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THE ALTERNATING RUN POLYNOMIALS OF PERMUTATIONS

SHI-MEI MA, JUN MA, AND YEONG-NAN YEH

ABSTRACT. In this paper, we first consider a generalization of the David-Barton identity which
relate the alternating run polynomials to Eulerian polynomials. By using context-free grammars,
we then present a combinatorial interpretation of a family of g-alternating run polynomials.
Furthermore, we introduce the definition of semi-y-positive polynomial and we show the semi-
~-positivity of the alternating run polynomials of dual Stirling permutations. A connection
between the up-down run polynomials of permutations and the alternating run polynomials of

dual Stirling permutations is established.
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1. INTRODUCTION

The enumeration of permutations by number of alternating runs was first studied by
André [I]. Knuth [19] Section 5.1.3] has discussed this topic in connection to sorting and
searching. Over the past few decades, the study of alternating runs of permutations was initiated
by David and Barton [12] 157-162].

Let &,, denote the symmetric group of all permutations of [n] = {1,2,...,n}. Let 7 =
m(1)w(2)---m(n) € &,. An alternating run of 7 is a maximal consecutive subsequence that is
increasing or decreasing (see [I 22]). An up-down run of  is an alternating run of 7 endowed
with a 0 in the front (see [13],22]). Let altrun (7) (resp. udrun (7)) be the number of alternating
runs (resp. up-down runs) of 7. For example, if 7 = 324156, then altrun (7) = 4, udrun (7) = 5.
We define

R, = #{m € &, : altrun (7) = k}
Thk = #{m € &, : udrun (7)) = k}.

It is well known that these numbers satisfy the following recurrence relations
Rn—l—l,k = kRn,k + 2Rn,k—1 + (n —k+ 1)Rn,k—2a

Tn—l—l,k = an,k + Tn,k—l + (Tl —k+ 2)Tn,k—27 (1)

with the initial conditions R1p = 1 and Ry = 0 for K > 1, Tyo = 1 and T, = 0 for k > 1
(see [1, 13]). The alternating run polynomial and up-down run polynomial are respectively
defined by R, (z) = 728 Ry pa® and T, (x) = S7_o Tnra®.

A descentof m € &,,is an index ¢ € [n—1] such that 7(i) > 7(i+1). Denote by des () the num-
ber of descents of m. The classical Fulerian polynomial is defined by A, (x) = gdes (M) +1,
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By solving a differential equation, David and Barton [12] 157-162] established the identity:

Ro(z) = <1+x>n_1(1+w)"+1An <1_—w> @)

2 14+w
for n > 2, where w = w/ﬁ—i. Using (2)), Béna proved that the polynomial R, (z) has only
real zeros (see [4]). Moreover, one can prove that R, (z) has the zero x = —1 with the mul-

tiplicity |5 | — 1 by using (), which can also be obtained based on the recurrence relation of
R, (z) (see [25]). Motivated by (2)), Zhuang [31] proved several identities expressing polynomials
counting permutations by various descent statistics in terms of Eulerian polynomials.

Let us now recall another combinatorial interpretation of 7, (x). An alternating subsequence

of 7 is a subsequence 7(i1) - - - 7(ix) satisfying
m(i1) > w(iz) < w(ig) > -+ mw(ix),

where 17 < iy < .-+ < i (see [28]). Denote by as(w) the number of terms of the longest

alternating subsequence of 7. By definition, we see that as (7) = udrun (7). Thus
Tn(x) = Z 22 (™),
WEGn

There has been much recent work related to the numbers R, ; and T,, ;. In [3], Béna and
Ehrenborg proved that Ri,k > Ry, p—1Ry, k+1. Subsequently, Béna [4 Section 1.3.2] noted that

1
Tn(2) = 5(1 +2)Ru(z) 3)
for n > 2. Set p = v/1 — 22. Stanley [28, Theorem 2.3] showed that
1+ p+2xef* + (1 — p)e?r?
1+p—224(1—p—a?)e?r=

