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AN INSERTION ALGORITHM ON MULTISET PARTITIONS WITH

APPLICATIONS TO DIAGRAM ALGEBRAS

LAURA COLMENAREJO, ROSA ORELLANA, FRANCO SALIOLA, ANNE SCHILLING,
AND MIKE ZABROCKI

Abstract. We generalize the Robinson–Schensted–Knuth algorithm to the insertion of
two row arrays of multisets. This generalization leads to new enumerative results that have
representation theoretic interpretations as decompositions of centralizer algebras and the
spaces they act on. In addition, restrictions on the multisets lead to further identities
and representation theory analogues. For instance, we obtain a bijection between words
of length k with entries in [n] and pairs of tableaux of the same shape with one being
a standard Young tableau of size n and the other being a standard multiset tableau of
content [k]. We also obtain an algorithm from partition diagrams to pairs of a standard
tableau and a standard multiset tableau of the same shape, which has the remarkable
property that it is well-behaved with respect to restricting a representation to a subalge-
bra. This insertion algorithm matches recent representation-theoretic results of Halverson
and Jacobson [HJ18].

1. Introduction

We explore a variant of the Robinson–Schensted–Knuth (RSK) algorithm, where we in-
sert multisets instead of integer entries. If we restrict the multisets to all have size one,
the algorithm we are using is the usual RSK algorithm. Applying this insertion to different
arrays of multisets gives rise to a purely enumerative result that is a combinatorial manifes-
tation of a double centralizer theorem from representation theory. Although representation
theory serves as a principal motivation for studying these algorithms, no familiarity is
assumed in our exposition of the enumerative and combinatorial results.

The RSK algorithm evolved over the last century from a procedure defined on permu-
tations (in the work of Robinson [Rob38]) to a procedure defined on finite sequences of
integers (in the work of Schensted [Sch61]) and finally to a procedure defined on “general-
ized permutations” by Knuth [Knu70]. In each of these versions, the algorithm establishes a
correspondence between the initial input and pairs of combinatorial objects called tableaux
subject to certain constraints (see Section 2 for definitions).

Each of the above procedures reflects a classical direct-sum decomposition result in
representation theory. While the reader will find more details in Section 4, we present here
an overview. Broadly speaking, we start with two families of operators, say A and B, acting
on a vector space V , and we determine the finest decomposition of V into a direct sum of
subspaces that are invariant for all the operators, say V =

⊕
λ∈Λ V λ for some indexing set

Λ. Under certain circumstances, the actions of A and B neatly separate the subspaces V λ;
1
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more precisely, V λ can be expressed as a tensor product Uλ ⊗W λ, where the action of A
only affects Uλ and the action of B only affects W λ. Thus, we obtain the decomposition:

V ∼=
⊕

λ∈Λ

(
Uλ ⊗W λ

)
.

At the combinatorial level, this decomposition implies that there is a bijection between V
and

⋃
λ∈Λ

(
Uλ ×Wλ

)
, where V, Uλ and Wλ denote bases of V , Uλ and W λ, respectively.

One example of this is when GL(V ) and Sk both act on V ⊗k (see Section 4 for details).
In this case, we deduce the existence of a bijection between the set of finite sequences of
length k with entries in {1, 2, . . . ,dim(V )} (i.e., a basis of V ⊗k) and the union of the set
of pairs consisting of a semistandard tableau of shape λ with entries in {1, 2, . . . ,dim(V )}
(i.e., a basis of Uλ) and a standard tableaux of shape λ and size k (i.e., a basis of W λ).
This is precisely what the RSK algorithm does (see Section 3).

The above situation also holds for many other pairs of families of operators acting on
V ⊗k; for instance: the partition algebra and the symmetric group; the Brauer algebra and
the orthogonal group; and the Hecke algebra and the quantum group of type A.

In this paper, we adapt the RSK algorithm to the insertion of arrays of multisets. This
adaptation gives combinatorial descriptions of other direct-sum decomposition results in
representation theory. Furthermore, restrictions on the multisets result in a bijection and
an enumerative result relating sets of combinatorial objects. For instance, by considering a
vector space on which both the symmetric group and the partition algebra act, we obtain
a bijection between words of length k with entries in [n] and pairs of tableaux of the
same shape with one being a standard Young tableau of size n and the other being a
standard multiset tableau of content [k]. We also obtain an algorithm from monomials in
a polynomial ring to pairs of a standard tableau and a standard multiset tableau of the
same shape and from elements of diagram algebras to pairs of standard multiset tableaux.

Note that algorithms that relate partition diagrams and pairs of paths in the Bratteli
diagram for the partition algebras have been known since the late 1990s [HL06, MR98].
These paths are referred as “vacillating tableaux” and they are analogues of a path in
the Young’s lattice, which is the Bratteli diagram for the symmetric groups. Paths in the
Young lattice are encoded by standard Young tableaux.

Recently, a new combinatorial interpretation for the dimensions of the irreducible rep-
resentations for the partition algebra has appeared in the literature [BH17, BHH17, OZ16,
HJ18]. In particular, Benkart and Halverson [BH17] presented a bijection between vacil-
lating tableaux and “set-partition tableaux” (tableaux whose entries are sets of positive
integers). There are two main advantages to working with set-partition tableaux instead of
vacillating tableaux. Firstly, they are closer in spirit to the ubiquitous Young tableaux. Sec-
ondly, the definition extends naturally to the notion of multiset tableaux (tableaux whose
entries are multisets of positive integers) and working with multiset tableaux leads to new
enumerative and algebraic results that are not obvious by other means (see Proposition 5.1,
Corollary 5.4, and Theorem 6.3).
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Our insertion algorithm from partition diagrams to pairs of a standard tableau and
a standard multiset tableau of the same shape has the remarkable property that it is
well-behaved with respect to the subalgebra structure of the partition algebra. One sur-
prising consequence is that we are able to provide explicit combinatorial descriptions of
the sets of tableaux that give the dimensions of the irreducible representations associated
to the prominent subalgebras of the partition algebras, such as the symmetric group, the
Brauer algebra, the rook algebra, the rook-Brauer algebra, the Temperley–Lieb algebra,
the Motzkin algebra, the planar rook algebra, and the planar algebra (see Lemma 6.6). This
gives rise to analogues of the famous identity n! =

∑
λ⊢n(f

λ)2 for the symmetric group,

where fλ is the number of standard tableaux of shape λ, to all of the above mentioned
algebras (see Corollary 6.8). We prove that the dimensions of the irreducible representa-
tions of the various algebras is equal to the number of our combinatorially-defined tableaux
by establishing that the branching rules are encoded in the tableaux (see Section 6.3 and
Corollary 6.16). Our insertion is different from combining the insertion of Halverson and
Lewandowski [HL06] from partition diagrams to paths in the Bratteli diagram with the bi-
jection of Halverson and Benkart [BH17] from paths in the Bratteli diagram to set-partition
tableaux (see Section 6.3).

The paper is organized as follows. In Section 2, we define the principal combinatorial ob-
jects used throughout this paper: multiset tableaux. In Section 3, we review the RSK algo-
rithm for associating a pair of tableaux to a generalized permutation. The above discussion
is expanded in Section 4 by providing more details on how RSK on permutations, words,
and generalized permutations, reflects decomposition results in representation theory. In
Section 5, the RSK algorithm is adapted to the multiset tableaux setting and corresponding
enumerative results are obtained. The section opens with a description of the enumerative
and combinatorial results and closes by connecting these results with representation theory.
Finally, in Section 6 the algorithm is applied to partition algebra diagrams and it is shown
that the new insertion algorithm is well-behaved when restricted to subalgebras. Finally,
the connection to the representation theory recently developed in [HJ18] is established.

Acknowledgments. The authors would like to thank BIRS and AIM for the opportunity
to collaborate in Banff in April 2018 and in San José in November 2018, which greatly
facilitated the work on this project.

The second author was partially supported by NSF grant DMS-1700058 and the fourth
author was partially supported by NSF grants DMS–1760329 and DMS–1764153. The third
and fifth authors were supported by NSERC Discovery Grants.

2. Multiset Tableaux

Throughout this paper, we work with tableaux whose entries are multisets. Note that
any Young tableau—that is, a tableau with integer entries—can be viewed as a multiset
tableau by considering each entry to be a multiset of cardinality 1. In this section, we
fix notation and define the total orders on multisets that we use in order to extend the
property of being (semi)standard to multiset tableaux.
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2.1. Partitions. A partition of n ∈ N is a sequence of positive integers λ = (λ1, λ2, . . . , λr)
with λ1 > λ2 > · · · > λr > 0 whose sum is n. Note that the empty sequence () is a partition
of 0. The notation λ ⊢ n is used to indicate that λ is a partition of n. The length of the
partition is denoted by ℓ(λ) = r. As is customary, we depict partitions as diagrams; see
Example 2.1. The cells of the partition are the coordinates of the boxes in the diagram;
that is, cells(λ) = {(i, j) | 1 6 i 6 λj, 1 6 j 6 ℓ(λ)}. The operation of removing the first

row of the partition λ is denoted by λ = (λ2, λ3, . . . , λr).

