THE ALTERNATING RUN POLYNOMIALS OF PERMUTATIONS

SHI-MEI MA, JUN MA, AND YEONG-NAN YEH

Abstract

In this paper, we first consider a generalization of the David-Barton identity which relate the alternating run polynomials to Eulerian polynomials. By using context-free grammars, we then present a combinatorial interpretation of a family of q-alternating run polynomials. Furthermore, we introduce the definition of semi- γ-positive polynomial and we show the semi-γ-positivity of the alternating run polynomials of dual Stirling permutations. A connection between the up-down run polynomials of permutations and the alternating run polynomials of dual Stirling permutations is established.

Keywords: Alternating runs; Eulerian polynomials; Semi- γ-positivity; Stirling permutations

1. Introduction

The enumeration of permutations by number of alternating runs was first studied by André [1]. Knuth [19, Section 5.1.3] has discussed this topic in connection to sorting and searching. Over the past few decades, the study of alternating runs of permutations was initiated by David and Barton [12, 157-162].

Let \mathfrak{S}_{n} denote the symmetric group of all permutations of $[n]=\{1,2, \ldots, n\}$. Let $\pi=$ $\pi(1) \pi(2) \cdots \pi(n) \in \mathfrak{S}_{n}$. An alternating run of π is a maximal consecutive subsequence that is increasing or decreasing (see [1, 22]). An up-down run of π is an alternating run of π endowed with a 0 in the front (see [13, 22]). Let altrun (π) (resp. udrun (π)) be the number of alternating runs (resp. up-down runs) of π. For example, if $\pi=324156$, then altrun $(\pi)=4$, udrun $(\pi)=5$. We define

$$
\begin{aligned}
R_{n, k} & =\#\left\{\pi \in \mathfrak{S}_{n}: \operatorname{altrun}(\pi)=k\right\} \\
T_{n, k} & =\#\left\{\pi \in \mathfrak{S}_{n}: \operatorname{udrun}(\pi)=k\right\} .
\end{aligned}
$$

It is well known that these numbers satisfy the following recurrence relations

$$
\begin{align*}
R_{n+1, k} & =k R_{n, k}+2 R_{n, k-1}+(n-k+1) R_{n, k-2}, \\
T_{n+1, k} & =k T_{n, k}+T_{n, k-1}+(n-k+2) T_{n, k-2}, \tag{1}
\end{align*}
$$

with the initial conditions $R_{1,0}=1$ and $R_{1, k}=0$ for $k \geq 1, T_{0,0}=1$ and $T_{0, k}=0$ for $k \geq 1$ (see [1, 13]). The alternating run polynomial and up-down run polynomial are respectively defined by $R_{n}(x)=\sum_{k=0}^{n-1} R_{n, k} x^{k}$ and $T_{n}(x)=\sum_{k=0}^{n} T_{n, k} x^{k}$.

A descent of $\pi \in \mathfrak{S}_{n}$ is an index $i \in[n-1]$ such that $\pi(i)>\pi(i+1)$. Denote by des (π) the number of descents of π. The classical Eulerian polynomial is defined by $A_{n}(x)=\sum_{\pi \in \mathfrak{S}_{n}} x^{\operatorname{des}(\pi)+1}$.

By solving a differential equation, David and Barton [12, 157-162] established the identity:

$$
\begin{equation*}
R_{n}(x)=\left(\frac{1+x}{2}\right)^{n-1}(1+w)^{n+1} A_{n}\left(\frac{1-w}{1+w}\right) \tag{2}
\end{equation*}
$$

for $n \geq 2$, where $w=\sqrt{\frac{1-x}{1+x}}$. Using (22), Bóna proved that the polynomial $R_{n}(x)$ has only real zeros (see [4). Moreover, one can prove that $R_{n}(x)$ has the zero $x=-1$ with the multiplicity $\left\lfloor\frac{n}{2}\right\rfloor-1$ by using (2), which can also be obtained based on the recurrence relation of $R_{n}(x)$ (see [25]). Motivated by (2), Zhuang [31] proved several identities expressing polynomials counting permutations by various descent statistics in terms of Eulerian polynomials.

Let us now recall another combinatorial interpretation of $T_{n}(x)$. An alternating subsequence of π is a subsequence $\pi\left(i_{1}\right) \cdots \pi\left(i_{k}\right)$ satisfying

$$
\pi\left(i_{1}\right)>\pi\left(i_{2}\right)<\pi\left(i_{3}\right)>\cdots \pi\left(i_{k}\right),
$$

where $i_{1}<i_{2}<\cdots<i_{k}$ (see [28]). Denote by as (π) the number of terms of the longest alternating subsequence of π. By definition, we see that as $(\pi)=\operatorname{udrun}(\pi)$. Thus

$$
T_{n}(x)=\sum_{\pi \in \mathfrak{S}_{n}} x^{\mathrm{as}(\pi)}
$$

There has been much recent work related to the numbers $R_{n, k}$ and $T_{n, k}$. In [3], Bóna and Ehrenborg proved that $R_{n, k}^{2} \geq R_{n, k-1} R_{n, k+1}$. Subsequently, Bóna [4, Section 1.3.2] noted that

$$
\begin{equation*}
T_{n}(x)=\frac{1}{2}(1+x) R_{n}(x) \tag{3}
\end{equation*}
$$

for $n \geq 2$. Set $\rho=\sqrt{1-x^{2}}$. Stanley [28, Theorem 2.3] showed that

$$
\begin{equation*}
T(x, z)=: \sum_{n=0}^{\infty} T_{n}(x) \frac{z^{n}}{n!}=(1-x) \frac{1+\rho+2 x e^{\rho z}+(1-\rho) e^{2 \rho z}}{1+\rho-x^{2}+\left(1-\rho-x^{2}\right) e^{2 \rho z}} \tag{4}
\end{equation*}
$$

By using (3) and (4), Stanley [28] obtained explicit formulas of $T_{n, k}$ and $R_{n, k}$. Canfield and Wilf [6] presented an asymptotic formula for $R_{n, k}$. In 21], another explicit formula of $R_{n, k}$ was obtained by combining the derivative polynomials of tangent function and the following generating function obtained by Carlitz [7:

$$
\sum_{n=0}^{\infty} \frac{z^{n}}{n!} \sum_{k=0}^{n} R_{n+1, k} x^{n-k}=\frac{1-x}{1+x}\left(\frac{\sqrt{1-x^{2}}+\sin \left(z \sqrt{1-x^{2}}\right)}{x-\cos \left(z \sqrt{1-x^{2}}\right)}\right)^{2} .
$$

In [22], several convolution formulas of the polynomials $R_{n}(x)$ and $T_{n}(x)$ are obtained by using Chen's grammars. By generalizing a reciprocity formula of Gessel, Zhuang [30] obtained generating function for permutation statistics that are expressible in terms of alternating runs. Very recently, Josuat-Vergès and Pang [18] showed that alternating runs can be used to define subalgebras of Solomon's descent algebra.

