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THE ALTERNATING RUN POLYNOMIALS OF PERMUTATIONS

SHI-MEI MA, JUN MA, AND YEONG-NAN YEH

Abstract. In this paper, we first consider a generalization of the David-Barton identity which

relate the alternating run polynomials to Eulerian polynomials. By using context-free grammars,

we then present a combinatorial interpretation of a family of q-alternating run polynomials.

Furthermore, we introduce the definition of semi-γ-positive polynomial and we show the semi-

γ-positivity of the alternating run polynomials of dual Stirling permutations. A connection

between the up-down run polynomials of permutations and the alternating run polynomials of

dual Stirling permutations is established.
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1. Introduction

The enumeration of permutations by number of alternating runs was first studied by

André [1]. Knuth [19, Section 5.1.3] has discussed this topic in connection to sorting and

searching. Over the past few decades, the study of alternating runs of permutations was initiated

by David and Barton [12, 157-162].

Let Sn denote the symmetric group of all permutations of [n] = {1, 2, . . . , n}. Let π =

π(1)π(2) · · · π(n) ∈ Sn. An alternating run of π is a maximal consecutive subsequence that is

increasing or decreasing (see [1, 22]). An up-down run of π is an alternating run of π endowed

with a 0 in the front (see [13, 22]). Let altrun (π) (resp. udrun (π)) be the number of alternating

runs (resp. up-down runs) of π. For example, if π = 324156, then altrun (π) = 4, udrun(π) = 5.

We define

Rn,k = #{π ∈ Sn : altrun (π) = k},
Tn,k = #{π ∈ Sn : udrun (π) = k}.

It is well known that these numbers satisfy the following recurrence relations

Rn+1,k = kRn,k + 2Rn,k−1 + (n− k + 1)Rn,k−2,

Tn+1,k = kTn,k + Tn,k−1 + (n− k + 2)Tn,k−2, (1)

with the initial conditions R1,0 = 1 and R1,k = 0 for k ≥ 1, T0,0 = 1 and T0,k = 0 for k ≥ 1

(see [1, 13]). The alternating run polynomial and up-down run polynomial are respectively

defined by Rn(x) =
∑n−1

k=0 Rn,kx
k and Tn(x) =

∑n
k=0 Tn,kx

k.

A descent of π ∈ Sn is an index i ∈ [n−1] such that π(i) > π(i+1). Denote by des (π) the num-

ber of descents of π. The classical Eulerian polynomial is defined by An(x) =
∑

π∈Sn
xdes (π)+1.
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By solving a differential equation, David and Barton [12, 157-162] established the identity:

Rn(x) =

(
1 + x

2

)n−1

(1 + w)n+1An

(
1− w

1 + w

)
(2)

for n ≥ 2, where w =
√

1−x
1+x . Using (2), Bóna proved that the polynomial Rn(x) has only

real zeros (see [4]). Moreover, one can prove that Rn(x) has the zero x = −1 with the mul-

tiplicity ⌊n2 ⌋ − 1 by using (2), which can also be obtained based on the recurrence relation of

Rn(x) (see [25]). Motivated by (2), Zhuang [31] proved several identities expressing polynomials

counting permutations by various descent statistics in terms of Eulerian polynomials.

Let us now recall another combinatorial interpretation of Tn(x). An alternating subsequence

of π is a subsequence π(i1) · · · π(ik) satisfying

π(i1) > π(i2) < π(i3) > · · · π(ik),

where i1 < i2 < · · · < ik (see [28]). Denote by as (π) the number of terms of the longest

alternating subsequence of π. By definition, we see that as (π) = udrun (π). Thus

Tn(x) =
∑

π∈Sn

xas (π).

