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Abstract

A filter lattice is a distributive lattice formed by all filters of a poset in the anti-inclusion order. We

study the combinatorial properties of the Hasse diagrams of filter lattices of certain posets, so called

Fibonacci-like cubes, in this paper. Several enumerative polynomials, e.g. rank generating function, cube

polynomials and degree sequence polynomials are obtained. Some of these results relate to Fibonacci

sequence and Padovan sequence.

Key words: finite distributive lattice, matchable cube, rank generating functions, cube polynomials,

maximal cube polynomials, degree sequence polynomials , indegree polynomials.

1 Introduction

Fibonacci cubes are introduced by Hsu [2] as a interconnection topology. Lucas cubes is a class of graphs

with close similarity with Fibonacci cubes [5]. Many enumerative properties [8] such as cube polynomials,

maximal cube polynomials and degree sequence polynomials of Fibonacci cubes and Lucas cubes are obtained

by Klavžar & Mollard [4], Saygı & Eğecioğlu [9], Mollard [6] and Klavžar et al. [3]. Munarini and Zagaglia

Salvi [7] found the undirected Hasse diagrams of filter lattices of fences [11] are isomorphic to Fibonacci cubes

and gave the the rank polynomials of the filter lattices. Using a convex expansion, Wang et al. [12] considered

indegree sequences of Hasse diagrams of finite distributive lattices and gave the relation of indegree sequence

polynomials between cube polynomials.

Let P = (P,≤) (p 6= ∅) is a partially ordered set(poset for short). The dual P ∗ of P by defining x ≤ y to

hold in P ∗ if and only if y ≤ x holds in P . Let x ≺ y denote x is covered by y, if x < y and x ≤ z < y implies

z = x. Let Q be a subset of P , then Q has an induced order relation from P : given x, y ∈ Q, x ≤ y in Q if

and only if x ≤ y in P . The subset Q of the poset P is called convex if a, b ∈ Q, c ∈ P , and a ≤ c ≤ b imply

that c ∈ Q. A subset Y is a filter (up-set) of P if y ∈ Y and y ≤ z then z ∈ Y . The set F(P ) of all filters

of P forms a distributive lattice reordered by anti-inclusion: Y ′ ≤ Y if and only if Y ′ ⊇ Y , namely the filter

lattice F(P ) := (F(P ),⊇).

A filter lattice is a distributive lattice formed by filter of a poset in the anti-inclusion order. We study

the combinatorial properties of a class of specitial cubes in this paper. These cubes are induced by the Hasse

diagram of filter lattices of certain poset, contain Fibonacci cubes as its sub-cubes and have similar properties

with Fibonacci cubes, so called Fibonacci-like cubes. We obtained some structural and enumerative properties

∗This work was supported by NSFC (Grant No. 11761064).
†Corresponding author.
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of the cubes and the distributive lattices, including rank generating functions, cube polynomials, maximal

cube polynomials, degree sequence polynomials and indegree sequence polynomials.

2 Fibonacci-like cubes

The fence or “zigzag poset” Zn[11] is an interesting poset, with element {x1, . . . , xn} and cover relation

x2i−1 < x2i and x2i > x2i+1, and the underlying graph of the Hasse diagram of F(Zn) is a Fibonacci cube

Γn. Now we have a new poset modified from fence.

Definition 2.1 The S-fence, denoted by φn, is a fence-like poset, with element {x1, . . . , xn} and cover rela-

tions x1 > x2 > x3, x2 < x4 and x4 > x5, for i ≥ 3, x2i−1 < x2i and x2i > x2i+1.

x1

x2

x3

x5

x4 x6

· · ·x7

· · ·

xn

(a) n is odd

x1

x2

x3

x5

x4 x6

· · ·x7

· · · xn

(b) n is even

Figure 1: S-fence φn

The Hasse diagram of the filter lattice F(φn) can be considered as a directed graph (namely (x,y) is an

arc if and only if y ≺ x). The underlying graph of the Hasse diagram of F(φn) is a Fibonacci-like cube (FLC

for shorter). For convenience, both the Hasse diagram (as a diricted graph) and its underlying graph are

denoted by Φn too. Note that Φ0 is the trivial graph with only one vertex.

