b2l−1

and Tk−l+1 encodes a unique contribution

[Tk−l+1]b2l...bN−1
to G

(N−2l)
b2l...bN−1

. It remains to be shown that

[Tl]b0...b2l−1
[Tk−l+1]b2l...bN−1

(Eb0 − Eb2l)(Eb1 − EbN−1
)

agrees with [Tk+1]b0...bN−1
encoded by Tk+1. A detail of the pocket tree of Tk+1

sketching P0, P1 and their attached edges isvP0������ �
�
�
�

E
E
E
EE

Z
Z
Z
ZZ

hhhhhhhhvP1

b0
b1 b2

b2

b2l−1

b2l−1

b2l b2l

bN−1

bN−1

(15)

As in case [I] only the gluing of the direct and opposite tree encoded by ẽ =
(e0, . . . , ep) with the direct and opposite tree encoded by f̃ = (f0, . . . , fq) via
a thread from b0 to b2l and a thread from b1 to bN−1 must be demonstrated.
Everything else is automatic. These trees are

OTẽ =
• • . . .

... •
b1 b2 b2l−1

DTẽ = • • . . . •
b0 b2 b2l−1

DTf̃ = • . . . •
b2l bN−1

OTf̃ =
• . . .

... •
b2l bN−1

(16)

The notation is the same as in case [I]. The first pocket P1, described by the
Catalan tuple (0), is only 1-valent so that the first edge is labelled b0b1. The

12

direct trees in (16) are put next to each other and a thread between b0 and
b2l is drawn for the denominator 1

Eb0
−Eb2l

. Similarly, the opposite trees in (16)

are put next to each other and a thread between b1 and bN−1 is drawn for the
denominator 1

Eb1
−EbN−1

:

OTẽ◦f̃ =
• • . . .

... •
b1 b2 b2l−1

• . . .
... •

b2l bN−1

' $
DTẽ◦f̃ = • • . . . •

b0 b2 b2l−1

• . . . •
b2l bN−1' $

The result are precisely the direct and opposite trees of the composition ẽ◦ f̃ =
(e0 + 1, e1, . . . , ep, f0, . . . , fq). The increase e0 → e0 + 1 opens an additional
half-thread at b0 and an additional half-thread at b1. In the direct tree, this
new half-thread is not used by e1, . . . , ep. Only when we are moving to f0,
labelled b2l, we have to connect it with the last open half-thread, i.e. with b0.
After that the remaining operations are unchanged compared with f̃ . In the
opposite tree, the additional half-thread at b1 is not used in e1, . . . , ep. Because
f0, labelled b2l, opens enough half-threads, it is not consumed by f0, . . . , fq−1
either. Then, the last node fq, labelled bN−1, successively connects to all
nodes with open half-threads, including b1. In conclusion, we obtain precisely
the Catalan table Tk+1 = 〈ẽ(0), (0), ẽ(2) . . . ẽ(N/2)〉 we started with.

[III] Finally, we consider a general Tk+1 = 〈ẽ(0), ẽ(1), ẽ(2), . . . ẽ(k+1)〉 ∈ Tk+1 with
k + 1 = N/2, |ẽ(0)| ≥ 1 and |ẽ(1)| ≥ 1. There are uniquely defined Catalan
tables Tl = 〈ẽ, ẽ(1), ẽ(2), . . . , ẽ(l)〉 ∈ Tl and Tk−l+1 = 〈f̃ , ẽ(l+1), . . . , ẽ(k+1)〉 ∈
Tk−l+1 with ẽ(0) = ẽ ◦ f̃ and consequently Tl♦Tk−l+1 = Tk+1. Moreover,
uniquely defined Catalan tables Tl′ = 〈f̃ ′, ẽ(2), . . . , ẽ(l′+1)〉 ∈ Tl′ and Tk−l′+1 =
〈ẽ(0), ẽ′, ẽ(l′+2), . . . , ẽ(k+1)〉 ∈ Tk−l′+1 exist, such that ẽ(1) = ẽ′ • f̃ ′ and conse-
quently Tk−l′+1�Tl′ = Tk+1. We necessarily have l′ ≤ k − 1 and l ≥ 2, because
l′ = k corresponds to case [I] and l = 1 to case [II]. By the induction hypothesis,