In this paper, we continue the work initiated by David and Barton [12]. In Section 2, we consider a generalization of (2). In Section 3, we present a combinatorial interpretation of a family of q-alternating run polynomials by using Chen's grammars. In Section 4 we show the semi- γ-positivity of the alternating run polynomials of dual Stirling permutations.

2. The David-Barton type identity

Let $f(x)=\sum_{i=0}^{n} f_{i} x^{i}$ be a symmetric polynomial, i.e., $f_{i}=f_{n-i}$ for any $0 \leq i \leq n$. Then $f(x)$ can be expanded uniquely as

$$
f(x)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} \gamma_{k} x^{k}(1+x)^{n-2 k}
$$

and it is said to be γ-positive if $\gamma_{k} \geq 0$ for $0 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$ (see [15]). The γ-positivity provides an approach to study symmetric and unimodal polynomials and has been extensively studied (see [2, 5, 10, 20] for instance).

The first main result of our paper is the following, which shows that the David-Barton type identities often occur in combinatorics and geometry.

Theorem 1. Let

$$
M_{n}(x)=\sum_{k=0}^{\lfloor(n+\delta) / 2\rfloor} M(n, k) x^{k}(1+x)^{n+\delta-2 k}
$$

be a symmetric polynomial, where δ is a fixed integer. Set $w=\sqrt{\frac{1-x}{1+x}}$. Then

$$
\begin{equation*}
N_{n}(x)=\left(\frac{1+x}{2}\right)^{n-\delta}(1+w)^{n+\delta} M_{n}\left(\frac{1-w}{1+w}\right) \tag{5}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
N_{n}(x)=\sum_{k=0}^{\lfloor(n+\delta) / 2\rfloor} \frac{1}{2^{k-2 \delta}} M(n, k) x^{k}(1+x)^{n-\delta-k} \tag{6}
\end{equation*}
$$

Proof. Set $\alpha=\frac{1+x}{2}$. Note that

$$
\begin{aligned}
1-w^{2} & =\frac{x}{\alpha} \\
\frac{1-w}{1+w} & =\frac{1-w^{2}}{(1+w)^{2}}=\frac{1}{(1+w)^{2}} \frac{x}{\alpha} \\
1+\frac{1-w}{1+w} & =\frac{2}{1+w}
\end{aligned}
$$

It follows from (5) that

$$
\begin{aligned}
N_{n}(x) & =\left(\frac{1+x}{2}\right)^{n-\delta}(1+w)^{n+\delta} M_{n}\left(\frac{1-w}{1+w}\right) \\
& =\alpha^{n-\delta}(1+w)^{n+\delta} \sum_{k} M(n, k) \frac{1}{(1+w)^{2 k}} \frac{x^{k}}{\alpha^{k}}\left(\frac{2}{1+w}\right)^{n+\delta-2 k} \\
& =\sum_{k} M(n, k) x^{k} \alpha^{n-\delta-k} 2^{n+\delta-2 k} \\
& =\sum_{k} M(n, k) x^{k}\left(\frac{1+x}{2}\right)^{n-\delta-k} 2^{n+\delta-2 k} \\
& =\sum_{k} \frac{1}{2^{k-2 \delta}} M(n, k) x^{k}(1+x)^{n-\delta-k}
\end{aligned}
$$

and vice versa. This completes the proof.

The reader is referred to [2] for a survey of some recent results on γ-positivity. For any γ positive polynomial $M_{n}(x)$, we can define an associated polynomial $N_{n}(x)$ by using (6). And then we get a David-Barton type identity (5). As illustrations, in the rest of this section, we shall present two examples.

For example, Foata and Schützenberger [14] discovered that

$$
A_{n}(x)=\sum_{k=1}^{\lfloor(n+1) / 2\rfloor} a(n, k) x^{k}(1+x)^{n+1-2 k}
$$

for $n \geq 1$, where the numbers $a(n, k)$ satisfy the recurrence relation

$$
a(n, k)=k a(n-1, k)+(2 n-4 k+4) a(n-1, k-1),
$$

with the initial conditions $a(1,1)=1$ and $a(1, k)=0$ for $k \neq 1$ (see [10, 26] for instance). By using the David-Barton identity (2) and Theorem [1] we immediately get the following result.

Proposition 2. For $n \geq 2$, we have

$$
R_{n}(x)=\sum_{k=1}^{\lfloor(n+1) / 2\rfloor} \frac{1}{2^{k-2}} a(n, k) x^{k}(1+x)^{n-1-k} .
$$

Let $\pm[n]=\{ \pm 1, \pm 2, \ldots, \pm n\}$. Let B_{n} be the hyperoctahedral group of rank n. Elements of B_{n} are signed permutations of $\pm[n]$ with the property that $\pi(-i)=-\pi(i)$ for all $i \in[n]$. In the sequel, we always assume that signed permutations in B_{n} are prepended by 0 . That is, we identify a signed permutation $\pi=\pi(1) \cdots \pi(n)$ with the word $\pi(0) \pi(1) \cdots \pi(n)$, where $\pi(0)=0$. A type B descent is an index $i \in\{0,1, \ldots, n-1\}$ such that $\pi(i)>\pi(i+1)$. Let des ${ }^{B}(\pi)$ be the number of type B descents of π. The type B Eulerian polynomials are defined by

$$
B_{n}(x)=\sum_{\pi \in B_{n}} x^{\operatorname{des}_{B}(\pi)}
$$

It is well known that

$$
B_{n}(x)=\sum_{k=0}^{\lfloor n / 2\rfloor} b(n, k) x^{k}(1+x)^{n-2 k},
$$

where the numbers $b(n, k)$ satisfy the recurrence relation

$$
\begin{equation*}
b(n, k)=(1+2 k) b(n-1, k)+4(n-2 k+1) b(n-1, k-1), \tag{7}
\end{equation*}
$$

with the initial conditions $b(1,0)=1$ and $b(1, k)=0$ for $k \neq 0$ (see [2, [10, 26]).
Define

$$
\begin{equation*}
b_{n}(x)=\sum_{k=0}^{\lfloor n / 2\rfloor} \frac{1}{2^{k}} b(n, k) x^{k}(1+x)^{n-k} . \tag{8}
\end{equation*}
$$