Figure 2: The first eight Fibonacci-like cubes Φ0, Φ1, . . . , Φ7

Let L be a distributive lattice. A convex sublattice (interval) K of L is called a cutting if any maximal

chain of L must contain some elements of K. The convex expansion L ⊞ K of L with respect to K is a

distributive lattice on the set L ∪K ′ (K
′ ∼= K a copy of K) with the induced order:

x ≤ y, if x ≤ y in L,

x
′

< y, if x ≤ y in L with x ∈ K,

x < y
′

, if x < y in L with y ∈ K,
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x
′

≤ y
′

, if x ≤ y in K.

As show in Figure 3, where 1̂K and 0̂K denote the maximum element and minimum element of the distributive

lattice K, respectively (see[12]).

K

0̂K

1̂K

K

K ′(∼= K)

L⊞KL

Figure 3: The finite distributive lattices L and L⊞K

Lemma 2.1 The filter lattice F(P ) is considered as a convex expansion, that is for every x ∈ P ,

F(P ) ∼= F(P − x)⊞ F(P ∗ x),

where P − x and P ∗ x the induced subposets on P \ {x} and P \ {y ∈ P |y ≤ x or x ≤ y}, respectively.

It is known that Γn
∼= Γn−1 ⊞ Γn−2

∼= (Γn−2 ⊞ Γn−2) ⊞ Γn−3 (n ≥ 4) [8]. FLC Φn has similar structure

with the Fibonacci cube and matchable Lucas cubes [12], as shown in Figure 4 and Figure 5.

Lemma 2.2 Let Φn be the n-th FLC defined above. Then

Φn
∼= Γ∗

n−1 ⊞ Γ∗
n−4

∼=
(

(Γ∗
n−3 ⊞ Γ∗

n−3)⊞ Γ∗
n−4

)

⊞ Γ∗
n−4 (n ≥ 5).

or

Φn
∼= Φn−1 ⊞ Φn−2

∼= (Φn−2 ⊞ Φn−2)⊞ Φn−3 (n ≥ 6).

Proof. By definition of Φn, the result is easily obtained by putting x = xn and x = x3 in Lemma 2.1,

respectively. �

By Lemma 2.2 and the fact that |V (Γn)| = Fn+2, we have folloing relation.

Corollary 2.3 The number of vertices of Φn is 2Fn.

3 Enumerative properties

Let Fn be the n-th Fibonacci number defined by: F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2, for n ≥ 2. The

generating function of the sequence {Fn}∞n=0 is

∑

n≥0

Fnx
n =

x

1− x− x2
.
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Γ∗
n−1

Γ∗
n−2

Γ∗
n−3

Γ∗
n−3

Γ∗
n−4

Γ∗
n−4

Γ∗
n−4

Γ∗
n−4

Figure 4: The structure of Φn given by Γn

Φn−1Φn−2

Φn−2

Φn−3

Φn−3

Φn−3

(a) n is even

Φn−1 Φn−2

Φn−2

Φn−3

Φn−3

Φn−3

(b) n is odd

Figure 5: The recursive structure of Φn

There is an interesting relation between Fibonaci numbers and binomial coefficients:

n

2
∑

k=0

(

n− k

k

)

= Fn+1.

The enumerative properties of Fibonacci cubes and Lucas cubes has been extensively studied [3-9]. In

this section, we obtain some enumerative properties of Φn, such as rank generating functions i.e. rank poly-

nomials, cube polynomials, maximal cube polynomial, degree sequences polynomial, indegree and outdegree

polynomials. Some results are related to Fibonacci sequences since the number of vertices of Φn equals to

2Fn. The number of the maximal k-dimensional cubes in Φn is a Padovan number.

Note that hereafter set
(

n
k

)

= 0 whenever the condition 0 ≤ k ≤ n is invalid for any integers n and k.