There has been much recent work related to the numbers Rn,k and Tn,k. In [3], Bóna and

Ehrenborg proved that R2
n,k ≥ Rn,k−1Rn,k+1. Subsequently, Bóna [4, Section 1.3.2] noted that

Tn(x) =
1

2
(1 + x)Rn(x) (3)

for n ≥ 2. Set ρ =
√
1− x2. Stanley [28, Theorem 2.3] showed that

T (x, z) =:

∞∑

n=0

Tn(x)
zn

n!
= (1− x)

1 + ρ+ 2xeρz + (1− ρ)e2ρz

1 + ρ− x2 + (1− ρ− x2)e2ρz
. (4)

By using (3) and (4), Stanley [28] obtained explicit formulas of Tn,k and Rn,k. Canfield and

Wilf [6] presented an asymptotic formula for Rn,k. In [21], another explicit formula of Rn,k

was obtained by combining the derivative polynomials of tangent function and the following

generating function obtained by Carlitz [7]:

∞∑

n=0

zn

n!

n∑

k=0

Rn+1,kx
n−k =

1− x

1 + x

(√
1− x2 + sin(z

√
1− x2)

x− cos(z
√
1− x2)

)2

.

In [22], several convolution formulas of the polynomials Rn(x) and Tn(x) are obtained by us-

ing Chen’s grammars. By generalizing a reciprocity formula of Gessel, Zhuang [30] obtained

generating function for permutation statistics that are expressible in terms of alternating runs.

Very recently, Josuat-Vergès and Pang [18] showed that alternating runs can be used to define

subalgebras of Solomon’s descent algebra.

In this paper, we continue the work initiated by David and Barton [12]. In Section 2, we

consider a generalization of (2). In Section 3, we present a combinatorial interpretation of a

family of q-alternating run polynomials by using Chen’s grammars. In Section 4, we show the

semi-γ-positivity of the alternating run polynomials of dual Stirling permutations.
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2. The David-Barton type identity

Let f(x) =
∑n

i=0 fix
i be a symmetric polynomial, i.e., fi = fn−i for any 0 ≤ i ≤ n. Then

f(x) can be expanded uniquely as

f(x) =

⌊n

2
⌋∑

k=0

γkx
k(1 + x)n−2k,

and it is said to be γ-positive if γk ≥ 0 for 0 ≤ k ≤ ⌊n2 ⌋ (see [15]). The γ-positivity provides

an approach to study symmetric and unimodal polynomials and has been extensively studied

(see [2, 5, 10, 20] for instance).

The first main result of our paper is the following, which shows that the David-Barton type

identities often occur in combinatorics and geometry.

Theorem 1. Let

Mn(x) =

⌊(n+δ)/2⌋∑

k=0

M(n, k)xk(1 + x)n+δ−2k

be a symmetric polynomial, where δ is a fixed integer. Set w =
√

1−x
1+x . Then

Nn(x) =

(
1 + x

2

)n−δ

(1 + w)n+δMn

(
1− w

1 + w

)
(5)

if and only if

Nn(x) =

⌊(n+δ)/2⌋∑

k=0

1

2k−2δ
M(n, k)xk(1 + x)n−δ−k. (6)

Proof. Set α = 1+x
2 . Note that

1− w2 =
x

α
,

1− w

1 + w
=

1− w2

(1 + w)2
=

1

(1 + w)2
x

α
,

1 +
1− w

1 + w
=

2

1 + w
.

It follows from (5) that

Nn(x) =

(
1 + x

2

)n−δ

(1 + w)n+δMn

(
1− w

1 + w

)

= αn−δ(1 + w)n+δ
∑

k

M(n, k)
1

(1 + w)2k
xk

αk

(
2

1 + w

)n+δ−2k

=
∑

k

M(n, k)xkαn−δ−k2n+δ−2k

=
∑

k

M(n, k)xk
(
1 + x

2

)n−δ−k

2n+δ−2k

=
∑

k

1

2k−2δ
M(n, k)xk(1 + x)n−δ−k,

and vice versa. This completes the proof. �



4 S.-M. MA, J. MA, AND Y.-N. YEH

The reader is referred to [2] for a survey of some recent results on γ-positivity. For any γ-

positive polynomial Mn(x), we can define an associated polynomial Nn(x) by using (6). And

then we get a David-Barton type identity (5). As illustrations, in the rest of this section, we

shall present two examples.

