
1

Seele’s New Anti-ASIC Consensus Algorithm with
Emphasis on Matrix Computation

Luke Zeng∗, Shawn Xin∗, Avadesian Xu∗, Thomas Pang∗, Tim Yang∗, Maolin Zheng∗,
∗SeeleTech Corporation @San Francisco

I. INTRODUCTION

Since 2008, blockchains have been gaining increasing at-
tention for its revolutionary innovations which may make
radical changes in many fields: payments and money transfers,
voting [1], intellectual property and digital rights management,
sharing economy [2–4], social media [5, 6], supply chain man-
agement (HyperLedger)[7], energy management, government
and public records [8, 9], and so on [10]. The philosophy of
blockchain is decentralization and disintermediation: multiple
untrusted or semi-trusted parties can directly and transparently
interact with each other without the presence of a trusted
intermediary. This property makes blockchain particularly ap-
pealing to financial institutions suffering from huge middleman
costs in settlements and other back office operations.

So far, despite many breakthroughs and improvements,
blockchain, compared to its traditional counterparts, still faces
major hurdles before widespread adoption including but not
limited to stability, performance and scalability. As per these
properties, consensus protocols are the corner stone and are
closely linked to them. Based on the same consensus protocol,
all nodes will agree on the same criteria to pack, verify and
mine a block. A consensus protocol is the vital safeguard
to guarantee the blockchain’s health and legality: only legal
blocks (meeting the criteria of consensus protocol) can be
added to the blockchain while illegal ones will be rejected.
Two key properties that a consensus protocol should have: (i)
completeness, legal requests from correct clients are eventually
processed, and (ii) consistency, if an honest node accepts
(or rejects) a value then all other honest nodes make the
same decision. Consensus is not a new topic: the distributed
systems community has extensively studied it for decades,
and developed robust and practical protocols that can tolerate
faulty and malicious nodes [11, 12]. However, these protocols
were designed for closed groups and blockchains have a higher
requirement for zero fault tolerance.

The Proof-of-Work (PoW) consensus algorithm first imple-
mented by Bitcoin’s blockchain requires all miners to find the
solution to a hash puzzle. Then the first miner to find the solu-
tion will claim the winnership and get the mining reward. Due
to the probabilistic and one-way transformation process with a
nonce to its hash, this kind of PoW consensus algorithm works
well in keeping Bitcoin’s decentralized network consistent and
secure. However, there exists a big issue to this kind of PoW
consensus algorithm: heavy load in hash arithmetic results
in rewards dominated by machines with hashrate advantage
like GPUs and ASICs (∼50 TH/S). This deeply discourages a

great population of users from joining the mining with regular
personal computers (∼1-100 MH/S) [13]. More importantly,
only with “decentralized distributed reward”, a robust and
secure decentralized blockchain’s peer-to-peer network can be
formed and thrive[14].

In this paper, we will present a new PoW consensus
algorithm used in Seele’s main-net, MPoW (Matrix-Proof-
of-Work). Compared to Bitcoins PoW consensus algorithm,
MPoW requires miners to compute the determinants of sub-
matrices from a matrix constructed with n hashes other than
brute-force-hashing using a hash function to find the target.
This paper will evaluate this algorithms compatibility with
difficulty adjustment. Then we will discuss its efficiency in
countering machines with hashrate advantage, and its fea-
sibility to personal computers. We believe more innovative
consensus protocols can be developed based on this algorithm.

II. THEORETICAL FOUNDATION

A. SHA function: security and feasibility

A blockchain consensus algorithm must be secure and hard
to compute but easy to verify. A secure hash algorithm (SHA)
function can be informally defined as a function that maps
a message of arbitrary length to a fixed length (m-bit) hash
value, is easy to compute but hard to invert, and in which a
collision, finding two different messages with the same hash
value, is computationally infeasible.

Specifically, a strong cryptographic hash function h is
usually expected to satisfy the following requirements[15]:

(i) Collision resistance : it must be computationally infea-
sible to find any two distinct messages M and M such that
h(M) = h(M). The best collision resistance one can hope to
achieve with an m-bit hash function is upper bounded by the
O(2m/2) complexity of a birthday attack[16].