The proof of the conclusion about the generating function is similar to the proof of Theorem 3.4,and the

proof of Propositions 3.12, 3.28 are similar to the proof of Proposition 3.18 (see [4], [11]).
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3.1 Rank generating functions

The rank generating function of Φn is Rn(x) := R(Φn, x) =
∑

k≥0 rn,kx
k, where rn,k := rk(Φn) denoted the

number of the elements of rank k in Φn. The first few of Rn(x) are listed.

R0(x) = 1

R1(x) = 1 + x

R2(x) = 1 + x+ x2

R3(x) = 1 + x+ x2 + x3

R4(x) = 1 + x+ x2 + 2x3 + x4

R5(x) = 1 + 2x+ 2x2 + 2x3 + 2x4 + x5

R6(x) = 1 + 2x+ 3x2 + 3x3 + 3x4 + 3x5 + x6

R7(x) = 1 + 3x+ 4x2 + 5x3 + 5x4 + 4x5 + 3x6 + x7

R8(x) = 1 + 3x+ 5x2 + 7x3 + 8x4 + 7x5 + 6x6 + 4x7 + x8

R9(x) = 1 + 4x+ 7x2 + 10x3 + 12x4 + 12x5 + 10x6 + 7x7 + 4x8 + x9.

Lemma 3.1 ([12]) Let L be a finite distributive lattice and K is a cutting of L. The rank generating function

of L⊞K is

R(L⊞K,x) =







R(L, x) + xhL(0̂K)+1R(K,x), if 1̂K = 1̂L;

R(K,x) + xR(L, x), if 0̂K = 0̂L.

where hL(x) denote the height of x in L for x ∈ L.

By the Lemma 3.1 we have

Proposition 3.2 For n ≥ 5

Rn(x) =







xRn−1(x) +Rn−2(x), if 2 ∤ n,

Rn−1(x) + x2Rn−2(x), if 2 | n.

Let Am(x) = R2m(x) and Bm(x) = R2m+1(x), we have






Am(x) = Bm−1(x) + x2Am−1(x), (m ≥ 3),

Bm(x) = xAm(x) +Bm−1(x), (m ≥ 2).

Am(x) and Bm(x) have the recurrence relations:

Proposition 3.3






Am(x) = (1 + x+ x2)Am−1(x) − x2Am−2(x), (m ≥ 4),

Bm(x) = (1 + x+ x2)Bm−1(x) − x2Bm−2(x), (m ≥ 2).

Proof. By Proposition 3.2, for m ≥ 4,

Am(x) = Bm−1(x) + x2Am−1(x)

= xAm−1(x) +Bm−2(x) + x2Am−1(x)

= xAm−1(x) +Am−1(x) − x2Am−2(x) + x2Am−1(x)

= (1 + x+ x2)Am−1(x) − x2Am−2(x).

For B2(x), the conclusion is also ture. Samilarily, the recurrence relation of Bm(x) can be obtained. �
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Then, we can derive the generating functions of Am(x) and Bm(x) by Proposition 3.3, respectively.

Theorem 3.4 The generating functions of Am(x) and Bm(x) are

∑

m≥0

Am(x)zm = z +
1− z + z2

1− (1 + x+ x2)z + x2z2

and
∑

m≥0

Bm(x)zm =
1 + x− (x+ x2)z

1− (1 + x+ x2)z + x2z2
,

respectively.

Proof. By the Proposition 3.3,

∑

m≥0

Am(x)zm =
∑

m≥4

Am(x)zm +A3(x)z
3 +A2(x)z

2 +A1(x)y +A0(x)

=
∑

m≥4

((1 + x+ x2)Am−1 − x2Am−2)z
m +A3(x)z

3 +A2(x)z
2 +A1(x)z +A0(x)

= (1 + x+ x2)z
∑

m≥3

Am(x)zm − x2z2
∑

m≥2

Am(x)zmA3(x)z
3 +A2(x)z

2 +A1(x)z +A0(x)

= (1 + x+ x2)z
∑

m≥0

Am(x)zm − x2z2
∑

m≥0

Am(x)zm + 1 + x2z3 − xz2 − x2z2.