For example, Foata and Schützenberger [14] discovered that

An(x) =

⌊(n+1)/2⌋∑

k=1

a(n, k)xk(1 + x)n+1−2k

for n ≥ 1, where the numbers a(n, k) satisfy the recurrence relation

a(n, k) = ka(n − 1, k) + (2n − 4k + 4)a(n − 1, k − 1),

with the initial conditions a(1, 1) = 1 and a(1, k) = 0 for k 6= 1 (see [10, 26] for instance). By

using the David-Barton identity (2) and Theorem 1, we immediately get the following result.

Proposition 2. For n ≥ 2, we have

Rn(x) =

⌊(n+1)/2⌋∑

k=1

1

2k−2
a(n, k)xk(1 + x)n−1−k.

Let ±[n] = {±1,±2, . . . ,±n}. Let Bn be the hyperoctahedral group of rank n. Elements of

Bn are signed permutations of ±[n] with the property that π(−i) = −π(i) for all i ∈ [n]. In

the sequel, we always assume that signed permutations in Bn are prepended by 0. That is, we

identify a signed permutation π = π(1) · · · π(n) with the word π(0)π(1) · · · π(n), where π(0) = 0.

A type B descent is an index i ∈ {0, 1, . . . , n− 1} such that π(i) > π(i+1). Let desB(π) be the

number of type B descents of π. The type B Eulerian polynomials are defined by

Bn(x) =
∑

π∈Bn

xdesB(π).

It is well known that

Bn(x) =

⌊n/2⌋∑

k=0

b(n, k)xk(1 + x)n−2k,

where the numbers b(n, k) satisfy the recurrence relation

b(n, k) = (1 + 2k)b(n − 1, k) + 4(n − 2k + 1)b(n − 1, k − 1), (7)

with the initial conditions b(1, 0) = 1 and b(1, k) = 0 for k 6= 0 (see [2, 10, 26]).

Define

bn(x) =

⌊n/2⌋∑

k=0

1

2k
b(n, k)xk(1 + x)n−k. (8)

Then by Theorem 1, we get the following result.

Proposition 3. For n ≥ 1, we have

bn(x) =

(
1 + x

2

)n

(1 +w)nBn

(
1− w

1 + w

)
.
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Combining (7) and (8), we see that the polynomials bn(x) satisfy the recurrence relation

bn+1(x) = (1 + x+ 2nx2)bn(x) + 2x(1− x2)b′n(x), (9)

with the initial conditions b0(x) = 1, b1(x) = 1 + x. For n ≥ 1, we define bn(x) =
1+x
x cn(x). It

follows from (9) that the polynomials cn(x) satisfy the recurrence relation

cn+1(x) = (2nx2 + 3x− 1)cn(x) + 2x(1− x2)c′n(x).

Let B̂n = {π ∈ Bn | π(1) > 0}. There is a combinatorial interpretation of cn(x) (see [11, 29]):

cn(x) =
∑

π∈B̂n

xaltrun (π).

3. The q-alternating runs polynomials

For an alphabet A, let Q[[A]] be the rational commutative ring of formal power series in

monomials formed from letters in A. A Chen’s grammar (which is known as context-free gram-

mar) over A is a function G : A → Q[[A]] that replaces a letter in A by an element of Q[[A]],

see [8, 9, 24] for details. The formal derivative D := DG is a linear operator defined with re-

spect to a context-free grammar G. Following [9], a grammatical labeling is an assignment of

the underlying elements of a combinatorial structure with variables, which is consistent with the

substitution rules of a grammar.

Let us now recall two results on context-free grammars.

Proposition 4 ([22, Theorem 6]). If G = {a → ab, b → bc, c → b2}, then

Dn(a) = a
n∑

k=0

Tn,kb
kcn−k, Dn(a2) = a2

n∑

k=0

Rn+1,kb
kcn−k.

