
BINOMIAL ARRAYS AND

GENERALIZED VANDERMONDE IDENTITIES

ROBERT W. DONLEY, JR.

Abstract. In previous work on Clebsch-Gordan coefficients, certain remark-

able hexagonal arrays of integers are constructed that display behaviors found
in Pascal’s Triangle. We explain these behaviors further using the binomial

transform and discrete convolution. Here we begin by introducing the notion

of a binomial array and develop several “hockey stick” rules. Then we give an
algorithm that generalizes the classical Vandermonde Identity; this produces

infinite families of summation formulas, which we use to expand and prove

certain combinatorial identities for the Catalan numbers. Finally, we recast
the theory in terms of the finite-dimensional representation theory of SL(2, F ).

1. Introduction

Recent work of the author on Clebsch-Gordan coefficients allows for wide appli-
cation of the methods of combinatorial analysis, driven in particular by generating
functions, recurrences, finite group actions, and Pascal’s triangle. The basic combi-
natorial rules established in [4] receive a somewhat thorough application in [5], save
for the orthogonality relations. The goal of this work is to draw further analogies
from Pascal’s triangle, in particular characterizing the first orthogonality relation
as a special case of discrete convolution.

Coupling this observation with methods of Dwyer ([6], [7]) and Frankel ([9]),
we also explain the invariance property of orthogonality relations under uniform
inward or outward shifting of columns. This method yields vast extensions of the
summation formulas associated to Pascal’s recurrence.

Key to understanding these phenomena is the notion of a binomial array; this
concept extends both Pascal’s triangle and forward difference tables and has prop-
erties in accordance with Riordan arrays [2]. In turn, the binomial array is a natural
implementation of the generalized binomial transform. Instead of producing a new
sequence from a given sequence, a consideration of all possible binomial transforms
and their inverses produce an array of values. The binomial transform here may be
regarded as iteration of Pascal’s recurrence and its inverse as iteration of alternating
partial sums.

Examples of these arrays are both old and well-represented in the literature,
including

(1) the extended Pascal triangle (Figure 1; compare with Table 1 in [9]), bino-
mial coefficients, and cumulative (or figurate) numbers,
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2 ROBERT W. DONLEY, JR.

Table 1. Shapiro’s Catalan Triangle for Bn,k

n\k 1 2 3 4 5 6
1 1
2 2 1
3 5 4 1
4 14 14 6 1
5 42 48 27 8 1
6 132 165 110 44 10 1

(2) difference tables and the calculus of finite differences (for instance, [11], Ch.
5.3),

(3) moment and correlation calculations in statistics ([6], [7]),
(4) Catalan numbers (A000108) and Catalan triangles (A009766 - in order of

increasing detail, see [15], [8], [12], and Figure 5 below; see also Figure 3.2
in [10]),

(5) Bell numbers (A000110) and Bell’s triangle (A011971),
(6) Motzkin numbers (A001006) as finite differences of Catalan numbers ([18],

p. 126.),
(7) rencontres numbers (A008290) and derangement triangles ([17]),
(8) Clark’s triangles (A090850), and
(9) hexagons of Clebsch-Gordan coefficients ([4], [5]; see also [19], III.8.7, p.

188, for finite differences).

Here entries of the OEIS ([16]) are referenced as usual with digits following a leading
A.

In addition to providing another setting for Clebsch-Gordan coefficients, these
methods allow an extension of summation formulas due to Shapiro. In particular,
if we define

Bn,k =
k

n

(
2n
n− k

)
,

then an extension of the Catalan numbers is given by Table 1. These numbers
satisfy the equation

Bn,k = Bn−1,k−1 + 2Bn−1,k = Bn−1,k+1,

which may be interpreted as the square of Pascal’s recurrence. This triangle occurs
as a fundamental example of a Riordan array [2], and it is known ([15]; [14], The-
orem 13.1) that the length squared of any row is a Catalan number, as is the dot
product of any two rows. Extensions of these two results (Corollaries 8.4 and 8.5)
and placement into a wider context, adjunct to the Riordan array model, are two
concerns of the present work.

Other new features include

(1) definitions of binomial array and the general binomial transform (section
2),

(2) symmetries of binomial arrays (section 3),
(3) nine hockey stick rules - six long and three short (section 4),
(4) six Vandermonde identities for convolution (sections 5),
(5) examples and two families generalizing the sequence of Catalan numbers

(sections 6 through 8), and
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-5 -4 -3 -2 -1 0 1 2 3 4 5
1 1 1 1 1 1 1 1 1 1 1

-5 -4 -3 -2 -1  1 2 3 4 5
15 10 6 3 1  1 3 6 10

-35 -20 -10 -4 -1   1 4 10
70 35 15 5 1    1 5

-126 -56 -21 -6 -1     1

Figure 1. Extended Pascal’s Triangle

(6) an identification of the model in terms of the representation theory for
SL(2, F ) (section 9).

For notation, we remind the reader of the usual conventions for binomial coeffi-
cients, which may be invoked without comment. For any integers k and n,

(1.1)

(
n
k

)
=


n!

k!(n−k)! 0 ≤ k ≤ n,
(−1)k(−n+k−1)!

k!(−n−1)! n < 0, k ≥ 0, and

0 otherwise.

See Figure 1, with columns indexed by n and rows indexed by k ≥ 0. While most
of our examples require only the integers, we will assume constants lie in a field F
of characteristic zero.

All figures in this work were created using Excel.

2. Binomial Arrays

Let V = F [[x]] be the algebra of power series in one variable with coefficients
in F , and let B = {1, x, x2, . . . } be a basis for the subalgebra of polynomials in V.
Every element in V can be uniquely represented as a formal infinite sum of elements
in B. Using this representation, V is isomorphic to the ring of sequences {ai}∞i=0.

Definition 2.1. Suppose {ai}∞i=0 is a sequence. We define the binomial array
B(ai) to be the lower half-plane array defined as follows:

(1) All entries in the top line equal a0. We index the top line as row 0 and all
rows below in increasing order,

(2) The entry in the zeroth column and i-th row is ai, and
(3) All other entries are defined using Pascal’s recurrence; that is, if the entry

in row k and column n is denoted by ak,n then

ak,n+1 = ak−1,n + ak,n.

If p(x) = a0+a1x+ · · ·+amxm is a polynomial of degree m, we define B(p(x)) to be
the binomial array B(ai) with ai = 0 for all i > m. For general ai with generating
function p(x), we may likewise use B(p(x)) to denote B(ai) when convenient.

Of course, ai,0 = ai. Pascal’s recurrence allows us to extend the middle column
to both the left and right sides of B(p(x)). The recurrence occurs as a capital L
pattern; the vertical entries sum to define the toe of the L. Knowing any two entries
on the L allows calculation of the third.
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Definition 2.2. For n ≥ 0, we define the (extended) binomial transform Bnak
of ai to be the sum

(2.1) Bnak = ak,n =

n∑
i=0

(
n
i

)
ak−i.

Several definitions of binomial transform appear in the literature; see, for in-
stance, [3] or [17]. One version is given as Bnan; our definition extends this bino-
mial transform by collecting all such transforms for all consecutive subsequences of
ai.