Similarly, the generating function of Bm are obtained. �

In addition, Am(x) and Bm(x) can be obtained by Theorem 3.4.

Let
(

n;3
k

)

denote the coefficient of xk in (1 + x+ x2)n(see [1]), which is

(

n; 3

k

)

=

⌊k/2⌋
∑

i=0

(

n

k − i

)(

k − i

i

)

.

See also the sequence A027907 in the OEIS [10]. Using Kronecker delta function δ, we have the formula of

the coefficient rn,k.

Theorem 3.5

r2m,k = δ1,mδ0,k +

⌊m

2
⌋

∑

i=0

(−1)i
(

m− i

i

)(

m− 2i; 3

k − 2i

)

−

⌊m−1

2
⌋

∑

i=0

(−1)i
(

m− i− 1

i

)(

m− 2i− 1; 3

k − 2i

)

+

⌊m−2

2
⌋

∑

i=0

(−1)i
(

m− i− 2

i

)(

m− 2i− 2; 3

k − 2i

)

.

and

r2m+1,k =

⌊m

2
⌋

∑

i=0

(−1)i
(

m− i

i

)((

m− 2i; 3

k − 2i

)

+

(

m− 2i; 3

k − 2i− 1

))

−

⌊m−1

2
⌋

∑

i=0

(−1)i
(

m− i− 1

i

)((

m− 2i− 1; 3

k − 2i− 1

)

+

(

m− 2i− 1; 3

k − 2i− 2

))

.
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Proof. Consider the polynomials gn(x) defined by

∑

n≥0

gn(x)z
n =

1

1− (1 + x+ x2)z + x2z2

such that

gn(x) =

⌊n/2⌋
∑

i=0

(−1)i
(

n− i

i

)

x2i(1 + x+ x2)n−2i.

In addition, the coefficient of xk in gn(x) can be given by

[xk]gn(x) =

⌊n/2⌋
∑

i=0

(−1)i
(

n− i

i

)

x2i(1 + x+ x2)n−2i =

⌊n/2⌋
∑

i=0

(−1)i
(

n− i

i

)(

n− 2i; 3

k − 2i

)

.

Then, since Am(x) = z + gm(x) − gm−1(x) + gm−2(x), we have

r2m,k = [xk]Am(x) = [xk]z + [xk]gm(x)− [xk]gm−1(x) + [xk]gm−2(x)

= δ1,mδ0,k +

⌊m

2
⌋

∑

i=0

(−1)i
(

m− i

i

)(

m− 2i; 3

k − 2i

)

−

⌊m−1

2
⌋

∑

i=0

(−1)i
(

m− i− 1

i

)(

m− 2i− 1; 3

k − 2i

)

+

⌊m−2

2
⌋

∑

i=0

(−1)i
(

m− i − 2

i

)(

m− 2i− 2; 3

k − 2i

)

.

Thus, r2m+1,k is obtained from Bm(x) = gm(x) + xgm(x)− xgm−1(x) − x2gm−1(x) in the same way. �

We can obtain the generating function of Rn(x) from Theorem 3.4.

Theorem 3.6 The generating function of Rn(x) is

∑

n≥0

Rn(x)y
n =

1 + (1 + x)y − (x + x2)y3 − (x+ x2)y4 + x2y6

1− (1 + x+ x2)y2 + x2y4
.

Proof. By the definition of Am(x) and Bm(x),

∑

n≥0

Rn(x)y
n =

∑

m≥0

Am(x)y2m +
∑

m≥0

Bm(x)y2m+1

=
∑

m≥0

Am(x)y2m + y
∑

m≥0

Bm(x)y2m

=
1− xy4 − x2y4 + x2y6

1− (1 + x+ x2)y2 + x2y4
+ y

1 + x− xy2 − x2y2

1− (1 + x+ x2)y2 + x2y4

=
1 + (1 + x)y − (x+ x2)y3 − (x+ x2)y4 + x2y6

1− (1 + x+ x2)y2 + x2y4
. �

Since Rn(1) is the number of vertices of Φn, put x = 1 in the generating function of Rn(x) we obtain the

generating function of the number of vertices of Φn is

1 + y2 +
2y

1− y − y2
.