T(z,2) =Y Tn(x);—T =(1—x) (4)
n=0

By using @) and (@), Stanley [28] obtained explicit formulas of T}, and R, ;. Canfield and
Wilf [6] presented an asymptotic formula for R, ;. In [2I], another explicit formula of R, j
was obtained by combining the derivative polynomials of tangent function and the following

generating function obtained by Carlitz [7]:

2
iﬁzn:R xn_k_l—:n V1 —2% +sin(zv1 — 2?)
nl £~ e 1+z x — cos(zv1 — x2) '

In [22], several convolution formulas of the polynomials R, (x) and T,,(x) are obtained by us-

n=0 —
ing Chen’s grammars. By generalizing a reciprocity formula of Gessel, Zhuang [30] obtained
generating function for permutation statistics that are expressible in terms of alternating runs.
Very recently, Josuat-Verges and Pang [I8] showed that alternating runs can be used to define
subalgebras of Solomon’s descent algebra.

In this paper, we continue the work initiated by David and Barton [12]. In Section 2 we
consider a generalization of ([2]). In Section [B we present a combinatorial interpretation of a
family of g-alternating run polynomials by using Chen’s grammars. In Section @l we show the

semi-y-positivity of the alternating run polynomials of dual Stirling permutations.
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2. THE DAVID-BARTON TYPE IDENTITY

Let f(z) = >, fiz" be a symmetric polynomial, i.e., fi = f,—; for any 0 < i < n. Then

f(x) can be expanded uniquely as

l3]

fla) = wak(1+a) ",

k=0
and it is said to be y-positive if 7, > 0 for 0 < k < [5] (see [15]). The ~-positivity provides
an approach to study symmetric and unimodal polynomials and has been extensively studied
(see [2, 5 10, 20] for instance).

The first main result of our paper is the following, which shows that the David-Barton type

identities often occur in combinatorics and geometry.

Theorem 1. Let

[(n+4)/2]
Mu(z) =Y M(nk)a*(1+z)"
k=0
be a symmetric polynomial, where § is a fixed integer. Set w = ijr—ﬁ Then
1+2\"° 1—w
ALL = 1 n+6ﬂ4ﬁ S
@=(5") arwrs (1) Q
if and only if
[(n+4)/2] 1
No()= Y Sz M, k)b (1 4 z)n ok, (6)
k=0
Proof. Set a = H'Tx Note that
1—w? = L
a?
Il—w  1- w? B 1 x
I+w (14+w)? (A+w)?a’
1 l—w 2
14w 1+w
It follows from () that
1+2\""° 1—w
N, (z) = 1 LY/ —
= (552) e (52)
1 xk 2 n+6—2k
_ .n—90 n+48
= 1 Mn,k)———r— | ——

M(’I’L, k)$kan—6—k2n+6—2k

—0—k
Al(n k)$k <]‘+ﬂx>7l 2n+5—2k
’ 2

1
2k—24

M (n, k)a®(1 + )"0k,

I
-1 -0 -1

and vice versa. This completes the proof. ]
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The reader is referred to [2] for a survey of some recent results on ~-positivity. For any ~-
positive polynomial M, (z), we can define an associated polynomial N, (z) by using (6). And
then we get a David-Barton type identity (B]). As illustrations, in the rest of this section, we
shall present two examples.

For example, Foata and Schiitzenberger [14] discovered that

L(n+1)/2]

Ap(z) = Z a(n, k)xk(l + x)n+1—2k
k=1

for n > 1, where the numbers a(n, k) satisfy the recurrence relation
a(n, k) =ka(n — 1,k) + (2n — 4k +4)a(n — 1,k — 1),

with the initial conditions a(1,1) = 1 and a(1,k) = 0 for k # 1 (see [10] 26] for instance). By
using the David-Barton identity (2]) and Theorem [Tl we immediately get the following result.