Proposition 5 ([22, Theorem 9]). If G = {a → 2ab, b → bc, c → b2}, then

Dn(a) = a

n∑

k=0

Rn+1,kb
kcn−k.

Combining Leibniz’s formula and Proposition 4, we see that

Rn+1(x) =
n∑

k=0

(
n

k

)
Tk(x)Tn−k(x).

Motivated by Propositions 4 and 5, it is natural to consider the grammar

G1 = {a → qab, b → bc, c → b2}. (10)

Note that DG1
(a) = qab, D2

G1
(a) = a(q2b2 + qbc). By induction, it is easy to verify that

Dn
G1

(a) = a
n∑

k=0

Rn,k(q)b
kcn−k. (11)



6 S.-M. MA, J. MA, AND Y.-N. YEH

It follows from (10) that

Dn+1
G1

(a) = DG1

(
a

n∑

k=0

Rn,k(q)b
kcn−k

)

= a
∑

k

Rn,k(q)
(
kbkcn−k+1 + qbk+1cn−k + (n− k)bk+2cn−k−1

)
,

which leads to the recurrence relation

Rn+1,k(q) = kRn,k(q) + qRn,k−1(q) + (n− k + 2)Rn,k−2(q). (12)

The q-alternating run polynomials are defined by

Rn(x; q) =

n∑

k=0

Rn,k(q)x
k.

In particular, Rn(x; 1) = Tn(x), Rn(x; 2) = Rn+1(x). The first few Rn(x; q) are given as follows:

R0(x; q) = 1, R1(x; q) = qx, R2(x; q) = qx(1 + qx), R3(x; q) = qx(1 + 3qx+ x2 + q2x2).

We define

R(x, z; q) :=

∞∑

n=0

Rn(x; q)
zn

n!
.

Proposition 6. We have R(x, z; q) = T q(x, z), where T (x, z) is given by (4). Therefore,

∞∑

n=0

Dn
G1

(a)
zn

n!
= aR

(
b

c
, cz; q

)
= aT q

(
b

c
, cz

)
. (13)

Moreover, we have Rn(x;−q) = Rn(−x; q) and Rn(−x;−q) = Rn(x; q).

Proof. By rewriting (12) in terms of generating function R(x, z; q), we obtain

(1− x2z)
∂

∂z
R(x, z; q) = x(1− x2)

∂

∂x
R(x, z; q) + qxR(x, z; q). (14)

It is routine to check that the generating function T q(x, z) satisfies (14). Also, this generating

function gives T q(0, z) = T q(x, 0) = 1. Hence R(x, z; q) = T q(x, z). It is routine to check that

R(x, z;−q) = R(−x, z; q), R(−x, z;−q) = R(x, z; q)

which leads to the desired result. �

We say that π ∈ Sn is a circular permutation if it has only one cycle. Let A = {x1, x2, . . . , xk}
be a finite set of positive integers, and let CA be the set of all circular permutations of A. We

will write a permutation w ∈ CA by using its canonical presentation w = y1y2 · · · yk, where y1 =
minA, yi = wi−1(y1) for 2 ≤ i ≤ k and y1 = wk(y1). A cycle peak (resp. cycle double ascent, cycle

double descent) of w is an entry yi, 2 ≤ i ≤ k, such that yi−1 < yi > yi+1 (resp. yi−1 < yi < yi+1,

yi−1 > yi > yi+1), where we set yk+1 = ∞. Let cpk (w) (resp. cdasc (w), cddes (w), cyc (w)) be

the number of cycle peaks (resp. cycle double ascents, cycle double descents, cycles) of w.

Definition 7. A cycle run of a circular permutation w is an alternating run of w endowed with

a ∞ in the end. Let crun (w) be the number of cycle runs of w.
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It is clear that crun (w) = 2cpk (w) + 1. In the following discussion we always write π ∈ Sn

in standard cycle decomposition: π = w1 · · ·wk, where the cycles are written in increasing order

of their smallest entry and each of these cycles is expressed in canonical presentation. We define

crun (π) :=
k∑

i=1

crun (wi).