Then by Theorem we get the following result.
Proposition 3. For $n \geq 1$, we have

$$
b_{n}(x)=\left(\frac{1+x}{2}\right)^{n}(1+w)^{n} B_{n}\left(\frac{1-w}{1+w}\right) .
$$

Combining (77) and (8), we see that the polynomials $b_{n}(x)$ satisfy the recurrence relation

$$
\begin{equation*}
b_{n+1}(x)=\left(1+x+2 n x^{2}\right) b_{n}(x)+2 x\left(1-x^{2}\right) b_{n}^{\prime}(x) \tag{9}
\end{equation*}
$$

with the initial conditions $b_{0}(x)=1, b_{1}(x)=1+x$. For $n \geq 1$, we define $b_{n}(x)=\frac{1+x}{x} c_{n}(x)$. It follows from (9) that the polynomials $c_{n}(x)$ satisfy the recurrence relation

$$
c_{n+1}(x)=\left(2 n x^{2}+3 x-1\right) c_{n}(x)+2 x\left(1-x^{2}\right) c_{n}^{\prime}(x)
$$

Let $\widehat{B}_{n}=\left\{\pi \in B_{n} \mid \pi(1)>0\right\}$. There is a combinatorial interpretation of $c_{n}(x)$ (see [11, [29]):

$$
c_{n}(x)=\sum_{\pi \in \widehat{B}_{n}} x^{\operatorname{altrun}(\pi)}
$$

3. The q-alternating Runs Polynomials

For an alphabet A, let $\mathbb{Q}[[A]]$ be the rational commutative ring of formal power series in monomials formed from letters in A. A Chen's grammar (which is known as context-free grammar) over A is a function $G: A \rightarrow \mathbb{Q}[[A]]$ that replaces a letter in A by an element of $\mathbb{Q}[[A]]$, see [8, 9, 24] for details. The formal derivative $D:=D_{G}$ is a linear operator defined with respect to a context-free grammar G. Following [9], a grammatical labeling is an assignment of the underlying elements of a combinatorial structure with variables, which is consistent with the substitution rules of a grammar.

Let us now recall two results on context-free grammars.

Proposition $4\left(\left[22\right.\right.$, Theorem 6]). If $G=\left\{a \rightarrow a b, b \rightarrow b c, c \rightarrow b^{2}\right\}$, then

$$
D^{n}(a)=a \sum_{k=0}^{n} T_{n, k} b^{k} c^{n-k}, \quad D^{n}\left(a^{2}\right)=a^{2} \sum_{k=0}^{n} R_{n+1, k} b^{k} c^{n-k}
$$

Proposition $5\left(\left[22\right.\right.$, Theorem 9]). If $G=\left\{a \rightarrow 2 a b, b \rightarrow b c, c \rightarrow b^{2}\right\}$, then

$$
D^{n}(a)=a \sum_{k=0}^{n} R_{n+1, k} b^{k} c^{n-k}
$$

Combining Leibniz's formula and Proposition 4, we see that

$$
R_{n+1}(x)=\sum_{k=0}^{n}\binom{n}{k} T_{k}(x) T_{n-k}(x)
$$

Motivated by Propositions 4 and 5, it is natural to consider the grammar

$$
\begin{equation*}
G_{1}=\left\{a \rightarrow q a b, b \rightarrow b c, c \rightarrow b^{2}\right\} \tag{10}
\end{equation*}
$$

Note that $D_{G_{1}}(a)=q a b, D_{G_{1}}^{2}(a)=a\left(q^{2} b^{2}+q b c\right)$. By induction, it is easy to verify that

$$
\begin{equation*}
D_{G_{1}}^{n}(a)=a \sum_{k=0}^{n} R_{n, k}(q) b^{k} c^{n-k} \tag{11}
\end{equation*}
$$

It follows from (10) that

$$
\begin{aligned}
D_{G_{1}}^{n+1}(a) & =D_{G_{1}}\left(a \sum_{k=0}^{n} R_{n, k}(q) b^{k} c^{n-k}\right) \\
& =a \sum_{k} R_{n, k}(q)\left(k b^{k} c^{n-k+1}+q b^{k+1} c^{n-k}+(n-k) b^{k+2} c^{n-k-1}\right),
\end{aligned}
$$

which leads to the recurrence relation

$$
\begin{equation*}
R_{n+1, k}(q)=k R_{n, k}(q)+q R_{n, k-1}(q)+(n-k+2) R_{n, k-2}(q) . \tag{12}
\end{equation*}
$$

The q-alternating run polynomials are defined by

$$
R_{n}(x ; q)=\sum_{k=0}^{n} R_{n, k}(q) x^{k} .
$$

In particular, $R_{n}(x ; 1)=T_{n}(x), R_{n}(x ; 2)=R_{n+1}(x)$. The first few $R_{n}(x ; q)$ are given as follows:

$$
R_{0}(x ; q)=1, R_{1}(x ; q)=q x, R_{2}(x ; q)=q x(1+q x), R_{3}(x ; q)=q x\left(1+3 q x+x^{2}+q^{2} x^{2}\right) .
$$

We define

$$
R(x, z ; q):=\sum_{n=0}^{\infty} R_{n}(x ; q) \frac{z^{n}}{n!} .
$$

Proposition 6. We have $R(x, z ; q)=T^{q}(x, z)$, where $T(x, z)$ is given by (4). Therefore,

$$
\begin{equation*}
\sum_{n=0}^{\infty} D_{G_{1}}^{n}(a) \frac{z^{n}}{n!}=a R\left(\frac{b}{c}, c z ; q\right)=a T^{q}\left(\frac{b}{c}, c z\right) . \tag{13}
\end{equation*}
$$