Proposition 2. Forn > 2, we have

L(n+1)/2]
R, (z) = Z %—_Qa(n,k)mk(l + z)" 17k,
k=1

Let +[n] = {£1,+2,...,£n}. Let B,, be the hyperoctahedral group of rank n. Elements of
B,, are signed permutations of 4[n] with the property that 7(—i) = —n (i) for all i € [n]. In
the sequel, we always assume that signed permutations in B,, are prepended by 0. That is, we
identify a signed permutation 7 = (1) - -- w(n) with the word = (0)7(1) - - - 7(n), where 7w (0) = 0.
A type B descent is an index i € {0,1,...,n — 1} such that 7(i) > 7(i +1). Let des ®(7) be the
number of type B descents of w. The type B Eulerian polynomials are defined by

Bn(a;) _ Z xdesB(ﬂ)'
WEB'!L

It is well known that
(/2]
Bu(x) =) b(n,k)z* (1 + )" 2,
k=0

where the numbers b(n, k) satisfy the recurrence relation
b(n,k) = (1+2k)b(n —1,k) +4(n — 2k + 1)b(n — 1,k — 1), (7)

with the initial conditions b(1,0) = 1 and b(1,k) = 0 for k # 0 (see [2, 10} 26]).

Define
n/2]
bol2) = Q—kb(n,k)xk(l + )"k, (8)

k=0
Then by Theorem [1, we get the following result.

Proposition 3. Forn > 1, we have

b () = <1 ;l’)n (1+w)"B, G;—w .
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Combining (7)) and (8]), we see that the polynomials b, (x) satisfy the recurrence relation
bui1(z) = (1 + 2 + 2n2?)b, (x) + 22(1 — 22)V,(2), (9)

with the initial conditions by(z) = 1, bi(z) = 1 + 2. For n > 1, we define b, (z) = EZ¢, (2). Tt

x
follows from (@) that the polynomials ¢, () satisfy the recurrence relation

g1 () = (2n2® 4 3z — 1)ep(z) + 22(1 — 22, (2).
Let B, = {r € B, | 7(1) > 0}. There is a combinatorial interpretation of ¢, (z) (see [LT} 29]):

cn(a;) _ Z xaltrun(ﬂ)'

7T€§n

3. THE g-ALTERNATING RUNS POLYNOMIALS

For an alphabet A, let Q[[A]] be the rational commutative ring of formal power series in
monomials formed from letters in A. A Chen’s grammar (which is known as context-free gram-
mar) over A is a function G : A — Q[[A]] that replaces a letter in A by an element of Q[[A]],
see [8, O], 24] for details. The formal derivative D := D¢ is a linear operator defined with re-
spect to a context-free grammar G. Following [9], a grammatical labeling is an assignment of
the underlying elements of a combinatorial structure with variables, which is consistent with the
substitution rules of a grammar.

Let us now recall two results on context-free grammars.

Proposition 4 ([22] Theorem 6]). If G = {a — ab, b — be, ¢ — b*}, then

D"(a) = az T bF =% D" (a?) = o Z Ry 1 bfem=*,

k=0 k=0
Proposition 5 (22, Theorem 9]). If G = {a — 2ab, b — bc, ¢ — b*}, then

D"(a) =a Z Rn+17kbkc”_k.

k=0
Combining Leibniz’s formula and Proposition Ml we see that
" /n
Fanl@) =3 (}) 7)o,

Motivated by Propositions [ and [B] it is natural to consider the grammar
G1 = {a — qab, b —be, ¢ — b*}. (10)

Note that Dg, (a) = qab, D2G1 (a) = a(¢?b? + qgbc). By induction, it is easy to verify that

D¢, (a) =a)_ Rni(g)b*c" " (11)
k=0
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It follows from (I0) that

Dgfl(a) = D¢, <az Rmk(q)bkc"_k)

k=0
=0 Rople) (R0 4 o T lenh s (n — pt2enh )
k

which leads to the recurrence relation

Ryi1k(q) = kR (@) + qRnk—1(q) + (n = k + 2) Ry, 1—2(q).- (12)

