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ON FINDING THE SMALLEST HAPPY NUMBERS OF ANY

HEIGHTS

GABRIEL LAPOINTE

Abstract. This paper focuses on finding the smallest happy number for each
height in any numerical base. Using the properties of the height, we deduce
a recursive relationship between the smallest happy number and the height
where the initial height is function of the numerical base. With the usage of
the recursive relationship, we build an algorithm that exploits the properties of
the height in order to find all of those smallest happy numbers with unknown
height. However, with the modular arithmetic, we conclude on an equation
that calculates the smallest happy numbers based on known heights for binary
and ternary bases.

1. Introduction

Researches have been done on smallest happy numbers mainly in decimal base
for heights 0 to 12 using the modular arithmetic as shown in theorems 2 to 4 [2] and
theorem 3 [6]. Moreover, there is an algorithm that searches for the smallest happy
number of an unknown height as shown in [6]. In this paper, we give and describe
this algorithm usable for any numerical base B ≥ 2. Instead of continuing to search
for the smallest happy numbers for any height greater than 12 in decimal base, we
are interested on the binary and ternary bases. Small numerical bases may give
hints on an equation or an efficient algorithm to obtain the smallest happy number
of any height for larger numerical bases.

Let x > 0 be an integer. In the numerical base B ≥ 2, x can be written as a
unique sum

x =

L(x)−1
∑

i=0

xiB
i, (1)

where the positive integers x0, . . . , xL(x)−1 are the digits of x and xj = 0 for all j ≥
L(x). We note x as a vector of its digits in base B as being x = (xL(x)−1, . . . , x0)B
where we note L(x) as the length of x and x(k) the kth digit of x starting from the
left for k ∈ {0, 1, . . . , L(x)− 1}.
Definition 1.1. Let B ≥ 2 be the numerical base of a positive integer x. We define

a function HB : N −→ N where

HB(x) =

L(x)−1
∑

i=0

x2
i , (2)
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where HB(0) = 0 in base B.

To simplify the notation, we note Hn
B(x) = Hn−1

B (x)◦HB(x) for all n ≥ 1, where
◦ is the function composition operator. The identity is defined as H0

B(x) = x.

Definition 1.2. Let B ≥ 2 be the numerical base of a positive integer x. We call

x a happy number if and only if there is n ∈ N such that Hn
B(x) = 1.

Definition 1.3. We define the height of a happy number x in base B ≥ 2 as

ηB : N∗ −→ N where

ηB(x) = min{α ∈ N : Hα
B(x) = 1}. (3)

Definition 1.4. We define the smallest happy number in numerical base B ≥ 2
for any height by the function γB : N −→ N∗ where

γB(η(x)) = min{x ∈ N∗ : Hη(x)
B (x) = 1}. (4)

To simplify the notation, we will use η = ηB(x) and γ(η) = γB(η). If there is
ambiguity, we will precise the numerical base (e.g. γ3(η3)).

2. Smallest happy numbers

The objective of this section is to show that there is a relationship between
subsequent heights of smallest happy numbers for all base B ≥ 2. Then, we get a
general equation for γ on which the algorithm will be based.

The following result shows that the function γ is defined uniquely for every η.

Theorem 2.1. For all η ∈ N, there is a unique x ∈ N∗ such that γ(η) = x and

HB(γ(η + 1)) ≥ γ(η).

Proof. To prove the existence, we have to show that there is a x ∈ N∗ happy such
that η(x) = y. We proceed by induction on y. For y = 0, we have x = 1 such
that η(x) = 0 for all B ≥ 2. Lets assume that there is a x ∈ N∗ happy such that
η(x) = y. Let z = (1, . . . , 1)B such that L(z) = x. Thus, HB(z) = x and z is
also happy. In virtue of the induction hypothesis, η(z) = y + 1 which proves the
existence for all y ∈ N.

Let x1, x2 ∈ N∗ where x1 6= x2. Then, let x1 > x2 without loss of generality.
Having γ(η) = x1 or γ(η) = x2 contradict the definition 1.4. Thus, x1 = x2 which
proves the uniqueness.

We deduce from the definition 1.4 that HB(γ(η + 1)) ≥ γ(η). �

We note that 1 is the unique integer of height 0. If 1 < x < B, then HB(x) =
x2 > x. This ensures that (1, 0)B is the smallest happy number of height 1 for all
B ≥ 2.

Lemma 2.2. If γ(η + 1) ≥ B2, then γ(η + 1) > γ(η).