Definition 2.3. For n > 0, the inverse binomial transform B−nak of ai is
defined by the sum

(2.2) B−nak = ak,−n =

n∑
i=0

(−1)i
(
n+ i− 1

i

)
ak−i.

If p(x) =
∞∑
i=0

aix
i, then Bnak is the coefficient of xk in (1 + x)np(x), and the

definition follows from the Binomial Theorem. Thus if each column of a binomial
array represents coordinates for a power series, Pascal’s recurrence is implemented
by multiplying p(x) by (1+x) repeatedly, and this process is inverted with division
by (1 + x). For instance, if

B1p(x) = (1 + x)p(x) =

∞∑
i=0

bix
i,

then
bk = ak + ak−1.

On the other hand, inversion is given by multiplication of power series; if

B−1p(x) =
p(x)

1 + x
= (1− x+ x2 − x3 + . . . )p(x)

=

∞∑
i=0

bix
i.

then
bk = ak − ak−1 + · · ·+ (−1)ka0.

The formula for the inverse binomial transform then follows from the binomial series
expansion: if n ≥ 0, then

(1 + x)−n =

∞∑
i=0

(−1)i
(
n+ i− 1

i

)
xi

Proposition 2.4 (Hockey Stick Rule). Let B(ai) be a binomial array. If column
n is given, then column n− 1 is given by alternating partial sums of column n. In
particular,

ak,n−1 = ak,n − ak−1,n + ak−2,n + · · ·+ (−1)ka0,n.

In practice, it may be inconvenient to sum to the top line. The sum may be
shortened if a higher entry in column n−1 is known. That is, one may compute an
alternating partial sum by continuing a known alternating partial sum of the same
entries.
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Proposition 2.5 (Short Hockey Stick Rule). Suppose 0 < k1 < k2.

ak2,n−1 = (ak2,n − ak2−1,n + · · ·+ (−1)k2−k1ak2+1,n) + (−1)k2−k1+1ak2,n−1.

The following subarrays indicate the pattern of each rule:
1 1 1 1 1 1

6 7 8 9 10 11

15 21 28 36 45 55

20 35 56 84 120 165

29 49 84 140 224 344

 ,


1 1 1 1 1 1

6 7 8 9 10 11

15 21 28 36 45 55

20 35 56 84 120 165

29 49 84 140 224 344

 .
Of course,

140 = 224− 120 + 45− 10 + 1, 140 = (224− 120 + 45)− 9.

It will often be convenient to change the origin of a binomial array. If column 0
is considered as an initial condition at time t = 0, then the rule

Bt1Bt2ai = Bt1+t2ai

holds; for the system to evolve beyond time t, only the values at time t are needed.
As a consequence, we may shift the entire array to the left or right when con-

venient, which amounts to a uniform shift in the second index of ak,n. Uniform
vertical shifting may be performed by multiplying the polynomials for each column
by xk; when k is negative, columns must then allow for values in the ring of Laurent
power series. In this work, we require that all values above row 0 equal zero.

We now extend the vector space operations on powers series and sequences to
binomial arrays.

Definition 2.6. Let {ai}∞i=0 and {bi}∞i=0 be sequences. If the sum and scalar
multiplication operations are defined as usual for matrices, then we have the sum

B(ai) +B(bi) = B(ai + bi)

and the scalar multiple
rB(ai) = B(rai).

In effect, the binomial transform is linear, so binomial arrays respect linear
operations. For instance,

Proposition 2.7. Any finite linear combination of binomial arrays is a binomial
array.

With this proposition in mind, each binomial array may be expressed in terms
with the extended Pascal’s triangle as the atomic element. Now let p(x) = 1; that
is, define

(2.3) ei =

{
1 i = 0

0 i > 0
, so that ek,n =



(
n

k

)
n ≥ 0

(−1)k

(
−n+ k − 1

k

)
n < 0.

Then P (0) = B(p(x)) is just the binomial array with Pascal’s triangle on each side;
on the right, the rows of the usual Pascal’s triangle are oriented as columns from
the top line, and, on the left, the rows are oriented as diagonals from the top line
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to column −1, now with signs alternating based on row number parity. See Figure
1 above.

Definition 2.8. For j ≥ 0, define the sequence {eji}∞i=0 by

(2.4) eji =

{
1 i = j,

0 otherwise
;

that is, eji is the zero sequence with a single 1 in the j-th position.

Definition 2.9. Fix j ≥ 0. Define P (j) = B(eji ). That is, P (j) is the binomial
array corresponding to Pascal’s triangle, but with the top row of ones moved to
row k and zeros in all rows above.

It follows that every B(ai) is a possibly infinite linear combination of binomial
arrays of type P (k). Specifically,

B(ai) =

∞∑
i=0

aiP (i),

and the sum for a given entry ak,n is always finite. This fact indicates that we
should deduce general properties of binomial arrays from those of Pascal’s triangle
that are linear in nature - and perhaps some that are not.

If p(x) is a polynomial of degree m, then the proper values of B(p(x)) are bor-
dered by values with constant absolute value; the constant value is a0 on the top line,
the diagonal from column zero to the lower right has constant value am, and, past

row m, column −1 alternates in sign and has constant absolute value |
m∑
i=0

(−1)iai|.

3. Symmetries

In this section, we consider symmetries of binomial arrays induced from triangu-
lar symmetries. Suppose p(x) is a polynomial of degree m. Then the binomial array
B(p(x)) is the join of three triangles: a binomial trapezoid progressing in the lower
left direction, a overlapping difference table, and a binomial trapezoid progressing
to the right. The right-hand side of the binomial array is clear.

To see that a binomial trapezoid occurs on the left-hand side, we may interpret
the usual Pascal’s recurrence, progressing to the right, as a Pascal’s recurrence
progressing to the lower left direction with sign corrections. With this rule, the
corner of the L is the sum of the right value of the L plus the negation of the value
at the top of the L. The initial condition of this trapezoid is the diagonal of entries
starting at row 0 of column −m−1 and ending at the entry at row m+1 in column
−1, with sign parity affected by row parity.

The left and right trapezoids are joined by a difference table with sides of length
m + 2 joining the initializing diagonal noted above to the origin. The columns of
the triangle are the given by repeatedly dividing p∗(x) = xmp(1/x) by x+ 1; each
column records the quotient with remainder. The remainders give the coefficients
in the Taylor expansion of p∗(x) at x = −1. For example, the difference table in
Figure 2 below expresses the equality

p∗(x) = 2x3 + 5x2 + x− 6 = 2(x+ 1)3 − (x+ 1)2 − 3(x+ 1)− 4.

We have immediately
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-5 -4 -3 -2 -1 0 1 2 3 4 5
2 2 2 2 2 2 2 2 2 2 2

-5 -3 -1 1 3 5 7 9 11 13 15
6 1 -2 -3 -2 1 6 13 22 33 46

-6 0 1 -1 -4 -6 -5 1 14 36 69
10 4 4 5 4 0 -6 -11 -10 4 40

-27 -17 -13 -9 -4  -6 -17 -27 -23
70 43 26 13 4   -6 -23 -50

Figure 2. B(p(x)) with p(x) = −6x3 + x2 + 5x+ 2

Proposition 3.1. The symmetry that interchanges the trapezoids on each side of
B(p(x)) is induced by reflecting the difference table of B(p(x)) along rows, with sign
changes along rows based on row parity.