these Catalan subtables encode unique contributions [Tl]b0...b2l−1
to G

(2l)
b0...b2l−1

,

[Tk−l+1]b2l...bN−1
to G

(N−2l)
b2l...bN−1

, [Tl′]b1...b2l′ to G
(2l′)
b1...b2l′

and [Tk−l′+1]b0b2l′+1...bN−1
to

G
(N−2l)
b0b2l′+1...bN−1

. We have to show that

[Tl]b0...b2l−1
[TN/2−l]b2l...bN−1

(Eb0 − Eb2l)(Eb1 − EbN−1
)
−

[Tl′]b1...b2l′ [TN/2−l′]b0b2l′+1...bN−1

(Eb0 − Eb2l′)(Eb1 − EbN−1
)

(17)

agrees with [Tk+1]b0...,bN−1
.

In the pocket tree of Tk+1 there must be an edge with side labels b0bh,
where 3 ≤ h ≤ N − 3 and h is odd. Here is a detail of the pocket tree of Tk+1

13

showing P0, P1: vP0���������
�

�
�
�

E
E
E
EE

Z
Z
Z
ZZ

hhhhhhhhvP1

�
�
��

�
�
�
�

A
A
A
A
A

H
HHHH

b0
bh

b1

b1

bh−1

bh−1

bh+1
bh+1

b2l−1

b2l−1

b2l b2l

bN−1

bN−1

b2l′
b2l′+1

b
2l′+1

b
2l′

(18)

The direct and opposite trees for ẽ, f̃ and ẽ(1) can be sketched as

OTẽ∪OTf̃ =
• • . . .

... •
bh bh+1 b2l−1

• . . .
... •

b2l bN−1

• . . . •
b2l bN−1

DTẽ∪DTf̃ = • • . . . •
b0 bh+1 b2l−1

OTẽ(1) =• • . . .
... •

b0 b1 bh−1

DTẽ(1) =
• • . . . •
bh b1 bh−1

(19)

The denominators 1
(Eb0

−Eb2l
)(Eb1

−EbN−1
)

in (17) add threads from b0 to b2l and

from b1 to bN−1. The first one connects the direct trees for ẽ ∪ f̃ to the
direct tree encoded by ẽ(0) = ẽ ◦ f̃ . The second thread does not give a valid
composition of the opposite trees for ẽ ∪ f̃ .

This is a problem. The solution is to split this contribution. Half of the con-
tribution is sacrificed to bring the other half in the desired form. Afterwards,
the same procedure is repeated for the other term in (17) with a minus-sign.
The remainders are the same and cancel each other, whereas the other halfs
add up to yield the sough monomial.

Returning to trees, we note that in the direct tree for the pocket ẽ(1) there
is always a thread from bh to b1, encoding a factor 1

Ebh
−Eb1

. With the factor
1

Eb1
−EbN−1

it fulfils

1

Ebh−Eb1
· 1

Eb1−EbN−1

=
1

Ebh−Eb1
· 1

Ebh−EbN−1

+
1

Ebh−EbN−1

· 1

Eb1−EbN−1

. (20)

The first term on the right-hand side of (20) leaves the direct tree DTẽ(1) as it
is and connects the parts of OTẽ∪OTf̃ via the thread from bh to bN−1 to form

OTẽ(0) , where ẽ(0) = ẽ ◦ f̃ .

[*] The final term in (20) also unites OTẽ∪OTf̃ and forms OTẽ(0) , but it re-

moves in DTẽ(1) the thread between bh and b1. It follows from ẽ(1) = ẽ′ • f̃ ′
that this tree falls apart into the subtrees DTẽ′ , containing bh, and DTf̃ ′ , which

contains b1. These are multiplied by a factor 1
Eb1
−EbN−1

. The second term in

(17) will remove them.

14

Indeed, direct and opposite trees for ẽ(0), ẽ′ and f̃ ′ can be sketched as

OTẽ(0) =
• • . . .

... •
bh bh+1 bN−1

DTẽ(0) = • • . . . •
b0 bh+1 bN−1

OTẽ′∪OTf̃ ′ =• • . . .
... • • •. . .