Proof. By theorem 2.1, γ(η + 1) 6= γ(η) for all η. We proceed by contrapositive
and suppose that γ(η) > γ(η + 1). Since γ(η + 1) ≥ B2, we have, in virtue of the
lemma 6 [1], that HB(γ(η + 1)) < γ(η + 1). Applying this with our hypothesis
implies that HB(γ(η+1)) < γ(η) a contradiction with the theorem 2.1. Therefore,
γ(η + 1) > γ(η). �
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We want to show that the smallest happy numbers are strictly increasing as their
height increases starting at a certain height when γ(η + 1) > 2(B − 1)2. However,
even if B2 ≤ γ(η + 1) ≤ 2(B − 1)2, it is generally not true. For example, using
brute-force, we calculate that γ18(28) = (1, 2, 17)18 > B2 and γ18(29) = (11, 16)18.
We see that γ18(28) > γ18(29). The next result ensure that {γ(η), γ(η + 1), . . .} is
strictly increasing when γ(η + 1) > 2(B − 1)2 for all B ≥ 3 and γ(η + 1) ≥ B2 for
the binary base.

Lemma 2.3. If γ(η + 1) > 2(B − 1)2 for all B ≥ 3 and γ(η + 1) ≥ B2 if B = 2,
then γ(η) < γ(η + 1) < . . . < γ(η + k) for all k ∈ N.

Proof. Let’s proceed by induction on k. For the base case, we have to show that
γ(η) < γ(η+ 1). Since γ(η+ 1) > 2(B − 1)2 ≥ B2 for all B ≥ 3 and γ(η+ 1) ≥ B2

if B = 2, we apply the lemma 2.2 and then get the result. Suppose that γ(η) <

γ(η+ 1) < . . . < γ(η + k) holds for a certain k. We have to show that it also holds
for k + 1.

Suppose that γ(η+k+1) ≤ 2(B−1)2 for all B ≥ 3 and γ(η+k+1) < B2 if B = 2.
In virtue of the corollary 7 [1], there is n ∈ N such that Hn

B(γ(η + k + 1)) < B2.

It follows that Hn+1
B (γ(η + k + 1)) ≤ 2(B − 1)2 which is maximal if any γ(η′) =

(B − 1, B − 1)B for all n < η + k + 1 and η′ ≤ η + k + 1. By induction on n with
the theorem 2.1, one shows that γ(η′) ≤ 2(B− 1)2 for all η′ ≤ η+k+1. Therefore,
it is generally false to say that γ(0) < γ(1) < . . . < γ(η′).

Suppose instead that γ(η+k+1) > 2(B−1)2 for all B ≥ 3 and γ(η+k+1) ≥ B2

if B = 2. By the lemma 2.2, we have γ(η + k + 1) > γ(η + k). Using the induction
hypothesis, we get γ(η) < γ(η + 1) < . . . < γ(η + k) < γ(η + k + 1). Therefore,
γ(η) < γ(η + 1) < . . . < γ(η + k) for all k ∈ N. �

Let [x] be the integer part function of x and ⌈x⌉ be the ceiling function of x.
The operator ∗ in the expression a ∗ b denotes the concatenation of a and b.

Let Lη = αη + tη denotes the total number of digits of γ(η), where αη is the
number of digits lower than B − 1 and tη the number of B − 1. We also note
γ(η) = Aη ∗ Tη where Aη is the integer containing the digits lower than B − 1 and
Tη the digits B − 1. The next results give boundaries on αη and tη.

Corollary 2.4. We have tη+1 ≥
[

γ(η)
(B−1)2

]

− (2B − 4) for all B ≥ 2.

Proof. Let yη+1 =
[

γ(η)
(B−1)2

]

. By definition of tη+1, we know that

αη+1 = Lη+1 − tη+1. (5)

In virtue of the lemma 2.1 [4], yη+1 ≤ Lη+1 ≤ yη+1 + 4. With the equation (5),
it implies that αη+1 ≤ yη+1 + 4 − tη+1 and yη+1 ≤ αη+1 + tη+1. With γ(η) =
(B − 1)2yη+1 = Aη ∗ Tη, we deduce that

(B − 1)2yη+1 ≤ (B − 2)2(yη+1 + 4− tη+1) + (B − 1)2tη+1. (6)

The inequation (6) is equivalent to

(2B − 3)yη+1 ≤ (4B2 − 16B + 16) + (2B − 3)tη+1

which gives tη+1 ≥ yη+1 − 4B2−16B+16
2B−3 = yη+1 − 2B + 5 − 1

2B−3 . Since B ≥ 2, we

have 0 < 1
2B−3 ≤ 1. Therefore,

tη+1 ≥ yη+1 − (2B − 4).
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�

Since we found the lower bound for tη+1, we can deduce an upper bound on
αη+1.

