
ar
X

iv
:1

90
4.

13
00

2v
1 

 [
m

at
h.

N
T

] 
 3

0 
A

pr
 2

01
9

THE SEQUENCES OF FIBONACCI AND LUCAS FOR EACH

REAL QUADRATIC FIELDS Q(
√
d )

PABLO LAM–ESTRADA, MYRIAM ROSALÍA MALDONADO–RAMÍREZ,

JOSÉ LUIS LÓPEZ–BONILLA, AND FAUSTO JARQUÍN–ZÁRATE

Abstract. We construct the sequences of Fibonacci and Lucas at any qua-

dratic field Q(
√
d ) with d > 0 square free, noting in general that the properties

remain valid as those given by the classical sequences of Fibonacci and Lucas
for the case d = 5, under the respective variants. For this construction, we use

the fundamental unit of Q(
√
d ) and then we observe the generalizations for

any unit of Q(
√
d ) where, under certain conditions, some of this constructions

correspond to k-Fibonacci sequence for some k ∈ N. Of course, for both se-
quences, we obtain the generating function, Golden ratio, Binet’s formula and
some identities that they keep.

1. Introduction

The Fibonacci sequence was introduced by Leonardo of Pisa in 1202 in his book
Liber Abaci (Book of Calculation) [23]. Many of the properties of the Fibonacci

sequence were obtained by F. Édouard Lucas who appoints such sequence by “Fi-
bonacci” [21, Section 3.1.2]. For more information about the history of the Fi-
bonacci numbers, we can see [20]. But also, Lucas is who initiates the generaliza-
tions and their variants that have emerged from the Fibonacci sequence, as we can
observe, for example, in [4], [7], [24], [25] and [26]. Vera W. de Spinadel introduced
the Metallic Means family whose members of such a family have many wonderful
and amazing properties, and applications to almost every areas of sciences and arts,
such as in some areas of the physical, biology, astronomy and music (see [8], [9],

[10] and [15]). On the other hand, Sergio Falcón and Ángel Plaza give properties
of k-Fibonacci sequence in [4], [5], [6] and [7], and these are a particular case and
general of metallic means families. Also in [3] M. El-Mikkawy and T. Sogabe given
a new family of k-Fibonacci numbers. In [16], we can find hundreds of known iden-
tities, and Azarian presents in [1] some known identities as binomial sums for quick
numerical calculations.

In this paper, we associate with each real quadratic field Q(
√
d ), with d >

0 square free, its owns sequences of Fibonacci and Lucas (Definition 5), which
correspond to certain metallic means families (Theorem 8 and 13). These sequences
of Fibonacci and Lucas are determined by their generating functions (Theorem
19) satisfying each Binet’s formula (Theorem 22 and Corollary 23). This means

that each real quadratic field Q(
√
d ) will have also associated its own Golden

ratio (Definition 20), characteristic equation (5.2) and its Golden ratio will be the
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fundamental unit (Theorem 18). Finally, we will establish for each k ∈ N, the
k-Fibonacci sequence corresponds to Fibonacci sequence of the real quadratic field
Q(

√
d ) for a unique d > 0 square free (Theorem 28).

At the time of submission, there is no description of the infinite family of se-
quences in the Online Encyclopedia of Integer Sequences, though some of the se-
quences do appear there, as indicated in Table 1 and Table 2.

This paper is organized as follows. In Section 2 we collect results of quadratic
fields necessary for the development of the work. In Section 3 we construct the
sequences of Fibonacci and Lucas at any real quadratic field. Also we proof that
the properties remain valid as those given by the classical sequence of Fibonacci
and Lucas for d = 5. In Section 4 the main goal is proof that Fibonacci and Lucas
sequence are determined by the generating functions. In Section 5 we give Golden
ratio associated as the real quadratic field and we obtain Binet’s formula in Q(

√
d ).

In Section 6 we extend our construct of the sequences of Fibonacci and Lucas over
all integer number. Finally, in Section 7 we define the sequence of Fibonacci and
Lucas of degree d with respect to an arbitrary unit η of Q(

√
d ) and we proof the

results of the previous sections are still met.

2. Quadratic fields

In this section we collect fundamental results from quadratic fields. Throughout
this paper, d denotes a square free integer, δ the discriminant of the quadratic field
Q(

√
d ), O the ring of integers of Q(

√
d ), and O∗ the multiplicative group of all

invertible elements of the ring O. When d > 0, we say that Q(
√
d ) is a real

quadratic field, while if d < 0 then Q(
√
d ) is called an imaginary quadratic

field. The following results are well known.

Theorem 1. Keeping the previous notation.