Thus we have the following results related to Fibonacci sequences:

Corollary 3.7 Using the above notation, we have

n
∑

k=0

rn,k = 2Fn (n ≥ 3).
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3.2 Cube polynomials

The cube polynomials of Φn isQn(x) =
∑

k≥0 qn,kx
k, where qn,k := qk(Φn) is the number of the k-dimensional

induced hypercubes of Φn. The first few of Qn(x) are listed.

Q0(x) = 1

Q1(x) = 2 + x

Q2(x) = 3 + 2x

Q3(x) = 4 + 3x

Q4(x) = 6 + 6x+ x2

Q5(x) = 10 + 13x+ 4x2

Q6(x) = 16 + 25x+ 11x2 + x3

Q7(x) = 26 + 48x+ 28x2 + 5x3.

Lemma 3.8 ([12]) Let L be a finite distributive lattice and K a cutting of L. Then

qk(L⊞K) = qk(L) + qk(K) + qk−1(K).

We can get the recurrence relation of qn,k from Lemma 3.8 evidently.

Proposition 3.9 For n ≥ 4,

qn,k = qn−1,k + qn−2,k + qn−2,k−1.

It is easy to get the recurrence relation of Qn(x).

Proposition 3.10 For n ≥ 5,

Qn(x) = Qn−1(x) + (1 + x)Qn−2(x).

Proof. By the Proposition 3.9,

Qn(x) =
∑

k≥0

qn,kx
k =

∑

k≥0

(qn−1,k + qn−2,k + qn−2,k−1)x
k

=
∑

k≥0

qn−1,kx
k +

∑

k≥0

qn−2,kx
k + x

∑

k≥0

qn−2,k−1x
k−1

= Qn−1(x) + (1 + x)Qn−2(x). �

Theorem 3.11 The generating function of Qn(x) is

∑

n≥0

Qn(x)y
n =

1 + (1 + x)y − (1 + x)2y3 − (1 + x)2y4

1− y − (1 + x)y2
.

Proposition 3.12 For n ≥ 0,

Qn(x) =

⌊n+1

2
⌋

∑

j=0

(

n− j + 1

j

)

(1 + x)j −

⌊n+1

2
⌋

∑

j=2

(

n− j − 1

j − 2

)

(1 + x)j −

⌊n

2
⌋

∑

j=2

(

n− j − 2

j − 2

)

(1 + x)j .

and thus

qn,k =

⌊n+1

2
⌋

∑

j=0

(

n− j + 1

j

)(

j

k

)

−

⌊n+1

2
⌋

∑

j=2

(

n− j − 1

j − 2

)(

j

k

)

−

⌊n

2
⌋

∑

j=2

(

n− j − 2

j − 2

)(

j

k

)

.
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Corollary 3.13 For n ≥ 3, the number of vertices of Φn is

qn,0 = 2

⌊n−1

2
⌋

∑

k=0

(

n− 1− k

k

)

= 2Fn.

3.3 Maximal cube polynomials

The maximal cube polynomial of Φn is Hn(x) =
∑

k≥0 hn,kx
k, where hn,k := hk(Φn) be the number of the

maximal k-dimensional cubes in Φn, The first few of Hn(x) are listed.

H0(x) = 1

H1(x) = x

H2(x) = 2x

H3(x) = 3x

H4(x) = 2x+ x2

H5(x) = 4x2

H6(x) = 5x2 + x3

H7(x) = 2x2 + 5x3

We can get the recurrence relation of hn,k from Lemma 2.2.

Proposition 3.14 For n ≥ 6,

hn,k = hn−2,k−1 + hn−3,k−1.