(ii) Preimage resistance (one wayness) : given the h(M)
hash value of an unknown message M , it must be compu-
tationally infeasible to find any message M (equal or not to
M) such that h(M) = h(M). The best preimage resistance
one can hope to achieve with an m-bit hash function is upper
bounded by the O(2m) complexity of an “exhaustive” search.

(iii) Second preimage resistance (weak collision resis-
tance) : given any M known message and its h(M) hash
value, it must be computationally infeasible to find any M
message distinct from M such that h(M) = h(M). The best
preimage resistance one can hope to achieve with an m-bit
hash function is upper bounded by the O(2m) complexity of
an exhaustive search.

ar
X

iv
:1

90
5.

04
56

5v
1

 [
cs

.C
R

]
 1

1
M

ay
 2

01
9

2

Requirement (i) is by far the most important one in practice
for the assessment of any candidate hash function such as the
one considered in this paper, since:

A collision resistant hash function is necessarily second
preimage resistant, i.e. (i) →(iii);

Although some theoretical counter examples of the impli-
cation (i) →(ii) are easy to construct, for most algorithms in
practice, the existence of a computationally feasible preimage
search attack would automatically result in a computationally
feasible collision search attack. Specifically, assuming a preim-
age search attack exists, to prove that collision search attack
also exists, one just have to draw a sufficient number of M
messages from a sufficiently large set of messages, and then
apply the preimage search attack to h(M) until eventually an
M ′ preimage distinct from M is be found.

Thus, in order to assess the security of a candidate crypto-
graphic hash function, such as the one analyzed in this paper,
it is nearly sufficient to restrict oneself to the investigation of
the collision resistance properties of the considered function
and of the collision resistance properties on the underlying
compression function.

B. Random 0/1 matrix

As we discussed previously, the secure hash algorithms
(SHAs) are designed to be one-way functions. Additionally,
SHAs exhibit the avalanche effect, where the modification of
very few letters to be encrypted causes a significant change in
the output. Hence, SHAs will provide random results. If we
use specific number of random hashes to construct a matrix,
the matrix will be a “random” matrix. Herein, we discuss more
details about random 0/1 matrices.

For simplicity, we start with results on 2× 2 matrices with
iid uniformly distributed elements. Let

A =

[
a11 a12
a21 a22

]
(1)

be a 2× 2 matrix with elements aij (i, j = 1,2) where aij are
iid random variables with density,

if x ∈ [0, 1],
fa(x) = 1 (2)

if x ∈ elsewhere,
fa(x) = 0 (3)

Let D = detA. Then the probability of density of D is:
if x ∈ [−1, 0),

fD(x) = (x+ 1)(2− log(x+ 1)) (4)

+x

[
− log(−x) +

∞∑
k=1

(−1)k+1

k
(5)

×

(
k∑
i=1

(
k
1

)
(x− 1)k−i

(
(−x)i − 1

)
1

(6)

+(x− 1)k log(−x))] (7)

if x ∈ (0, 1],
fa(x) = fa(−x) (8)

 !

"!

#!

$!

!%
&
!
'
(

)'!)$!)&! ! &! $! '!
%&!

'
(*+,-.%(/0,0-*.1+1,

2
-0
3
4
0
1
5
6

Fig. 1: Determinant distribution of 30× 30 (0/1) matrix.

if x ∈ elsewhere,
fa(x) = 0 (9)

Using the expression given as above, Williamson shows a
graph of probability density of D (the determinant of a 2× 2
random matrix with independent element uniformly distributed
on [0,1])[17]. The density graph of the determinants peaks at 0
with a symmetry between positive and negative determinants.
Moreover, as determinant value distances from 0, the density
drops exponentially. Komlos has studied the singularity of
random matrices and has shown that if ξi,j (i, j = 1,2,...) are
iid with a non-degenerate distribution[18], then

lim
η→∞

P

∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

...
...

am1 am2 · · · amn

∣∣∣∣∣∣∣∣∣ = 0

 = 0 (10)

III. RESULTS

In this section, we will show the results got from our
Seele’s main-net where we implement our new PoW consensus
algorithm. Fig.1 presents the results on 30× 30 matrices with
iid uniformly distributed elements constructed with hashes.
Similar to results in Williamson’s paper[17], our histogram of
determinants of 30×30 matrices (the size of data set is around
1 million) shows a peak at around 0, and as determinant value
deviates from 0, the frequency decreases exponentially. All
results agree well with the data from the forementioned paper.
For matrices constructed with specific number of hashes, we
also observe that as the dimension increases, the frequency of
matrix whose determinant is 0 decreases[18]. The singularity
of a random matrix is out of scope of this paper, which we
won’t discuss in details here.