(i) If d ≡ 1 mod 4, then the set

{

1 ,
1 +

√
d

2

}

is an integral basis of Q(
√
d ),

δ = d, O = Z

[

1 +
√
d

2

]

= Z+ Z
1 +

√
d

2
and

O∗ =

{

a+ b
√
d

2

∣

∣

∣

∣

a, b ∈ Z, a2 − db2 = ±4

}

.

(ii) If d ≡ 2 mod 4 or d ≡ 3 mod 4, then the set
{

1 ,
√
d
}

is an integral

basis of Q(
√
d ), δ = 4d, O = Z[

√
d ] = Z+ Z

√
d and

O∗ =
{

a+ b
√
d

∣

∣ a, b ∈ Z, a2 − db2 = ±1
}

.

(iii) If d < 0, then O∗ = { −1, 1 } when d 6= −1, −3, O∗ = 〈i〉 = {−1, 1, i,−i}
when d = −1 and O∗ = 〈ζ6〉 if d = −3, where ζ6 is a primitive 6-th root of

unity.

(iv) If d > 0, then
(a) There exists a unit ε > 1 in O such that O∗ = 〈−1〉 × 〈ε〉.
(b) If u > 1 is a unit of O, then u = a+ b

√
d for some a > 0, b > 0 in Q.

(c) If N(ε) = 1, then N(u) = 1 for all u ∈ O∗.

Proof. See [13]. �
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The unit ε of O in the Theorem 1, (iv), is called the fundamental unit of O.
Hence the unit ε of O completely determines the group O∗. For example, we have

for d = 5 (d ≡ 1 mod 4),
1 +

√
5

2
is the fundamental unit of Q(

√
5). If d = 17, then

8 + 2
√
17

2
= 4 +

√
17 is a fundamental unit of Q(

√
17). In general, if d ≡ 1 mod 4,

then ε =
a0 + b0

√
d

2
where a0 and b0 are either both even or both odd. Of course,

if a0 and b0 are both even, then ε ∈ Z[
√
d ].

On the other hand, we denote by M2×2(Z) the set of all matrices 2 × 2 with
integer entries. Let GL2(Q) be the multiplicative group of invertible 2× 2 matrices
with rational entries, which is called the general lineal group of degree 2 over

Q. The subset of all matrices of GL2(Q) with determinant 1 is a normal subgroup
of GL2(Q) called the special lineal group of degree 2 over Q and denoted by
SL2(Q).

For each λ ∈ Q, let

Gλ =

{

A ∈ GL2(Q)

∣

∣

∣

∣

A =

[

a bλ
b a

]}

, Lλ = {A ∈ Gλ |, det(A) = ±1} and

Td =

{

A ∈ M2×2(Z)

∣

∣

∣

∣

A =

[

a bd
b a

]}

.

We have the follows results whose proofs can be seen in [17].

Theorem 2. Keeping the previous notation we obtain

(i) Td is a commutative subring with identity of M2×2(Z).
(ii) If T ∗

d is the multiplicative group of units of Td, then T ∗
d = Ld ∩M2×2(Z).

In particular, T ∗
d is a subgroup of Ld.

(iii) The rings Td and Z[
√
d ] are isomorphic under the correspondence

[

a bd
b a

]

7−→ a+ b
√
d .

In particular, Td is an integral domain.

(iv) The isomorphism in (iii) induces an isomorphism between the multiplicative

groups T ∗
d and (Z[

√
d ])∗.

(v) Td/(Td ∩ SL2(Q)) ∼= {−1, 1}. �

Theorem 3. Let Qd be the set of all matrices of the form A =

[

a bd
b a

]

with

a, b ∈ Q.

(i) Qd is a field isomorphic Q(
√
d ) under the correspondence

[

a bd
b a

]

7−→

a+ b
√
d . This is, Qd is the field of quotients of Td.

(ii) There exists a monomorphism of the multiplicative group Q(
√
d )∗ in the

group GL2(Q).
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(iii) The group GL2(Q) contains the chain of subgroups Q∗
d ∩ SL2(Q) < Lm <

Gd = Q∗
d < GL2(Q).

�

Theorem 4. Let A =

[

a bd
b a

]

∈ Qd where a, b are two rational numbers. Then

the powers of A, An =

[

an bnd
bn an

]

with n ∈ N, are given as follows:

an =































∑

0≤t≤n

2

(

n

2t

)

a2tbn−2td
n

2
−t if n even

∑

0≤t≤
n−1

2

(

n

2t+ 1

)

a2t+1bn−2t−1d
n−1

2
−t if n odd

(2.1)

and

bn =































∑

0≤t≤n−2

2

(

n

2t+ 1

)

a2t+1bn−2t−1d
n−2

2
−t if n even

∑

0≤t≤n−1

2

(

n

2t

)

a2tbn−2td
n−1

2
−t if n odd.