...
b0 b1 b2l′ b

2l′+1
bh−1

' $

DTẽ′∪DTf̃ ′ =• • . . . • • •
bh b1 b2l b2l′+1 bh−1

' $ (21)

The direct tree DTẽ(0) remains intact and the thread from b0 to b2l′ encoded in
the factor 1

(Eb0
−Eb2l′

)
in (17) connects the opposite trees for ẽ′ ∪ f̃ ′ to form the

opposite tree for ẽ(1) = ẽ′•f̃ ′. The direct trees DTẽ′∪DTf̃ ′ remain disconnected

and are multiplied by 1
(Eb1

−EbN−1
)

from (17). With the minus-sign from (17)

they cancel the terms described in [*]. The other trees combined yield precisely
the direct and opposite trees for both ẽ(0) and ẽ(1), so that the single Catalan
table we started with is retrieved.

This completes the proof. Bijectivity between Catalan tables and con-
tributing terms to (N ′<N)-point functions is essential: Assuming the above
construction [I]–[III] missed Catalan subtables Tl, TN/2−l, then their compo-
sition Tl♦TN/2−l would be a new Catalan table of length N/2. However, all
Catalan tables of length N/2 are considered. Similarly for Tl′�TN/2−l′ .

This theorem shows that there is a one-to-one correspondence between
Catalan tables and the diagrams/terms in G

(N)
b0...,bN−1

with designated node b0.

The choice of designated node does not influence G(N), but it does alter its
expansion.

Finally, we determine the number dk of Catalan tables in Tk+1, i.e. the
number of different contributions to the (2k + 2)-point function G(2k+2). For
that we recall:

Proposition 5.2 (Lagrange inversion formula). Let φ(w) be analytic at w = 0
with φ(0) 6= 0 and f(w) := w

φ(w)
. Then the inverse g(z) of f(w), such that

z = f(g(z)), is analytic at z = 0 is given by

g(z) =
∞∑
n=1

zn

n!

dn−1

dwn−1

∣∣∣∣
w=0

φ(w)n .

The Lagrange inversion formula is used to prove:

Theorem 5.3. The number of Catalan tables of length k+ 1 is given by dk =
1

k+1

(
3k+1
k

)
and satisfies

dk =
∑

(e0,...,ek+1)∈Ck+1

ce0−1ce1 · · · cekcek+1
, (22)

where ck = 1
k+1

(
2k
k

)
is the k-th Catalan number.

15

Proof. Let dn−1 be the number of Catalan tables of length n. To count dk+1

we proceed once more by induction. For k ≥ 1, the ♦-product and �-product
generate

k∑
l=1

2dl−1dk−l

Catalan tables, where some tables are generated twice. These must be sub-
tracted. Only tables with ẽ(1) = (0) or ẽ(0) = (0) are not generated twice. Let
there be fk Catalan tables of length k + 1 with ẽ(1) = (0). Any of them arises
by ♦-product of smaller Catalan tables, where the left factor must already have
ẽ(1) = (0). Therefore, the recursion is

fk =
k∑
l=1

fl−1dk−l . (23)

The same recursion arises for the number of Catalan tables of length k + 1
with ẽ(0) = (0) via the �-product. Also the starting points are the same, so
there are equally many of both.

We conclude that the total number of Catalan tables satisfies

dk =
(k∑
l=1

2dl−1dk−l

)
− 1

2

(
−2fk+

k∑
l=1

2dl−1dk−l

)
= fk+

k∑
l=1

dl−1dk−l . (24)

The starting points f0 = 1 and d0 = 1 yield

fk =
1

2k + 1

(
3k

k

)
and dk =

1

k + 1

(
3k + 1

k

)
. (25)

To see this, observe that the recursion relations (23) and (24) give rise to
generating functions

H(x) =
∞∑
n=0

fnx
n+1 and G(x) =

∞∑
n=0

dnx
n+1 (26)

satisfying

H(x) = H(x) ·G(x) + x and G(x) = G(x) ·G(x) +H(x)

with G(0) = 0 and H(0) = 0. Multiplying the first equation by G(x) and the
second one by H(x) gives x ·G(x) = H2(x), which disentangles the equations
into