The q-alternating run polynomials are defined by
Rn(x; Q) = Z Rn,k(Q)xk'
k=0

In particular, R, (x;1) = T,,(z), Ry(x;2) = Rpt1(x). The first few R, (x;q) are given as follows:
Ro(z39) = 1, Ri(x3q) = gz, Ra(w;q) = qu(1+qz), Rs(wiq) = qz(l+ 3qz +2° + ¢*2”).
We define .
R(z,2q) == Y Ru(x; q);—rg-
n=0

Proposition 6. We have R(x, z;q) = TY(x, z), where T'(x, z) is given by [{l). Therefore,

HZ:%D?;I (a)% =aR <g,cz;q> =al" <g,cz> . (13)

Moreover, we have R,(x;—q) = Ry(—x;q) and R,(—z;—q) = Ry(x;q).
Proof. By rewriting (I2) in terms of generating function R(z, z;¢q), we obtain
(1—2? )ER(JE z;q) = x(1 — x2)2R(:p z;q) + qrR(x, z;q). (14)
82 ) ? ax ) ? ) ?

It is routine to check that the generating function T(x, z) satisfies (I4]). Also, this generating
function gives T9(0, z) = T%(x,0) = 1. Hence R(x, z;q) = T%(z, z). It is routine to check that

R(‘Ta Z; _Q) = R(—.’L’, Z5 Q)a R(—.’L’, Z; _q) = R(‘Ta Z; q)
which leads to the desired result. O

We say that m € &,, is a circular permutation if it has only one cycle. Let A = {x1,2z9,..., 2%}
be a finite set of positive integers, and let C4 be the set of all circular permutations of A. We
will write a permutation w € C4 by using its canonical presentation w = y1ys - - - Y, where y; =
min A, y; = w' " (yy) for 2 < i < kand y; = w®(y1). A cycle peak (vesp. cycle double ascent, cycle
double descent) of w is an entry y;, 2 < i < k, such that y;—1 < y; > yi+1 (resp. ¥i—1 < ¥i < Yit1,
Yi—1 > Yi > Yit1), where we set yr11 = 0o. Let cpk (w) (resp. cdasc (w), cddes (w), cyc (w)) be

the number of cycle peaks (resp. cycle double ascents, cycle double descents, cycles) of w.

Definition 7. A cycle run of a circular permutation w is an alternating run of w endowed with

a oo in the end. Let crun (w) be the number of cycle runs of w.
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It is clear that crun (w) = 2cpk (w) + 1. In the following discussion we always write 7 € &,
in standard cycle decomposition: m = w; - - - wg, where the cycles are written in increasing order

of their smallest entry and each of these cycles is expressed in canonical presentation. We define

k
crun (m) = Z crun (wj).
i=1

In particular, crun ((1)(2) - -+ (n)) = > ;= crun (¢) = >_;- ; altrun (icc) = n. We can now present

the second main result.

Theorem 8. Forn > 1, we have

Rn(l'; q) _ Z erun (ﬂ)qcyc (7r) (15)
WEGn
Proof. For m € G,,, we first put a oo in the end of each cycle. We then introduce a grammatical

labeling of 7 as follows:

L1) Put a subscript label ¢ at the end of each cycle of ;
Ly

) Put a superscript label a at the end of ;
L3) Put a superscript label b before each oo;
)

(

(

(

(L4) If (i) is a cycle peak, then put a superscript label b before (i) and a superscript label
b right after ;

(Ls) If (i) is a cycle double ascents, then put the superscript label ¢ before 7(7);

(Lg) If 7(i) is a cycle double descents, then put the superscript label ¢ right after (7).

The weight of 7 is the product of its labels. When n = 1,2, we have
&1 = {(1°00)g}, &2 = {(1%00)4(2°00)g, (1°2°c0)g}.

Then the weight of (1b)g is given by D¢, (a), and the sum of weights of the elements in &y is
given by Dél(a). Hence the result holds for n = 1,2. Let

rn(i,7) = {m € &, : crun (7) =14, cyc(m) = j}.