(2.2)

�

3. The sequences of Fibonacci and Lucas in Q(
√
d )

In this section, we construct the sequences of Fibonacci and Lucas at any real
quadratic field. We proof that the properties remain valid as those given by the
classical sequence of Fibonacci and Lucas for d = 5. Being d > 0 a square free
integer and ε the fundamental unit of Q(

√
d ), we will write ε = a + b

√
d where

a, b ∈ Q with its corresponding matrix Aε =

[

a bd
b a

]

and the powers n-th of

Aε by An
ε =

[

an bnd
bn an

]

where an and bn are given as in the equations (2.1) and

(2.2) of Theorem 4. Also, ∆ will be the determinant of Aε, that is, ∆ = a2− b2d =

N(ε) = ±1, where N is the norm function of the square field Q(
√
d ).

Keeping the previous notation, we have the follows:

Definition 5. The sequence of Fibonacci (resp. Lucas) of degree d with

respect to the fundamental unit ε (or simply the sequence of Fibonacci (resp.
Lucas), if there is no risk of confusion with respect to d and to its fundamental

unit ε) is the sequence {Fε,n}n∈N (resp. {Lε,n}n∈N) of positive numbers given as

follows:

Fε,n :=
bn
b

(

resp. Lε,n :=
an
a

)

(n ∈ N)(3.1)

where the sequence {bn}n∈N (resp. {an}n∈N) is given as in the equation (2.2) (resp.
(2.1)) of Theorem 4.
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According to the equation (3.1) of the Definition 5, we have that Fε,n and Lε,n

are given by the follows equations:

Fε,n =































∑

0≤t≤
n−2

2

(

n

2t+ 1

)

a2t+1bn−2t−2d
n−2

2
−t if n even

∑

0≤t≤
n−1

2

(

n

2t

)

a2tbn−2t−1d
n−1

2
−t if n odd

(3.2)

and

Lε,n =































∑

0≤t≤n

2

(

n

2t

)

a2t−1bn−2td
n

2
−t if n even

∑

0≤t≤
n−1

2

(

n

2t+ 1

)

a2tbn−2t−1d
n−1

2
−t if n odd

(3.3)

for each n ∈ N.

In the Table 1 expresses some terms of the sequences {Fε,n}n∈N and {Lε,n}n∈N

for some d’s square free. Unless otherwise noted, the sequences are not in the Online
Encyclopedia of Integer Sequences at the time of publication, though some of the
sequences do appear there, as indicated in Table 2.
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d ε ∆ Terms of the sequence Terms of the sequence
{Fε,n}n∈N {Lε,n}n∈N

2 1 +
√
2 −1 1, 2, 5, 12, 29, 70, 169, 408 . . . 1, 3, 7, 17, 41, 99, . . .

OEIS sequence A000129 OEIS sequence A001333

3 2 +
√
3 1 1, 4, 15, 56, 209, 780, . . . 1,

7

2
, 13,

97

2
, 181,

1351

2
, . . .

OEIS sequence A001353 OEIS sequence A001075

5
1 +

√
5

2
−1 1, 1, 2, 3, 5, 8, . . . 1, 3, 4, 7, 11, 18, . . .

OEIS sequence A000045 OEIS sequence A000032

6 5 + 2
√
6 1 1, 10, 99, 980, 9701, 96030, . . . 1,

49

5
, 97,

4801

5
, 9505,

470449

5
, . . .

OEIS sequence A004189 OEIS sequence A001079

7 8 + 3
√
7 1 1, 16, 255, 4064, 64769, . . . 1,

127

8
, 253,

32257

8
, 64261, . . .

OEIS sequence A077412 OEIS sequence A001081

10 3 + 1
√
10 −1 1, 6, 37, 228, 1405, 8658, . . . 1,

19

3
, 39,

721

3
, 1481, . . .

OEIS sequence A005668 OEIS sequence A005667

11 10 + 3
√
11 1 1, 20, 399, 7960, 158801, . . . 1,

199

10
, 397,

79201

10
, 158005, . . .

OEIS sequence A075843 OEIS sequence A001085

13
3 +

√
13

2
−1 1, 3, 10, 33, 109, 360, . . . 1,

11

3
, 12,

119

3
, 131,

1298

3
, . . .

OEIS sequence A006190 OEIS sequence A006497

Table 1. Sequence of Fibonacci and Lucas of degree d.

Observation 6. Note that when d = 5, we have {Fε,n}n∈N and {Lε,n}n∈N are exactly
the classical sequences of Fibonacci and Lucas, respectively.
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d ε ∆ Terms of the sequence OEIS
{Fε,n}n∈N integer sequence

37 6 +
√
37 −1 1, 12, 145, 1752, 21169, 255780, . . . A041061

38 37 + 6
√
38 1 1, 74, 5475, 405076, 29970149, 2217385950, . . .