1

x
H3(x)−H(x) + x = 0, G(x)(1−G(x))2 = x , (27)

16

The coefficients (25) can now be obtained by the Lagrange inversion formula.
The second equation of (27) results by taking f(w) = w(1 − w)2 in Proposi-
tion 5.2, i.e. φ(w) = 1

(1−w)2 . The coefficients follow then by

G(x) =
∞∑
n=1

xn

n!

dn−1

dwn−1

∣∣∣∣
w=0

1

(1− w)2n

=
∞∑
n=1

xn

n!
(2n)(2n+ 1)...(2n+ n− 2)

=
∞∑
n=1

(3n− 2)!

n!(2n− 1)!
xn =

∞∑
n=0

(3n+ 1)!

(n+ 1)!(2n+ 1)!
xn+1 =

∞∑
n=0

dnx
n+1.

For the first equation of (27), set H(x)√
x

= w, z =
√
x and φ(w) = 1

1−w2 in
Proposition 5.2. Then

H(x) =
√
x
∞∑
n=1

√
x
n

n!

dn−1

dwn−1

∣∣∣∣
w=0

1

(1− w2)n

=
∞∑
n=1

√
x
n+1

n!

dn−1

dwn−1

∣∣∣∣
w=0

∞∑
k=0

(
n+ k − 1

k

)
w2k

=
∞∑
k=0

xk+1

(2k + 1)!

(
3k

k

)
· (2k)! .

The other way of generating all Catalan tables is the constructive way.
Sum over all pocket trees and multiply the number of Catalan tuples for every
pocket must yield the same number. This proves (22).

Remark 5.4. The second equation (27) for G(x) is a higher-order variant of the
equation C(x)(1−C(x)) = x for the generating function C(x) =

∑∞
n=0 cnx

n+1

of Catalan numbers.

Remark 5.5. The cubic equation (27) in H which determines the fk can also
be solved by the trigonometric identity

sin3(ϕ)− 3

4
sin(ϕ) +

1

4
sin(3ϕ) = 0 ,

so that

H(x) =
2
√
x√
3

sin
(1

3
arcsin

(3
√

3x

2

))
, G(x) =

4

3
sin2

(1

3
arcsin

(3
√

3x

2

))
.

For convenience, the obtained numbers are listed in Table 2. More infor-
mation about the integer sequences dk (A006013) and fk (A001764) can be
found via [7] and [8], respectively.

17

k N ck ck+1 dk fk
0 2 1 1 1 1
1 4 1 2 2 1
2 6 2 5 7 3
3 8 5 14 30 12
4 10 14 42 143 55
5 12 42 132 728 273
6 14 132 429 3876 1428
7 16 429 1430 21318 7752
8 18 1430 4862 120175 43263

Table 2: The obtained numbers dk counting the first few correlation functions
G(2k+2). The shifted Catalan number ck+1 counts the number of pocket trees
in G(2k+2), i.e. the number of different chord structures (see Appendix A).

A Chord diagrams with threads

For uncovering the combinatorial structure of (2) it was extremely helpful for
us to have a graphical presentation as diagrams of chords and threads. To
every term of the expansion (3) of an N -point function we associate a diagram
as follows:

Definition A.1 (diagrammatic presentation). Draw N nodes on a circle, label
them from b0 to bN−1. Draw a chord (below in green) between br, bs for every
factor Gbrbs in (3) and a thread (below in orange for t, u even, in blue for t, u odd)
between bt, bu for every factor 1

Ebt
−Ebu

. The convention t < u is chosen so that

the diagrams come with a sign.

It was already known in [1] that the chords do not cross each other (using
cyclic invariance (5)) and the threads do not cross the chords (using (6)). But
the combinatorial structure was not understood in [1] and no algorithm for a
canonical set of chord diagrams could be given. The present paper fills this
gap.

TheN/2 = k+1 chords in such a diagram divide the circle into k+2 pockets.
The pocket which contain the arc segment between the designated nodes b0
and bN−1 is by definition the root pocket P0. Moving in the counter-clockwise
direction, every time a new pocket is entered it is given the next number as
index, as in Definition 4.7. The tree of these k+ 2 pockets, connecting vertices
if the pockets border each other, is the pocket tree. A pocket is called even
(resp. odd) if its index is even (resp. odd).