As seen in Fig. 1, the distribution of determinant is sym-
metrical with a mean value around 0. In Fig.2, we count the
number of 30×30 submatrices with non-negative determinants,
selected from 30 × 256 matrices constructed by 30 hashes
(for convenience, we call those submatrices as “large subma-
trices”). Equation.10 shows that as the dimension goes up,
the number of submatrices with 0 determinant decreases and
approaches 0. When dimension equals 30, we can ignore the
count of submatrices whose determinant is 0. Therefore, the
probability of “large submatrices” will be close to 50% and
the number of “large submatrices” has the highest probability
at 113 with a well defined normal distribution.

3

 !!

"!!

#!!

$!!

!
$%!$!$#!$!!&!%!

'()*+,(-,./012,3)45/+06728

9
02
:
)
2
*
7
;

Fig. 2: Distribution of number of “large submatrices” (30×30
(0/1) matrix) subtracted from 30× 256 (0/1) matrices.

A (-1,1)-matrix having a maximal determinant is known as
a Hadamard matrix [19]. The same bound of nn/2 applies to
such matrices, and sharper bounds are known when the size of
the matrix is not a multiple of 4. A summary of what is known
about such bounds is given by Orrick and Solomon[20].

For a (0,1)-matrix, Hadamard’s bound can be improved to

|detA| ≤ (n+ 1)(n+1)/2

2n
(11)

(Please refer to book [21], problem 523; and paper[19]).
For an n×n (0,1)-matrix (i.e., a binary matrix), the largest

possible determinants βn for n=1, 2, ... are 1, 1, 2, 3, 5, 9, 32,
56, 144, 320, 1458, 3645, 9477, ... (OEIS A003432[22]). The
numbers of distinct n × n binary matrices having the largest
possible determinant are 1, 3, 3, 60, 3600, 529200, 75600,
195955200, 13716864000, ... (OEIS A051752[23]).

IV. DISCUSSION

In this section, we will discuss the performance of our new
MPoW consensus algorithm from the perspectives of block-
time, difficulty adjustment and its efficiency in preventing
machines with hashrate advantage, such as ASICs or GPUs,
from dominating all mining rewards.

A. Mining

First of all, we will discuss the difficulty adjustment for
our MPoW consensus algorithm. As more and more nodes
(miners) join into the peer-to-peer network, stabilization of
the network’s mining process require a stale block time to
guarantee safety and decentralization. On the other hand, the
block difficulty adjustment of MPoW algorithm needs to be
gradual and smooth to achieve a stable block time (for Seele’s
main-net, the goal of block time is 10 seconds). As shown
in the Fig.1 and Fig.2 respectively, there is a well-defined
probability distribution for determinants of submatrices and
for the number of “large submatrices”.

The difficulty adjustment formula is defined as follows:

d = dp +
dp
f
×max

(
1− t− tp

10
,−99

)
(12)

Where: d is the current block difficulty, dp is the previous
block difficulty, t is the current block time, tp is the previous

 !!!"#!!"!!!#!!!

$!!

 #!

 !!

"#!

"!!

#!%
"
!
"

&

" #

"!!

#!

'#

 #

!

()*+,&-./0%

1
23
32
+
4
)5
6

!"
#
$
%&
'(
)
%*
+
,

&12332+4)56
&()*+,7280
&()*+,7280&92552.:

3;%<&=&6!&>&?!@2.;A%&>&B<
C*0332+20.5&DA)40@&E&*.0&@5A./AF/&/0D2A52*.
&6!& =&"$GHIJ&E&!G!IH"
&?!&& =&!G#"H$I&E&!G"$I
&&A&& =&!G!#IKJH&E&!G!!!K"
&&L =&M$G'"!"&E&!G#$

Fig. 3: Block time distribution with dynamically adjusted
difficulty. The black curve is the fitting result with a sinusoidal
function.

block time, and f is the smooth factor which is set to 2048
for Seele’s main-net.