39 25 + 4
√
39 1 1, 50, 2499, 124900, 6242501, 312000150, . . .

41 32 + 5
√
41 −1 1, 64, 4097, 262272, 16789505, 1074790592, . . .

42 13 + 2
√
42 1 1, 26, 675, 17524, 454949, 11811150, . . . A097309

Table 2. Sequence of Fibonacci of degree d.

In the rest of the work, by abuse of notation, we write Fn and Ln instead of Fε,n and
Lε,n if there is no risk of confusion with respect to the classical sequences of Fibonacci
and Lucas.

Theorem 7. For each m,n ∈ N,

(i) Fn+1 = a(Ln + Fn).

(ii) Ln+1 = aLn +
b2d

a
Fn.

(iii) Fn =
a

∆

(

Fn+1 − Ln+1

)

=







a(Ln+1 − Fn+1) if ∆ = −1

a(Fn+1 − Ln+1) if ∆ = 1 .

(iv) Ln =
1

∆

(

aLn+1 − b2d

a
Fn+1

)

=



















b2d

a
Fn+1 − aLn+1 if ∆ = −1

aLn+1 − b2d

a
Fn+1 if ∆ = 1 .

(v) Fn+1 − anF1 =
n−1
∑

t=0

at+1Ln−t .

(vi) Ln+1 − anL1 = b2d
n−1
∑

t=0

at−1Fn−t .

(vii) Fm+n = a(FmLn + FnLm).

(viii) Lm+n =
b2d

a
· FmFn + a LmLn.

(ix) b2d F 2
n − a2L2

n = −∆n.

(x) Fn =

⌊n−1

2
⌋

∑

t=0

(

n

2t+ 1

)

an−2t−1b2tdt =

⌊n−1

2
⌋

∑

t=0

(

n

n− 2t− 1

)

an−2t−1b2tdt.

(xi) Ln =

⌊n

2
⌋

∑

t=0

(

n

2t

)

an−2t−1b2tdt =

⌊n

2
⌋

∑

t=0

(

n

n− 2t

)

an−2t−1b2tdt.
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Here ⌊x⌋ is the integral part of x ∈ R, i.e., is the greatest integer n such that n ≤ x < n+1.

Proof. (i) and (ii) are obtained directly from the equations (3.2) and (3.3). (iii) and (iv)
are deducted from (i) and (ii). For induction, we obtain (v) and (vi). (vii) and (viii) are
obtained from the relationship Am+n

ε = Am
ε · An

ε . The relation det(An
ε ) = ∆n implies the

relation (ix). Finally, (x) y (xi) are obtained of the relationships

an + bn
√
d = (a+ b

√
d )n =

n
∑

i=0

(

n

i

)

aibn−i(
√
d )n−i =

n
∑

i=0

(

n

i

)

an−ibi(
√
d )i.

�

Theorem 8. There exist unique r, s ∈ Q∗ such that Fn+2 = rFn + sFn+1 for all n ∈ N.

More precisely, Fn+2 = (−∆)Fn + 2aFn+1 for all n ∈ N.

Proof. We have for each n ∈ N,

(−∆)Fn + 2aFn+1 = −(a2 − b2d)Fn + 2aFn+1 = a

(

b2d

a

)

Fn − a2Fn + 2aFn+1

= a(Ln+1 − aLn)− a2Fn + 2aFn+1 = a(Ln+1 + Fn+1)

= Fn+2 .

On the other hand, let r, s ∈ Q∗ be such that

Fn+2 = rFn + sFn+1 for all n ∈ N.(3.4)

As b2d = a2 − ∆, implies that F1 = 1, F2 = 2a, F3 = 4a2 −∆ and F4 = 8a3 − 4a∆. In
particular, by the equation (3.4) for n = 1 and n = 2, we obtain the system of equations

r + 2as = 4a2 −∆

2ar + (4a2 −∆)s = 8a3 − 4a∆
(3.5)

which it has an unique solution, namely r = −∆ and s = 2a. This complete the proof of
theorem.

�

Corollary 9. The Fibonacci sequence {Fn}n∈N is a k-Fibonacci sequence for some k ∈ N

(namely, k = 2a) if and only if ∆ = −1.

Proof. It immediate by Theorem 8. �

Corollary 10. The following conditions are equivalent:

(i) Fn+2 = Fn + Fn+1 for all n ∈ N;

(ii) F3 = F1 + F2;

(iii) d = 5 and ε =
1 +

√
5

2
.