Suppose we get all labeled permutations in r,_1(%, ), where n > 3. Let 7’ be obtained from

T € Tp—1(i,7) by inserting the entry n. We distinguish the following four cases:

(c1) If we insert n as a new cycle, then 7’ € r,,_1(i + 1,5 + 1). This case corresponds to the
substitution rule a — gab.

(co) If we insert n before a oo, then " € r,_1(4, ). This case corresponds to the substitution
rule b — bc;

(c3) If we insert n before or right after a cycle peak, then ©’ € r,,_1(, 7). This case corresponds
to the substitution rule b — bc;

(cq) If we insert n before a cycle double ascents or right after a cycle double descents, then

7 € rp_1(i +2,7). This case corresponds to the substitution rule ¢ — b?.

In each case, the insertion of n corresponds to one substitution rule in the grammar ([I0). It is
easy to check that the action of D¢, on elements of G,,_; generates all elements of &,,. Using (1)

and by induction, we present a constructive proof of (I8]). This completes the proof. ]
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We define

ZE LY (] Z :Ecrun ), fix W)quC(TF)’
TES,

R(z,y, %) ZR 7,04

By using the principle of inclusion-exclusion, 1t is routine to Verlfy that

n

Ro(x,y50) =Y <7Z> (qzy — qz)' Ry—i(w; ).

=0
Hence
R(x,y,21q) = eV "V R(z, 2; q) = e~ D2T9(g, 2). (16)

A permutation 7w € &,, is a derangement if 7(i) # i for any i € [n]. Let D,, denote the set of

JZ 0; 1 Z xcrun(ﬂ

WGDTL

derangements in &,. Then

Proposition 9. Set d,(x) = R,(x,0;1). Then the polynomials d,,(z) satisfy the recurrence
dpi1(x) = nad, (z) + 2(1 — 22)d,(z) + nxd,_1(x), (17)
with the initial conditions do(z) =1, di(z) = 0. In particular, d,(—1) = —(n — 1) forn > 1.
Proof. Let d(z,z) = >0 dy(z)Z;. It follow from (I6) that
d(z,z) = e **T(z, z). (18)

By rewriting (I]) in terms of generating function 7'(x, z), we obtain

(1- a:zz)aaz T(x,z) =aT(x,z) +z(1l — x2)88x T(x,z).
Hence 5 5
1—a2)— = 1—a2%)=—
(1—= z)azd(x, 2) =xzd(z,z) +z(l — )axd(x, 2),
which yields the desired recurrence relation. O

Let dy,(x) = S 1_y dn 2. By using (), it is not hard to verify that

—x

o
2" e

§ dn,n_' - -
n! tanx + secx

4. SEMI-y-POSITIVE POLYNOMIALS

Let g(z) = Z?Zo giz’ be a symmetric polynomial. Note that

Z% (1 + z)*=)
_Z% (1 + 22 + 2"

_ <” e— Z) 2yt tE(1 4 22)niC,
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Hence g(x) can be expanded as

= Z AP (1 + 22k
k=0

It is clear that if ; > 0 for all 0 < ¢ < n, then A\ > 0 for all 0 < k£ < n. Furthermore, we have

[n/2] l(n—1)/2]
k=0 k=0

= g1(2%) + zgo(2?).

Similarly, if h(z) = Zan h;x® a symmetric polynomial, then we have

Z/BZ 1+x2n+1 21

= (1 + l‘) Z:Z <’I’L é_ Z) 255i$i+5(1 + x2)n—i—f‘

Hence h(z) can be expanded as

h(z) =(1+x) Zukxk(l + z?)n 7k,
k=0
Definition 10. If f(z) = (1 + 2)" Y p_o M (1 + 22)" % and Ay > 0 for all 0 < k < n, then

we say that f(x) is semi-y-positive, where v =0 or v = 1.

It should be noted that a semi-y-positive polynomial is not always ~-positive. From the above

discussion it follows that we have the following result.

Proposition 11. If f(z) = (1 + 2)” (fi(z?) 4+ 2 f2(z?)) is a semi-y-positive polynomial, then
both fi(x) and fa(x) are y-positive.