The block mining process will try to find a target matrix
which meets two criteria:

(i) The determinant s of the submatrix constructed by first
30 columns and 30 rows meets:

s ≥ d× 65 (13)

If the matrix meets the first criterion, in order to increase
the calculation time percentage of mining a block, our MPoW
consensus algorithm further requires the miner to calculate
determinants of all submatrices and the number of the “large
submatrices” to be as large as count.

(ii) count is defined as:

count ≥ 256− n
2

+
n

5
(14)

where n is the row size of target matrix, here we use n = 30.
In Fig.3, we present the difficulty and block time curves

over block index. In order to better see the correlation between
difficulty and block time, we intentionally set the smooth
factor f in Equation(12) to 1. Generally, there is a strong
correlation between the difficulty (red curve) and block time
(blue curve). The difficulty is subsequently adjusted to be
smaller if the block time increases, vice versa. This indicates
our difficulty function works quite well in dynamically adjust-
ing the difficulty. The target matrix finding process is feasible
and within a reasonable block time. For a better look, we also
fit the block time with a sinusoidal function as in Fig.3. The
coefficient values from the fitting curve roughly give us an
average block time of 14 seconds which well matches our 10
seconds block time goal considering other processes, such as
packing a block, takes some extra time. Finally, note that if
we set smooth factor f to 2048 other than 1 (as we use in our
Seele’s main-net), the curves of difficulty and block time will
be smoother with smaller deviations.

B. Time Distribution

Second, in the Fig.4, we show the results of hash time
percentage within mining a block. The hash time percentage in
the inset diagram of Fig.4 shows a clear regression to 30% with
some random fluctuations. The histogram further confirms that
the hash time percentage during mining a block is around

4

 !"

 !#

 !$

 !%

 !&

 !'

(') %
*(

&
+

,-./0+1234*

5
6
7
8
+9
:;
4
+<
4
=/
4
2
>6
?
4(#

(%

('

(

)

#

%

'

*
(

&
+

 !%$!% !&$!& !'$!' !($

5678+9:;4+<4=/42>6?4

@
=4
A
B
4
2
/
C

Fig. 4: Hash time percentage during a Seele’s block mining.
The inset graph is the hash time percentage data.

30%. By comparison, traditional PoW consensus algorithms,
requiring miner to solve a hash puzzle, will take up almost
100% of hash time when mining a block. However, hash time
percentage is balanced out by our new MPoW consensus al-
gorithms requirement: miner should further construct a matrix
and calculate the determinants of its submatrices instead of just
hashing. In this case, we can not only keep the blockchain
safe and feasible with one-way data conversion using SHA
function but also eliminate the advantage of machines with
high hashrates.

V. SUMMARY

In this paper, we introduce a new PoW consensus algorithm
(MPoW) which requires miner to use SHA function to get
specific number, n hashes and then use these hashes to
construct a matrix(n × 256) that satisfies two criteria: the
determinant of first n×n submatrix should be not less than a
target which can be dynamically adjusted based on the block
time; Also, the number of submatrices with non-negative
determinants should be larger than another given value.
This MPoW consensus algorithm can efficiently eliminate
the dominant advantage of machines whose hashrates
are hundreds or thousand of times larger than personal
computers. This consensus algorithm may pave the way to a
real decentralizated blockchain. Furthermore, our new PoW
(MPoW) consensus algorithm provides a new way to utilize
the properties of a matrix to implement an efficient and secure
blockchain’s consensus algorithm. SeeleTech’s research and
development team will keep making an effort in this field and
contributing to our community.

REFERENCES

[1] Follow My Vote. https://followmyvote.com.
[2] Lazooz. http://lazooz.org.
[3] Arcade City. https://arcade.city.
[4] LemonWay. https://www.lemonway.com/en/.
[5] Akasha. https://akasha.world.
[6] Steem. https://steem.io.
[7] Hyperledgers Sawtooth Lake Aims at a Thousand Transactions

per Second. https://www.altoros.com/blog/hyperledgers-sawtooth-lake-
aims-at-a-thousand-transactions-per-second/.