Inside every even pocket, the orange threads (between even nodes) form
the direct tree, the blue threads (between odd nodes) form the opposite tree.
Inside every odd pocket, the orange threads (between even nodes) form the
opposite tree, the blue threads (between odd nodes) form the direct tree.

18

The sign τ of the diagram is given by

τ(T) = (−1)
∑k+1

j=1 e
(j)
0 , (28)

where e
(j)
0 is the first entry of the Catalan tuple corresponding to a pocket Pj.

Indeed, for every pocket that is not a leaf or the root pocket, the chain of odd
nodes starts with the highest index, which implies that every thread emanating
from this node contributes a factor (−1) to the monomial (3) compared with
the lexicographic order chosen there. In words: count for all pockets other than
the root pocket the total number K of threads which go from the smallest node
into the pocket. The sign is even (odd) if K is even (odd).

Figure 2 and 3 show Catalan tables and chord diagrams of the 4-point
function and 6-point function, respectively.

+ -

〈(1, 0), (0), (0)〉 〈(0), (1, 0), (0)〉

Figure 2: The two chord diagrams and Catalan tables of G
(4)
b0b1b2b3

.

+ + - -

〈(2, 0, 0), (0), (0), (0)〉 〈(1, 1, 0), (0), (0), (0)〉 〈(1, 0), (1, 0), (0), (0)〉 〈(1, 0), (0), (1, 0), (0)〉

+ - +

〈(0), (2, 0, 0), (0), (0)〉 〈(0), (1, 1, 0), (0), (0)〉 〈(0), (1, 0), (1, 0), (0)〉

Figure 3: The seven chord diagrams and Catalan tables of G
(6)
b0b1b2b3b4b5

.

Now that a visual way to study the recursion relation (2) has been intro-
duced, it is much easier to demonstrate the concepts introduced in Secs. 3 and
4.

19

+

〈(2, 0, 0), (1, 1, 0), (0), (0), (0), (1, 0), (0)〉

Figure 4: A chord diagram and Catalan table contributing toG(12). Pocket tree
and all non-trivial direct and opposite trees have been given in Example 4.10.

Example A.2. The operation ♦ is best demonstrated by an example:

〈(1, 0), (0), (0)〉♦〈(0), (1, 0), (0)〉 = 〈(2, 0, 0), (0), (0), (1, 0), (0)〉 .

The corresponding chord diagrams are
b0

b1

b2

b3

+

♦

b4

b5

b6

b7

-

=

b0

b2

b4

b6

b1

b3 b5

b7-

〈(1, 0), (0), (0)〉 〈(0), (1, 0), (0)〉 〈(2, 0, 0), (0), (0), (1, 0), (0)〉

The diagrammatic recipe is to cut both diagrams on the right side of the des-
ignated node and paste the second into the first, where the counter-clockwise
order of the nodes must be preserved. Then both designated nodes are con-
nected by an orange thread and nodes b1 and bN−1 by a blue thread.

To ♦-decompose the Catalan table 〈(2, 0, 0), (0), (0), (1, 0), (0)〉, we first ◦-
factorise the zeroth pocket (2, 0, 0) via (8). Here σ1

(
(2, 0, 0)

)
= 1 and, hence,

(2, 0, 0) = (1, 0) ◦ (0). Next, we evaluate the number k̂ defined in (10). We
have 1 + |f̃ (0)| = 1 and σ1

(
(3, 0, 0, 1, 0)

)
= 2. Consequently, we get from

Definition 4.3

〈(2, 0, 0), (0), (0), (1, 0), (0)〉 = 〈(1, 0), (0), (0)〉♦〈(0), (1, 0), (0)〉 .