In the following, we shall show the semi-y-positivity of the alternating run polynomials of dual
Stirling permutations. Following [16], a Stirling permutation of order n is a permutation of the
multiset {1,1,...,n,n} such that for each i, 1 <1i < n, all entries between the two occurrences
of i are larger than i. There has been much recent work on Stirling permutations, see [I7, 24]
and references therein.

Denote by Q,, the set of Stirling permutations of order n. Let 0 = 10909, € Q. Let ®
be the injection which maps each first occurrence of entry j in o to 25 and the second j to 25 —1,
where j € [n]. For example, ®(221331) = 432651. Let ®(Q,,) = {n | 0 € Q,, P(0) = 7} be the
set of dual Stirling permutations of order n. Clearly, ®(Q,,) is a subset of Sg,. For m € ®(Q,,),
the entry 25 is to the left of 2j — 1, and all entries in m between 25 and 2j — 1 are larger than 27,
where 1 < j < n. Noted that 7 € ®(Q,,) always ends with a descending run. The alternating
runs polynomials of dual Stirling permutations are defined by

2n—1

§ : xaltrun § :Fn kx

Ueé(Qn)
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According to [23], the numbers F), ;, satisfy the recurrence relation
Fosip=kFn g+ Fop—1+ 2n—k+2)F, ;9. (19)
with the initial conditions Fpg =1, F1 1 =1 and F,, o = 0 for n > 1. It follows from (I9]) that
Frii(z) = (x4 2n2®)Fy(z) + 2(1 — 2?)F (z).

The first few F,,(x) are given as follows:

Fi(r) =,

Fy(z) = o + 2% + 23,

F3(z) = o + 32 + 72 + 32 + 2,

Fy(z) = x + 72 + 2923 + 312* 4+ 2925 + 728 + 27,

Let

(+2) " oy = TV,

xi 2n+lT o F2n+1($)
( dw) S T G ) T s

Lemma 12 ([23]). If

Go ={z = z2yz,y — Y22,z — yzz}, (20)
then we have
2n—1
DEL; (.Z') — Z yaltrun (U)Z2n—altrun (o) — z Z F, kykz2n—k' (21)
2 5
ceD(On) k=0

We now recall another combinatorial interpretation of F,(x). An occurrence of an ascent-
plateau of o € Q,, is an index i such that 0,1 < 0; = 041, where i € {2,3,...,2n — 1}
An occurrence of a left ascent-plateau is an index ¢ such that o;,_1 < 0; = o;41, where ¢ €
{1,2,...,2n — 1} and 09 = 0. Let ap (0) and la (0) be the numbers of ascent-plateaus and left

ascent-plateaus of o, respectively. The number of flag ascent-plateaus of ¢ is defined by

fap (o) 2ap (o) + 1, if o1 = o9;
ap (o) =
P 2ap (0), otherwise.

Clearly, fap (0) = ap (o) 4+ la (o). Following [24] Section 3], we have
Dg2 ($) =z Z yfap (o)z2n—fap (cr).
o€Qn
Thus,
Fy(x) = Z 22 (@),

O'EQTL
In fact, it is easy to verify that fap (o) = altrun (®(o)) for any o € Q,,.
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Proposition 13. For n > 1, we have
n
Fn(x) = Z’Yn,kxk(l + 1’)2n_2k,
k=1

where the numbers 7, i, satisfy the recurrence relation

Ytk = kYo + (2n — 4k 4 5)vp k-1, (22)

with the initial conditions 11 =1 and v1; = 0 for k # 1. In particular,
Tntinel = (=1)"(2n — 1! forn > 1.