[8] The Illinois Blockchain Initiative. https://illinoisblockchain.tech.
[9] The Economist. Governments may be big backers of the blockchain.

goo.gl/uEjckp, 2017.

[10] C. INSIGHTS. Banking Is Only The Beginning: 30 Big Industries
Blockchain Could Transform. https://www.cbinsights.com/research/
industries-disrupted-blockchain/, 2017.

[11] M. Castro, B. Liskov, et al, Practical Byzantine fault tolerance. In
OSDI, volume 99, pages 173–186, 1999.

[12] L. Lamport. The part-time parliament. ACM Transactions on Computer
Systems (TOCS), 16(2):133–169,1998.

[13] Hash Rate Comparison. https://en.bitcoin.it/wiki/Mining hardware
comparison.

[14] Wei Bi, Huawei Yang and Maolin Zheng. “An Accelerated Method
for Message Propagation in Blockchain Networks”. http://arxiv.org/abs/
1809.00455.

[15] Handschuh, Helena and Gilbert, Henri. Evaluation Report Security
Level of CryptographySHA-256. https://www.researchgate.net/
publication/242782685 Evaluation Report Security Level of
Cryptography - SHA256.

[16] Daniel J. Bernstein. Cost analysis of hash collisions: Will quantum
computers make SHARCS obsolete? http://cr.yp.to/hash/collisioncost-
20090823.pdf.

[17] R.C Williamson and T Downs. The inverse and determinant of a 2x2
uniformly distributed random matrix. http://www.sciencedirect.com/
science/article/pii/0167715288900442.

[18] Komlos, J. On the determinant of random matrices. 1968.
[19] Joel Brenner and Larry Cummings. The Hadamard Maximum Deter-

minant Problem. https://doi.org/10.1080/00029890.1972.11993099.
[20] Orrick, W. and Solomon, B. Known Bounds on Maximal Determinants.

http://www.indiana.edu/ maxdet/bounds.html.
[21] Faddeev, D. K. and Sominskii, I. S. Problems in Higher Algebra. 1965.
[22] OEIS A003432, http://oeis.org/A003432.
[23] OEIS A051752, http://oeis.org/A003432.

https://followmyvote.com
http://lazooz.org
https://arcade.city
https://www.lemonway.com/en/
https://akasha.world
https://steem.io
https://www.altoros.com/blog/hyperledgers-sawtooth-lake-aims-at-a-thousand-transactions-per-second/
https://www.altoros.com/blog/hyperledgers-sawtooth-lake-aims-at-a-thousand-transactions-per-second/
https://illinoisblockchain.tech
goo.gl/uEjckp
https://www.cbinsights.com/research/industries-disrupted-blockchain/
https://www.cbinsights.com/research/industries-disrupted-blockchain/
https://en.bitcoin.it/wiki/Mining_hardware_comparison
https://en.bitcoin.it/wiki/Mining_hardware_comparison
http://arxiv.org/abs/1809.00455.
http://arxiv.org/abs/1809.00455.
https://www.researchgate.net/publication/242782685_Evaluation_Report_Security_Level_of_Cryptography_-_SHA256.
https://www.researchgate.net/publication/242782685_Evaluation_Report_Security_Level_of_Cryptography_-_SHA256.
https://www.researchgate.net/publication/242782685_Evaluation_Report_Security_Level_of_Cryptography_-_SHA256.
http://cr.yp.to/hash/collisioncost-20090823.pdf.
http://cr.yp.to/hash/collisioncost-20090823.pdf.
http://www.sciencedirect.com/science/article/pii/0167715288900442.
http://www.sciencedirect.com/science/article/pii/0167715288900442.
https://doi.org/10.1080/00029890.1972.11993099.
http://oeis.org/A003432.
http://oeis.org/A003432.

	I Introduction
	II Theoretical Foundation
	II-A SHA function: security and feasibility
	II-B Random 0/1 matrix

	III Results
	IV Discussion
	IV-A Mining
	IV-B Time Distribution

	V Summary