By Proposition 3.14 the recurrence relation of Hn(x) is given easily.

Proposition 3.15 For n ≥ 6,

Hn(x) = xHn−2(x) + xHn−3(x).

The (1, 3, 3)-Padovan number pn is defined as: p0 = 1, p1 = 3, p2 = 3,pn = pn−2+pn−3, for n ≥ 3. Hence

we have the following corollary.

Corollary 3.16 For n ≥ 3,

Hn(1) = pn−2.

Furthermore, we can obtain the generating function of Hn(x) by Proposition 3.15.

Theorem 3.17 The generating function of Hn(x) is

∞
∑

n=0

Hn(x)y
n =

1 + xy(1 + y) + 2xy3(1 + y)− x2y3(1 + y)2)

1− xy2(1 + y)

= −2y + xy + xy2 +
1 + 2y

1− xy2(1 + y)
.

Because −2y + xy + xy2 are parts of H1(x)y and H2(x)y
2, we have the Proposition 3.18.
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Proposition 3.18 For n ≥ 3,

Hn(x) =

⌊n

2
⌋

∑

k=0

((

k + 1

n− 2k

)

+

(

k

n− 2k − 1

))

xk,

and

hn,k =

(

k + 1

n− 2k

)

+

(

k

n− 2k − 1

)

.

Proof.

1 + 2y

1− xy2(1 + y)
=

∑

j≥0

(1 + y)jxjy2j + 2
∑

j≥0

(1 + y)jxjy2j+1

=
∑

j≥0

j
∑

n−2j=0

(

j

n− 2j

)

xjyn + 2
∑

j≥0

j
∑

n−2j−1=0

(

j

n− 2j − 1

)

xj1yn

=
∑

n≥0

⌊n

2
⌋

∑

k=⌈n

3
⌉

(

k

n− 2k

)

xkyn + 2
∑

n≥0

⌊n−1

2
⌋

∑

k=⌈n−1

3
⌉

(

k

n− 2k − 1

)

xkyn.

The proof is completed. �

3.4 Degree sequences polynomials

The degree sequences polynomial of Φn is Dn(x) =
∑

k≥0 dn,kx
k, where dn,k := dk(Φn) denoted the number

of vertices of the degree k in Φn, i.e. dn,k = |{ v ∈ V (Φn) | degΦn
(v) = k }|. The first few of Dn(x) are listed

D0(x) = 1

D1(x) = 2x

D2(x) = 2x+ x2

D3(x) = 2x+ 2x2

D4(x) = x+ 4x2 + x3

D5(x) = 5x2 + 4x3 + x4

D6(x) = 3x2 + 9x3 + 3x4 + x5

D7(x) = x2 + 11x3 + 10x4 + 3x5 + x6

The recurrence relation dn,k is illustrated in the Figure 6.

Proposition 3.19 For n ≥ 4,

dn,k = dn−2,k−1 + dn−1,k−1 − dn−3,k−2 + dn−3,k−1.

Proposition 3.20 For n ≥ 6,

Dn(x) = xDn−1(x) + xDn−2(x) + (x− x2)Dn−3(x).

Therefore, the generating function of Dn(x) is obtained.
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Φn−3

Φn−2

Φn

Figure 6: Illustrating the recurrence relation of dn,k

Theorem 3.21 The generating function of Dn(x) is given by

∑

n≥0

Dn(x)y
n = −y + xy + x2y2 +

1 + y − x2y2

(1− xy)(1 − xy2)− xy3
.

Proposition 3.22 For n ≥ 3, the number of vertices of degree k of Φn is

dn,k =

k
∑

j=0

((

n− 2j

k − j

)(

j

n− k − j

)

+

(

n− 2j − 1

k − j

)(

j

n− k − j − 1

)

−

(

n− 2j − 2

k − j − 2

)(

j

n− k − j

))

.