2.2. Set partitions. A set partition π of a set S is a collection {π1, . . . , πk} of non-empty
subsets of S that are mutually disjoint, i.e., πi ∩ πj = ∅ for all i 6= j, and

⋃
i πi = S. The

subsets πi are called the blocks of the set partition. We write π ⊢ S to mean that π is a set
partition of the set S.

2.3. Multisets. Let (A,6A) be a totally ordered set, which we refer to as an (ordered)
alphabet . A multiset S = {{a1, a2, . . . , ar}} over A is an unordered collection of elements of
A, allowing repeats. The collection of multisets forms an associative monoid with operation

{{a1, a2, . . . , ar}} ⊎ {{b1, b2, . . . , bd}} = {{a1, a2, . . . , ar, b1, b2, . . . , bd}} .

To simplify notation, we let {{ama , bmb , cmc , . . . }} denote the multiset that contains ma

occurrences of a, mb occurrences of b, and so on; for example {{12, 43, 5}} = {{1, 1, 4, 4, 4, 5}}.
A multiset partition1 of a multiset S is a multiset of multisets, π = {{S(1), S(2), . . . , S(r)}},

such that S = S(1) ⊎ S(2) ⊎ · · · ⊎ S(r). We indicate this by the notation π ⊢⊢S.

2.4. Ordering multisets. We will use two different methods to totally order the collection
of all multisets over an ordered alphabet A. In Section 5, we use graded lexicographic order.
If S = {{a1, . . . , ar}} with a1 6A · · · 6A ar and S′ = {{a′1, . . . , a

′
t}} with a′1 6A · · · 6A a′t,

then we say S < S′ in the graded lexicographic order if:

• r < t; or
• r = t and there exists 1 6 i 6 t such that a1 = a′1, . . . , ai−1 = a′i−1, and ai <A a′i.

This is a total order [CLO15], with minimum element the empty multiset.
In Section 6, where we need only compare disjoint sets, we use the last letter order.

Given two disjoint sets S and S′ with elements in an ordered set A, we say S < S′ in
the last letter order if max(S) <A max(S′), where max(S) is the largest element in S. For
example, {1, 3, 5} < {2, 7}. (This order can be realized as the restriction of a total order
on multisets, for example reverse lexicographic order, but this is not necessary here.)

1Multisets are in bijection with integer vectors and multiset partitions are in bijection with objects
known as vector partitions [Com74, Ges95, Mac04, Ros00]. Since integer vectors can be identified with
sequences of monomials in a set of variables, another interpretation for multisets is as monomials in the
variables {xc1 , xc2 , . . .}.
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2.5. Multiset tableaux. Let λ be a partition, A an ordered alphabet, and a fixed total
order < on multisets (such as the graded lexicographic order or the last letter order if the
multisets are all disjoint sets). A semistandard multiset tableau of shape λ is a function T
that associates with each cell (i, j) ∈ cells(λ) a multiset over A such that:

• T (i, j) 6 T (i, j + 1) whenever (i, j) and (i, j + 1) both belong to cells(λ); and
• T (i, j) < T (i+ 1, j) whenever (i, j) and (i+ 1, j) both belong to cells(λ).

The shape of a multiset tableau T is the partition λ, and the cells of T are the cells of its
shape. If T (i, j) = S, then we say that S labels the cell (i, j), and that S is an entry of T .

When drawing multiset tableaux, the multisets are abbreviated as words without the
surrounding multiset delimiters {{, }}, and empty sets are depicted by blank cells.

2.6. Content of multiset tableaux. The content of a semistandard multiset tableau T
is the (disjoint) union of the entries of T . More precisely, the content of T is the multiset

content(T ) =
⊎

(i,j)∈cells(T )

T (i, j).

A semistandard multiset tableau is said to be

• a standard multiset tableau if its content is the set [k] := {1, 2, . . . , k} for some k ∈ N;
• a semistandard Young tableau if all its entries are multisets of size 1;
• a standard Young tableau if it is both standard and a semistandard Young tableau.

Finally, for a multiset S, let

• SSMT(λ, S) be the set of semistandard multiset tableaux of shape λ and content S;
• SMT(λ, k) be the set of standard multiset tableaux of shape λ and content [k];
• SSYT(λ, S) be the set of semistandard Young tableaux of shape λ and content S; and
• SYT(λ) be the set of standard Young tableaux of shape λ.

The set-partition tableaux of [BH17, Definition 3.14] are closely related to our standard
multiset tableaux.

Example 2.1. Let A = {1, 2, 3, 4, 5} with the usual order on integers. Then

114

2 14

2 5

3

2 3

1 1 4

134

5 26

7 8

are three semistandard multiset tableaux of shape (3, 2, 1). The leftmost tableau has content
{{13, 22, 42, 5}}. The middle tableau has content {{12, 2, 32, 4}} and is also a semistandard
Young tableau. The rightmost multiset tableau is standard since its content is {1, . . . , 8}.

3. The RSK correspondence

We present here the Robinson–Schensted–Knuth (RSK) algorithm for certain finite se-
quences in A × B, where A and B are totally ordered sets. Our presentation is slightly
more general than the original [Knu70], where it was defined on certain finite sequences in
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N× N. The proofs in [Knu70] still hold in this context because they only make use of the
fact that N is a totally ordered set.

Let A and B be two ordered alphabets. A generalized permutation from A to B is a two-
line array of the form

( a1 a2 ··· ar
b1 b2 ··· br

)
satisfying: a1, . . . , ar ∈ A; b1, . . . , br ∈ B; ai 6A ai+1 for

1 6 i 6 r − 1; and bi 6B bi+1 whenever ai = ai+1.
The RSK algorithm constructs two semistandard tableaux of the same shape from a

generalized permutation
( a1 a2 ··· ar
b1 b2 ··· br

)
. The cells of one of the tableaux are labelled by

a1, . . . , ar and the cells of the other tableau are labelled by b1, . . . , br. The key step in the
algorithm is the following insertion procedure.

Definition 3.1 (RSK insertion procedure). Let T be a semistandard tableau with entries
in an ordered set X and x ∈ X. The (row) insertion of x into T is the tableau defined
recursively as follows, starting with r = 1.

(1) If x is greater than or equal to all entries of the r-th row of T (this includes the case
where the r-th row has no entries), then append x to the end of the row; otherwise

(2) let x̂ be the leftmost entry of the row that is greater than x, replace x̂ with x, and
insert the x̂ into row r + 1 (i.e., repeat step (1) with x = x̂ and r replaced by r + 1).

Iterating this insertion procedure allows us to associate two semistandard tableaux with
any generalized permutation

( a1 a2 ··· ar
b1 b2 ··· br

)
as follows (cf. Example 3.2).

• Start with a pair of empty tableaux; i.e., tableaux with no rows and no columns.
• Insert b1 into the first tableau using the insertion procedure; this introduces a new cell,
say in position (i1, j1); add a cell labelled a1 in position (i1, j1) of the second tableau.
• Insert b2 into the first tableau, which introduces a new cell to the first tableau; label
the corresponding cell in the second tableau by a2.
• Repeat with (a3, b3), (a4, b4), . . . , (ar, br).

The result is two semistandard tableaux of the same shape, the first has entries b1, . . . , br,
and the second has entries a1, . . . , ar.

Example 3.2. Consider the alphabets A = {a < b < c < d} and B = {w < x < y < z}.
The insertion procedure applied to the generalized permutation

(
a b b c c d d d
x y z w y w y y

)
, gives the

following sequence of tableaux.

∅

insert x
record a

−−−−−−−−−→

(
x a

) insert y
record b

−−−−−−−−−→

(
x y a b

)

insert z
record b

−−−−−−−−−→

(
x y z a b b

) insert w
record c

−−−−−−−−−→

(
x
w y z

c
a b b

)

insert y
record c

−−−−−−−−−→

(
x z
w y y

c c
a b b

) insert w
record d

−−−−−−−−−→

(
z
x y
w w y

d
c c
a b b

)

insert y
record d

−−−−−−−−−→

(
z
x y
w w y y

d
c c
a b b d

)
insert y
record d

−−−−−−−−−→

(
z
x y
w w y y y

d
c c
a b b d d

)
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Theorem 3.3 (Knuth). There is a one-to-one correspondence between generalized permu-
tations from A to B and pairs of tableaux (P,Q) satisfying: P and Q are of the same shape;
P is semistandard with entries in B; and Q is semistandard with entries in A.

Two special cases of this correspondence coincide with the correspondences discovered
by Robinson [Rob38] and Schensted [Sch61].