In particular, crun ((1)(2) · · · (n)) =∑n
i=1 crun (i) =

∑n
i=1 altrun (i∞) = n. We can now present

the second main result.

Theorem 8. For n ≥ 1, we have

Rn(x; q) =
∑

π∈Sn

xcrun (π)qcyc (π). (15)

Proof. For π ∈ Sn, we first put a ∞ in the end of each cycle. We then introduce a grammatical

labeling of π as follows:

(L1) Put a subscript label q at the end of each cycle of π;

(L2) Put a superscript label a at the end of π;

(L3) Put a superscript label b before each ∞;

(L4) If π(i) is a cycle peak, then put a superscript label b before π(i) and a superscript label

b right after π;

(L5) If π(i) is a cycle double ascents, then put the superscript label c before π(i);

(L6) If π(i) is a cycle double descents, then put the superscript label c right after π(i).

The weight of π is the product of its labels. When n = 1, 2, we have

S1 = {(1b∞)aq}, S2 = {(1b∞)q(2
b∞)aq , (1c2b∞)aq}.

Then the weight of (1b)aq is given by DG1
(a), and the sum of weights of the elements in S2 is

given by D2
G1

(a). Hence the result holds for n = 1, 2. Let

rn(i, j) = {π ∈ Sn : crun (π) = i, cyc (π) = j}.

Suppose we get all labeled permutations in rn−1(i, j), where n ≥ 3. Let π′ be obtained from

π ∈ rn−1(i, j) by inserting the entry n. We distinguish the following four cases:

(c1) If we insert n as a new cycle, then π′ ∈ rn−1(i + 1, j + 1). This case corresponds to the

substitution rule a → qab.

(c2) If we insert n before a ∞, then π′ ∈ rn−1(i, j). This case corresponds to the substitution

rule b → bc;

(c3) If we insert n before or right after a cycle peak, then π′ ∈ rn−1(i, j). This case corresponds

to the substitution rule b → bc;

(c4) If we insert n before a cycle double ascents or right after a cycle double descents, then

π′ ∈ rn−1(i+ 2, j). This case corresponds to the substitution rule c → b2.

In each case, the insertion of n corresponds to one substitution rule in the grammar (10). It is

easy to check that the action ofDG1
on elements ofSn−1 generates all elements ofSn. Using (11)

and by induction, we present a constructive proof of (15). This completes the proof. �
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We define

Rn(x, y; q) =
∑

π∈Sn

xcrun (π)yfix (π)qcyc (π),

R(x, y, z; q) =
∞∑

n=0

Rn(x, y; q)
zn

n!
.

By using the principle of inclusion-exclusion, it is routine to verify that

Rn(x, y; q) =
n∑

i=0

(
n

i

)
(qxy − qx)iRn−i(x; q).

Hence

R(x, y, z; q) = eqx(y−1)zR(x, z; q) = eqx(y−1)zT q(x, z). (16)

A permutation π ∈ Sn is a derangement if π(i) 6= i for any i ∈ [n]. Let Dn denote the set of

derangements in Sn. Then

Rn(x, 0; 1) =
∑

π∈Dn

xcrun (π).

Proposition 9. Set dn(x) = Rn(x, 0; 1). Then the polynomials dn(x) satisfy the recurrence

dn+1(x) = nx2dn(x) + x(1− x2)d′n(x) + nxdn−1(x), (17)

with the initial conditions d0(x) = 1, d1(x) = 0. In particular, dn(−1) = −(n− 1) for n ≥ 1.

Proof. Let d(x, z) =
∑∞

n=0 dn(x)
zn

n! . It follow from (16) that

d(x, z) = e−xzT (x, z). (18)

By rewriting (1) in terms of generating function T (x, z), we obtain

(1− x2z)
∂

∂z
T (x, z) = xT (x, z) + x(1− x2)

∂

∂x
T (x, z).