Corollary 2.5. We have αη+1 ≤ 2B for all B ≥ 2.

Proof. By definition of αη+1, we have αη+1 = Lη+1 − tη+1. Applying the lemma
2.1 [4] and the corollary 2.4, we obtain

αη+1 ≤
[

γ(η)

(B − 1)2

]

+ 4−
([

γ(η)

(B − 1)2

]

− (2B − 4)

)

= 2B.

�

Now that we have found boundaries on γ(η) and its number of digits, we use
them in order to demonstrate a recursive relation between γ(η+1) and γ(η) starting
with an initial height η = η∗.

Lemma 2.6. We have HB(γ(η + 1)) ≤ γ(η) + 4(B − 1)2.

Proof. In virtue of the theorem 2.1, we have HB(γ(η + 1)) ≥ γ(η) if and only if
there is d ∈ N such that HB(γ(η + 1)) = γ(η) + d.

By definition of the integer part function, there is a positive integer v < (B−1)2

such that

γ(η) = (B − 1)2
[

γ(η)

(B − 1)2

]

+ v. (7)

In virtue of the lemma 2.1 [4] and the equation (7), we have

HB(γ(η + 1)) = γ(η) + d ≤ (B − 1)2
([

γ(η)

(B − 1)2

]

+ 4

)

+ v. (8)

Equivalently, with the equation (7), the inequation (8) can be rewritten as

γ(η) + d ≤ γ(η) + 4(B − 1)2. (9)

After simplification of the inequation (9) we get

d ≤ 4(B − 1)2.

�

Theorem 2.7. Let η∗ be the smallest height such that γ(η∗) > 2(B − 1)3 + 5. If

γ(η∗) > 2(B − 1)3 + 5, then HB(γ(η + 1)) = γ(η) for all B ≥ 2 and η ≥ η∗.

Proof. In virtue of the theorem 2.1, there is d ∈ N such that HB(γ(η + 2)) ≥
γ(η+1)+d. The lemma 2.6 implies that d ≤ 4(B−1)2. Let’s proceed by induction
on η and suppose that η = η∗ and d > 0. We want to show that d > 0 is impossible
in order to show that d = 0.

We know that γ(η+1) = Aη+1∗Tη+1. If tη+1 = 0, we have γ(η+1)+d = Aη+1+d.
This gives either γ(η + 1) + d = A′

η+1, where A′
η+1 contains only digits between 1

and B − 2, or γ(η + 1) + d = A′
η+1 ∗ T ′

η+1 where T ′ contains only the digits B − 1.
The second case will be taken as if tη+1 > 0. If γ(η+1)+d = A′

η+1, by the corollary
2.5, we have that

HB(γ(η + 1) + d) ≤ 2B(B − 2)2. (10)
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Suppose now that tη+1 > 0. This means that γ(η + 1) = Aη+1 ∗ (B − 1) ∗ . . . ∗
(B − 1). Since d > 0, we have that γ(η + 1) + d = (Aη+1 + 1) ∗ 0 ∗ . . . ∗ 0 ∗ (d− 1).
Thus, we have that

HB(γ(η + 1) + d) = HB(Aη+1 + 1) +HB(d− 1). (11)

It follows from the equation (11) and the corollary 2.5 that

HB(Aη+1 + 1) ≤ (2B − 1)(B − 2)2 + (B − 1)2. (12)

We know that d− 1 ≤ 4(B− 1)2− 1 = 4B2− 8B+3 = (3, B− 8, 3)B≥8. We deduce
that

HB(d− 1) ≤ 2(B − 1)2 + 4 (13)

because to have HB(d − 1) maximal, we have to have d − 1 = (2, B − 1, B − 1)B.
Combining the inequations (12) and (13) in the equation (11) gives

HB(γ(η + 1) + d) ≤ (2B − 1)(B − 2)2 + (B − 1)2 + 2(B − 1)2 + 4

= 2(B − 1)3 + 5.
(14)

However, γ(η) > 2(B−1)3+5 which contradict the theorem 2.1 because H2
B(γ(η+

2)) = HB(γ(η + 1) + d) < γ(η). Therefore, we have to have d = 0.
Suppose now that HB(γ(η + 1)) = γ(η) for a certain η > η∗. We need to show

that it holds for η + 1. In virtue of the theorem 2.1, there is d ∈ N such that
HB(γ(η+2)) = γ(η+1)+d. Suppose that d > 0. Applying HB on both sides gives

H2
B(γ(η + 2)) = HB(γ(η + 1) + d). (15)