(1) By encoding a permutation σ of size n as the generalized permutation
(

1 2 ··· n
σ1 σ2 ··· σn

)
,

where σi = σ(i), we obtain a bijection between permutations of size n and pairs of
standard Young tableaux of the same shape of size n.

(2) By encoding a word w1 · · ·wk as
(

1 2 ··· k
w1 w2 ··· wk

)
, we obtain a bijection between words

of length k with entries in [n] and pairs of Young tableaux of the same shape, the first
semistandard with entries in [n] and the second standard with entries in [k].

4. RSK and representation theory

As described in Section 1, the RSK algorithm is a combinatorial manifestation of certain
direct-sum decompositions from representation theory. Below we consider the bijections in-
duced by the RSK algorithm on permutations, on words, and on generalized permutations.
For each bijection, we describe a vector space equipped with an action by two families of
operators, and the decomposition of the space into a direct sum of invariant subspaces.

4.1. RSK and the group algebra CSn. When considered as a procedure on permuta-
tions, RSK establishes a correspondence between permutations of [n] and pairs of standard
tableaux of the same shape of size n. If fλ := #SYT(λ) denotes the number of standard
tableaux of shape λ, then this correspondence gives the enumerative result:

(4.1) n! =
∑

λ⊢n

(
fλ
)2

.

This formula reflects the following classic decomposition result in representation theory.
Let CSn denote the group algebra of the symmetric group Sn with coefficients in C. This
is both a left and a right module over Sn, and so it admits a decomposition into simple
two-sided Sn-modules. This decomposition takes the form

(4.2) CSn
∼=
⊕

λ⊢n

(
Sλ
)∗
⊗ Sλ,

where {Sλ | λ ⊢ n} is a complete set of non-isomorphic simple right Sn-modules, and
(Sλ)∗ = HomSn(S

λ,C). Note that since Sλ is a right Sn-module, its dual HomSn(S
λ,C) is

a left Sn-module. One recovers Equation (4.1) from the decomposition in Equation (4.2) by
computing the dimension of the vector spaces and noting that dim(Sλ) = dim((Sλ)∗) = fλ.

4.2. RSK and the GL(V ) × Sk-structure on V ⊗k. When considered as a procedure
on finite sequences, RSK establishes a correspondence between finite sequences of length k
with entries in [n] and pairs of tableaux (P,Q) satisfying: P and Q have the same shape;
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P is a semistandard tableau with entries in [n]; and Q is a standard tableau with entries
[k]. Enumeratively,

(4.3) nk =
∑

λ⊢k

#SSYTn(λ) · #SYT(λ),

where SSYTn(λ) is the set of semistandard tableaux of shape λ with entries in [n], and
where SYT(λ) is the set of standard tableaux of shape λ.

This formula also reflects a classic decomposition result in representation theory. Let
V = C

n and consider the tensor product V ⊗k of V with itself k times. This is a left
GLn-module, with g ∈ GLn acting on simple tensors by

g ·
(
v1 ⊗ v2 ⊗ · · · ⊗ vk

)
= g(v1)⊗ g(v2)⊗ · · · ⊗ g(vk);

as well as a right Sk-module, with σ ∈ Sk acting on simple tensors by
(
v1 ⊗ v2 ⊗ · · · ⊗ vk

)
· σ = vσ(1) ⊗ vσ(2) ⊗ · · · ⊗ vσ(k);

and these two actions commute:

g ·
((

v1 ⊗ · · · ⊗ vk
)
· σ
)
=
(
g ·
(
v1 ⊗ · · · ⊗ vk

))
· σ.

Therefore, V ⊗k admits a decomposition into simple GLn × Sk-modules, and this decom-
position takes the form

V ⊗k ∼=
⊕

λ⊢k

W λ
n ⊗ Sλ,

whereW λ
n is a simple left GLn-module and Sλ is a simple right Sk-module. Since dimW λ

n =
#SSYTn(λ) and dimSλ = #SYT(λ), one immediately recovers Equation (4.3).

The fact that the simple left GLn-modules are also indexed by partitions λ is a special
case of Schur–Weyl duality. It was first observed by Schur [Sch, Sch27] in his thesis and later
promoted by Weyl [Wey97] in his book on the representation theory of the classical groups.
The idea extends to a much more general result known as the double commutant theorem
(see, for instance, [GW98]). Roughly speaking, it states: if a vector space is acted on by
two algebras of operators whose actions mutually centralize each other, then the space
decomposes into a direct sum of tensors of two simple modules (for instance, W λ

n ⊗ Sλ),
and the two simple modules determine each other.

4.3. RSK and the GLn×GLk-structure on C[{xij}]. Knuth’s generalization establishes
a correspondence between monomials of degree r in n sets of k variables {xij | i ∈ [n], j ∈
[k]} and pairs of semistandard tableaux (P,Q) of size r satisfying: P and Q have the
same shape; P is semistandard with entries in [n]; Q is semistandard with entries in [k].
This is achieved by encoding monomials as generalized permutations from [k] to [n]: each
occurrence of xij is encoded by the column

(
j
i

)
, for example x312x14x

2
23 becomes ( 2 2 2 3 3 4

1 1 1 2 2 1 ).
This correspondence reflects a decomposition of the polynomial ring generated by the

variables {xij | i ∈ [n], j ∈ [k]} when it is viewed as a GLn × GLk-module. To define the
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module structure, we first arrange the variables in the form of an n× k matrix:

X =




x11 x12 . . . x1k
x21 x22 . . . x2k
...

...
. . .

...
xn1 xn2 . . . xnk


 .

The left action of A ∈ GLn on the polynomial ring corresponds to multiplying X on the left
by A. Explicitly, the variable xij is replaced with (AX)ij =

∑
l ailxlj . The right action of

B ∈ GLk corresponds to multiplying X on the right by B (explicitly, xij 7→ (XB)ij). Since
these actions correspond to multipying X on the left and right by matrices, the fact that
the two actions commute is a consequence of the associativity of matrix multiplication.

Consequently, the polynomial ring admits a direct sum decomposition whose summands
are tensors of pairs of simple modules (see, for instance, [How95]):

C[X] ∼=
⊕

λ

W λ
n ⊗

(
W λ

k

)∗
,

where λ runs over all partitions, W λ
n is the simple left GLn-module indexed by λ, and (W λ

k )
∗

is the simple right GLk-module indexed by λ. Since the dimension of W λ
m is the number of

semistandard tableaux of shape λ with entries in [m], one sees that the set of monomials in
{xij | i ∈ [n], j ∈ [k]} is in bijection with the set of pairs (P,Q) of semistandard tableaux
of the same shape with P having entries in [k] and Q having entries in [n].

In particular, for every multiset {{1α1 , . . . , kαk}}, the monomials
∏n

i=1

∏k
j=1 x

bij
ij satisfy-

ing
∑n

i=1 bij = αj for all j ∈ [k] span a GLn-invariant subspace of C[X] whose dimension

is equal to
∏k

i=1

(n+αi−1
αi

)
. These monomials are in bijection with the pairs (P,Q) of semi-

standard tableaux of the same shape with P having entries in [n] and Q having content
{{1α1 , . . . , kαk}}. From this we immediately obtain

(4.4)
k∏

i=1

(
n+ αi − 1

αi

)
=
∑

λ⊢r

∑

S

#SSYT(λ, S) ·#SSYT
(
λ, {{1α1 , 2α2 , . . . , kαk}}

)
,

where the inner sum is over multisets S of size r with entries in [n].

5. Application: a new insertion on generalized permutations

Throughout this section, semistandard multiset tableaux are defined using
graded lexicographic order; see Sections 2.4 and 2.5 for details.

Section 4 illustrated how RSK parallels the direct-sum decomposition of three distinct
vector spaces. In each setting, the correspondence was facilitated by parameterizing a basis
of the vector space by generalized permutations. More specifically, permutations, then
words, and finally monomials were encoded as generalized permutations to which the RSK
insertion procedure was applied (cf. Section 4.1–Section 4.3). In this section, we begin with
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an alternative encoding, which produces new combinatorial and enumerative results that
parallel a different decomposition of the polynomial ring of Section 4.3.

5.1. The correspondence. Let
( a1 a2 ··· ar
b1 b2 ··· br

)
be a generalized permuation from [k] to [n].

We transform this into a generalized permutation from multisets over [k] to [n] as follows.

The columns of the generalized permutation are
(
Mi

i

)
, where Mi = {{aj | bj = i}} and

i ∈ [n]. The columns are ordered so that the entries of the top row are weakly-increasing
in graded lexicographic order and i < i′ whenever Mi = Mi′ .

This encoding, together with Theorem 3.3, establishes the following result.

Proposition 5.1. There is a one-to-one correspondence between generalized permutations( a1 a2 ··· an
b1 b2 ··· bn

)
, where a1, . . . , an are multisets over [k] and b1, . . . , bn are distinct elements of

[n], and pairs (S, T ) satisfying: S and T are tableaux of the same shape; S is a standard
Young tableau of size n; and T is a semistandard multiset tableau of content a1 ⊎ · · · ⊎ an.