Proof. (i) =⇒ (ii): It is immediate.
(ii) =⇒ (iii): We have that −∆+4a2 = (−∆)F1+2aF2 = F3 = F1+F2 = 1+2a, then

4a2 − 2a− (∆+1) = 0. If ∆ = 1, then 2a2 − a− 1 = 0; since a 6= 1, necessarily a = −1/2.
But this implies that 4b2d = −3; contradiction. Therefore ∆ = −1, a = 1/2 = b and
d = 5.

(iii) =⇒ (i): It is clear. �

Corollary 11. If {Fn}n∈N is the Fibonacci sequence classical, that is d = 5, then

Fn+2 = Fn + Fn+1

for each n ∈ N.



THE SEQUENCES OF FIBONACCI AND LUCAS FOR EACH QUADRATIC FIELDS 9

Proof. It is immediate. �

We recall if d ≡ 2 or 3 mod 4, then ε = a + b
√
d where a, b ∈ Z. In this case, it is

obvious that Fn ∈ N for all n ∈ N. If d ≡ 1 mod 4, then ε = a + b
√
d =

a0 + b0
√
d

2
with

a0, b0 ∈ N, where either are both even or both odd. When they are both even, we have
that a, b ∈ N and, hence, Fn ∈ N. But, in any case, 2a ∈ N. Therefore, we obtain the
following result.

Corollary 12. Fn ∈ N for all n ∈ N.

Proof. By Theorem 8, we have Fn+2 = (−∆)Fn + 2aFn+1 for all n ∈ N, where F1 = 1
and F2 = 2a ∈ N. Then, the show follows by induction on n. �

Theorem 13. There exist unique r, s ∈ Q∗ such that Ln+2 = rLn + sLn+1 for all n ∈ N.

More precisely, Ln+2 = (−∆)Ln + 2aLn+1 for all n ∈ N.

Proof. We have that for each n ∈ N

(−∆)Ln + 2aLn+1 = −
(

aLn+1 − b2d

a
Fn+1

)

+ 2aLn+1 = aLn+1 +
b2d

a
Fn+1

= Ln+2 .

Now we prove the uniqueness. As b2d = a2 −∆, it follows that

L1 = 1

L2 = 2a− ∆

a
L3 = 4a2 − 3∆

L4 = 8a3 − 8a∆+
1

a
...

...

Let r, s ∈ Q∗ be such that

Ln+2 = rLn + sLn+1 for all n ∈ N.(3.6)

In particular, for n = 1 and n = 2, we have the system of equations

r +

(

2a− ∆

a

)

s = 4a2 − 3∆

(

2a− ∆

a

)

r + (4a2 − 3∆)s = 8a3 − 8a∆+
1

a

(3.7)

which it has a unique solution, namely r = −∆ and s = 2a; so that, this system of
equations has the same solution that the system of equations (3.5) given in the proof of
Theorem 8. Therefore, the theorem is true. �

Similarly to the corollaries to Theorem 8 for Fibonacci sequence, we obtain corollaries
to Theorem 13 for Lucas sequence.

Corollary 14. The Lucas sequence {Ln}n∈N is a k-Lucas sequence for some k ∈ N

(namely, k = 2a) if and only if ∆ = −1.

Proof. It immediate by Theorem 13. �

Corollary 15. The following conditions are equivalent:

(i) Ln+2 = Ln + Ln+1 for all n ∈ N;

(ii) L3 = L1 + L2;
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(iii) d = 5 and ε =
1 +

√
5

2
.

Proof. (i) =⇒ (ii): It is immediate.

(ii) =⇒ (iii): Since L3 = L1 + L2, that is, 4a2 − 3∆ = 1 + 2a − ∆

a
, we have that

4a3 − 2a2 − a+ (1− 3a)∆ = 0. If ∆ = 1, then 4a3 − 2a2 − 4a+ 1 = 0 and a can not be a
rational number, contradiction. Hence, ∆ = −1 and (2a2 + 1)(2a − 1) = 0. This implies
that a = 1/2 and 4b2d = 5. Therefore, d = 5 and a = 1/2 = b.

(iii) =⇒ (i): It is clear. �

Corollary 16. If {Ln}n∈N is the Lucas sequence classical, that is d = 5, then

Ln+2 = Ln + Ln+1

for each n ∈ N.

Proof. It is immediate. �

Corollary 17. For all k ∈ N,

(i) L2k−1 ∈ N;

(ii) if a ∈ N, then aL2k ∈ N and (a, aL2k) = 1;

(iii) if a =
a0

2
, with a0 odd, then a0L2k ∈ N and (a0, a0L2k) = 1.

Proof. Applying the Theorem 13, the proof follows by induction over all the pairs
(L2k−1, L2k), k ∈ N. �

4. Generating function

The main goal of this section is to show that the Fibonacci and Lucas sequences given
in (4) and (5) are determined by the generating functions.