Moreover, we have $R_{n}(x ;-q)=R_{n}(-x ; q)$ and $R_{n}(-x ;-q)=R_{n}(x ; q)$.
Proof. By rewriting (12) in terms of generating function $R(x, z ; q)$, we obtain

$$
\begin{equation*}
\left(1-x^{2} z\right) \frac{\partial}{\partial z} R(x, z ; q)=x\left(1-x^{2}\right) \frac{\partial}{\partial x} R(x, z ; q)+q x R(x, z ; q) . \tag{14}
\end{equation*}
$$

It is routine to check that the generating function $T^{q}(x, z)$ satisfies (14). Also, this generating function gives $T^{q}(0, z)=T^{q}(x, 0)=1$. Hence $R(x, z ; q)=T^{q}(x, z)$. It is routine to check that

$$
R(x, z ;-q)=R(-x, z ; q), R(-x, z ;-q)=R(x, z ; q)
$$

which leads to the desired result.
We say that $\pi \in \mathfrak{S}_{n}$ is a circular permutation if it has only one cycle. Let $A=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ be a finite set of positive integers, and let \mathcal{C}_{A} be the set of all circular permutations of A. We will write a permutation $w \in \mathcal{C}_{A}$ by using its canonical presentation $w=y_{1} y_{2} \cdots y_{k}$, where $y_{1}=$ $\min A, y_{i}=w^{i-1}\left(y_{1}\right)$ for $2 \leq i \leq k$ and $y_{1}=w^{k}\left(y_{1}\right)$. A cycle peak (resp. cycle double ascent, cycle double descent) of w is an entry $y_{i}, 2 \leq i \leq k$, such that $y_{i-1}<y_{i}>y_{i+1}$ (resp. $y_{i-1}<y_{i}<y_{i+1}$, $\left.y_{i-1}>y_{i}>y_{i+1}\right)$, where we set $y_{k+1}=\infty$. Let $\operatorname{cpk}(w)($ resp. cdasc $(w), \operatorname{cddes}(w), \operatorname{cyc}(w))$ be the number of cycle peaks (resp. cycle double ascents, cycle double descents, cycles) of w.

Definition 7. A cycle run of a circular permutation w is an alternating run of w endowed with $a \infty$ in the end. Let crun (w) be the number of cycle runs of w.

It is clear that crun $(w)=2 \operatorname{cpk}(w)+1$. In the following discussion we always write $\pi \in \mathfrak{S}_{n}$ in standard cycle decomposition: $\pi=w_{1} \cdots w_{k}$, where the cycles are written in increasing order of their smallest entry and each of these cycles is expressed in canonical presentation. We define

$$
\operatorname{crun}(\pi):=\sum_{i=1}^{k} \operatorname{crun}\left(w_{i}\right)
$$

In particular, crun $((1)(2) \cdots(n))=\sum_{i=1}^{n}$ crun $(i)=\sum_{i=1}^{n}$ altrun $(i \infty)=n$. We can now present the second main result.

Theorem 8. For $n \geq 1$, we have

$$
\begin{equation*}
R_{n}(x ; q)=\sum_{\pi \in \mathfrak{S}_{n}} x^{\operatorname{crun}(\pi)} q^{\operatorname{cyc}(\pi)} . \tag{15}
\end{equation*}
$$

Proof. For $\pi \in \mathfrak{S}_{n}$, we first put a ∞ in the end of each cycle. We then introduce a grammatical labeling of π as follows:
$\left(L_{1}\right)$ Put a subscript label q at the end of each cycle of π;
(L_{2}) Put a superscript label a at the end of π;
$\left(L_{3}\right)$ Put a superscript label b before each ∞;
(L_{4}) If $\pi(i)$ is a cycle peak, then put a superscript label b before $\pi(i)$ and a superscript label b right after π;
$\left.L_{5}\right)$ If $\pi(i)$ is a cycle double ascents, then put the superscript label c before $\pi(i)$;
$\left(L_{6}\right)$ If $\pi(i)$ is a cycle double descents, then put the superscript label c right after $\pi(i)$.
The weight of π is the product of its labels. When $n=1,2$, we have

$$
\mathfrak{S}_{1}=\left\{\left(1^{b} \infty\right)_{q}^{a}\right\}, \mathfrak{S}_{2}=\left\{\left(1^{b} \infty\right)_{q}\left(2^{b} \infty\right)_{q}^{a},\left(1^{c} 2^{b} \infty\right)_{q}^{a}\right\} .
$$

Then the weight of $\left(1^{b}\right)_{q}^{a}$ is given by $D_{G_{1}}(a)$, and the sum of weights of the elements in \mathfrak{S}_{2} is given by $D_{G_{1}}^{2}(a)$. Hence the result holds for $n=1,2$. Let

$$
r_{n}(i, j)=\left\{\pi \in \mathfrak{S}_{n}: \operatorname{crun}(\pi)=i, \operatorname{cyc}(\pi)=j\right\}
$$

Suppose we get all labeled permutations in $r_{n-1}(i, j)$, where $n \geq 3$. Let π^{\prime} be obtained from $\pi \in r_{n-1}(i, j)$ by inserting the entry n. We distinguish the following four cases:
$\left(c_{1}\right)$ If we insert n as a new cycle, then $\pi^{\prime} \in r_{n-1}(i+1, j+1)$. This case corresponds to the substitution rule $a \rightarrow q a b$.
$\left(c_{2}\right)$ If we insert n before a ∞, then $\pi^{\prime} \in r_{n-1}(i, j)$. This case corresponds to the substitution rule $b \rightarrow b c$;
$\left(c_{3}\right)$ If we insert n before or right after a cycle peak, then $\pi^{\prime} \in r_{n-1}(i, j)$. This case corresponds to the substitution rule $b \rightarrow b c$;
$\left(c_{4}\right)$ If we insert n before a cycle double ascents or right after a cycle double descents, then $\pi^{\prime} \in r_{n-1}(i+2, j)$. This case corresponds to the substitution rule $c \rightarrow b^{2}$.
In each case, the insertion of n corresponds to one substitution rule in the grammar (10). It is easy to check that the action of $D_{G_{1}}$ on elements of \mathfrak{S}_{n-1} generates all elements of \mathfrak{S}_{n}. Using (11) and by induction, we present a constructive proof of (15). This completes the proof.