Example A.3. We employ the same example (with diagrams switched) to
demonstrate the operation � . In terms of Catalan tables this becomes

〈(0), (1, 0), (0)〉�〈(1, 0), (0), (0)〉 = 〈(0), (2, 1, 0, 0), (0), (0), (0)〉 ,

20

for which the chord diagrams are

b0

b5

b6

b7

-

�

b1

b2

b3

b4

+

=

b0

b2

b4

b6

b1

b3 b5

b7+

〈(0), (1, 0), (0)〉 〈(1, 0), (0), (0)〉 〈(0), (2, 1, 0, 0), (0), (0), (0)〉

The diagrammatic recipe is to cut the first diagram on the left side of the
designated node and the second diagram on the right side. Then paste the
second into the first, where the counter-clockwise order of the nodes must be
preserved. The threads in the second diagram switch colours doing so. Then,
the designated node of the first diagram is connected to the last node of the
second by an orange thread. And the designated node of the second diagram
is connected to the last node of the first diagram by a blue thread.

Conversely, to �-decompose the Catalan table 〈(0), (2, 1, 0, 0), (0), (0), (0)〉,
we first •-factorise the first pocket e(1) = (2, 1, 0, 0) via (9). We have e

(1)
0 −1 =

1, hence consider σ1
(
(2, 1, 0, 0)

)
= 2 and conclude (2, 1, 0, 0) = (1, 0) • (1, 0).

Next, we evaluate the number l̂ in (11). With |ẽ(0)|+ |ẽ(1)|+ 1 = 0 + 1 + 1 = 2
the decomposition follows from σ2

(
(1, 3, 0, 0, 0)

)
= 2 and yields

〈(0), (2, 1, 0, 0), (0), (0), (0)〉 = 〈(0), (1, 0), (0)〉�〈(1, 0), (0), (0)〉 .

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft via SFB
878 and the Cluster of Excellence2 “Mathematics Münster”.

References

[1] H. Grosse and R. Wulkenhaar. Self-dual noncommutative φ4-theory in
four dimensions is a non-perturbatively solvable and non-trivial quan-
tum field theory. Commun. Math. Phys., 329:1069–1130, 2014, 1205.0465.
doi:10.1007/s00220-014-1906-3.

[2] R. P. Stanley. Catalan addendum, 2013. URL http://www-math.mit.

edu/~rstan/ec/catadd.pdf.

2“Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) im Rahmen der
Exzellenzstrategie des Bundes und der Länder EXC 2044–390685587, Mathematik Münster:
Dynamik–Geometrie–Struktur”

21

http://arxiv.org/abs/1205.0465
http://dx.doi.org/10.1007/s00220-014-1906-3
http://www-math.mit.edu/~rstan/ec/catadd.pdf
http://www-math.mit.edu/~rstan/ec/catadd.pdf

[3] R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cam-
bridge Studies in Advanced Mathematics. Cambridge University Press,
Cambridge, 1999. doi:10.1017/CBO9780511609589.

[4] B. Eynard and N. Orantin. Mixed correlation functions in the 2-matrix
model, and the Bethe ansatz. JHEP, 08:028, 2005, hep-th/0504029.
doi:10.1088/1126-6708/2005/08/028.

[5] E. Deutsch and M. Noy. Statistics on non-crossing trees. Discrete Math.,
254(1-3):75–87, 2002. doi:10.1016/S0012-365X(01)00366-1.

[6] M. Noy. Enumeration of noncrossing trees on a circle. In Proceed-
ings of the 7th Conference on Formal Power Series and Algebraic Com-
binatorics (Noisy-le-Grand, 1995), volume 180, pages 301–313, 1998.
doi:10.1016/S0012-365X(97)00121-0.

[7] A006013. The on-line encyclopedia of integer sequences. URL https:

//oeis.org/A006013.

[8] A001764. The on-line encyclopedia of integer sequences. URL https:

//oeis.org/A001764.

22

http://dx.doi.org/10.1017/CBO9780511609589
http://arxiv.org/abs/hep-th/0504029
http://dx.doi.org/10.1088/1126-6708/2005/08/028
http://dx.doi.org/10.1016/S0012-365X(01)00366-1
http://dx.doi.org/10.1016/S0012-365X(97)00121-0
https://oeis.org/A006013
https://oeis.org/A006013
https://oeis.org/A001764
https://oeis.org/A001764

	1 Introduction
	2 Symmetries
	3 Catalan tuples
	4 Catalan tables
	5 The recursion in Catalan tables
	A Chord diagrams with threads