Theorem 18. We obtain

(i) lim
n→∞

Fn+1

Fn

= ε = lim
n→∞

Ln+1

Ln

.

(ii) The series

∞
∑

n=1

Fnx
n−1

and

∞
∑

n=1

Lnx
n−1

both have the same radius of convergence,

namely R = 1/ε.

Proof. (i): By Theorem 7, we have
Fn+1

Fn

=
a(Ln + Fn)

Fn

= a+ a · Ln

Fn

= a+ b · an

bn
, and

Ln+1

Ln

=
aLn +

b2d

a
Fn

Ln

= a +
b2d

a
· Fn

Ln

= a + b · bnd
an

where lim
n→∞

an

bn
=

√
d = lim

n→∞

bnd

an

,

see [17, Theorem 3.1]. Thus, lim
n→∞

Fn+1

Fn

= ε = lim
n→∞

Ln+1

Ln

.

(ii): For each x ∈ R, x 6= 0, we have that lim
n→∞

Fn+1x
n

Fnxn−1
= εx = lim

n→∞

Ln+1x
n

Lnxn−1
. Then

lim
n→∞

Fn+1|x|n
Fn|x|n−1

< 1 if and only if |x| < 1

ε
. Similarly, lim

n→∞

Ln+1|x|n
Ln|x|n−1

< 1 if and only if

|x| < 1

ε
. Therefore, both series have the same radius of convergence R = 1/ε. This

complete the proof of the theorem. �

Theorem 19. (Generating function) Let x ∈ R be such that |x| < 1/ε.

(i) If f(x) =
∞
∑

n=1

Fnx
n−1

, then f(x) =
1

∆x2 − 2ax+ 1
.
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(ii) If g(x) =
∞
∑

n=1

Lnx
n−1

, then g(x) =

(

a−∆x

a

)

f(x) =
a−∆x

a(∆x2 − 2ax+ 1)
.

Proof. (i): For each x ∈ R with |x| < 1/ε, we have that

f(x) =
∞
∑

n=1

Fnx
n−1 = 1 + 2ax+

∞
∑

n=1

Fn+2x
n+1 = 1 + 2ax+

∞
∑

n=1

(−∆Fn + 2aFn+1) x
n+1

= 1 + 2ax−∆x2f(x) + 2ax(f(x)− 1) = 1 + f(x)(2ax−∆x2)

this implies that f(x) =
1

∆x2 − 2ax+ 1
.

(ii): We observe that, for each x ∈ R with |x| < 1/ε

f(x) = 1 +

∞
∑

n=1

Fn+1x
n = 1 +

∞
∑

n=1

a(Ln + Fn)x
n = 1 + axg(x) + axf(x) .

If x 6= 0, then

g(x) =
(1− ax)f(x)− 1

ax
=

a−∆x

a(∆x2 − 2ax+ 1)
=

(

a−∆x

a

)

f(x) .

�

5. Golden ratio and Binet’s formula in Q(
√
d )

In this section we give Golden ratio associated as the quadratic field Q(
√
d ). Also we

obtain Binet’s formula in Q(
√
d ). We start with

Definition 20. Let x, y ∈ R be such that 0 < y < x. We say that x and y are in Golden

ratio with respect to the quadratic field Q(
√
d ) (or simply that they are in Golden

ratio, if there is no risk of confusion with respect to the quadratic field Q(
√
d )), if

2ax−∆y

x
=

x

y
.(5.1)

Thus, if x and y are in Golden ratio and we write ϕ :=
x

y
, then we have that

2a− ∆

ϕ
= 2a−∆ · y

x
=

2ax−∆y

x
=

x

y
= ϕ.

This is, ϕ satisfies the equation

ϕ2 − 2aϕ+∆ = 0.(5.2)

But x2− 2ax+∆ is the irreducible polynomial of ε over Q with ε its other root, where
ε is the conjugate of ε. Therefore, ϕ = ε or ϕ = ε. As x > y > 0 and ε = ∆/ε, necessarily
ϕ = ε. In consequence, we have the equation

ε2 = 2aε−∆.(5.3)

Theorem 21. For each n ∈ N, with n ≥ 2,

εn = Fn ε− Fn−1 ∆.(5.4)

Proof. The show is by induction on n. It is clear for n = 2, that is, ε2 = 2aε − ∆ =
F2 ε− F1 ∆. Hence,

εn+1 = ε(Fn ε− Fn−1 ∆) = Fn(2aε−∆)− Fn−1ε∆ = (−∆Fn−1 + 2aFn)ε− Fn∆

= Fn+1 ε− Fn∆.
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�

Since ε also satisfies the equation (5.3), we have the equation

(ε)n = Fn ε− Fn−1 ∆,(5.5)

for each n ≥ 2.