Since γ(η∗) > 2(B − 1)3 + 5 > max(2(B − 1)2, B2) for all B ≥ 2, the lemma 2.3
implies that γ(η) > γ(η∗). Therefore, we get the same contradiction as in the
method used in the induction base case. Thus, d = 0 and then, using the induction
hypothesis, we obtain H2

B(γ(η + 2)) = HB(γ(η + 1)) = γ(η).
Therefore, HB(γ(η+1)) = γ(η) for all B ≥ 2 and η ≥ η∗ if γ(η∗) > 2(B− 1)3 +

5. �

With the result given by the theorem 2.7, we deduce the recursive relation be-
tween γ(η + 1) and γ(η) with the following corollary.

Corollary 2.8. If η ≥ η∗, then

γ(η + 1) = (Aη+1 + 1)B
γ(η)−HB (Aη+1)

(B−1)2 − 1 (16)

Proof. By definition of γ, we can write

γ(η + 1) = Aη+1 ∗ Tη+1 = (Aη+1 + 1)Btη+1 − 1. (17)

Applying HB to the equation (17) gives

HB(γ(η + 1)) = HB(Aη+1) + (B − 1)2tη+1. (18)

Since η ≥ η∗, we apply the theorem 2.7 and get

γ(η) = HB(Aη+1) + (B − 1)2tη+1 (19)

if and only if

tη+1 =
γ(η)−HB(Aη+1)

(B − 1)2
. (20)

Substituting the equation (20) in (17) gives the result. �

We conclude this section on the following questions:
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(1) How can the initial height η∗ be expressed in function of the base B?
(2) Can we get a sharper lower bound on γ(η∗)?

3. Algorithm evaluating γ(η) with η unknown

In this section, the objective is to use the corollary 2.8 in order to build two
algorithms. The first one searches for the minimal Aη+1 for an unknown height η
and the second one searches for γ(η+1) corresponding to Aη+1 found. We will see

that evaluating the remainder of γ(η)
(B−1)2 is an important computational obstacle to

consider. Also, we will explain why these algorithms cannot search for γ(η) based
on a given η.

For this section, we define a function U : N \ {0, 1} −→ N taking the base B ≥ 2
as the input parameter. The function U(B) denotes the upper bound of iterations
done in the algorithm 2. In virtue of lemma 2.1 [4], U(B) exists and is finite.

Let E be the set of solutions of HB(Aη+1). The objective of the algorithm 1 is

to find Âη+1 = min(E).
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Data: HB(Aη+1) ∈ N and B ≥ 3

Result: Âη+1

if HB(Aη+1) = 0 then return 0;

D ←
[

HB(Aη+1)
(B−2)2

]

+ 1

if HB(Aη+1) ≡ 0 (mod (B − 2)2) then
return (B − 2, . . . , B − 2)B with D − 1 times the digit B − 2

end

A∗ ← (1, . . . , 1)B with D times the digit 1
j ← D − 1
h← HB(A

∗)
while h 6= HB(Aη+1) do

if h > HB(Aη+1) or A∗(j) = B − 2 then

if j = 0 then
D ← D + 1
A∗ = (1, . . . , 1)B with D times the digit 1

end

else
j ← j − 1
A∗(j)← A∗(j) + 1
A∗(k)← A∗(j) for all k = j + 1, . . . , D − 1

end

end

else
j ← D − 1
A∗(j)← A∗(j) + 1

end

h← HB(A
∗)

end

return A∗

Algorithm 1: Find Âη+1 = min(E)

Theorem 3.1. For any B ≥ 3, the algorithm 1 terminates with any HB(Aη+1) ≥ 0

and returns Âη+1 for an unknown η.

Proof. If HB(Aη+1) = 0, then Âη+1 = 0 and the algorithm terminates and returns

0. If 0 < HB(Aη+1) ≡ 0 (mod (B − 2)2) and B ≥ 3, then we get Âη+1 = (B −
2, . . . , B − 2)B with

HB(Aη+1)
(B−2)2 times the (B − 2)-digit. This solution is trivially

minimal because the other solutions, if they exist, have more than
HB(Aη+1)
(B−2)2 digits.

Suppose that HB(Aη+1) 6≡ 0 (mod (B − 2)2) and B ≥ 3. We have to show that

the algorithm stops when the current candidate A∗ is the minimal solution Âη+1.

Let Ā = (1, . . . , 1)B with HB(Aη+1) times the digit 1. Trivially, Ā ≥ Âη+1 where
Ā = max(E).