Proof. We first consider a change of the grammar ([20)). Set a« = yz and b = y+ z. Then we have
D(z) = za, D(a) = a(b® —2a), D(b) = ab. If

Gy = {z — za, a — a(b® — 2a), b — ab},

then by induction, we see that there exist integers =, ; such that

n
D, (@) = 23 g B2, (23)
k=0

Note that

n
Dg:l(:p) = D¢, <x Zvn,kakb%_%)

k=1

=2 Y ud0?" % (a + kb? — 2ka + (2n — 2k)a)
k

kb2n—2k+2

By comparing the coefficients of a , we immediately get ([22]). Moreover, it is clear that

Yn,0 = 0 for n > 1. By using ([23]), upon taking a = yz and b =y + z, we get
n
Dg,(x) =2 Y ymp(y2)(y +2) 2. (24)
k=0

Then comparing (24) with @I)), we see that F,(z) = Y7 Y2 (1 + 2)?*72 for n > 1. By
using [22]), we obtain

Tn+1n+1 = —(2n — 1)7n,na

which yields the desired explicit formula. O
For n > 1, let v, (z) = S 1, ymxx®. It follows from ([22)) that
Tnr1(z) = (20 + Dam(z) + 2(1 — 4z)7y, (2).

The first few v,(z) are yo(z) = 1, 71(z) = 2, %2(z) =  — 2%, 3(x) = z — 22 + 32>. From
Proposition[I3] we see that for any positive even integer n, the polynomial F;,(x) is not y-positive.

We can now present the third main result of this paper.
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Theorem 14. The polynomial F,(x) is semi-y-positive. More precisely, we have

Fu(x) = fapa®(1+ 2",
k=0

where the numbers f, ;. satisfy the recurrence relation
fn—l—l,k - kfn,k + fn,k—l + 4(” —k+ 2)fn,k—27 (25)

with the initial conditions fop =1 and fno =0 forn > 1. Let fo(x) = > 1_y faxz". Then

Fo,2) = an(:n)% N)
n=0

(26)

where T(x, z) is given by ().

Proof. We first consider the grammar (20)). Note that
D(z) = zyz, D(yz) = yz(y” +2°), D(y* + 2%) = 4y*2°.

Set v = yz and v = y? + 22. Then we have D(z) = zu, D(u) = uwv and D(v) = 4u?. If
(27)

Gy = {z — zu, u— uv, v — 4u?},

then by induction we see that there exist nonnegative integers f, ; such that

n
D¢, (z) = xz FrpuFo"F,
k=0

Note that
ngl(x) = DG4 (a; Z fn’kuk’l)n_k>

k=1
— $an,k <uk+lvn—k 4 kuF o 4 — k)uk+2vn—k—1) ‘
k

By comparing the coefficients of uFv" 7% we get ([Z5). Moreover, it follows from (7)) that
foo=1and f,o=0 for n > 1. By using (28], upon taking u = yz and v = y* + 22, we get

Dg,(x) == Z Far(yz)F(y? + 22",
k=0

(29)

By comparing (29) with (21I]), we get

Fu(x) = 2": fmkxk(l + w2)"_k.
k=0

(30)

=z, b=2u, c=wv. Then

We now consider a change of the grammar (0. Set g = %, a

D(x) = zu, D(u) =uv, D(v) = 4u?
which are the substitution rules in the grammar (27]). Hence it follows from (I3]) that

9] Zn oo n . kzn 2u 1
n— .
D D)y =) > fawut" TG = aR <—§> ,

n=0 n=0 k=0
which leads to f(x,z) = R(2z,2;1/2) = /T (2x, z). This completes the proof.
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Combining (26) and ([B0), we immediately get the following result.

Corollary 15. We have

> 2" 2x
n=0 ’

It would be interesting to present a combinatorial interpretation of Corollary By us-
ing (24), it is not hard to verify that

if x”_ 1+tanx
"l V1 —tanaz

n=0

It should be noted that the numbers f;, ,, appear as A012259 in [27].

5. CONCLUDING REMARKS

This paper gives a survey of some results related to alternating runs of permutations. We

present a method to construct David-Barton type identities, and based on the survey [2], one

can derive several David-Barton type identities. Moreover, we introduce the definition of semi-

v-positive polynomial. The ~-positivity of a polynomial f(z) is a sufficient (not necessary)

condition for the semi-y-positivity of f(z). In particular, we show that the alternating run

polynomials of dual Stirling permutations are semi-y-positive.
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