Hence

(1− x2z)
∂

∂z
d(x, z) = xzd(x, z) + x(1− x2)

∂

∂x
d(x, z),

which yields the desired recurrence relation. �

Let dn(x) =
∑n

k=0 dn,kx
k. By using (18), it is not hard to verify that

∞∑

n=0

dn,n
zn

n!
=

e−x

tan x+ sec x
.

4. Semi-γ-positive polynomials

Let g(x) =
∑2n

i=0 gix
i be a symmetric polynomial. Note that

g(x) =

n∑

i=0

γix
i(1 + x)2(n−i)

=
n∑

i=0

γix
i(1 + 2x+ x2)n−i

=
n∑

i=0

n−i∑

ℓ=0

(
n− i

ℓ

)
2ℓγix

i+ℓ(1 + x2)n−i−ℓ.
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Hence g(x) can be expanded as

g(x) =

n∑

k=0

λkx
k(1 + x2)n−k.

It is clear that if γi ≥ 0 for all 0 ≤ i ≤ n, then λk ≥ 0 for all 0 ≤ k ≤ n. Furthermore, we have

g(x) =

⌊n/2⌋∑

k=0

λ2kx
2k(1 + x2)n−2k +

⌊(n−1)/2⌋∑

k=0

λ2k+1x
2k+1(1 + x2)n−2k−1

= g1(x
2) + xg2(x

2).

Similarly, if h(x) =
∑2n+1

i=0 hix
i a symmetric polynomial, then we have

h(x) =

n∑

i=0

βix
i(1 + x)2n+1−2i

= (1 + x)

n∑

i=0

n−i∑

ℓ=0

(
n− i

ℓ

)
2ℓβix

i+ℓ(1 + x2)n−i−ℓ.

Hence h(x) can be expanded as

h(x) = (1 + x)
n∑

k=0

µkx
k(1 + x2)n−k.

Definition 10. If f(x) = (1 + x)ν
∑n

k=0 λkx
k(1 + x2)n−k and λk ≥ 0 for all 0 ≤ k ≤ n, then

we say that f(x) is semi-γ-positive, where ν = 0 or ν = 1.

It should be noted that a semi-γ-positive polynomial is not always γ-positive. From the above

discussion it follows that we have the following result.

Proposition 11. If f(x) = (1 + x)ν
(
f1(x

2) + xf2(x
2)
)
is a semi-γ-positive polynomial, then

both f1(x) and f2(x) are γ-positive.

In the following, we shall show the semi-γ-positivity of the alternating run polynomials of dual

Stirling permutations. Following [16], a Stirling permutation of order n is a permutation of the

multiset {1, 1, . . . , n, n} such that for each i, 1 ≤ i ≤ n, all entries between the two occurrences

of i are larger than i. There has been much recent work on Stirling permutations, see [17, 24]

and references therein.

Denote by Qn the set of Stirling permutations of order n. Let σ = σ1σ2 · · · σ2n ∈ Qn. Let Φ

be the injection which maps each first occurrence of entry j in σ to 2j and the second j to 2j−1,

where j ∈ [n]. For example, Φ(221331) = 432651. Let Φ(Qn) = {π | σ ∈ Qn,Φ(σ) = π} be the

set of dual Stirling permutations of order n. Clearly, Φ(Qn) is a subset of S2n. For π ∈ Φ(Qn),

the entry 2j is to the left of 2j−1, and all entries in π between 2j and 2j−1 are larger than 2j,

where 1 ≤ j ≤ n. Noted that π ∈ Φ(Qn) always ends with a descending run. The alternating

runs polynomials of dual Stirling permutations are defined by

Fn(x) =
∑

σ∈Φ(Qn)

xaltrun (σ) =
2n−1∑

k=1

Fn,kx
k.
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According to [23], the numbers Fn,k satisfy the recurrence relation

Fn+1,k = kFn,k + Fn,k−1 + (2n− k + 2)Fn,k−2. (19)

with the initial conditions F0,0 = 1, F1,1 = 1 and Fn,0 = 0 for n ≥ 1. It follows from (19) that

Fn+1(x) = (x+ 2nx2)Fn(x) + x(1− x2)F ′
n(x).