Proof. The way is similar to the method of [3]. Using the expansion

xn

(1− x)n+1
=

∑

j≥n

(

j

n

)

xj ,

we consider the formal power series expansion of

f(x, y) =
1

(1− xy)(1 − xy2)− xy3
,

f(x, y) =
1

(1 − xy)(1− xy2)− xy3

=
(1− xy)−1(1− xy2)−1

1− xy3(1− xy)−1(1 − xy2)−1

=
∑

t≥0

xty3t(1− xy)−t−1(1− xy2)−t−1

=
∑

t≥0

(xy)t

(1− xy)t+1

(xy2)t

(1− xy2)t+1
x−t

=
∑

t≥0

∑

i≥t

(

i

t

)

(xy)i
∑

j≥t

(

j

t

)

(xy2)jx−t

=
∑

n≥0

n
∑

k=0

k
∑

j=0

(

n− 2j

k − j

)(

j

n− k − j

)

xkyn.

Thus

[xk][yn]f(x, y) =
k
∑

j=0

(

n− 2j

k − j

)(

j

n− k − j

)

.
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Note that
1 + y − x2y2

(1 − xy)(1− xy2)− xy3
= f(x, y) + yf(x, y)− x2y2f(x, y),

then

[xk][yn]
1 + y − x2y2

(1 − xy)(1− xy2)− xy3

= [xk][yn]f(x, y) + [xk][yn−1]f(x, y)− [xk−2][yn−2]f(x, y)

=

k
∑

j=0

(

n− 2j

k − j

)(

j

n− k − j

)

+

k
∑

j=0

(

n− 2j − 1

k − j

)(

j

n− k − j − 1

)

−
k
∑

j=0

(

n− 2j − 2

k − j − 2

)(

j

n− k − j

)

. �

We have a similar result as Corollary 3.7 as follows.

Corollary 3.23 For n ≥ 3,
n
∑

k=0

dn,k = 2Fn.

3.5 Indegree and outdegree polynomials

The indegree polynomial of Φn is D−
n (x) =

∑⌊n

2
⌋

k=0 d
−
n,kx

k, where d−n,k denoted the number of vertices of the

indegree k in Φn, or the number of anti-chains with only k elements in Φn, or the number of the element

covered only by k elements in Φn. The first few of D−
n (x) are listed.

D−
0 (x) = 1

D−
1 (x) = 1 + x

D−
2 (x) = 1 + 2x

D−
3 (x) = 1 + 3x

D−
4 (x) = 1 + 4x+ x2

D−
5 (x) = 1 + 5x+ 4x2

D−
6 (x) = 1 + 6x+ 8x2 + x3

D−
7 (x) = 1 + 7x+ 13x2 + 5x3.

Proposition 3.24 For n ≥ 3 and k ≥ 1,

d−n,k = d−n−1,k + d−n−2,k−1.

Proposition 3.25 For n ≥ 5,

D−
n (x) = D−

n−1(x) + xD−
n−2(x).

Lemma 3.26 ([12]) For n ≥ 0,

D−
n (1 + x) = Qn(x).

By Propositions 3.24, 3.25 and Lemma 3.26, a similar argument as proof of Theorem 3.4 gives the

generating function of D−
n (x) as follows.
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Theorem 3.27 The generating function of D−
n (x) is

∑

n≥0

D−
n (x)y

n =
1 + xy − x2y3 − x2y4

1− y − xy2
.

Proposition 3.28 For n ≥ 0,

D−
n (x) =

⌊n

2
⌋

∑

k=0

((

n− k − 2

k − 1

)

+

(

n− k

k

))

xk.

Thus

d−n,k =

(

n− k − 2

k − 1

)

+

(

n− k

k

)

.

We have a similar result as Corollary 3.7 on indegree of each vertex of the Fibonacci-like cubes from the

fence-like posets.

Corollary 3.29 For n ≥ 3,

n
∑

k=0

d−n,k =

n
∑

k=0

((

n− k − 2

k − 1

)

+

(

n− k

k

))

= 2Fn.

The conclusion of outdegree is similar to those of indegree.
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