For example,
2 2 2 2 2
−1 1 3 5

−3 −2 1
−4 −6

0

 7→


2 2 2 2 2
−5 −3 −1 1

1 −2 −3
6 4

0


Next

Proposition 3.2. The involution p(x) 7→ p∗(x) = xmp(1/x) inverts the columns
of B(p(x)) with non-negative index. The difference table for B(p∗(x)) has values
on its left-hand side given by the Taylor coefficients of p(x) at x = −1.

For example,
2 2 2 2 2
−1 1 3 5

−3 −2 1
−4 −6

0

 7→


−6 −6 −6 −6 −6

19 13 7 1
−15 −2 5

4 2
0

 ,
One readily checks that

p(x) = −6x3 + x2 + 5x+ 2 = −6(x+ 1)3 + 19(x+ 1)2 − 15(x+ 1) + 4.

Finally one reflects across the diagonal of the left trapezoid by passing to to the
right side, reflecting, and passing back to the left. To compute the right trapezoid,
one inverts the left-hand side of the difference table with sign changes.

4. Hockey Stick Rules

We now describe the various hockey stick rules in any B(p(x)). If p(x) is not a
polynomial, then there are two hockey stick rules: Proposition 2.4 and its reflection
under the symmetry that interchanges trapezoids. If p(x) is a polynomial, we
may apply the four-fold symmetries to obtain six hockey stick rules, with two
additional rules for each lower edge of the proper region. In addition, each rule has
a corresponding short version, yielding three short rules after multiplicity.
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Proposition 4.1 (Top Line to Lower Right). In addition to the top line rule
(Proposition 2.4), one also has

a0,n + a1,n+1 + · · ·+ ak,n+k = ak,n+k+1.

With 0 < k1 < k2, the short rule is given by

ak1−1,n+k1 + (ak1,n+k1 + ak1+1,n+k1+1 + · · ·+ ak2,n+k2) = ak2,n+k2+1.

Proof. The formula follows immediately from Proposition 2.4 after applying the
symmetry that interchanges trapezoids. We see readily that the alternation is
removed in the case of Pascal’s triangle; the case of general B(ai) follows from
linearity. �

The following subarrays indicate the pattern of each rule:
1 1 1 1 1 1

6 7 8 9 10 11

15 21 28 36 45 55

20 35 56 84 120 165

29 49 84 140 224 344

 ,


1 1 1 1 1 1

6 7 8 9 10 11

15 21 28 36 45 55

20 35 56 84 120 165

29 49 84 140 224 344

 .
Of course,

224 + 84 + 36 + 28 + 7 + 1 = 344, (224 + 84 + 28) + 8 = 344

Now suppose p(x) is a polynomial of degree m. Using the symmetries, we obtain
four additional rules, based off the diagonal on the right-hand side and the centerline
of the left-hand side.

Proposition 4.2 (Right-hand Side Rules). Let p(x) be a polynomial of degree m.
Fix n > 0, and suppose k > m.

(1) Along rows from the central column of B(p(x)),

ak,1 + · · ·+ ak,n = ak+1,n+1.

(2) Along columns to the right-hand side diagonal of B(p(x)),

ak,n − ak+1,n + · · ·+ (−1)m+n−kam+n,n = ak−1,n−1.

The following subarrays indicate the pattern of each rule with p(x) = 6x2−6x+3:
3 3 3 3 3 3
−6 −3 0 3 6 9

6 0 −3 −3 0 6

0 6 6 3 0 0

0 0 6 12 15 15

 ,


3 3 3 3

−6 −3 0 3

6 0 −3 −3

0 6 6 3

0 0 6 12
0 0 0 6


Of course,

6 + 6 + 3 = 15, −3 + 6− 6 = −3.

Proposition 4.3 (Left-hand Side Rules). Let p(x) be a polynomial of degree m.
Fix n > 0 and suppose k > m.

(1) Along rows from the centerline of B(p(x)),

ak,−1 + · · ·+ ak,−n = −ak+1,−n.
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(2) Along diagonals from the central column to the upper left of B(p(x)),

ak,−1 + ak−1,−2 + · · ·+ ak−n+1,−n = −ak−n,−n.

The following subarrays indicate the pattern of each rule with p(x) = 6x2−6x+3:
3 3 3 3 3 3

−21 −18 −15 −12 −9 −6
81 60 42 27 15 6

−225 -144 -84 -42 -15 0

510 285 141 57 15 0

 ,


3 3 3 3

-15 −12 −9 −6

42 27 15 6

−84 -42 −15 0

141 57 15 0
−213 −72 −15 0


.

Of course,

−15− 42− 84− 144 = −285, 42− 42 + 15 = −(−15).

In general, the three short rules apply to any B(ai). For the remaining short
rule,

Proposition 4.4 (Third Short Rule). Let B(ai) be any binomial array. Suppose
n1 < n2. Then

ak+1,n1
+ (ak,n1

+ · · ·+ ak,n2
) = ak+1,n2+1.

The following subarray indicates the pattern of this rule:
1 1 1 1 1 1
6 7 8 9 10 11

15 21 28 36 45 55

20 35 56 84 120 165
29 49 84 140 224 344

 ,
Of course, 35 + (21 + 28 + 36) = 120.

Alternatively, the short rules may be derived by iterating Pascal’s recurrence
from a fixed entry in one of three directions: upwards, to the right, and to the
upper left. The usual hockey stick rules result when these iterations intersect with
a border.

5. Cauchy Product

We now recall the background of the Cauchy algebra for Theorem 6 of [9], recast
to fit the present situation. Here we use the binomial transform instead of finite
differences; these models are equivalent by interchanging 1 + x and 1− x.

Definition 5.1 (Convolution). Suppose a and b are sequences with generating
functions p(x) and q(x), respectively. Then the Cauchy product (or discrete
convolution if polynomials) of a and b is a new sequence a ∗ b defined by

(5.1) (a ∗ b)m =
∑

i+j=m

aibj =

m∑
i=0

aibm−i = [xm](p(x)q(x)),

where [xm](p(x)) = am.

Properties of convolution follow naturally from algebraic properties of power
series. For instance, we immediately note

Proposition 5.2. Let a, b, and c be sequences, and let r be in F. Then
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(1) a ∗ b = b ∗ a,
(2) (ra+ b) ∗ c = (ra) ∗ c+ b ∗ c, and
(3) (a ∗ b) ∗ c = a ∗ (b ∗ c).

Definition 5.3. Define the sequence e by ei = δi,0, the Kronecker delta function.

It will be convenient to use non-standard notation for binomial coefficients in
this section.

Definition 5.4. For k ≥ 0 and any integer n, define tnk = Bnek =

(
n
k

)
.