Example 5.2. Consider the generalized permutation from [6] to [5],
(
1 1 1 2 2 3 3 3 3 4 6 6 6
1 5 5 2 3 1 3 5 5 1 1 2 3

)
,

with which we associate the following generalized permutation whose top row consists of
(possibly empty) multisets over [6] and whose bottom row are the elements {1, 2, 3, 4, 5},
each appearing exactly once:(

{{}} {{2, 6}} {{2, 3, 6}} {{1, 1, 3, 3}} {{1, 3, 4, 6}}
4 2 3 5 1

)
.

This generalized permutation in turn corresponds to the following pair of tableaux:


4

2

1 3 5 ,

1346

26

236 1133


 .

Example 5.3. Consider the case where n = 3, k = 2 and the generalized permutations are
of the form

(
1 1 2
a b c

)
. The pairs of tableaux under the correspondence of Proposition 5.1 are

depicted in Figure 1, whereas the pairs of tableaux under the usual RSK correspondence
are depicted in Figure 2.

5.2. Special case: insertion on words. In the special case where the top row of
( a1 a2 ··· ar
b1 b2 ··· br

)

satisfies aj = j for all j, we obtain the following correspondence.

Corollary 5.4. There is a one-to-one correspondence between words of length k with en-
tries in [n] and pairs (S, T ) satisfying: S and T are tableaux of the same shape; S is a
standard Young tableau of size n; T is a standard multiset tableau of content [k].

Example 5.5. The generalized permutation associated with the word 155231315 over the
alphabet [6] is (

{} {} {4} {5, 7} {1, 6, 8} {2, 3, 9}
4 6 2 3 1 5

)
,
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c = 1 c = 2 c = 3

(
1 1 2
1 1 c

)
2
1 3

112
3
2
1

11
2

2
1 3

11
2

(
1 1 2
1 2 c

) 3
2
1

12
1

3
1 2

1
12

1 2 3 1 1 2

(
1 1 2
1 3 c

)
2
1 3

12
1

3
1 2

2
1 1

2
1 3

1
12

(
1 1 2
2 2 c

)
3
1 2

2
11

3
1 2

112 3
1 2

11
2

(
1 1 2
2 3 c

)
2
1 3

2
1 1

3
1 2

12
1

1 2 3 1 12

(
1 1 2
3 3 c

)
2
1 3

2
11

1 2 3 2 11 1 2 3 112

Figure 1. The associated pair of tableaux by the correspondence of Propo-
sition 5.1.

c = 1 c = 2 c = 3
(
1 1 2
1 1 c

)
1 1 1 1 1 2 1 1 2 1 1 2 1 1 3 1 1 2

(
1 1 2
1 2 c

)
2
1 1

2
1 1

1 2 2 1 1 2 1 2 3 1 1 2

(
1 1 2
1 3 c

)
3
1 1

2
1 1

3
1 2

2
1 1

1 3 3 1 1 2

(
1 1 2
2 2 c

)
2
1 2

2
1 1

2 2 2 1 1 2 2 2 3 1 1 2

(
1 1 2
2 3 c

)
2
1 3

2
1 1

3
2 2

2
1 1

2 3 3 1 1 2

(
1 1 2
3 3 c

)
3
1 3

2
1 1

3
2 3

2
1 1

3 3 3 1 1 2

Figure 2. The associated pair of tableaux by the usual RSK correspondence.
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which corresponds to the pair



4

2 6

1 3 5 ,

168

4 57

239


 .

Example 5.6. Consider the (relatively small) example where n = 4 and k = 2 so that
there are 16 words of length 2 with entries in {1, 2, 3, 4}. Figure 3 depicts the pairs of
tableaux associated with these words by the usual RSK algorithm; and Figure 4 depicts
the pairs of tableaux associated with these words by the correspondence of Corollary 5.4.

b = 1 b = 2 b = 3 b = 4

a = 1 1 1 1 2 1 2 1 2 1 3 1 2 1 4 1 2

a = 2 2
1

2
1

2 2 1 2 2 3 1 2 2 4 1 2

a = 3 3
1

2
1

3
2

2
1

3 3 1 2 3 4 1 2

a = 4 4
1

2
1

4
2

2
1

4
1

2
1

4 4 1 2

Figure 3. The pair of tableaux associated with the word ab by the usual
RSK correspondence.

b = 1 b = 2 b = 3 b = 4

a = 1 2
1 3 4

12 3 4
1 2

1 2 2 4
1 3

1 2 2
1 3 4

1
2

a = 2
3
2
1 4

2
1 3

1 2 4
12 4

1 2 3
1

2
3
1 2 4

1
2

a = 3
4
2
1 3

2
1

4
3
1 2

2
1 4

1 2 3
12 1 2 3 4 1 2

a = 4 2
1 3 4

2
1

3
1 2 4

2
1

4
1 2 3

2
1 1 2 3 4 12

Figure 4. The pair of tableaux associated with the word ab by the corre-
spondence of Corollary 5.4.
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5.3. Enumerative results. By restricting the correspondence of Proposition 5.1 to gen-
eralized permutations

( a1 a2 ··· an
b1 b2 ··· bn

)
satisfying a1⊎ · · ·⊎an = {{1α1 , 2α2 , . . . , kαk}}, we obtain

the following enumerative statement:

k∏

i=1

(
n+ αi − 1

αi

)
=
∑

λ⊢n

#SYT(λ) ·#SSMT
(
λ, {{1α1 , 2α2 , . . . , kαk}}

)
.

Compare this with Equation (4.4), which is the enumerative statement that accompanies
Theorem 3.3.

The analogous enumerative statement that accompanies Corollary 5.4 is the special case
where αi = 1 for all i:

(5.1) nk =
∑

λ⊢n

#SYT(λ) ·#SMT(λ, k) .

Compare this with the enumerative statement obtained from the usual application of the
RSK correspondence to words (see Section 4.2 and Equation (4.3)):

(5.2) nk =
∑

µ⊢k

∑

C

#SSYT(µ,C) ·#SYT(µ),

where the inner sum is over all multisets C of size k with entries in {1, 2, . . . , n}.

5.4. Connections with representation theory. Consider the vector space V ⊗k, where
V = C

n. This space admits an action of the symmetric group Sn as well as an action of
the partition algebra Pk(n). The Sn-action is obtained by identifying the symmetric group
Sn with the subgroup of GLn consisting of the permutation matrices and restricting the
GLn-action on V ⊗k defined in Section 4.2. The precise definition of the Pk(n)-action is not
necessary here, so we refer the interested reader to [Hal04, Eq. (1.3.4)]. More information
on the partition algebra Pk(n) is presented in Section 6.

These two actions are closely related when n > 2k: the algebra of linear endomorphisms
of V ⊗k that commute with the Sn-action is isomorphic to Pk(n); and conversely, the algebra
of linear endomorphisms of V ⊗k that commute with the Pk(n)-action is isomorphic to CSn

[Jon94]. That is, provided that n > 2k,

EndSn

(
V ⊗k

)
∼= Pk(n) and EndPk(n)

(
V ⊗k

)
∼= CSn.

Consequently, V ⊗k admits a direct sum decomposition whose summands are tensors of a
simple Sn-module and a simple Pk(n)-module (see, for instance, [HR05, Theorem 3.2.2] or
[CSST10, Theorem 8.3.18]):

V ⊗k ∼=
⊕

λ⊢n
|λ|6k

Sλ ⊗ V λ
Pk(n)

,

where Sλ is the simple Sn-module indexed by λ and V λ
Pk(n)

is the simple Pk(n)-module

indexed by λ (recall from Section 2.1 that λ is obtained from λ by deleting the first row).
Since the dimension of Sλ is the number of standard tableaux of shape λ and the dimension
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of V λ
Pk(n)

is the number of standard multiset tableaux of shape λ, we immediately obtain

the enumerative result in Equation (5.1).
As pointed out in the introduction, this combinatorial interpretation for the dimension

is different from that of [HL06, MR98], which makes use of vacillating tableaux instead of
multiset tableaux. It is more closely aligned with the results in [BH17, BHH17, OZ16, HJ18].

6. Application: Diagram Algebras

Throughout this section, standard multiset tableaux are defined us-
ing last letter order; see Sections 2.4 and 2.5 for details.

For any parameter n and positive integer k, the partition algebra, Pk(n), is defined
as the complex vector space with basis given by the set partitions on two disjoint sets
[k] ∪ [k] = {1, 2, . . . , k} ∪ {1, 2, . . . , k}:

Pk(n) = spanC{π | π ⊢ [k] ∪ [k]}.

Although we do not define the product here, as we will not use it explicitly, we remark that
the dependency of the algebra on n arises when we multiply the set partitions [HR05].