We define

$$
\begin{gathered}
R_{n}(x, y ; q)=\sum_{\pi \in \mathfrak{G}_{n}} x^{\operatorname{crun}(\pi)} y^{\operatorname{fix}(\pi)} q^{\operatorname{cyc}(\pi)}, \\
R(x, y, z ; q)=\sum_{n=0}^{\infty} R_{n}(x, y ; q) \frac{z^{n}}{n!} .
\end{gathered}
$$

By using the principle of inclusion-exclusion, it is routine to verify that

$$
R_{n}(x, y ; q)=\sum_{i=0}^{n}\binom{n}{i}(q x y-q x)^{i} R_{n-i}(x ; q) .
$$

Hence

$$
\begin{equation*}
R(x, y, z ; q)=e^{q x(y-1) z} R(x, z ; q)=e^{q x(y-1) z} T^{q}(x, z) . \tag{16}
\end{equation*}
$$

A permutation $\pi \in \mathfrak{S}_{n}$ is a derangement if $\pi(i) \neq i$ for any $i \in[n]$. Let \mathcal{D}_{n} denote the set of derangements in \mathfrak{S}_{n}. Then

$$
R_{n}(x, 0 ; 1)=\sum_{\pi \in \mathcal{D}_{n}} x^{\operatorname{crun}(\pi)} .
$$

Proposition 9. Set $d_{n}(x)=R_{n}(x, 0 ; 1)$. Then the polynomials $d_{n}(x)$ satisfy the recurrence

$$
\begin{equation*}
d_{n+1}(x)=n x^{2} d_{n}(x)+x\left(1-x^{2}\right) d_{n}^{\prime}(x)+n x d_{n-1}(x), \tag{17}
\end{equation*}
$$

with the initial conditions $d_{0}(x)=1, d_{1}(x)=0$. In particular, $d_{n}(-1)=-(n-1)$ for $n \geq 1$.
Proof. Let $d(x, z)=\sum_{n=0}^{\infty} d_{n}(x) \frac{z^{n}}{n!}$. It follow from (16) that

$$
\begin{equation*}
d(x, z)=e^{-x z} T(x, z) . \tag{18}
\end{equation*}
$$

By rewriting (11) in terms of generating function $T(x, z)$, we obtain

$$
\left(1-x^{2} z\right) \frac{\partial}{\partial z} T(x, z)=x T(x, z)+x\left(1-x^{2}\right) \frac{\partial}{\partial x} T(x, z) .
$$

Hence

$$
\left(1-x^{2} z\right) \frac{\partial}{\partial z} d(x, z)=x z d(x, z)+x\left(1-x^{2}\right) \frac{\partial}{\partial x} d(x, z)
$$

which yields the desired recurrence relation.
Let $d_{n}(x)=\sum_{k=0}^{n} d_{n, k} x^{k}$. By using (18), it is not hard to verify that

$$
\sum_{n=0}^{\infty} d_{n, n} \frac{z^{n}}{n!}=\frac{e^{-x}}{\tan x+\sec x}
$$

4. Semi- γ-Positive polynomials

Let $g(x)=\sum_{i=0}^{2 n} g_{i} x^{i}$ be a symmetric polynomial. Note that

$$
\begin{aligned}
g(x) & =\sum_{i=0}^{n} \gamma_{i} x^{i}(1+x)^{2(n-i)} \\
& =\sum_{i=0}^{n} \gamma_{i} x^{i}\left(1+2 x+x^{2}\right)^{n-i} \\
& =\sum_{i=0}^{n} \sum_{\ell=0}^{n-i}\binom{n-i}{\ell} 2^{\ell} \gamma_{i} x^{i+\ell}\left(1+x^{2}\right)^{n-i-\ell} .
\end{aligned}
$$

Hence $g(x)$ can be expanded as

$$
g(x)=\sum_{k=0}^{n} \lambda_{k} x^{k}\left(1+x^{2}\right)^{n-k} .
$$

It is clear that if $\gamma_{i} \geq 0$ for all $0 \leq i \leq n$, then $\lambda_{k} \geq 0$ for all $0 \leq k \leq n$. Furthermore, we have

$$
\begin{aligned}
g(x) & =\sum_{k=0}^{\lfloor n / 2\rfloor} \lambda_{2 k} x^{2 k}\left(1+x^{2}\right)^{n-2 k}+\sum_{k=0}^{\lfloor(n-1) / 2\rfloor} \lambda_{2 k+1} x^{2 k+1}\left(1+x^{2}\right)^{n-2 k-1} \\
& =g_{1}\left(x^{2}\right)+x g_{2}\left(x^{2}\right) .
\end{aligned}
$$

Similarly, if $h(x)=\sum_{i=0}^{2 n+1} h_{i} x^{i}$ a symmetric polynomial, then we have

$$
\begin{aligned}
h(x) & =\sum_{i=0}^{n} \beta_{i} x^{i}(1+x)^{2 n+1-2 i} \\
& =(1+x) \sum_{i=0}^{n} \sum_{\ell=0}^{n-i}\binom{n-i}{\ell} 2^{\ell} \beta_{i} x^{i+\ell}\left(1+x^{2}\right)^{n-i-\ell}
\end{aligned}
$$

Hence $h(x)$ can be expanded as

$$
h(x)=(1+x) \sum_{k=0}^{n} \mu_{k} x^{k}\left(1+x^{2}\right)^{n-k} .
$$

Definition 10. If $f(x)=(1+x)^{\nu} \sum_{k=0}^{n} \lambda_{k} x^{k}\left(1+x^{2}\right)^{n-k}$ and $\lambda_{k} \geq 0$ for all $0 \leq k \leq n$, then we say that $f(x)$ is semi- γ-positive, where $\nu=0$ or $\nu=1$.

It should be noted that a semi- γ-positive polynomial is not always γ-positive. From the above discussion it follows that we have the following result.

Proposition 11. If $f(x)=(1+x)^{\nu}\left(f_{1}\left(x^{2}\right)+x f_{2}\left(x^{2}\right)\right)$ is a semi- γ-positive polynomial, then both $f_{1}(x)$ and $f_{2}(x)$ are γ-positive.

In the following, we shall show the semi- γ-positivity of the alternating run polynomials of dual Stirling permutations. Following [16, a Stirling permutation of order n is a permutation of the multiset $\{1,1, \ldots, n, n\}$ such that for each $i, 1 \leq i \leq n$, all entries between the two occurrences of i are larger than i. There has been much recent work on Stirling permutations, see [17, 24] and references therein.