It follows immediately that, for n ≥ 0 and any integers n1 and n2,

(1)
n∑

i=0

tni x
i = (1 + x)n,

(2)
∞∑
i=0

t−ni xi = (1 + x)−n, and

(3) tn1 ∗ tn2 = tn1+n2 .

In the context of binomial transforms,

(5.2) Bnak = ak,n = (tn ∗ a)k and B−nak = ak,−n = (t−n ∗ a)k.

We also have

(1) e ∗ e = e,
(2) e ∗ a = a ∗ e for any sequence a, and
(3) tn ∗ t−n = e.

With the multiplication of convolution, the algebra of sequences has no zero
divisors, has an identity e, and a sequence ai is invertible if and only if a0 6= 0.

With respect to the binomial transform, we have

Theorem 5.5 (Dwyer, Frankel). Suppose ai and bj are sequences. Then, for all
integers n,

(5.3) Bna ∗B−nb = a ∗ b.

Proof. Formally,

Bna ∗B−nb = (tn ∗ a) ∗ (t−n ∗ b)
= (tn ∗ t−n) ∗ (a ∗ b)
= e ∗ (a ∗ b) = a ∗ b.

Of course, if p(x) and q(x) represent a and b, respectively, then

[xm]
(
(1 + x)np(x)(1 + x)−nq(x)

)
= [x]m

(
p(x)q(x)

)
.

�

We recommend the interested reader to MR0033265, T. Fort’s review of [9].
In the following sections, we apply this theorem to produce infinite families of

summation formulas derived from binomial arrays. In section 9, we express this
theorem in terms of finite-dimensional representations of SL(2, F ).

Using the binomial array construction, the following corollary describes an im-
plementation of this theorem.
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Corollary 5.6 (Generalized Vandermonde Identity). Fix m ≥ 0, and let a and b
be sequences. For any n in Z,

(5.4)

m∑
i=0

aibm−i =

m∑
i=0

BnaiB
−nbm−i.

To compute using B(ai) and B(bi),

(1) restrict B(ai) and B(bi) to the first m+ 1 rows,
(2) rotate the restricted B(bi) by 180 degrees about column zero, and
(3) dot products of columns in the same relative position have equal values.

Example: Consider the finite subarrays centered about column zero withm = 3:
3 3 3 3 3

−2 1 4 7 10

0 −2 −1 3 10

0 0 −2 −3 0

 ,


2 2 2 2 2

−2 0 2 4 6

1 −1 −1 1 5

−1 0 −1 −2 −1

 .
We rotate the second array to obtain

3 3 3 3 3

−2 1 4 7 10

0 −2 −1 3 10

0 0 −2 −3 0

 ,

−1 −2 −1 0 −1

5 1 −1 −1 1

6 4 2 0 −2

2 2 2 2 2

 .
We see immediately that each of the five dot products between matching columns
equal −13.

Without the rotation, the matched columns move about the initial columns in
opposite directions by the same increment. If both columns are from a single array,
the matching is a telescoping effect.

We note further corollaries to Theorem 5.5:

Corollary 5.7. Suppose aji are sequences for 1 ≤ j ≤ k. Then

Bn1a1 ∗Bn2a2 ∗ · · · ∗Bnkak = Bn1+···+nk(a1 ∗ a2 ∗ · · · ∗ ak).

Corollary 5.8. Suppose (a ∗ b)m = 0. Then, for n in Z,
(Bna ∗B−nb)m = 0.

In particular, if ak,n = 0, then
k∑

i=0

(
l
i

)
ak−i,n−l = 0 for all l in Z.

Finally we may apply the symmetries from section 3 to obtain further Vander-
monde identities. For general binomial arrays B(ai) and B(bi), a second convolution
occurs along the top line, now along diagonals to the right.

Corollary 5.9. Fix m ≥ 0, and let B(ai) and B(bi) be binomial arrays. For any
r, s, t in Z,

m∑
i=0

ai,r+ibm−i,s−i =

m∑
i=0

ai,r+i+tbm−i,s−i−t.

In the case B(ai) and B(bi) correspond to polynomials, we obtain four additional
convolution formulas along the lower edges of the proper regions, two per side. We
leave the indexing in these cases to the reader.
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6. Examples of Sequential Zeros

We use the following strategy for generating families of summation formulas:

(1) choose a binomial array with an interesting sequence near a regular pro-
gression of zeros in the array,

(2) pair with a binomial array with a simple initial condition, and
(3) expand a simple convolution using Corollary 5.6.

Definition 6.1. Suppose the entries of B(ai) are denoted ak,n. If w, v, (resp. u, v′)
are non-negative (resp. non-zero) integers, we define a progression of arithmetic
type (v, v′) in B(ai) to be a sequence of the form ct = au+tv,w+tv′ for all t ≥ 0.
Such a progression c∗t is called a sequence of near zeros if ct = 0 always, ct and
c∗t have the same type, and max(|u− u∗|, |w − w∗|) = 1.

Thus we first identify elementary rules for generating binomial arrays with pro-
gressions of zeros. Of course, when p(x) is a polynomial, there is always an infinite
triangular region of zeros in B(p(x)) with a side on column 0. We note two further
types of specific interest: those with initial condition

p(x) = sx+ r

for some nonzero integers r and s, and those with a skew-palindromic initial con-
dition.

Consider the first case with initial condition p(x) = sx + r. Using scalar mul-
tiplication, this case reduces further to two cases: r is positive and s is negative,
or both r and s are positive and r < s. In the first case, the progression of zeros
occurs on the right-hand side of B(p(x)), the second on the left-hand side. It also
happens that these are the only proper zeros in B(p(x)).

Proposition 6.2. Suppose r and s are non-zero integers. If (|r|, |s|) = d > 1, then
B(sx+ r) and B( sx+r

d ) have the same zeros.
Otherwise suppose r and s are both positive with (r, s) = 1. Then

(1) ak,n is a proper zero of B(−sx+r) if and only if n = l(r+s)−1 and k = lr
for l ≥ 1, and

(2) ak,n is a proper zero of B(sx + r) if and only if n = l(r − s) + 1, k = lr,
and r < s for l ≤ −1.

Proof. The first statement follows from the scalar multiplication property.
Next suppose r and s are both positive and relatively prime. Then the general

term of B(−sx+ r) is given by, with n any integer and 0 < k < n,

(6.1) ak,n = r

(
n
k

)
− s

(
n

k − 1

)
.

When n > 0, this difference equals

r(n+ 1)− (r + s)k

n− k + 1

(
n
k

)
.

and all zeros on the right-hand side of B(−sx + r) are found. When n < 0, the
difference becomes a sum of two terms with the same parity, so no zeros occur on
the left-hand side.

The remaining case follows a similar argument. Now the zeros occur on the
left-hand side only when r < s, and no zeros occur on the right. �
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Examples of each case are given in Figures 5 and 6, respectively. In the general
case, B(−sx + r) and B((r + s)x + r) interchange trapezoids. Furthermore, we
may consider the right-hand side of B(−sx+ r) to be a direct limit of hexagons of
Clebsch-Gordan coefficients ([4], [5]) under inclusion:

(6.2) M(r, s, 1) ↪→ 1

2
M(2r, 2s, 1) ↪→ 1

3
M(3r, 3s, 1) ↪→ 1

4
M(4r, 4s, 1) ↪→ . . . .

We now identify some values adjacent to these zeros.