A diagram is a graphical representation of a set partition of the set [k] ∪ [k]: the vertex
set of the graph is [k] ∪ [k] arranged in two horizontal rows, where the top row is labelled
by 1, 2, . . . , k and the bottom row are labelled by 1, 2, . . . , k; and there is a path connecting
two vertices if and only if they belong to the same block of the set partition. Note that
there is more than one graph that represents a set partition, but this is immaterial to the
following. In our examples, we will connect vertices in the same block with a cycle.

Example 6.1. The set partition π = {{1, 2, 4, 2, 5}, {3}, {5, 6, 7, 3, 4, 6, 7}, {8, 8}, {1}} is
represented by the following diagram:

π =

543

54

21

1 2 3 6

6

7

7

8

8

The partition algebra Pk(n) is semisimple whenever the parameter n /∈ {0, 1, . . . , 2k−2}
in which case the irreducible representations are indexed by partitions λ with 0 6 |λ| 6 k
[MS93]. We assume throughout that n > 2k, so that Pk(n) is semisimple and isomorphic
to EndSn(V

⊗k) as explained in Section 5.4.
In [HL06, MR98], the authors introduce RSK-type algorithms between partition algebra

diagrams and pairs of paths in the Bratteli diagram of the partition algebras; in [HL06]
these paths are called vacillating tableaux. In [BH17], the authors define a bijection be-
tween vacillating tableaux and standard multiset tableaux. In this section we provide a
different bijection from partition algebra diagrams to standard multiset tableaux. This al-
gorithm not only encodes the representation theory of the partition algebra, in the sense
that the tableaux of shape λ index an irreducible representation associated with λ, but
it also encodes the representation theory of subalgebras of the partition algebra when we
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restrict the set of diagrams considered. This allows us to obtain enumerative results for
representations of various diagram algebras using standard multiset tableaux.

6.1. The correspondence. A block in a set partition π is called propagating if it contains
vertices in both [k] and [k]. For example, {1, 2, 4, 2, 5} is a propagating block. A block is
called non-propagating otherwise. The number of propagating blocks in π is called the
propagating number . We denote the propagating number by pr(π). For example, the set
partition π in Example 6.1 has pr(π) = 3.

Let π = {π1, π2, . . . , πr} be a set partition of [k] ∪ [k]. We associate with π a pair (T, S)
of standard multiset tableaux as follows. To begin,

• let πj1 , πj2 , . . . , πjp denote the propagating blocks of π ordered so that π+
j1

< · · · < π+
jp

in the last letter order, where π+
j = πj ∩ [k];

• let σi1 , . . . , σia ⊆ [k] denote the non-propagating blocks contained in [k] and ordered
so that σi1 < · · · < σia in the last letter order;
• let τi1 , . . . , τib ⊆ [k] denote the non-propagating blocks contained in [k] and ordered
so that τi1 < · · · < τib in the last letter order.

Let (P,Q) denote the pair of standard multiset tableaux obtained by applying the RSK
algorithm to the generalized permutation

(
π+
j1

π+
j2
· · · π+

jp

π−
j1

π−
j2
· · · π−

jp

)
,

where π+
j = πj ∩ [k] and π−

j = πj ∩ [k]. Let T be the tableau obtained from P by adjoining
a row containing n − p − b empty cells followed by cells labelled τi1 , . . . , τib . Let S be the
tableau obtained from Q by adjoining a row containing n − p − a empty cells followed by
cells labelled σi1 , . . . , σia .

Example 6.2. Let π = {{2, 3, 4, 4, 5}, {5, 2, 3}, {1, 6, 7, 8}, {7, 8}, {9, 6}, {1}, {9}} ∈ P9(18).
The non-propagating blocks are {1}, {9} and {7, 8}, and the generalized permutation con-
structed from the propagating blocks is

(
{2, 3, 4} {5} {1, 6} {9}

{4, 5} {2, 3} {7, 8} {6}

)
.

Apply the RSK algorithm to obtain the following pair of multiset tableaux:

P =
45 78

23 6
, Q =

5 9

234 16
.

Finally, adjoin a new row to P and a new row to Q containing the non-propagating blocks
so that the resulting tableaux are of size n = 18:

45 78

23 6

1 9 ,

5 9

234 16

78 .
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Theorem 6.3. Let n > 2k. The set partitions of [k]∪ [k] are in bijection with pairs (T, S)
of standard multiset tableaux satisfying: T and S are of the same shape λ, where λ is a
partition of n; T has content [k]; and S has content [k].

Proof. Let π = {π1, π2, . . . , πr} ⊢ [k] ∪ [k] and let (T, S) denote the tableaux constructed
by the above procedure. Notice that the propagation number of π is at most k, and since
n > 2k, there will be at least k empty cells in the first row of T and in the first row of
S guaranteeing that both are semistandard multiset tableaux. In addition, the cells of T
are filled with the blocks of a set partition of [k] and the cells of S with the blocks of a
set partition of [k], and so there are no repetitions in T or S. Hence both tableaux are
standard multiset tableaux.

Observe that we can reconstruct the set partition π from (T, S): non-propagating blocks
are the elements of the first rows; and the inverse of the RSK algorithm recovers the
generalized permutation defined by the propagating blocks of π. �

Since the number of set partitions of a set of cardinality 2k is equal to the Bell number
B(2k) [Inc19, A000110, A020557], Theorem 6.3 implies that for n > 2k,

(6.1) B(2k) =
∑

λ⊢n

#SMT(λ, k)2 .

Example 6.4. Figure 5 depicts the correspondence of Theorem 6.3 for the 15 diagrams
for P2(4).

21

1 2

→
(

1 2 , 1 2

)

2

2

1

1

→

(
2

1 ,

2

1

)

2

1

1

2

→

(
2

1

,

2

1

)

21

1 2

→
(

1 2 , 12

)

21

1 2

→

(
1

2 ,

1

2

)

2

2

1

1

→

(
1 2

,

1 2

)

21

1 2

→
(

12 , 1 2

)

21

21

→

(
1

2 ,

2

1

)

21

1 2

→

(
1

2 ,

12

)

21

1 2

→
(

12 , 12

)

2

1

1

2

→

(
2

1 ,

1

2

)

21

1 2

→

(
12

,

1

2

)

21

21

→

(
12

,

2

1

)

2

1 2

1

→

(
2

1 ,

12

)

21

1 2

→

(
12

,

12

)

Figure 5. The correspondence from Theorem 6.3 for the 15 diagrams for P2(4).
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For any diagram π ⊢ [k]∪[k], we define flip(π) to be the reflection of π along its horizontal
axis. If

π =

543

54

21

1 2 3

then flip(π) =

543

54

21

1 2 3

The properties in the next proposition follow directly from the RSK algorithm.

Proposition 6.5. Let π ⊢ [k] ∪ [k].

(a) If π inserts to (T, S) with S and T of shape λ, then |λ| = pr(π). In other words, the
depth of the tableaux is equal to the propagating number.

(b) If π inserts to (T, S), then flip(π) inserts to (S, T ).

6.2. Restriction to subalgebras. There are other bijections between partition algebra
diagrams and pairs of standard multiset tableaux, but an important aspect of the algorithm
in this paper is that it is compatible with the (representation theory) restriction to many
prominent subalgebras of Pk(n). More precisely, we will see that this single procedure
captures the combinatorics of the representation theory of all these subalgebras.

For instance, for an integer r with 0 6 r 6 k the subspace spanned by the set partitions
with propagating number at most r is a subalgebra of Pk(n) and the irreducible repre-
sentations of this subalgebra are indexed by partitions of size less than or equal to r. By
Proposition 6.5, a refinement of Equation (6.1) states

(6.2) #
{
π ⊢ [k] ∪ [k]

∣∣∣ pr(π) 6 r
}
=
∑

λ⊢n
|λ|6r

#SMT(λ, k)2 .

43

4

21

1 2 3

43

4

21

1 2 3

43

4

21

1 2 3

43

4

21

1 2 3

permutation perfect matching partial permutation matching

41

4

32

1 32

43

4

21

1 2 3

43

4

21

1 2 3

43

4

21

1 2 3

planar planar matching planar perfect planar partial
matching permutation

Figure 6. Examples of types of set partition diagrams.

6.2.1. Definition of the subalgebras. We introduce some terminology that will make it easier
to define the subalgebras. See Figure 6 for examples of the types of diagrams that we define
below. A set partition π is called planar if it can be represented as a graph without edge
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crossings inside the rectangle formed by its vertices. A set partition is called a matching
if all its blocks are of size at most 2. We call a set partition a perfect matching if all its
blocks are of size 2. The number of perfect matchings of 2n elements is equal to (2n−1)!! =
(2n − 1)(2n − 3) · · · (1). A perfect matching, where each block contains an element in [k]
and an element in [k] is a permutation. A set partition is a partial permutation if all its
blocks have size one or two and every block of size two is propagating.