Denote by \mathcal{Q}_{n} the set of Stirling permutations of order n. Let $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{2 n} \in \mathcal{Q}_{n}$. Let Φ be the injection which maps each first occurrence of entry j in σ to $2 j$ and the second j to $2 j-1$, where $j \in[n]$. For example, $\Phi(221331)=432651$. Let $\Phi\left(\mathcal{Q}_{n}\right)=\left\{\pi \mid \sigma \in \mathcal{Q}_{n}, \Phi(\sigma)=\pi\right\}$ be the set of dual Stirling permutations of order n. Clearly, $\Phi\left(\mathcal{Q}_{n}\right)$ is a subset of $\mathfrak{S}_{2 n}$. For $\pi \in \Phi\left(\mathcal{Q}_{n}\right)$, the entry $2 j$ is to the left of $2 j-1$, and all entries in π between $2 j$ and $2 j-1$ are larger than $2 j$, where $1 \leq j \leq n$. Noted that $\pi \in \Phi\left(\mathcal{Q}_{n}\right)$ always ends with a descending run. The alternating runs polynomials of dual Stirling permutations are defined by

$$
F_{n}(x)=\sum_{\sigma \in \Phi\left(\mathcal{Q}_{n}\right)} x^{\operatorname{altrun}(\sigma)}=\sum_{k=1}^{2 n-1} F_{n, k} x^{k}
$$

According to [23], the numbers $F_{n, k}$ satisfy the recurrence relation

$$
\begin{equation*}
F_{n+1, k}=k F_{n, k}+F_{n, k-1}+(2 n-k+2) F_{n, k-2} . \tag{19}
\end{equation*}
$$

with the initial conditions $F_{0,0}=1, F_{1,1}=1$ and $F_{n, 0}=0$ for $n \geq 1$. It follows from (19) that

$$
F_{n+1}(x)=\left(x+2 n x^{2}\right) F_{n}(x)+x\left(1-x^{2}\right) F_{n}^{\prime}(x) .
$$

The first few $F_{n}(x)$ are given as follows:

$$
\begin{aligned}
& F_{1}(x)=x, \\
& F_{2}(x)=x+x^{2}+x^{3}, \\
& F_{3}(x)=x+3 x^{2}+7 x^{3}+3 x^{4}+x^{5}, \\
& F_{4}(x)=x+7 x^{2}+29 x^{3}+31 x^{4}+29 x^{5}+7 x^{6}+x^{7} .
\end{aligned}
$$

Let

$$
r(x)=\sqrt{\frac{1+x}{1-x}}
$$

By induction, it is to verify that

$$
\begin{aligned}
& \left(x \frac{d}{d x}\right)^{2 n} r(x)=\frac{r(x) F_{2 n}(x)}{\left(1-x^{2}\right)^{2 n}} \\
& \left(x \frac{d}{d x}\right)^{2 n+1} r(x)=\frac{F_{2 n+1}(x)}{r(x)\left(1-x^{2}\right)^{2 n}(1-x)^{2}} .
\end{aligned}
$$

Lemma 12 ([23]). If

$$
\begin{equation*}
G_{2}=\left\{x \rightarrow x y z, y \rightarrow y z^{2}, z \rightarrow y^{2} z\right\} \tag{20}
\end{equation*}
$$

then we have

$$
\begin{equation*}
D_{G_{2}}^{n}(x)=x \sum_{\sigma \in \Phi\left(\mathcal{Q}_{n}\right)} y^{\text {altrun }(\sigma)} z^{2 n-\operatorname{altrun}(\sigma)}=x \sum_{k=0}^{2 n-1} F_{n, k} y^{k} z^{2 n-k} . \tag{21}
\end{equation*}
$$

We now recall another combinatorial interpretation of $F_{n}(x)$. An occurrence of an ascentplateau of $\sigma \in \mathcal{Q}_{n}$ is an index i such that $\sigma_{i-1}<\sigma_{i}=\sigma_{i+1}$, where $i \in\{2,3, \ldots, 2 n-1\}$. An occurrence of a left ascent-plateau is an index i such that $\sigma_{i-1}<\sigma_{i}=\sigma_{i+1}$, where $i \in$ $\{1,2, \ldots, 2 n-1\}$ and $\sigma_{0}=0$. Let ap (σ) and $\operatorname{la}(\sigma)$ be the numbers of ascent-plateaus and left ascent-plateaus of σ, respectively. The number of flag ascent-plateaus of σ is defined by

$$
\operatorname{fap}(\sigma)= \begin{cases}2 \operatorname{ap}(\sigma)+1, & \text { if } \sigma_{1}=\sigma_{2} \\ 2 \operatorname{ap}(\sigma), & \text { otherwise }\end{cases}
$$

Clearly, $\operatorname{fap}(\sigma)=\mathrm{ap}(\sigma)+\mathrm{la}(\sigma)$. Following [24, Section 3], we have

$$
D_{G_{2}}^{n}(x)=x \sum_{\sigma \in \mathcal{Q}_{n}} y^{\mathrm{fap}(\sigma)} z^{2 n-\operatorname{fap}(\sigma)} .
$$

Thus,

$$
F_{n}(x)=\sum_{\sigma \in \mathcal{Q}_{n}} x^{\mathrm{fap}(\sigma)} .
$$

In fact, it is easy to verify that fap $(\sigma)=\operatorname{altrun}(\Phi(\sigma))$ for any $\sigma \in \mathcal{Q}_{n}$.