Definition 6.3 (Figure 3). Fix positive integers r and s. Define the integer se-
quence

C
(r,s)
t =

1

t

(rt+ st)!

(rt+ 1)!(st− 1)!
=

1

t

(
rt+ st
rt+ 1

)
for t ≥ 1.

Alternatively, one has

C
(r,s)
t =

r + s

rt+ 1

(
rt+ st− 1

rt

)
This definition gives another generalization of the Catalan numbers Ct, which occur
when r = s = 1. When s = 1, we obtain the Fuß-Catalan numbers.

Up to sign, the sequence C
(r,s)
t follows the zeros of B(−sx+ r) from below and

to the lower right, while the sequence C
(s,r)
t follows from above and to the right.

When r = s, C
(r,r)
t = rCrt. This case is somewhat degenerate, as rCt follows the

zeros of B(−rx+ r) = rB(−x+ 1).

Next we define the palindromic conditions:

Definition 6.4. Let p(x) be a polynomial of degree m. p(x) is called palindromic
if p(x) = xmp(1/x). On the other hand, if p(x) = −xmp(1/x), we call p(x) skew-
palindromic. That is, p(x) is palindromic (resp. skew-palindromic) if,

for 0 ≤ k ≤ m, ak = am−k (resp. ak = −am−k).

If p(x) is palindromic or skew-palindromic, then so is (1 + x)np(x) for all n ≥
0; that is, a palindromic (resp. skew-palindromic) initial condition produces a
binomial array with palindromic (resp. skew-palindromic) columns on the right. If
m is even and p(x) is skew-palindomic, then the middle entry equals zero, and the
following proposition holds immediately.

Proposition 6.5. Suppose p(x) is skew-palindromic of degree m.

(1) If m = 2l, then al = 0. There is a diagonal of zeros in B(p(x)) to the right
in even-numbered columns; specifically, for all k in N, al+k,2k = 0.

(2) If m = 2l+1, then al+1,1 = 0. There is a diagonal of zeros in B(p(x)) to the
right in odd-numbered columns; specfically, for all k in N, al+k+1,2k+1 = 0.

The simplest non-trivial example of the skew-palindromic case is given by the
Catalan triangle array in Figure 5. Vertical symmetry guarantees that four values
about a zero on the diagonal have the same absolute value (below, above, to the
right, to the lower right). Using the symmetry that switches the initial condition
to the trapezoid on the left, we obtain an unbroken diagonal of zeros on the left.
See Figure 6.

We note two general sources of skew-palindromic initial conditions:
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Figure 3. Near-zero sequences C
(r,s)
t for small parameters
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-3 -2 -1 0 1 2 3 4 5 6 7
10 10 10 10 10 10 10 10 10 10 10

-48 -38 -28 -18 -8 2 12 22 32 42 52
132 84 46 18 0 -8 -6 6 28 60 102

-272 -140 -56 -10 8 8 0 -6 0 28 88
468 196 56  -10 -2 6 6 0 0 28

-720 -252 -56   -10 -12 -6 0 0 0
1028 308 56    -10 -22 -28 -28 -28

Figure 4. M(5, 5, 3) as a subarray followed by triangle of zeros

(1) polynomials of the form pr,s(x) = (1 − xr)s for positive integers r and s
with odd s, and

(2) hexagons of Clebsch-Gordan coefficients ([4], [5]) of the form M(m,m, k)
with k odd and 0 < k < m.

The first case is just the aeration of the coefficients of (1− x)s with strings of r− 1
zeros. Then pr,s is palindromic (resp. skew-palindromic) if and only if s is even
(resp. odd).

For the second case, the initial condition is given by

ai = (−1)i
(
m− i
k − i

)(
m− k + i

i

)
for 0 ≤ i ≤ k, and ai = 0 otherwise. Since the hexagon M(r, r, 1) is a subarray of
B(−rx+ r), we obtain yet another generalization of the Catalan numbers.

Finally we note another source of zeros from hexagons of Clebsch-Gordan coef-
ficients. If the hexagon M(m,n, k) is subsection of the binomial array B(ai), then
there is a right triangle of zeros of height k to the right of the hexagon. See Figure
4. For a survey of vanishing rules for Clebsch-Gordan coefficients, see [5].

7. Example: Pascal’s Triangle

To set up a general framework, we review the classical case of Pascal’s triangle.
Recall that the extended Pascal’s triangle is B(e) with entries ek,n. For fixed n and
k > 0, we may section off the rectangle from the origin to ek,n to obtain three cases:

e0,−n . . . 1
e1,−n . . . 0
. . . . . . . . .
ek,−n . . . 0

 ,


1
0
. . .
ek,0

 ,


1 . . . e0,n
0 . . . e1,n
. . . . . . . . .
0 . . . ek,n

 .
Applying Corollary 5.6, we obtain

k∑
i=0

ei,0−lek−i,n+l = ek,n,

which summarizes as

Proposition 7.1 (Chu-Vandermonde). Fix integers m and n and positive integer
k. Then

k∑
i=0

(
m
i

)(
n

k − i

)
=

(
m+ n
k

)
.
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Of course, we obtain four non-vanishing cases based on sign parity, and a vanish-
ing sum occurs when 0 < m+ n < k. Of course, all cases may be obtained directly
and simply using a product of binomial series expansions. In terms of Section 5,
this is just item (3) before (5.2):

(Bme ∗Bne)k = Bm+nek.

Now suppose we choose l in Corollary 5.6 such that the columns translate to
either the same or adjacent columns and sum over the length of the right-hand
column. Then we obtain the classical special formulas:

(7.1)

n∑
i=0

(
n
i

)2

=

(
2n
n

)
,

n∑
i=0

(
n
i

)(
n+ 1
i

)
=

(
2n+ 1
n

)
.

Two principles here serve as a model for the general case. We note the first as
another corollary to Theorem 5.5.

Corollary 7.2. For sequences ai and bi and integer n, we have

Bna ∗Bnb = a ∗B2nb and Bna ∗Bn+1b = a ∗B2n+1b.

In general, if p(x) has degree m, then the convolution of a column of B(p(x))
with itself is given by

n+m∑
i=0

ai,nan+m−i,n =

m∑
i=0

(
2n

n+m− 2i

)
a2i + 2

∑
i<j

(
2n

n+m− i− j

)
aiaj ,

and the convolution of adjacent columns of B(p(x)) is given by

n+m+1∑
i=0

ai,nan+m+1−i,n+1 =

m∑
i=0

(
2n+ 1

n+m+ 1− 2i

)
a2i

+ 2
∑
i<j

(
2n+ 1

n+m+ 1− i− j

)
aiaj .

These equalities follow immediately when expressed as

[xn+m]((1 + x)2n(p(x))2) and [xn+m+1]((1 + x)2n+1(p(x))2).