Table 1 summarizes the definitions of the subalgebras that we work with. In [HJ18],
the authors construct the irreducible representations of these subalgebras using standard
multiset tableaux (which they call set-partition tableaux ) and compute their characters.
Their results provide a detailed study of the representation theory of these subalgebras
from which we extract the information in Table 2.

6.2.2. Restricting the correspondence to the subalgebras. We characterize the standard mul-
tiset tableaux produced by the correspondence of Section 6.1 when restricted to the dia-
grams spanning one of the subalgebras Ak in Table 1. We denote this set by SMTAk

(λ).
A standard multiset tableau is matching if the first row contains sets of size less than or

equal to 2 and all other rows contain only sets of size 1. In Lemma 6.6, we show these are
the multiset tableaux that correspond to matching diagrams by our insertion algorithm.

Two sets S and S′ are non-crossing if there do not exist elements a, b ∈ S and c, d ∈ S′

such that either a < c < b < d or c < a < d < b. We say that c ∈ [k] is between a set
S if there exist a, b ∈ S such that a < c < b. We call a standard multiset tableau planar
if it has two rows, if the sets in the first row are pairwise non-crossing, and if no element
belonging to one of the sets in the second row is between any set in the tableau (apart from

Table 1. Subalgebras of the partition algebra Pk(n).

Subalgebra Diagrams spanning the subalgebra Dimension

Partition algebra Pk(n) all diagrams B(2k)

Group algebra of symmetric group CSk permutations k!

Brauer algebra Bk(n) [Bra37, Wen88] perfect matchings (2k − 1)!!

Rook algebra Rk(n) [Sol02] partial permutations
k∑

i=0

(
k
i

)2
i!

Rook-Brauer algebra RBk(n) [Hd14, MM14] matchings
k∑

i=0

(
2k
2i

)
(2i − 1)!!

Temperley–Lieb algebra TLk(n)
[TL71, Jon83, Wes95, Mar90]

planar perfect matchings 1
k+1

(
2k
k

)

Motzkin algebra Mk(n) [BH14] planar matchings
k∑

i=0

1
i+1

(
2i
i

) (
2k
2i

)

Planar rook algebra PRk(n) [FHH09] planar partial permutations
(
2k
k

)

Planar algebra PPk(n) [Jon94] planar diagrams 1
2k+1

(
4k
2k

)
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the set containing the element). In Lemma 6.6, we show these are the multiset tableaux
that correspond to planar diagrams by our insertion algorithm.

Lemma 6.6. Let k be any positive integer, λ a partition of an integer n with n > 2k, and
Ak one of the subalgebras of Pk(n) defined in Table 1. If we apply the insertion procedure
of Theorem 6.3 to the diagrams spanning Ak, then the resulting standard multiset tableaux
are characterized by the properties listed in Table 3.

Proof. The case Ak = Pk(n) follows from Theorem 6.3.
For Ak = PPk(n), observe that if a set partition π is planar, then the propagating blocks

πi1 , . . . , πip are inserted in order as the blocks are non-crossing. This means that the shape
of the insertion tableau T (as well as that of the recording tableau S) has at most two
rows. Also notice that non-propagating blocks have to be non-crossing (since the diagram
is planar) and these entries constitute the entries in the first row of T and S. Furthermore,
propagating blocks in π correspond to entries in the second row of T and S. If a letter in
the second row of T (respectively, S) is between another set in T (respectively, S), then
the diagram π is not planar.

By the correspondence described in Section 6.1, a propagating block of a diagram π is a
set of size 2 with one element in [k] and one element in [k] if and only if the corresponding
entries in the pair of standard multiset tableaux (T, S) have size one and appear in the

Table 2. Dimensions and index sets for irreducible representations of certain
subalgebras Ak of the partition algebra Pk(n) [HJ18]. We highlight that the bot-
tom four subalgebras are all planar and that their irreducible representations are
indexed by partitions having a single part.

Ak Index set for irreducibles Dimension of irreducible V λ
Ak

Pk(n) {λ | λ ⊢ m, 0 6 m 6 k} fλ
k∑

i=|λ|

(
k
i

){ i
|λ|

}
B(k − i)

CSk {λ | λ ⊢ k} fλ

Bk(n) {λ | λ ⊢ k − 2r, 0 6 2r 6 k} fλ
(

k
|λ|

)
(k − |λ| − 1)!!

Rk(n) {λ | λ ⊢ m, 0 6 m 6 k} fλ
(

k
|λ|

)

RBk(n) {λ | λ ⊢ m, 0 6 m 6 k} fλ
(

k
|λ|

) (k−|λ|)/2∑
i=0

(
k−|λ|
2i

)
(2i− 1)!!

TLk(n) {(k − 2r) | 0 6 2r 6 k}
(

k
(k−m)/2

)
−
(

k
(k−m)/2−1

)

Mk(n) {(m) | 0 6 m 6 k}
⌊(k−m)/2⌋∑

i=0

(
k

m+2i

) ( (
m+2i

i

)
−
(
m+2i
i−1

) )

PRk(n) {(m) | 0 6 m 6 k}
(
k
m

)

PPk(n) {(m) | 0 6 m 6 k}
(

2k
k−m

)
−
(

2k
k−m−1

)
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second row or above in both T and S. The non-propagating blocks are all in the first row
and, in a matching diagram, all of the blocks are of size less than or equal to 2. This
implies that, if Ak is spanned by diagrams that are matching, then these diagrams insert
to tableaux which are matching. Similarly, if the subalgebra is spanned by diagrams that
are planar, then these diagrams insert to tableaux which are planar.

Since the non-empty sets that appear in the first row of T and the first row of S cor-
respond to the non-propagating blocks of the set partition, we obtain the restrictions on
sizes of the sets appearing in the first row. For instance, if Ak = CSk, then there are no
non-propagating blocks, and so the first row of S and of T contain only empty sets. If Ak

is Rk(n) or PRk(n), then the non-propagating blocks are all of size 1. If Ak is Bk(n) or
TLk(n), then the blocks (and hence the non-propagating blocks) are all of size 2. If Ak is
RBk(n) or Mk(n), then non-propagating blocks are of size at most 2. �

Example 6.7. In Table 4, we give examples of the tableaux described in Lemma 6.6 for
k = 9 and n sufficiently large.

In addition, we obtain the following corollary of Theorem 6.3 and Lemma 6.6.

Corollary 6.8. If n > 2k, then for each subalgebra Ak of the partition algebra Pk(n)
described in Table 1, we have

dim(Ak) =
∑

λ⊢n

(
#SMTAk

(λ)
)2
,

where the dimension of Ak is also given in Table 1.

Table 3. Properties characterizing the standard multiset tableaux that belong to
SMTAk

(λ). These are the tableaux produced by the correspondence of Section 6.1
when restricted to the diagrams spanning Ak.

properties characterizing SMTAk

Ak diagrams spanning Ak sizes of entries
in first row

other properties

Pk(n) all diagrams — —

PPk(n) planar diagrams — planar

CSk permutations 0 matching

Bk(n) perfect matchings 0, 2 matching

Rk(n) partial permutations 0, 1 matching

RBk(n) matchings 0, 1, 2 matching

TLk(n) planar perfect matchings 0, 2 matching & planar

Mk(n) planar matchings 0, 1, 2 matching & planar

PRk(n) planar partial permutations 0, 1 matching & planar
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6.3. From standard multiset tableaux to Bratteli diagrams. Let Ak denote one of
the subalgebras from Lemma 6.6. We establish a bijection between the standard multiset
tableaux for Ak and the paths in the Bratteli diagram for A0 ⊆ A1 ⊆ A2 ⊆ · · · .

A Bratteli diagram associated to a tower of algebras A0 ⊆ A1 ⊆ A2 ⊆ · · · is an infinite
N-graded graph defined as follows. The vertices at level k ∈ N are in bijection with the iso-
morphism classes of the irreducible representations of Ak; if the irreducible representations
are parameterized by some index set, then we label the vertices by the elements of the

Table 4. Examples of the tableaux in Lemma 6.6 for k = 9 and n > 2k.

Algebra Diagram Insertion Tableaux (T ) Recording Tableaux (S)

Pk(n)
987654321

987654321 26

345 9

... 1 78

567

124 89

... 3

CSk

987654321

987654321 9

4 6 7

1 2 3 5 8
...

9

3 4 8

1 2 5 6 7

...

Bk(n)
987654321

987654321 8

4 7

1 5
... 23 69

5

3 9

2 8

... 14 67

Rk(n)
987654321

987654321 8

4

2 3 7
... 1 5 6 9

6

5

3 7 9

... 1 2 4 8

RBk(n)
987654321

987654321
3

1 5
... 46 27 8 9

4

1 7
... 23 6 58 9

TLk(n)
987654321

987654321

1 2 7
... 45 36 89

5 6 9
... 12 34 78

Mk(n)
987654321

987654321

4 5 6 8
... 2 13 7 9

5 7 8 9
... 12 34 6

PRk(n)
987654321

987654321

1 2 4 5 7 8
... 3 6 9

2 4 5 7 8 9
... 1 3 6

PPk(n)
987654321

987654321

1 567 9

... 234 8

134 5 7

... 2 6 89
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index set. Note that it is possible that vertices at different levels carry the same label (this
happens for some of the index sets listed in Table 2), but the associated representations
are different. The edges in the graph connect vertices of level k with vertices at level k+1:
the number of edges from the vertex associated with an irreducible Ak-representation V
to the vertex associated with an irreducible Ak+1-representation V ′ is the multiplicity of
V in the restriction of V ′ to Ak.