By construction, the algorithm initializesD =
[

HB(Aη+1)
(B−2)2

]

+1 andA∗ = (1, . . . , 1)B

with D times the digit 1 and runs through a subset N ⊂ N∗ of numbers. Let
j = D − 1 be an iterator where A∗ = (A∗(0), A∗(1), . . . , A∗(j), . . . , A∗(D − 1))B
and h = HB(A

∗).
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Let i be a counter of iterations in the loop and A∗
i be the value of A∗ at the ith

iteration. For all i, the algorithm ensures that A∗
i+1 > A∗

i because in every case, it
either increments a digit of A∗

i or increments D and fix A∗
i+1 = (1, . . . , 1)B with D

times the digit 1.
Let I = {1, 2, . . . , B−2} and suppose that A∗

i−1(r) ∈ I where 0 ≤ r < D at each
iteration i. We have to show that A∗

i (r) ∈ I. We can observe three general cases:

(1) If A∗
i (j) < B−2, then A∗

i (j) increases by one implying that A∗
i (j) ≤ B−2 ∈

I.
(2) If j = 0, either the algorithm falls into the case (i) or A∗

i (r) = 1 ∈ I for all
r.

(3) If j > 0, either the algorithm falls into the case (i) or A∗
i (k) = A∗

i (j)+1 ∈ I

for all j ≤ k ≤ D − 1 where j = j − 1 because by definition of j, we know
that A∗

i (j − 1) ∈ I.

Therefore, A∗
i (r) ∈ I for all 0 ≤ r < D at each iteration i.

If j > 0 and A∗
i (j) = B−2, then A∗

i (k) = A∗
i (j) for all k = j+1, . . . , D−1. The

values when 1 ≤ A∗
i (k) ≤ A∗

i (j) are ignored because the addition is commutative
in N∗ and we run through N in ascending order. Also, HB is invariant to the
permutations of the digits of A∗

i . Thus, the algorithm has already tested those
values where 1 ≤ A∗

i (k) ≤ A∗
i (j) ≤ B− 2 up to permutation. Therefore, if A∗

i is an

ignored value, then A∗
i 6= Âη+1. This also means that

1 ≤ A∗
i (D − 1) ≤ A∗

i (D − 2) ≤ . . . ≤ A∗
i (0) ≤ B − 2. (21)

We have to show that the algorithm ends with A∗ ∈ E. We have shown that
A∗

i (r) ∈ I for all r and that each time D increments, A∗ is reset to (1, . . . , 1)B with
D times the digit one. We have also shown that Ai+1 > Ai for all i. Thus, the
loop either stops when h = HB(Aη+1) or reaches its upper bound when A∗

i = Ā.
Therefore, the algorithm ends with A∗ ∈ E.

Let K =
{[

HB(Aη+1)
(B−2)2

]

+ 1,
[

HB(Aη+1)
(B−2)2

]

+ 2, . . . ,HB(Aη+1)
}

. We have to show

that D ∈ K. If D > HB(Aη+1), then A∗ > Ā a contradiction with A∗ ∈ E. If

D <
[

HB(Aη+1)
(B−2)2

]

+ 1, then HB(A
∗
i ) ≤ (D − 1)(B − 2)2 < HB(Aη+1) which is also

a contradiction with A∗ ∈ E. Thus, D ∈ K.
Since A∗ increases, A∗ ∈ E and the ignored values cannot be the minimal solution

searched, the algorithm returns Âη+1 for any HB(Aη+1) ≥ 0 and B ≥ 3. �

In order to find γ(η + 1), we need to know tη+1. From the corollary 2.8, we
deduce that there is m ∈ N such that γ(η)−HB(Aη+1) = m(B−1)2. Equivalently,

γ(η) ≡ HB(Aη+1) (mod (B − 1)2), (22)

where η ≥ η∗.
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The second objective of this section is to build an algorithm that searches for
γ(η + 1). We note γj the jth possible candidate of γ(η + 1).

Data: R0 = HB(Aη+1) ∈ N and B ≥ 3
Result: γ = (A∗

j∗ , Rj∗), where j∗ = argminj γ
j(η + 1)

if R0 = a2 where 0 ≤ a ≤ B − 2 then return (
√
R0, R0);

A∗
0 ← A← Algorithm1(R0, B)

γ0 ← (A∗
0, R0)

j ← 1
while j ≤

[

3B
2

]

− 3 do

Rj ← R0 + j(B − 1)2

A∗
j ← Algorithm1(Rj , B)

if
[

A∗
j

Bj

]

< A then

γj ← (A∗
j , Rj)

A←
[

A∗
j

Bj

]

end

j ← j + 1
end

return minj γ
j(η + 1)

Algorithm 2: Find Rj∗ and A∗
j∗ such that γ(η + 1) = minj γ

j(η + 1) =
(A∗

j∗ , Rj∗) for an unknown η

Theorem 3.2. The algorithm 2 ends and returns γ(η+1) = minj γj(η+1) for an

unknown η and for any HB(Aη+1) = R0 ≥ 0 where B ≥ 3, UB =
[

3B
2

]

− 3 and

j ∈ {0, 1, 2, . . . , UB}.