We obtain simple closed formulas when m = 1:

Theorem 7.3. Fix non-zero integers r and s. For n > 0, the columns of B(sx+r)
satisfy

n+1∑
i=0

ai,nan+1−i,n =
[
(r + s)2n+ 2rs

]
Cn

and
n+2∑
i=0

ai,nan+2−i,n+1 =
1

2

[
(r + s)2n+ 4rs+ 2s2

]
Cn+1.

Of course, choosing odd r and even s in the second equality implies, for positive
n, Cn odd implies n odd. In fact ([1]; [14], Theorem 13.1), Cn is odd if and only if
n = 2k − 1.

Next the palindromic or skew-palindromic conditions allow further simplification
of our sums.
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Proposition 7.4. Suppose p(x) = a0 + · · · + amx
m and q(x) = b0 + · · · + bmx

m

have degree m, and denote the entries of B(p(x)) (resp. B(q(x))) by ak,n (resp.
bk,n). If p(x) and q(x) are palindromic, then, for all l in Z,

m∑
k=0

ak,−lbm−k,l =

m∑
k=0

akbm−k = 2

m−1
2∑

k=0

akbk (m odd),

= am
2
bm

2
+ 2

m−2
2∑

k=0

akbk (m even).

On the other hand, if p(x) and q(x) are both skew-palindromic, then

m∑
k=0

ak,−lbm−k,l =

m∑
k=0

akbm−k = −2

bm2 c∑
k=0

akbk.

Finally, if p(x) is palindromic and q(x) is skew-palindromic, then
m∑

k=0

ak,−lbm−k,l =

m∑
k=0

akbm−k = 0.

Proposition 7.5. Suppose p(x) = a0 + · · · + amx
m has degree m and q(x) =

b0 + · · ·+ bm+1x
m+1 has degree m+ 1. If p(x) is palindromic, then, for all l in Z,
m∑

k=0

ak,−lbm−k+1,l+1 =

m∑
k=0

akbm−k+1 =

m∑
k=0

akbk+1.

If p(x) is palindromic and bi = Bai, then

(B−la ∗Bl+1a)m+1 = (a ∗ a)m + (a ∗ a)m−1.

On the other hand, if p(x) is skew-palindromic, then
m∑

k=0

ak,−lbm−k+1,l+1 =

m∑
k=0

akbm−k+1 = −
m∑

k=0

akbk+1.

If p(x) is skew-palindromic and bi = Bai, then

(B−la ∗Bl+1a)m+1 = −(a ∗ a)m + (a ∗ a)m−1.

8. Example: Catalan Numbers

In this section, we consider various binomial arrays concerning the Catalan num-
bers, both directly and indirectly. Following the extended Pascal’s triangle, the next
simplest initial conditions are 1±x. Now 1+x is the second column of the extended
Pascal’s triangle, so we consider the array B(1−x) and its reflection B(1+2x). For
this section, we reserve ak,n (resp. bk,n) for the values in the former (resp. latter).

One has immediately that

Proposition 8.1 (Figure 5). For integers k and n,

(8.1) ak,n =

(
n
k

)
−
(

n
k − 1

)
Specifically, for n > 0 and 0 < k ≤ n,

(8.2) ak,n =
n− 2k + 1

n− k + 1

(
n
k

)
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-5 -4 -3 -2 -1 0 1 2 3 4 5
1 1 1 1 1 1 1 1 1 1 1

-6 -5 -4 -3 -2 -1 0 1 2 3 4
20 14 9 5 2 -1 -1 0 2 5

-50 -30 -16 -7 -2  -1 -2 -2 0
105 55 25 9 2   -1 -3 -5

-196 -91 -36 -11 -2    -1 -4
336 140 49 13 2     -1

Figure 5. Catalan number array B(1 − x): Cn+1
2

on the right,

below/above zeros

and, for n > 1 and k > 0,

(8.3) ak,−1 = (−1)k+12, ak,−n = (−1)k
−n− 2k + 1

n− 1

(
n+ k − 2

k

)
By the skew-palindromic property or by direct substitution, we obtain a progres-

sion of zeros of type (1, 2) starting at a1,1. If we consider the near zero sequence at
points (t, 2t), we have

at,2t =
1

t+ 1

(
2t
t

)
= Ct,

the sequence of Catalan numbers. Alternatively, we note

Definition 8.2 (Segner’s Recurrence). The Catalan numbers are defined recur-
sively as follows:

(8.4) C0 = 1, Cn+1 =

n∑
i=0

CiCn−i.

See the first rows of Figures 3 or 8 for C1 through C10, or see [14], Appendix B,
for the first 100 Catalan numbers. Interpretations of the Catalan numbers by way
of enumeration are vast in number; see [18] for over 200 examples.

In Segner’s recurrence, we see that the Catalan numbers are defined by iter-
ated convolution. For comparison with Definition 6.3, we also note the alternative
formula for t ≥ 1,

(8.5) Ct =
1

t

(2t)!

(t+ 1)!(t− 1)!
=

1

t

(
2t
t+ 1

)
.

In its right-hand side trapezoid, B(1−x) is subject to all rules governing Clebsch-
Gordan coefficients from [4] and [5]; that is, we may consider this trapezoid as a
direct limit of hexagons of Clebsch-Gordan coefficients under inclusion:

(8.6)
1

r
M(r, r, 1) ↪→ 1

r + 1
M(r + 1, r + 1, 1) ↪→ 1

r + 2
M(r + 2, r + 2, 1) ↪→ . . . .

If we now consider B(1 + 2x), one has

Proposition 8.3 (Figure 6). For positive integers n and k,

bk,n =

(
n
k

)
+ 2

(
n

k − 1

)
=
n+ k + 1

n− k + 1

(
n
k

)
,



BINOMIAL TRANSFORMS 19

-5 -4 -3 -2 -1 0 1 2 3 4 5
1 1 1 1 1 1 1 1 1 1 1

-3 -2 -1 0 1 2 3 4 5 6 7
5 2 0 -1 -1  2 5 9 14 20

-5 0 2 2 1   2 7 16 30
0 -5 -5 -3 -1    2 9 25

14 14 9 4 1     2 11
-42 -28 -14 -5 -1     2

Figure 6. Catalan number array B(1 + 2x): C−n−1 on the left,
below zeros

and

bk,−n = (−1)k
[(

n+ k − 1
k

)
− 2

(
n+ k − 2
k − 1

)]
= (−1)k

n− k − 1

n+ k − 1

(
n+ k − 1

k

)
Since the initial condition is not skew-palindromic, we use Proposition 8.3 to see

that the only proper zeros in this array are at points (t,−t − 1) for t ≥ 1. To the
left of these zeros, we obtain

Bt,−t−2 = (−1)t
1

2t+ 1

(
2t+ 1
t

)
= (−1)tCt

Now we apply Theorem 7.3 to extend Shapiro’s formulas for Catalan triangle
numbers in Corollary 8.4 and 8.5. The skew-palindromic property with truncation
yields the dot product of rows in Shapiro’s Catalan triangle.