In all the examples we consider, there is exactly one irreducible A0-representation and it
is of dimension 1. It follows from an induction argument that the dimension of an irreducible
representation V is equal to the number of paths in the Bratteli diagram from the unique
level-0 vertex to the vertex associated with V .

Example 6.9. Young’s lattice is an example of a Bratteli diagram for the tower of sym-
metric group algebras CS0 ⊆ CS1 ⊆ CS2 ⊆ · · · . Indeed, recall that there is exactly one
edge in Young’s lattice µ→ λ if and only if µ is obtained from λ by removing a corner cell.
And, the multiplicity of the irreducible Sk-representation indexed by µ in the restriction to
CSk of the irreducible Sk+1-representation indexed by λ is equal to 1 if µ→ λ in Young’s
lattice and is equal to 0 otherwise.

By branching rule, we mean any combinatorial description of the edge multiplicities in
the Bratteli diagram in terms of the index sets of the irreducible representations. Table 5
summarizes the branching rule for various subalgebras of the partition algebra, where the
index sets for the irreducible representations are given in Table 2.

Remark 6.10. A proof that the planar algebra PPk(n) is isomorphic to the Temperley–
Lieb algebra TL2k(n) can be found in [HR05, Section 1]. Consequently, the branching rule
for PPk(n) is obtained by a repeated application of the branching rule for TL2k(n).

Paths in the Brauer algebra Bratteli diagram are often called updown tableaux or oscil-
lating tableaux in the literature; see [HL06] and the references therein.

Table 5. Branching rules for various subalgebras of the partition algebra

Ak Branching rule for λ of Ak to µ of Ak−1 Reference

Pk(n)
PPk(n)

remove 1 or 0 cells from λ to get τ ,
then add 1 or 0 cells to τ to get µ

[Hal01, Equation (1.4.1)]
[HR05, Section 1]

CSk remove a cell from λ to get µ

Bk(n) add or remove a cell from λ to get µ
[Wen88, p. 192]

TLk(n) [Jon83, p. 19]

Rk(n) remove 1 or 0 cells from λ to get µ
[Hal04, Sec. 3.1]

PRk(n) [FHH09, Equation (4)]

RBk(n) add or remove 1 or 0 cells from λ to get µ
[Hd14, Equation (3.4)]

Mk(n) [BH14, Equation (3.12)]
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Proposition 6.11. Let k be a positive integer and λ a partition of n > 2k. There is a
bijection

φ : SMT(λ, k)→
{(

S, τ
) ∣∣∣ S ∈ SMT(µ, k − 1), τ → µ, τ → λ

}
.

Proof. Let T be an element of SMT(λ, k). Let A denote the unique set appearing in T
containing k. Because we are using last letter order, the cell labelled by A is a corner cell.
Let T ′ be the tableau obtained from T by deleting A. If A 6= {k}, then let S be the tableau
obtained by inserting A \ {k} in the second row of T ′ using the RSK insertion procedure.
If A = {k}, then let S be the tableau obtained from T ′ by adding a blank cell at the
beginning of its first row. Set φ(T ) = (S, τ), where τ is the shape of T ′. Note that τ → λ.

Conversely, let (S, τ) be such that S ∈ SMT(µ, k − 1), τ → µ and τ → λ. If the unique
cell in µ/τ is in the first row, then let T be the tableau obtained from S by removing a
blank cell from the first row of S, and then adding a cell labelled {k} at the cell in λ/τ .

Otherwise, let S′ denote the tableau obtained from S by deleting its first row. Reverse
the RSK insertion procedure starting with the cell µ/τ to produce a tableau T ′ and a set
A′ such that inserting A′ into T ′ produces S′. Let T be the tableau obtained from T ′ by
adjoining the first row of S and adding a new cell labelled A′ ∪ {k} at the cell in λ/τ . �

This correspondence is particularly useful because it respects the properties character-
izing the tableaux in SMTAk

(λ) (see Table 3).

Example 6.12. Consider the following tableau in SMT((n− 3, 2, 1), 9),

T =
7

5 8

... 12 46 39

,

in particular, it is an element of SMTB9(n)((n − 3, 2, 1)). To compute φ(T ) = (S, τ), we
remove the cell labelled {3, 9} and insert {3} in the second row, obtaining

S =

7

5

3 8

... 12 46

where S ∈ SMTB8(n)((n− 4, 2, 1, 1)) and τ = (n− 4, 2, 1). Proposition 6.11 also states that
T can be recovered from S and the partitions τ = (n− 4, 2, 1) and λ = (n− 3, 2, 1).

Now we are ready for the main result of this section, which states that the standard
multiset tableaux in SMTAk

(λ) encode the branching rule for the subalgebra Ak.

Theorem 6.13. Let Ak be any of the subalgebras of Pk(n) defined in Table 1 with n > 2k,
and λ, µ ⊢ n.

(1) If T ∈ SMTAk
(λ) and φ(T ) = (S, τ), then S ∈ SMTAk−1

(µ).
(2) For each S ∈ SMTAk−1

(µ), the number of T ∈ SMTAk
(λ) such that φ(T ) = (S, τ) for

some partition τ is equal to the number of edges from µ to λ in the Bratteli diagram
for the tower of algebras A0 ⊆ A1 ⊆ A2 ⊆ · · · .
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Proof. (1) We first verify that if T is planar (respectively, matching) and φ(T ) = (S, τ),
then S is also planar (respectively, matching).

Let T be a planar tableau and let A denote the set in T that contains k. If A = {k}, then
S is obtained from T by deleting the cell labelled A and adding a blank cell to the first
row. Since T is planar, all the sets appearing in T satisfy the conditions in the definition
of planar, and so S is also planar.

Suppose A 6= {k} and that A appears in the second row of T . Let a be the largest
element in A \ {k}. Then a + 1, a + 2, . . . , k − 1 must be in the first row of T (otherwise,
these elements are between A, contradicting that T is planar). Therefore, A\{k} is greater
than all the sets in the second row of T in the last letter order. Thus, S is obtained from
T by deleting k, and it follows that S is planar.

Suppose A 6= {k} and that A appears in the first row of T . If one of the sets in the
second row of T contains c ∈ [k] satisfying max(A \ {k}) < c < k, then c is between A,
which contradicts the hypothesis that T is planar. Hence, A \ {k} is greater than all sets
appearing in the second row of T , and so S is obtained from T by deleting the cell labelled
A and appending A \ {k} to the second row. To prove that S is planar, it remains to show
that no element of A \ {k} is between any other set in S.

Suppose there exists b ∈ A \ {k} that is between some set B. Then there exist a, c ∈ B
such that a < b < c < k. If B is in the first row of S, then A and B are crossing, which
contradicts the fact that the sets in the first row of T are pairwise non-crossing. If B is
in the second row of S, then c is between A, which contradicts the fact that no element
belonging to the second row of T is between any set in the tableau. Hence, S is also planar.

Let T be a matching tableau and let A denote the set in T that contains k. If A = {k},
then S is obtained from T by deleting the cell labelled A and adding a blank cell to the
first row. Since T is matching, all the sets appearing in T satisfy the conditions in the
definition of matching, and so S is also matching.

Suppose A 6= {k}. Then A is a set of size 2, say A = {a, k}, and it appears in the first
row of T . Then S is obtained from T by deleting A and inserting {a} into the second row
using the RSK algorithm. Thus, all sets in S are of size at most 2, and the sets of size 2
belong to its first row. Hence, S is matching.

Finally, note that if the sizes of the sets in the first row of T are constrained to be in
some set Σ that contains 0, then the same is true for the sets in the first for of S: indeed,
S is obtained from T by deleting a set and either adding a blank cell in the first row or by
adding a non-empty cell in some row besides the first row.

(2) Next we check that for a fixed S ∈ SMTAk−1
(µ),

#{T ∈ SMTAk
(λ) | φ(T ) = (S, τ) for some τ}

is the multiplicity of V µ
Ak−1

in the restriction of V λ
Ak

to Ak−1 described in Table 5. We will

do this on a case by case basis for each of the four pairs of subalgebras. Throughout this
proof, let S ∈ SMTAk−1

(µ) and let T ∈ SMTAk
(λ) be such that φ(T ) = (S, τ) for some τ .
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Let Ak be either Rk(n) or PRk(n). Note that all the sets appearing in S are of size at
most 1, and S is obtained from T by deleting the cell labelled k and adding an empty cell
to the first row. The cell labelled k is removed from the first row if and only if λ = µ. And
if the cell is removed from some other row, then µ is obtained from λ by deleting a cell.
This agrees with the branching rule in Table 5 with λ replaced by λ and µ replaced by µ.