Proof. Let j ∈ N be the iterations in the loop and η an unknown height. In virtue
of the theorem 2.1, we know that for all height η, there is a unique positive integer
γ̂ such that γ(η + 1) = γ̂. Thus, we have to prove that γ̂ ∈ {γj(η + 1)}UB

j=0. By
corollary 2.5, we have UB = 2B. However, we show that UB can be improved in
order to reduce the number of iterations processed by the algorithm. It will then
follow that γ̂ ∈ {γj(η + 1)}UB

j=0.

By construction, the algorithm initializes γ0(η+1) = (A∗
0, R0), where A = A∗

0 =
min(E) per algorithm 1. If we remove j times the digit B − 1, then using the
corollary 2.8 gives

tη+1 − j =
γ(η)−R0

(B − 1)2
− j

=
γ(η)− (R0 + j(B − 1)2)

(B − 1)2
. (23)

Let Rj = R0+j(B−1)2. We apply the algorithm 1 on Rj to output A∗
j at iteration

j where Rj = HB(A
∗
j ). Since we removed j times the digit B − 1, they have to

be added back to A∗
j by respecting the constraints 1 ≤ a∗i ≤ B − 2. Lagrange’s

theorem states that every positive integer can be written as a sum of 4 squares.
This implies that 1 ≤ L(A∗

0) ≤ 4 where L(A∗
0) = 1 if and only if R0 is a perfect

square. In such case, γ̂ = γ0(η + 1) = (
√
R0, R0).
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Suppose that R0 is not a perfect square. It follows that 2 ≤ L(A∗
0) ≤ 4. Because

(B − 1)2 > (B − 2)2, then the lower bound of L(A∗
j ) increases of 1 when

2 +
j(B − 1)2

(B − 2)2
= 2 +

j(2B − 3)

(B − 2)2
= 3 (24)

or equivalently if

j
2B − 3

(B − 2)2
= 1. (25)

Hence, once

j =

⌈

(B − 2)2

2B − 3

⌉

=
B

2
− 1. (26)

because j ∈ N. Thus, L(A∗
j ) ≥ 5 once j =

⌈

3B
2

⌉

− 3 which ensures that γ̂ 6∈
{γj(η + 1)}∞

k=⌈ 3B2 ⌉−3
. Therefore, we deduce that

UB =

[

3B

2

]

− 3 (27)

and γ̂ ∈ {γj(η + 1)}UB

j=0.

We have to show that the algorithm returns γ̂. If
[

A∗
j

Bj

]

< A, then γj(η + 1) <

γl(η+1), where 0 ≤ l < j and
[

A∗
j

Bj

]

means we remove the last j digits to Aj . Thus,

we only keep the minimal solution γj(η + 1), for iterations l ≤ j, and we update

A =
[

A∗
j

Bj

]

to ensure that A is always minimal. Therefore, there is j such that the

algorithm returns γ̂ = minj{γj(η + 1)}UB

j=0 for all B ≥ 3. �

The algorithms 1 and 2 have been implemented in the C++ language. The source
code is available at https://github.com/glapointe7/SmallestHappyNumbers.
To test the algorithm 2, we validated our results with those of [6](page 1924) in the
decimal base.

In the table 1, we compared our upper bound UB to the number of iterations j
maximal, noted J , among integers 0 ≤ R < (B − 1)2 in order to obtain γ̂ for bases
3 ≤ B ≤ 24.

https://github.com/glapointe7/SmallestHappyNumbers
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Table 1. Comparison of UB with J for 3 ≤ B ≤ 24.

B J UB B J UB

3 0 1 14 6 18
4 1 3 15 6 19
5 1 4 16 6 21
6 2 6 17 7 22
7 2 7 18 7 24
8 3 9 19 7 25
9 3 10 20 7 27
10 5 12 21 8 28
11 6 13 22 10 30
12 4 15 23 10 31
13 5 16 24 8 33

We conclude this section on the following questions:

(1) Can we improve the time complexity of the algorithms 1 and 2?
(2) According to the table 1, our upper bound UB could be sharper. How can

we get a sharper upper bound UB?