Corollary 8.4. For n ≥ 0, the sum of squares the values of the n-th column of
B(1− x) is 2Cn. That is,

(8.7) Cn =

bn2 c∑
i=0

a2i,n,

and, for all l in Z,

(8.8) Cn = −1

2

n+1∑
i=0

ai,n−lan+1−i,n+l.

Corollary 8.5. For n ≥ 0, the convolution of the n-th and (n + 1)-st columns of
B(1− x) is −Cn+1. That is,

(8.9) Cn+1 = −
n+1∑
i=0

ai,nan+1−i,n+1

and, for all l in Z,

(8.10) Cn+1 = −
n+1∑
i=0

ai,n−lan+1−i,n+l+1.

Likewise, for B(1 + 2x),
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Corollary 8.6. For n ≥ 0, the sum of squares the values of the n-th column of
B(1 + 2x) is (9n+ 4)Cn. That is,

(8.11) (9n+ 4)Cn =

n+1∑
i=0

b2i,n,

and, for all l in Z,

(8.12) (9n+ 4)Cn =

n+1∑
i=0

bi,n−lbn+1−i,n+l.

Corollary 8.7. For n ≥ 0, the convolution of the n-th and (n + 1)-st columns of
B(1 + 2x) is 1

2 (9n+ 16)Cn+1. That is,

(8.13) (9n+ 16)Cn+1 = 2

n+1∑
i=0

bi,nbn+1−i,n+1

and, for all l in Z,

(8.14) (9n+ 16)Cn+1 = 2

n+1∑
i=0

bi,n−lbn+1−i,n+l+1.

On the other hand, we may directly match the initial condition to Catalan
numbers adjacent to zeros in three ways, as noted below:

C2n−1 = −
2n∑
i=0

bi,−nb2n−i,−n = −1

2

2n∑
i=0

bi,−n−1b2n−i,−n

=

2n−1∑
i=0

bi,−n−1b2n−i−1,−n.

C2n =

2n+1∑
i=0

bi,−nb2n−i+1,−n−1 =
1

2

2n+1∑
i=0

bi,−n−1b2n−i+1,−n−1

= −
2n∑
i=0

bi,−n−1b2n−i,−n−1.

Now we consider the near zero sequence of the binomial array associated toM(m,m, k)
with k odd and 0 < k < m.

Theorem 8.8 (Figure 7). Suppose 1 < k < m with k = 2k′ + 1. Define Ct(m, k)
to be the entry to the right of zero in column 2t− 1 on the diagonal of the extended
Clebsch-Gordan hexagon M(m,m, k). For t ≥ 1,

Ct(m, k) = (m− k′)
(
m− k′ − 1

k′

)(
t+ 2k′ −m

k′

)(
t+ k′ + 1

k′

)−1
Ct,

where Ct is the t-th Catalan number. When k = 1, Ct(m, 1) = mCt.
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Figure 7. Near-zero sequences Ct(m, k) with 1 < k < m and k odd
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Proof. For an elementary proof, we follow the methods of Proposition 4.2 of [5],
but two potential issues require attention: use of the reverse recurrence inside
M(m,m, k), and failure of recursion if we encounter the triangle of zeros on the
right-hand side of theM(m,m, k). To circumvent these issues, we proceed as follows.

First fix odd k > 1; if k = 1, then M(m,m, 1) is a subarray of B(m−mx). The
initial condition is a column of length k + 1, so the shape of the array is fixed as
m varies. Writing binomial coefficients as Pochhammer symbols, we may consider
the entries of the initial condition as polynomials in m of degree k. Since Pascal’s
recurrence is linear, all proper values of the array may be considered as polynomials
in m of degree less than or equal to k. Since the proper entries of M(m,m, k) are
nested by shape in B(ai) as m increases, the polynomial for a fixed entry in some
M(m,m, k) is fixed in the entire array. That is, we may restrict our calculations
within some M(m,m, k).

Now the proof follows by calculating the recurrence relation and the initial con-
dition. By the position of zeros and the skew-palindromic property, we have the
following subarray relating Ct(m, k) to Ct+1(m, k) :

Ct ∗ ∗ ∗
0 Ct Ct+1 ∗

−Ct −Ct 0 Ct+1

∗ ∗ −Ct+1 −Ct+1

 .

Using the reverse recurrence on the boxed entries with i = k′+t and j = k′+t+1,
we obtain

(8.15) Ct+1(m, k) =
2(2t+ 1)(m− t− k)

(t+ k′ + 2)(m− t− k′ − 1)
Ct(m, k).

For the initial condition C1, we sum the initial values ak′−1 and ak′

(−1)k
′−1
(
m− k′ + 1
k′ + 2

)(
m− k′ − 2
k′ − 1

)
+ (−1)k

′
(
m− k′
k′ + 1

)(
m− k′ − 1

k′

)
to get

(8.16) C1(m, k) = (−1)k
′ 2

k′ + 2

(
m− k′ − 2

k′

)(
m− k′
k′ + 1

)
.

�

Note that Ct(m, k) is a polynomial in m of degree less than or equal to k, and
that Ct(m, k) = 0 for m − 2k′ ≤ t ≤ m − k′ − 1. Otherwise, the t-th zero on the
diagonal of M(m,m, k) occurs at coordinates (k′ + t, 2t− 1) in B(ai). So Ct(m, k)
is the value at coordinates (k′ + t, 2t), which in the notation of [5] is given by

cm,m,k(k′ + t, k′ + t+ 1) =

k∑
l=0

(−1)l
(

2t
k′ + t− l

)(
m− l
k − l

)(
m− k + l

l

)
.(8.17)

Now we consider the near zero sequence of a general skew-palindromic binomial
array B(di) with degree m = 2m′ + 1; if m is even, we may replace the initial con-
dition di with B1di. We decompose B(di) into a sum of skew-palindromic binomial
arrays of the form B(1− x2i+1).
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Lemma 8.9 (Figure 8). Fix r ≥ 0. The diagonal of entries of B(−x + 1) at
coordinates (l, r + 2l) are given by the sequence

al,r+2l =
r + 1

r + l + 1

(
r + 2l
l

)
Proof. This follows immediately from substitution into the formula for ak,n above.

�

Remark. The r-th sequence is the (r + 1)-th convolution power of Ct.

Proposition 8.10. (a) For t ≥ 1, let c2i+1(t) be the value to the right of the zero
in column 2t− 1 on the diagonal of B(1− x2i+1). Then c1(t) = Ct, and, for i ≥ 1,
c2i+1(t) is given by the values of Lemma 8.9 with r = 2i and l = t− i. That is, for
i ≥ 1,

(8.18) c2i+1(t) =
2i+ 1

t+ i+ 1

(
2t
t− i

)
.

This sequence is the 2i-th row of Figure 8, preceded by i− 1 zeros.
(b) For t ≥ 0, let c2i(t) be the value to the right of the zero in column 2t on the

diagonal of B(1 − x2i). Then c2(t) = Ct+1, and, for i ≥ 1, c2i(t) is given by the
values of Lemma 8.9 with r = 2i− 1 and l = t− i+ 1. That is, for i ≥ 1,

(8.19) c2i(t) =
2i

t+ i+ 1

(
2t+ 1
t− i+ 1

)
.