The first few Fn(x) are given as follows:

F1(x) = x,

F2(x) = x+ x2 + x3,

F3(x) = x+ 3x2 + 7x3 + 3x4 + x5,

F4(x) = x+ 7x2 + 29x3 + 31x4 + 29x5 + 7x6 + x7.

Let

r(x) =

√
1 + x

1− x
.

By induction, it is to verify that
(
x
d

dx

)2n

r(x) =
r(x)F2n(x)

(1− x2)2n
,

(
x
d

dx

)2n+1

r(x) =
F2n+1(x)

r(x)(1− x2)2n(1− x)2
.

Lemma 12 ([23]). If

G2 = {x → xyz, y → yz2, z → y2z}, (20)

then we have

Dn
G2

(x) = x
∑

σ∈Φ(Qn)

yaltrun (σ)z2n−altrun (σ) = x
2n−1∑

k=0

Fn,ky
kz2n−k. (21)

We now recall another combinatorial interpretation of Fn(x). An occurrence of an ascent-

plateau of σ ∈ Qn is an index i such that σi−1 < σi = σi+1, where i ∈ {2, 3, . . . , 2n − 1}.
An occurrence of a left ascent-plateau is an index i such that σi−1 < σi = σi+1, where i ∈
{1, 2, . . . , 2n − 1} and σ0 = 0. Let ap (σ) and la (σ) be the numbers of ascent-plateaus and left

ascent-plateaus of σ, respectively. The number of flag ascent-plateaus of σ is defined by

fap (σ) =

{
2ap (σ) + 1, if σ1 = σ2;

2ap (σ), otherwise.

Clearly, fap (σ) = ap (σ) + la (σ). Following [24, Section 3], we have

Dn
G2

(x) = x
∑

σ∈Qn

yfap (σ)z2n−fap (σ).

Thus,

Fn(x) =
∑

σ∈Qn

xfap (σ).

In fact, it is easy to verify that fap (σ) = altrun (Φ(σ)) for any σ ∈ Qn.



THE ALTERNATING RUN POLYNOMIALS OF PERMUTATIONS 11

Proposition 13. For n ≥ 1, we have

Fn(x) =

n∑

k=1

γn,kx
k(1 + x)2n−2k,

where the numbers γn,k satisfy the recurrence relation

γn+1,k = kγn,k + (2n− 4k + 5)γn,k−1, (22)

with the initial conditions γ1,1 = 1 and γ1,k = 0 for k 6= 1. In particular,

γn+1,n+1 = (−1)n(2n− 1)!! for n ≥ 1.

Proof. We first consider a change of the grammar (20). Set a = yz and b = y+ z. Then we have

D(x) = xa, D(a) = a(b2 − 2a), D(b) = ab. If

G3 = {x → xa, a → a(b2 − 2a), b → ab},

then by induction, we see that there exist integers γn,k such that

Dn
G3

(x) = x
n∑

k=0

γn,ka
kb2n−2k. (23)

Note that

Dn+1
G3

(x) = DG3

(
x

n∑

k=1

γn,ka
kb2n−2k

)

= x
∑

k

γn,ka
kb2n−2k

(
a+ kb2 − 2ka+ (2n − 2k)a

)

By comparing the coefficients of akb2n−2k+2, we immediately get (22). Moreover, it is clear that

γn,0 = 0 for n ≥ 1. By using (23), upon taking a = yz and b = y + z, we get

Dn
G2

(x) = x
n∑

k=0

γn,k(yz)
k(y + z)2n−2k. (24)

Then comparing (24) with (21), we see that Fn(x) =
∑n

k=1 γn,kx
k(1 + x)2n−2k for n ≥ 1. By

using (22), we obtain

γn+1,n+1 = −(2n− 1)γn,n,

which yields the desired explicit formula. �

For n ≥ 1, let γn(x) =
∑n

k=1 γn,kx
k. It follows from (22) that

γn+1(x) = (2n + 1)xγn(x) + x(1− 4x)γ′n(x).