Let Ak be Bk(n) or TLk(n). The non-empty sets in the first row of S are all of size 2
and the sets in the other rows are all of size 1. If the set of T containing k is {k}, then it
appears in the second row or above of T . In this case, S is obtained from T by deleting the
cell labelled {k} and adding an empty cell in the first row. Thus, µ is obtained from λ by
moving a cell to the first row, or in other words, µ is obtained from λ by deleting a cell.

Otherwise, the set containing k is {a, k}, for some a, and it appears at the end of the
first row. Then S is obtained from T by deleting {a, k} and inserting {a} in the second
row. Thus, µ is obtained from λ by removing a cell from the first row and adding a cell to
some other row. In other words, µ is obtained from λ by adding a cell. This agrees with
the branching rule in Table 5 with λ replaced by λ and µ replaced by µ.

Let Ak be RBk(n) or Mk(n). The non-empty sets in the first row of S are all of size 1 or
2 and those in the other rows are all of size 1. Hence, the set in T containing k is either {k}
or {a, k} for some a. In the first case, S is obtained from T by deleting the cell labelled {k}
and adding an empty cell to the first row, from which it follows that we have λ = µ (when
{k} is in the first row of T ) or µ→ λ (otherwise). In the second case, S is obtained from T
by deleting the cell labelled {a, k} at the end of the first row and using the RSK insertion
procedure to insert {a} into the second row. Thus, µ is obtained from λ by moving a cell
from the first row to some other row. In other words, µ is obtained from λ by adding a cell.
This agrees with the branching rule in Table 5 with λ replaced by λ and µ replaced by µ.

Let Ak be either Pk(n) or PPk(n). Let τ denote the shape of the tableau obtained from
T by deleting the set containing k. If the set containing k is {k}, then S is obtained from
T by deleting the cell labelled {k} and adding an empty cell to the first row. In this case,
µ is obtained from λ by moving a cell to the first row. If the moved cell came from the first
row, then µ = λ, and otherwise µ is obtained from λ by deleting a cell.

If the set containing k is not {k}, then S is the tableau obtained from T by deleting the
cell containing k and inserting a set in the second row using the RSK insertion procedure.
Thus, µ is obtained from λ by deleting a cell and adding a cell in a row that is not the
first row. If the deleted cell belonged to the first row, then µ is obtained from λ by adding
a cell. Otherwise, µ is obtained from λ by removing a cell and then adding a cell. This is
precisely the branching rule in Table 5, with λ replaced by λ and µ replaced by µ. �

The map φ from Proposition 6.11 allows us to establish a bijection between standard
multiset tableaux and vacillating tableaux. A vacillating tableau is a sequence partitions

satisfying the condition λ(r) ⊢ n and λ(r+ 1

2
) ⊢ n−1 with λ(r) ← λ(r+ 1

2
) and λ(r+ 1

2
) → λ(r+1)

for 0 6 r < k [HL06, BH17]. A different bijection appears in [BH17]. The bijection we
provide here is compatible with the families of tableaux for each of the subalgebras and
the Bratteli diagrams for those subalgebras.
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Proposition 6.14. For each family of subalgebras Ak in Table 1 and for each λ a partition
of n > 2k, there is a bijection between SMTAk

(λ) and the set of vacillating tableaux of the
form (

(n) = λ(0), λ( 1
2
), λ(1), λ(1 1

2
), . . . , λ(k− 1

2
), λ(k) = λ

)
,

where

λ(0) ⇒ λ(1) ⇒ · · · ⇒ λ(k)

is a path in the Bratteli diagram for the tower of algebras A0 ⊆ A1 ⊆ A2 ⊆ · · · .

Proof. Let T (k) be a tableau in SMTAk
(λ, k). If φ(T (k)) = (S, τ), then set T (k−1) = S,

λ(k−1) = shape(S), and λ(k− 1

2
) = τ . Repeat this process on T (k−r) for k steps until T (0)

is the unique empty tableau in SMTAk
((n), 0). Record at each step of this process λ(k−1)

and λ(k− 1

2
). Now given the sequence of partitions

(
(n) = λ(0), λ( 1

2
), λ(1), λ(1 1

2
), . . . , λ(k− 1

2
), λ(k) = λ

)

we can reverse the steps and recover the standard multiset tableau from the sequence.
A consequence of Theorem 6.13 is that the sequence of partitions

λ(0) ⇒ λ(1) ⇒ · · · ⇒ λ(k)

is a path in the Bratteli diagram for the tower of algebras A0 ⊆ A1 ⊆ A2 ⊆ · · · ; furthermore,
for a partition λ ⊢ n with n > 2k, the number of these paths that end on the partition λ
is equal to the number of standard multiset tableaux in SMTAk

(λ). �

Example 6.15. Let T and S be the two tableaux from Example 6.12. Start with T (9) = T .
It follows from Example 6.12 that T (8) = S and so we record

λ(9) = (n − 3, 2, 1), λ(8 1

2
) = (n− 4, 2, 1), and λ(8) = (n − 4, 2, 1, 1).

The remaining steps of the bijection are given in Figure 7. The corresponding sequence

{λ(i)}9i=1 is the following path in the Bratteli diagram for the Brauer algebra.

∅ ⇒ (1)⇒ ∅ ⇒ (1)⇒ (2)⇒ (2, 1)⇒ (1, 1) ⇒ (1, 1, 1) ⇒ (2, 1, 1) ⇒ (2, 1).

What we have presented in this section completes the connection between the results in
[HJ18] and those in [HL06]. The insertion presented in Theorem 6.3 is a correspondence
between diagrams and pairs of standard multiset tableaux that motivates the tableaux that
arise in the paper [HJ18]. Theorem 6.13 then provides a correspondence between standard
multiset tableaux and paths in the Bratteli diagram.

Since the dimensions of the irreducibles are equal to the number of paths in the Bratteli
diagram, it follows that the number of tableaux of a given shape is equal to the dimension
of the irreducible representation. This establishes the following result, which can also be
proven by enumerating the tableaux in Lemma 6.6 by a purely combinatorial argument
and verifying that the values agree with Table 2.
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T (9) = 7

5 8
... 12 46 39

λ(9) = (n− 3, 2, 1)

T (8) =
7

5

3 8

... 12 46

λ(8 1

2
) = (n− 4, 2, 1) λ(8) = (n− 4, 2, 1, 1)

T (7) =
7

5

3
... 12 46

λ(7 1

2
) = (n− 4, 1, 1, 1) λ(7) = (n− 3, 1, 1, 1)

T (6) =
5

3
... 12 46

λ(6 1

2
) = (n− 3, 1, 1) λ(6) = (n− 2, 1, 1)

T (5) =
5

3 4
... 12

λ(5 1

2
) = (n− 3, 1, 1) λ(5) = (n− 3, 2, 1)

T (4) = 3 4
... 12

λ(4 1

2
) = (n− 3, 2) λ(4) = (n− 2, 2)

T (3) = 3

... 12
λ(3 1

2
) = (n− 2, 1) λ(3) = (n− 1, 1)

T (2) = ... 12 λ(2 1

2
) = (n− 1) λ(2) = (n)

T (1) = 1
... λ(1 1

2
) = (n− 1) λ(1) = (n− 1, 1)

Figure 7. An example of the bijection from Proposition 6.14; see Exam-
ple 6.15 for details.

Corollary 6.16. Let n > 2k and λ ⊢ n. For each of the algebras Ak described in Table 1,

let V λ
Ak

be the irreducible Ak-representation indexed by λ. Then

dim
(
V λ
Ak

)
= #SMTAk

(λ).

Remark 6.17. Benkart and Halverson [BH17] give a bijection between standard multiset
tableaux and vacillating tableaux that is different from the correspondence that we have just
described. Their bijection does not behave well under restriction to all of the subalgebras Ak

and the corresponding standard multiset tableaux in SMTAk
(λ). This can be demonstrated

via an example. In TL2(4), there are two diagrams and two pairs of tableaux (see the third
diagram in the second row and the first diagram in the fourth row of Example 6.4), and
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the Benkart–Halverson produces the following vacillating tableau

12
Benkart–Halverson
−−−−−−−−−−−−→

(
, , , ,

)
,

however (∅, ∅, ∅) is not a path in the Temperley–Lieb Bratteli diagram (see [Jon83, p. 19]).
On the other hand, our correspondence produces the following vacillating tableau

12
Proposition 6.14
−−−−−−−−−−−→

(
, , , ,

)
,

and (∅, , ∅) is a path in the Temperley–Lieb Bratteli diagram.
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