This sequence is the (2i− 1)-th row of Figure 8, preceded by i− 1 zeros.

Proof. (a) Suppose the entries of B(1 − x2i+1) are denoted by ck,n and i ≥ 1.
Then the entry to the right of the t-th zero has coordinates (i+ t, 2t). Recall that
B(x2i+1) = P (2i+ 1), the extended Pascal’s triangle shifted down by 2i+ 1 rows.
Then

ck,n =

(
n
k

)
−
(

n
k − 2i− 1

)
.

Thus

ci+t,2t =

(
2t
i+ t

)
−
(

2t
t− i− 1

)
=

(2t)!(2i+ 1)

(t+ i+ 1)!(t− i)!
,

and the lemma holds.
A similar proof holds for part (b). �

By linearity and the skew-palindromic property of the first column of B(di), we
may express the corresponding binomial array as

m′∑
i=0

diB(xi(1− xm−2i)).

The diagonal zeros occur at coordinates (m′+ t, 2t−1), so the t-th value of interest
has coordinates (m′+ t, 2t). Combining the initial condition with Proposition 8.10,
we obtain
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Figure 8. (1, 2)-progressions al,r+2l in the array B(1 − x)(left);
sequences ck(t)(right)
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Theorem 8.11. Suppose p(x) is skew-palindromic of degree m = 2m′ + 1 with
corresponding sequence di, and ck(t) is defined as in Proposition 8.10. Then, for
t ≥ 1, the near zero sequence Dt of the binomial array B(di) satisfies

(8.20) Dt = dm′+t,2t =

m′∑
i=0

di cm−2i(t),

To implement this formula as a dot product, the left-hand side of Figure 8 is
separated into rows by parity to give the table on the right-hand side. Note that
the columns of the even rows are the rows of Shapiro’s Catalan triangle.

Corollary 8.12. (a) For t ≥ 1 and m = 2m′ + 1,

(8.21) cm+1(t+ 1) =

m′∑
i=0

(−1)i cm−2i(t).

(b) For t ≥ 1 and m = 2m′,

(8.22) cm+1(t) = (−1)m
′
Ct +

m′−1∑
i=0

(−1)i cm−2i(t).

Proof. (a) Suppose di = (−1)i for 0 ≤ i ≤ m and zero otherwise. If p(x) corre-
sponds to di, then (1 + x)p(x) = 1− xm+1, and the result follows.

(b) Suppose p(x) =
m′−1∑
i=0

(−1)ixi(1− xm−2i). Then

(1 + x)p(x) = 1− (−1)m
′
(xm

′
− xm

′+1)− xm+1,

and the result follows. �

Of course, this corollary may be realized as a special case of the vertical short
hockey stick rule (Proposition 2.5) for B(1 − x). Additionally, part (a) is the case
of Ct(m,m) when m is odd; compare with Theorem 8.8.

9. Realization through representation theory of SL(2, F )

In this section, we recast Corollary 5.6 in terms of the finite-dimensional rep-
resentation theory of SL(2, F ). Recall that F is a field of characteristic zero; in
general, we only consider irreducible representations of SL(2, F ) with a highest
weight n. When F = R or C, see, for instance, the earlier chapters of [13] for
definitions and a convenient model (Chapter 2).

Define M(2, F ) to be the set of square matrices of size 2 with coefficients in
F . Let GL(2, F ) be the group of invertible matrices in M(2, F ) under matrix
multiplication, and let G = SL(2, F ) be the subgroup of matrices with determinant
1. Let g0 = sl(2, F ) be the Lie algebra of traceless matrices in M(2, F ) under the
bracket [X,Y ] = XY − Y X, and let U(g0) be the universal enveloping algebra of
g0. We express the model of previous sections in terms of the representation theory
of SL(2, F ) and sl(2, F ).

We choose the usual basis for g0 with

(9.1) e =

[
0 1
0 0

]
, f =

[
0 0
1 0

]
, h =

[
1 0
0 −1

]
.
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Fix n ≥ 0, and let (πn, V (n)) be the irreducible representation of G with highest
weight n. When extending πn to elements of U(g0), we typically omit πn from the
notation. If we choose a highest weight vector φ, then V (n) has dimension n + 1
with basis given by

(9.2) Bn = {φ, fφ, . . . , fnφ}.
Up to scalar, V (n) admits a unique non-degenerate invariant bilinear form 〈·, ·〉n,
and we fix this form by the normalization

〈fnφ, φ〉n = 1.

If X is in g0, invariance implies that

〈Xu, v〉n = 〈u,−Xv〉n.
Thus we have for all 0 ≤ k, l ≤ n,

(9.3) 〈f lφ, fkφ〉n =

{
(−1)k l = n− k,
0 otherwise.

Now this form is symmetric when n is even, alternating when n is odd, and the
dual basis to Bn with respect to 〈·, ·〉n is given by

(9.4) B′n = {(−f)nφ, . . . , (−f)φ, φ}.
Next let

s =

[
1 0
0 −1

]
and consider the involution S : SL(2, F )→ SL(2, F ) defined by

Sg = sgs−1 or S

[
a b
c d

]
=

[
a −b
−c d

]
.

The induced involution on sl(2, F ) is given by extending

e 7→ −e, f 7→ −f, h 7→ h

This involution induces an equivalent representation (π′n, V (n)) by

π′n(g)v = πn(Sg)v

with induced involution S given on V (n) by extending Sφ = φ and fkφ 7→ (−f)kφ.
That is, we have an equivalence by Sπn(g) = π′n(g)S.

Consider the form on V (n) defined by

〈u, v〉′n = 〈u, Sv〉n.
Now we have for all 0 ≤ k, l ≤ n,

(9.5) 〈f lφ, fkφ〉′n =

{
1 l = n− k,
0 otherwise,

and we shall see that this form implements the convolution pairing on polynomials.
It is no longer invariant under the action by πn but rather

〈πn(g)u, π′n(g)v〉′n = 〈πn(g)u, Sπ′n(g)v〉n
= 〈πn(g)u, πn(g)Sv〉n
= 〈u, Sv〉n
= 〈u, v〉′n.
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For v in V (n), define

(9.6) Bf : V (n)→ V (n) by Bfv = (1 + f)v.

Since πn(f) is nilpotent, Bf is invertible on V (n), and

(9.7) B−1f v =
1

1 + f
v = (1 + (−f) + · · ·+ (−f)n)v.

From above,

〈πn(f)u, v〉′n = 〈u, πn(f)v〉′n.
Thus Bf is symmetric with respect to 〈·, ·〉′n, and it follows immediately that

〈Bfu,B
−1
f v〉′n = 〈u, v〉′n.

If p(X) and q(X) are polynomials with coefficients in F of degree less than or equal
to n, we define

〈〈p(X), q(X)〉〉n = 〈p(f)φ, q(f)φ〉′n
and reacquire

(9.8) 〈〈B1p(X), B−1q(X)〉〉n = 〈〈p(X), q(X)〉〉n = [Xn](p(X)q(X)).
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