Proposition 13. For $n \geq 1$, we have

$$
F_{n}(x)=\sum_{k=1}^{n} \gamma_{n, k} x^{k}(1+x)^{2 n-2 k}
$$

where the numbers $\gamma_{n, k}$ satisfy the recurrence relation

$$
\begin{equation*}
\gamma_{n+1, k}=k \gamma_{n, k}+(2 n-4 k+5) \gamma_{n, k-1}, \tag{22}
\end{equation*}
$$

with the initial conditions $\gamma_{1,1}=1$ and $\gamma_{1, k}=0$ for $k \neq 1$. In particular,

$$
\gamma_{n+1, n+1}=(-1)^{n}(2 n-1)!!\text { for } n \geq 1
$$

Proof. We first consider a change of the grammar (20). Set $a=y z$ and $b=y+z$. Then we have $D(x)=x a, D(a)=a\left(b^{2}-2 a\right), D(b)=a b$. If

$$
G_{3}=\left\{x \rightarrow x a, a \rightarrow a\left(b^{2}-2 a\right), b \rightarrow a b\right\}
$$

then by induction, we see that there exist integers $\gamma_{n, k}$ such that

$$
\begin{equation*}
D_{G_{3}}^{n}(x)=x \sum_{k=0}^{n} \gamma_{n, k} a^{k} b^{2 n-2 k} . \tag{23}
\end{equation*}
$$

Note that

$$
\begin{aligned}
D_{G_{3}}^{n+1}(x) & =D_{G_{3}}\left(x \sum_{k=1}^{n} \gamma_{n, k} a^{k} b^{2 n-2 k}\right) \\
& =x \sum_{k} \gamma_{n, k} a^{k} b^{2 n-2 k}\left(a+k b^{2}-2 k a+(2 n-2 k) a\right)
\end{aligned}
$$

By comparing the coefficients of $a^{k} b^{2 n-2 k+2}$, we immediately get (22). Moreover, it is clear that $\gamma_{n, 0}=0$ for $n \geq 1$. By using (23), upon taking $a=y z$ and $b=y+z$, we get

$$
\begin{equation*}
D_{G_{2}}^{n}(x)=x \sum_{k=0}^{n} \gamma_{n, k}(y z)^{k}(y+z)^{2 n-2 k} . \tag{24}
\end{equation*}
$$

Then comparing (24) with (21), we see that $F_{n}(x)=\sum_{k=1}^{n} \gamma_{n, k} x^{k}(1+x)^{2 n-2 k}$ for $n \geq 1$. By using (22), we obtain

$$
\gamma_{n+1, n+1}=-(2 n-1) \gamma_{n, n},
$$

which yields the desired explicit formula.
For $n \geq 1$, let $\gamma_{n}(x)=\sum_{k=1}^{n} \gamma_{n, k} x^{k}$. It follows from (22) that

$$
\gamma_{n+1}(x)=(2 n+1) x \gamma_{n}(x)+x(1-4 x) \gamma_{n}^{\prime}(x) .
$$

The first few $\gamma_{n}(x)$ are $\gamma_{0}(x)=1, \gamma_{1}(x)=x, \gamma_{2}(x)=x-x^{2}, \gamma_{3}(x)=x-x^{2}+3 x^{3}$. From Proposition 13, we see that for any positive even integer n, the polynomial $F_{n}(x)$ is not γ-positive.

We can now present the third main result of this paper.

Theorem 14. The polynomial $F_{n}(x)$ is semi- γ-positive. More precisely, we have

$$
F_{n}(x)=\sum_{k=0}^{n} f_{n, k} x^{k}\left(1+x^{2}\right)^{n-k}
$$

where the numbers $f_{n, k}$ satisfy the recurrence relation

$$
\begin{equation*}
f_{n+1, k}=k f_{n, k}+f_{n, k-1}+4(n-k+2) f_{n, k-2} \tag{25}
\end{equation*}
$$

with the initial conditions $f_{0,0}=1$ and $f_{n, 0}=0$ for $n \geq 1$. Let $f_{n}(x)=\sum_{k=0}^{n} f_{n, k} x^{k}$. Then

$$
\begin{equation*}
f(x, z)=\sum_{n=0}^{\infty} f_{n}(x) \frac{z^{n}}{n!}=\sqrt{T(2 x, z)} \tag{26}
\end{equation*}
$$

where $T(x, z)$ is given by (4).
Proof. We first consider the grammar (20). Note that

$$
D(x)=x y z, D(y z)=y z\left(y^{2}+z^{2}\right), D\left(y^{2}+z^{2}\right)=4 y^{2} z^{2}
$$

Set $u=y z$ and $v=y^{2}+z^{2}$. Then we have $D(x)=x u, D(u)=u v$ and $D(v)=4 u^{2}$. If

$$
\begin{equation*}
G_{4}=\left\{x \rightarrow x u, u \rightarrow u v, v \rightarrow 4 u^{2}\right\} \tag{27}
\end{equation*}
$$

then by induction we see that there exist nonnegative integers $f_{n, k}$ such that

$$
\begin{equation*}
D_{G_{4}}^{n}(x)=x \sum_{k=0}^{n} f_{n, k} u^{k} v^{n-k} \tag{28}
\end{equation*}
$$

Note that

$$
\begin{aligned}
D_{G_{4}}^{n+1}(x) & =D_{G_{4}}\left(x \sum_{k=1}^{n} f_{n, k} u^{k} v^{n-k}\right) \\
& =x \sum_{k} f_{n, k}\left(u^{k+1} v^{n-k}+k u^{k} v^{n-k+1}+4(n-k) u^{k+2} v^{n-k-1}\right)
\end{aligned}
$$

By comparing the coefficients of $u^{k} v^{n+1-k}$, we get (25). Moreover, it follows from (27) that $f_{0,0}=1$ and $f_{n, 0}=0$ for $n \geq 1$. By using (28), upon taking $u=y z$ and $v=y^{2}+z^{2}$, we get

$$
\begin{equation*}
D_{G_{2}}^{n}(x)=x \sum_{k=0}^{n} f_{n, k}(y z)^{k}\left(y^{2}+z^{2}\right)^{n-k} \tag{29}
\end{equation*}
$$

By comparing (29) with (21), we get

$$
\begin{equation*}
F_{n}(x)=\sum_{k=0}^{n} f_{n, k} x^{k}\left(1+x^{2}\right)^{n-k} \tag{30}
\end{equation*}
$$

We now consider a change of the grammar (10). Set $q=\frac{1}{2}, a=x, b=2 u, c=v$. Then

$$
D(x)=x u, D(u)=u v, D(v)=4 u^{2}
$$

which are the substitution rules in the grammar (27). Hence it follows from (13) that

$$
\sum_{n=0}^{\infty} D_{G_{4}}^{n}(x) \frac{z^{n}}{n!}=x \sum_{n=0}^{\infty} \sum_{k=0}^{n} f_{n, k} u^{k} v^{n-k} \frac{z^{n}}{n!}=x R\left(\frac{2 u}{v}, v z ; \frac{1}{2}\right)
$$

which leads to $f(x, z)=R(2 x, z ; 1 / 2)=\sqrt{T(2 x, z)}$. This completes the proof.