Theorem 22. For each n ∈ N,

Fn =
εn − (ε)n

ε− ε
.(5.6)

Proof. It follows to make the difference of the equations (5.4) and (5.5). �

The equation (5.6) is known as the Binet’s formula

Corollary 23. For each n ∈ N,

Ln =
εn + (ε)n

ε+ ε
.(5.7)

Proof. It is immediate from the following

εn + (ε)n = 2aFn − 2∆Fn−1 = 2a

(

Fn − ∆

a
· Fn−1

)

= 2aLn = (ε+ ε)Ln.

�

The following two theorems give us other version of the generating functions of the
sequences of Fibonacci and Lucas in Q(

√
d ).

Theorem 24. Let f1(x) =
∞
∑

n=0

∆nFn+1x
n
and g1(x) =

∞
∑

n=0

∆nLn+1x
n
. Then, the series

f1(x) and g1(x) are convergent for |x| < min{|ε|, |ε|}. Furthermore,

f1(x) =
∆

x2 − 2ax+∆
(5.8)

and

g1(x) =
∆(a− x)

a(x2 − 2ax+∆)
=
(a− x

a

)

f1(x).(5.9)

Proof. We have for |x| < min{|ε|, |ε|}

2b
√
d

(x− ε)(x− ε)
=

1

x− ε
− 1

x− ε
=

1

ε
(

1− x

ε

) − 1

ε
(

1− x

ε

)

=
1

ε

∞
∑

n=0

(x

ε

)n

− 1

ε

∞
∑

n=0

(x

ε

)n

=
∞
∑

n=0

(

εn+1 − ε n+1

(εε)n+1

)

xn

= 2b
√
d

(

∞
∑

n=0

(a2 − b2d)n+1

(

εn+1 − ε n+1

ε− ε

)

xn

)

= 2b
√
d

(

∞
∑

n=0

∆n+1Fn+1x
n

)

.
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This implies that

1

x2 − 2ax+∆
=

1

x2 − 2ax+ (a2 − b2d)
=

1

(x− ε)(x− ε)

=

∞
∑

n=0

∆n+1Fn+1x
n

or equivalently

∆

x2 − 2ax+∆
=

∞
∑

n=0

∆n+2Fn+1x
n =

∞
∑

n=0

∆nFn+1x
n.(5.10)

Therefore

f1(x) =
∆

x2 − 2ax+∆
.

On the other hand, we have

(a− x) f1(x) = (a− x)

(

∞
∑

n=0

∆n+2Fn+1x
n

)

= a F1 +

∞
∑

n=1

∆n+1
( a

∆
Fn+1 − Fn

)

xn

= a L1 +

∞
∑

n=1

∆naLn+1x
n

= a

∞
∑

n=0

∆nLn+1x
n.

Therefore

g1(x) =
(a− x

a

)

f1(x) =
∆(a− x)

a(x2 − 2ax+∆)
.

�

6. Some Other Properties

Using the equations (5.6) and (5.7), we can extend the definition of the sequences of
Fibonacci and Lucas over all integer number. This is, we use the Binet’s formula for all
n ∈ Z, Theorem 22 and Corallary 23 we obtain

F−n =







0 if n = 0

−∆nFn if n ≥ 1
(6.1)

and

L−n =











1

a
if n = 0

∆nLn if n ≥ 1.

(6.2)

Thus, it holds that for all n ∈ Z

Fn+2 = (−∆)Fn + 2aFn+1(6.3)

and

Ln+2 = (−∆)Ln + 2aLn+1.(6.4)

But also we can obtain, in our case, the identities established by Catalan, Cassini, D’
Ocagne, and Hosnberger which are hold for all n ∈ Z, that is
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Theorem 25. For all m,n ∈ Z, the follows identities are holds:

(i) F 2
n − Fn+mFn−m = ∆n−mF 2

m.
(ii) F 2

n − Fn−1Fn+1 = ∆n−1.

(iii) L2
n − Ln+rLn−r =

∆n

2a2
−
(

∆n−r

2a

)

L2r.

(iv) FmFn+1 − FnFm+1 = ∆nFm−n.

(v) Fm−1Fn + FmFn+1 =















Fm+n if ∆ = −1

a

2b2d
·
(

2aLm+n − Lm−n−1

)

if ∆ = 1.

(vi) LnLn+r =

(

1

2a

)

L2n+r +

(

∆n

2a

)

Lr.