4. Smallest Happy Numbers in Binary Base

In this section, the objective is to obtain an equation that calculates γ2(η)
for all η using the corollary 2.8. After computing γ2(η) for η ∈ {0, 1, 2, 3, 4}
we get γ2(0) = (1)2, γ2(1) = (1, 0)2, γ2(2) = (1, 1)2, γ2(3) = (1, 1, 1)2 and
γ2(4) = (1, 1, 1, 1, 1, 1, 1)2. We see that H2(γ2(η + 1)) = γ2(η) for η ∈ {0, 1, 2, 3}.
Moreover, the smallest height when γ2(η + 1) > 2(B − 1)3 + 5 = 7 = (1, 1, 1)2
is η∗ = 4 per theorem 2.7. Thus, we showed that H2(γ2(η + 1)) = γ2(η) for all
η ∈ N in binary base. Therefore, we choose the initial height η∗ = 1 to fit with the
corollary 4.1.

Corollary 4.1. For all η ≥ 1, we have

γ2(η + 1) = 2γ2(η) − 1 (28)

and its inverse

γ2(η) = log2(γ2(η + 1) + 1). (29)

Proof. For η = 1, 2 the result is obvious. For η ≥ η∗, we can apply the corollary 2.8
where Aη+1 = 0 because B = 2. Therefore, the equation (28) is directly obtained
and then, we deduce the equation (29). �

Using the tetration, which is the iterated exponentiation, the equation (28) can
be defined analytically. We present a new notation inspired from [3] to simplify the
notations.

Definition 4.1. Let k, x, y, z ∈ R and n ∈ N. We define the adapted Knuth’s

up-arrow notation as being

kxyxy
··
xyz

= k(xy ↑↑ n)z, (30)

where k is a scalar and xy is repeated n times. The real multiplication operator is

used between k, x and y. If n = 0, then k(xy ↑↑ n)z = k.



ON FINDING THE SMALLEST HAPPY NUMBERS OF ANY HEIGHTS 12

Knowing that the initial condition is γ2(η
∗) = 2 = (1, 0)2, we have

γ2(2) = 2γ2(1) − 1 = 22 − 1 = 23−1 − 1 = 2−123 − 1 = (2−12 ↑↑ 1)3 − 1. (31)

If we continue with one more iteration, we get

γ2(3) = 2γ2(2) − 1 = 22
−123−1 − 1 = 2−122

−123 − 1 = (2−12 ↑↑ 2)3 − 1. (32)

Using the induction on η > η∗, we obtain the equation

γ2(η) = 2−122
−12·

·2
−123

− 1 = (2−12 ↑↑ (η − η∗))3 − 1. (33)

Recall that a Mersenne’s prime number m is a prime number m = 2p− 1, where
p is prime. In virtue of the corollary 4.1, we note that {γ2(η + 1) : η ≥ 1} is
a possible subset of the Mersenne’s prime number set. In particular, γ2(η) is a
Mersenne’s prime number for η ∈ {2, 3, 4, 5} which are given by [5]. This leads us

to the following conjecture because nowadays, we cannot tell if γ2(6) = 22
127−1 − 1

is a Mersenne’s prime number or not. This holds also for all η > 6.

Conjecture 1. For all η ≥ 2, γ2(η) is a Mersenne’s prime number.

5. Smallest Happy Numbers in Ternary Base

In this section, the objective is to find an equation that finds γ3(η) for all η > η∗

by using the relation (22). We have to calculate the remainder of γ3(η)
4 and find

η > η∗ such that

γ3(η + 1) = (Aη+1 + 1) · 3
γ3(η)−H3(Aη+1)

4 − 1. (34)

By brute-force, we obtain that γ3(2) = (1, 1, 1)3, γ3(3) = 2 · 33 − 1 and γ3(4) =
2 · 313 − 1. In virtue of the theorem 2.7, the smallest height when γ3(η) > 2(B −
1)3 + 5 = 21 = (2, 1, 0)3 is η∗ = 3. We showed that H3(γ3(η + 1)) = γ3(η) for all
η ∈ N. Then, we choose η∗ = 2 to fit with the lemma 5.1.