The first few γn(x) are γ0(x) = 1, γ1(x) = x, γ2(x) = x − x2, γ3(x) = x − x2 + 3x3. From

Proposition 13, we see that for any positive even integer n, the polynomial Fn(x) is not γ-positive.

We can now present the third main result of this paper.
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Theorem 14. The polynomial Fn(x) is semi-γ-positive. More precisely, we have

Fn(x) =
n∑

k=0

fn,kx
k(1 + x2)n−k,

where the numbers fn,k satisfy the recurrence relation

fn+1,k = kfn,k + fn,k−1 + 4(n− k + 2)fn,k−2, (25)

with the initial conditions f0,0 = 1 and fn,0 = 0 for n ≥ 1. Let fn(x) =
∑n

k=0 fn,kx
k. Then

f(x, z) =

∞∑

n=0

fn(x)
zn

n!
=
√

T (2x, z), (26)

where T (x, z) is given by (4).

Proof. We first consider the grammar (20). Note that

D(x) = xyz, D(yz) = yz(y2 + z2), D(y2 + z2) = 4y2z2.

Set u = yz and v = y2 + z2. Then we have D(x) = xu, D(u) = uv and D(v) = 4u2. If

G4 = {x → xu, u → uv, v → 4u2}, (27)

then by induction we see that there exist nonnegative integers fn,k such that

Dn
G4

(x) = x
n∑

k=0

fn,ku
kvn−k. (28)

Note that

Dn+1
G4

(x) = DG4

(
x

n∑

k=1

fn,ku
kvn−k

)

= x
∑

k

fn,k

(
uk+1vn−k + kukvn−k+1 + 4(n− k)uk+2vn−k−1

)
.

By comparing the coefficients of ukvn+1−k, we get (25). Moreover, it follows from (27) that

f0,0 = 1 and fn,0 = 0 for n ≥ 1. By using (28), upon taking u = yz and v = y2 + z2, we get

Dn
G2

(x) = x
n∑

k=0

fn,k(yz)
k(y2 + z2)n−k. (29)

By comparing (29) with (21), we get

Fn(x) =

n∑

k=0

fn,kx
k(1 + x2)n−k. (30)

We now consider a change of the grammar (10). Set q = 1
2 , a = x, b = 2u, c = v. Then

D(x) = xu, D(u) = uv, D(v) = 4u2,

which are the substitution rules in the grammar (27). Hence it follows from (13) that

∞∑

n=0

Dn
G4

(x)
zn

n!
= x

∞∑

n=0

n∑

k=0

fn,ku
kvn−k z

n

n!
= xR

(
2u

v
, vz;

1

2

)
,

which leads to f(x, z) = R(2x, z; 1/2) =
√

T (2x, z). This completes the proof. �
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Combining (26) and (30), we immediately get the following result.

Corollary 15. We have

F (x, z) =

∞∑

n=0

Fn(x)
zn

n!
=

√
T

(
2x

1 + x2
, (1 + x2)z

)
.

It would be interesting to present a combinatorial interpretation of Corollary 15. By us-

ing (26), it is not hard to verify that

∞∑

n=0

fn,n
xn

n!
=

√
1 + tanx

1− tanx
.

It should be noted that the numbers fn,n appear as A012259 in [27].

5. Concluding remarks

This paper gives a survey of some results related to alternating runs of permutations. We

present a method to construct David-Barton type identities, and based on the survey [2], one

can derive several David-Barton type identities. Moreover, we introduce the definition of semi-

γ-positive polynomial. The γ-positivity of a polynomial f(x) is a sufficient (not necessary)

condition for the semi-γ-positivity of f(x). In particular, we show that the alternating run

polynomials of dual Stirling permutations are semi-γ-positive.
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