Proof. The show for each of the identities can be performed using the Binet’s Formula.
So we will prove only (iv). Hence we have

FmFn+1 − FnFm+1 =

(

εm − (ε̄)m

ε− ε̄

)(

εn+1 − (ε̄)n+1

ε− ε̄

)

−
(

εn − (ε̄)n

ε− ε̄

)(

εm+1 − (ε̄)m+1

ε− ε̄

)

=
εm(ε̄)n − εn(ε̄)m

ε− ε̄
=

εm−n+n(ε̄)n − εn(ε̄)m−n+n

ε− ε̄

= ∆n

(

εm−n − (ε̄)m−n

ε− ε̄

)

= ∆nFm−n.

�

7. The sequence of Fibonacci and of Lucas of degree d with respect to an
arbitrary unit

The unit group of Q(
√
d ), with d > 0, is isomorph to group 〈−1〉 × 〈ε〉 where ε is

the fundamental unit of Q(
√
d ), generator of the infinity cyclic subgroup. This cyclic

subgroup also is generated by 1/ε, −ε and −1/ε. This is, each unit of Q(
√
d ) has the

form ±εl for some l ∈ Z. Observing the previous development, we can define the sequence
of Fibonacci and Lucas of degree d with respect to an arbitrary unit η of Q(

√
d ), and the

results of the previous sections are still met. Essentially this is because N(η) = ±1. This

allows us to build even more an infinity of sequences in Q(
√
d ) meeting similar properties

of the sequences of Fibonacci and Lucas. For example, we consider the unit η =
−1 +

√
5

2
of Q(

√
5 ), we have that the first terms of the sequence of Fibonacci of degree 5 with

respect to the unit η are:

Fη,1 = 1, Fη,2 = −1, Fη,3 = 2, Fη,4 = −3, . . .

where N(η) = −1. Comparing the terms of the sequence of Fibonacci with negative index,
F−n with n ≥ 1, we have that Fη,n = F−n for all n ∈ N. This is, the sequence of Fibonacci

with negative index of degree 5 with respect to the fundamental unit ε =
1 +

√
5

2
is the

sequence of Fibonacci of degree 5 respect to the unit η =
−1 +

√
5

2
. This it is not a

coincidence, that is, this fact is generalized in the following.

Theorem 26. The Fibonacci sequence of degree d with respect to the unit 1/ε and ∆ = −1
is the Fibonacci sequence with negative index of degree d with respect to the fundamental

unit ε.
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Proof. We write η = 1/ε = ∆ε. Hence, η = ∆ε. Using the Binet’s formula, we have that
for all n ∈ N

Fη,n =
ηn − (η)n

η − η
=

(∆ε)n − (∆ε)n

∆ε−∆ε
= ∆n−1 εn − (ε)n

ε− ε
= ∆n−1Fn = −∆nFn = F−n .

�

Observation 27. We note that if ∆ = 1 then the Fibonacci sequence of degree d with
respect to the unit 1/ε coincides with the Fibonacci sequence of degree d with respect to
the unit ε.

We finish our work with the following result.

Theorem 28. For each k ∈ N there exist unique d, r ∈ N such that d is square free and
k

2
+

r

2

√
d is a unit of the quadratic field Q(

√
d ) with norm −1. Therefore, in this case,

the k-Fibonacci sequence is the Fibonacci sequence of degree d with respect to a unit of

Q(
√
d ).

Proof. Let k ∈ N be arbitrary. We have that k2 +4 is not a perfect square. Hence, there
exist d, r ∈ N such that k2 + 4 = r2d where d is positive square free. This implies that
(

k

2

)2

−
( r

2

)2

d = −1. Hence,
k

2
+

r

2

√
d is a unit of Q(

√
d ) with norm −1. On the other

hand, if d, d1, r, r1 ∈ N such that
k

2
+

r

2

√
d and

k

2
+

r1
2

√
d1 are units of the quadratic

field Q(
√
d ) both with norm −1, then

(

k

2

)2

−
( r

2

)2

d = −1 =

(

k

2

)2

−
(r1
2

)2

d1, thus

(r

2

)2

d =
(r1
2

)2

d1. That is, r2d = r21d1, where d and d1 are square free. Therefore,

d1 = d and r1 = r. In consequence, the k-Fibonacci sequence is the Fibonacci sequence
of degree d with respect to a unit of Q(

√
d ). �

Corollary 29. For each k ∈ N, the k-Fibonacci sequence is the Fibonacci sequence of

degree d with respect to a unit of Q(
√
d ) for some d square free.

Proof. It is immediately of Theorem 28 and Corollary 9. �

8. Conclusions

In this work we have established that every real quadratic field Q(
√
d ) has its own

Fibonacci sequence and Lucas sequence, and variants of these, through the fundamental
unit, being this the golden ratio. Therefore, the real quadratic field Q(

√
d ) has its own

gold ratio. Under these conditions, it is possible that may arise further research aimed at
obtaining properties, both algebraic and geometric, related with the intrinsic properties
of the real quadratic field Q(

√
d ).
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