Combining (26) and (30), we immediately get the following result.
Corollary 15. We have

$$
F(x, z)=\sum_{n=0}^{\infty} F_{n}(x) \frac{z^{n}}{n!}=\sqrt{T\left(\frac{2 x}{1+x^{2}},\left(1+x^{2}\right) z\right)} .
$$

It would be interesting to present a combinatorial interpretation of Corollary 15, By using (26), it is not hard to verify that

$$
\sum_{n=0}^{\infty} f_{n, n} \frac{x^{n}}{n!}=\sqrt{\frac{1+\tan x}{1-\tan x}}
$$

It should be noted that the numbers $f_{n, n}$ appear as A012259 in [27].

5. Concluding remarks

This paper gives a survey of some results related to alternating runs of permutations. We present a method to construct David-Barton type identities, and based on the survey [2], one can derive several David-Barton type identities. Moreover, we introduce the definition of semi-γ-positive polynomial. The γ-positivity of a polynomial $f(x)$ is a sufficient (not necessary) condition for the semi- γ-positivity of $f(x)$. In particular, we show that the alternating run polynomials of dual Stirling permutations are semi- γ-positive.

References

[1] D. André, Étude sur les maxima, minima et séquences des permutations, Ann. Sci. École Norm. Sup., 3(1) (1884), 121-135.
[2] C.A. Athanasiadis, Gamma-positivity in combinatorics and geometry, Sém. Lothar. Combin., 77 (2018), Article B77i.
[3] M. Bóna, R. Ehrenborg, A combinatorial proof of the log-concavity of the numbers of permutations with k runs, J. Combin. Theory Ser. A, 90 (2000), 293-303.
[4] M. Bóna, Combinatorics of Permutations, second ed., CRC Press, Boca Raton, FL, 2012.
[5] P. Brändén, Actions on permutations and unimodality of descent polynomials, European J. Combin., 29 (2008), 514-531.
[6] E.R. Canfield, H. Wilf, Counting permutations by their alternating runs, J. Combin. Theory Ser. A, 115 (2008), 213-225.
[7] L. Carlitz, Enumeration of permutations by sequences, Fibonacci Quart., 16 (3) (1978), 259-268.
[8] W.Y.C. Chen, Context-free grammars, differential operators and formal power series, Theoret. Comput. Sci., 117 (1993), 113-129.
[9] W.Y.C. Chen, A.M. Fu, Context-free grammars for permutations and increasing trees, Adv. in Appl. Math., 82 (2017), 58-82.
[10] C.-O. Chow, On certain combinatorial expansions of the Eulerian polynomials, Adv. in Appl. Math., 41 (2008), 133-157.
[11] C.-O. Chow, S.-M. Ma, Counting signed permutations by their alternating runs, Discrete Math., 323 (2014), 49-57.
[12] F.N. David, D.E. Barton, Combinatorial Chance, Charles Griffin and Company, Ltd., London, UK, 1962.
[13] M.A. Eisenstein-Taylor, Polytopes, permutation shapes and bin packing, Adv. Appl. Math., 30 (2003), 96-109.
[14] D. Foata and M. P. Schützenberger, Théorie géometrique des polynômes eulériens, Lecture Notes in Math. vol. 138, Springer, Berlin, 1970.
[15] S.R. Gal, Real root conjecture fails for five and higher-dimensional spheres, Discrete Comput. Geom., 34 (2005), 269-284.
[16] I. Gessel and R.P. Stanley, Stirling polynomials, J. Combin. Theory Ser. A, 24 (1978), 25-33.
[17] J. Haglund, M. Visontai, Stable multivariate Eulerian polynomials and generalized Stirling permutations, European J. Combin., 33 (2012), 477-487.
[18] M. Josuat-Vergès, C.Y. Amy Pang, Subalgebras of Solomon's descent algebra based on alternating runs, J. Combin. Theory Ser. A, 158 (2018), 36-65.
[19] D.E. Knuth, The art of computer programming, Volume 3, Addison-Wesley, Reading, MA, 1973.
[20] Z. Lin, J. Zeng, The γ-positivity of basic Eulerian polynomials via group actions, J. Combin. Theory Ser. A, 135 (2015), 112-129.
[21] S.-M. Ma, An explicit formula for the number of permutations with a given number of alternating runs, J. Combin. Theory Ser. A, 119 (2012), 1660-1664.
[22] S.-M. Ma, Enumeration of permutations by number of alternating runs, Discrete Math., 313 (2013), 18161822.
[23] S.-M. Ma, H.-N. Wang, Enumeration of a dual set of Stirling permutations by their alternating runs, Bull. Aust. Math. Soc., 94 (2016), 177-186.
[24] S.-M. Ma, J. Ma, Y.-N. Yeh, The ascent-plateau statistics on Stirling permutations, Electron. J. Combin., 26(2) (2019), \#P2.5.
[25] S.-M. Ma, Y. Wang, q-Eulerian polynomials and polynomials with only real zeros, Electron. J. Combin., 15 (2008), \#R17.
[26] T.K. Petersen, Eulerian Numbers. Birkhäuser/Springer, New York, 2015.
[27] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, 2010.
[28] R.P. Stanley, Longest alternating subsequences of permutations, Michigan Math. J., 57 (2008), 675-687.
[29] A.F.Y. Zhao, The combinatorics on permutations and derangements of type B, Ph.D. dissertation, Nankai University, 2011
[30] Y. Zhuang, Counting permutations by runs, J. Combin. Theory Ser. A, 142 (2016), 147-176.
[31] Y. Zhuang, Eulerian polynomials and descent statistics, Adv. Appl. Math., 90 (2017), 86-144.

School of Mathematics and Statistics, Northeastern University at Qinhuangdao, Hebei 066000, P.R. China

E-mail address: shimeimapapers@163.com (S.-M. Ma)
Department of mathematics, Shanghai Jiao Tong University, Shanghai, P.R. China
E-mail address: majun904@sjtu.edu.cn(J. Ma)
Institute of Mathematics, Academia Sinica, Taipei, Taiwan
E-mail address: mayeh@math.sinica.edu.tw (Y.-N. Yeh)