By definition of Aη+1, the only digit that can be contained in Aη+1 is one in
ternary base. After applying the algorithm 2 for H3(Aη+1) < (B − 1)2 = 4, we
found that Aη+1 ≤ (1, 1, 1)3. Let A3 denotes the set of all possible values of Aη+1

in ternary base where

A3 = {(0)3, (1)3, (1, 1)3, (1, 1, 1)3}. (35)

In order to find γ3(5), we calculate H3(A5) by using the relation (22). We
find that the rest of the division of γ3(4) by 4 is 3188645 ≡ 1 (mod 4). Thus,
HB(A5) = 1 and then, A5 + 1 = 2. Therefore,

γ3(5) = 2 · 3
γ3(4)−1

4 − 1. (36)

Note that γ3(η) = 2 · 3t− 1 for η = 3, 4, 5. Using induction on t ∈ N, we get that
3t ≡ 1 or 3 (mod 4). Thus,

2 · 3t − 1 ≡ 1 (mod 4) (37)

for all t ∈ N.
We see that γ3(η) ≡ 1 (mod 4) for η = 3, 4, 5. Let’s generalize the relation (37)

for all η > η∗.

Lemma 5.1. For all η ≥ η∗ in ternary base, we have

γ3(η + 1) = 2 · 3
γ3(η)−1

4 − 1. (38)
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Proof. We proceed by induction on η. For η = η∗, we have γ(3) = 2 · 33 − 1 where

3 = γ3(2)−1
4 with γ(2) = 13 = (1, 1, 1)3. Suppose that γ3(η + 1) = 2 · 3 γ3(η)−1

4 − 1

for a certain η > η∗. We have γ3(η + 2) = (Aη+2 + 1) · 3
γ3(η+1)−H3(Aη+2)

4 − 1.

Using the induction hypothesis and knowing that γ3(η)−1
4 ∈ N, we deduce that

γ3(η + 1) is written in the same form as described by the relation (37) where

t = γ3(η)−1
4 . Thus, γ3(η + 1) ≡ 1 (mod 4) and then H3(Aη+2) ≡ 1 (mod 4). In

virtue of the set of possible integers in Aη+1 (35), we get (Aη+2+1) = 2. Therefore,

γ3(η + 2) = 2 · 3 γ3(η+1)−1

4 − 1 which shows that the equation (38) holds for all
η ≥ η∗. �

The equation (38) can be solved using the same method as the one we applied for
the binary base in section 4. Before solving the equation (38), let’s see an example
for γ3(3) and for γ3(4) in order to get an intuition on the general solution. Knowing
that γ3(2) = 13, we have

γ3(3) = 2 · 3
γ3(2)−1

4 − 1

= 2 · 3 13−1
4 − 1

= 2 · 3
(14−1)−1

4 − 1

= 2 · 3−1
2 · 3 7

2 − 1. (39)

Then, for γ3(4) we have

γ3(4) = 2 · 3
γ3(3)−1

4 − 1

= 2 · 3
(2·3

−1
2 ·3

7
2 −1)−1

4 − 1

= (2 · 3−1
2 ) · 3( 1

2 ·3
−1
2 )·3

7
2 − 1. (40)

Continuing with γ3(5) we would see the pattern 1
2 · 3

−1
2 · 3 repeating. However, in

order to fit with this pattern, the coefficient 2 in (39) and (40) has to be written
4 · 12 instead.

Theorem 5.2. For all η > η∗, we have

γ3(η) = 4

(

3
−1
2

2
3 ↑↑ (η − η∗)

)
7
2

− 1. (41)

Proof. We proceed by induction on η. Since η∗ = 2 in ternary base, we have by

definition 4.1 that 4

(

3
−1
2

2 3 ↑↑ 1
)

7
2

− 1 = 4

(

3
−1
2

2 3
7
2

)

− 1 = 2 · 33 − 1 = γ3(3).

Suppose that the equation (41) is verified for a certain η > η∗. In virtue of the
lemma 5.1, we have

γ3(η + 1) = 2 · 3
γ3(η)−1

4 − 1. (42)
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We apply the induction hypothesis on the equation (42) and obtain

γ3(η + 1) = 2 · 3
4





3
−1
2
2

3↑↑(η−η∗)





7
2

−1−1

4 − 1

= 2 · 3

(

3
−1
2
2 3↑↑(η−η∗)

) 7
2

− 1
2 − 1

= 4
3

−1
2

2
3

(

3
−1
2
2 3↑↑(η−η∗)

) 7
2

− 1. (43)

In virtue of the definition 4.1, it follows that

γ3(η + 1) = 4

(

3
−1
2

2
3 ↑↑ (η − η∗ + 1)

)
7
2

− 1. (44)

Therefore, the equation (41) is verified for all η > η∗. �

We conclude this section with the following questions:

(1) If this method can be generalized, what would be the general equation
solving the equation (16) for all B ≥ 2 and ηB > η∗B?

(2) If the method cannot be generalized, what method would solve the equation
(16) for all B ≥ 2 and ηB > η∗B?
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