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ORBITS OF HAMILTONIAN PATHS AND CYCLES IN

COMPLETE GRAPHS

SAMUEL HERMAN AND EIRINI POIMENIDOU

Abstract. We apply Burnside’s Lemma to enumerate certain classes of undi-
rected Hamiltonian paths and cycles in the complete graph defined on the
vertices of a regular polygon.

1. Introduction

We begin with a motivating observation concerning the “shape” of undirected
Hamiltonian paths in the complete graph defined on the vertices of a square. To
see it for yourself, consider the Hamiltonian paths which have an endpoint at the
top left vertex:

The observation in question is as follows: each of these paths forms one of only

three distinct shapes. That is, all undirected Hamiltonian paths in the complete
graph defined on these vertices form a shape which may be obtained from some
composition of reflections and rotations of one (and only one!) of the three shapes
illustrated below.

A natural follow-up to this observation is to consider the analogous situation
in the complete graph defined on the vertices of a pentagon. If one were to carry
out the (painful) process of drawing all possible Hamiltonian paths in this graph
and classifying them by hand, one would find that there are eight of these “basic”
shapes:

Here we should feel compelled to ask: how many of these “basic” shapes exist

in the analogous situation defined for any positive integer n? The present paper
exists in part to answer this question. Also answered in this paper is the analogous
question regarding Hamiltonian cycles in complete graphs defined on the vertices of
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Set Paths or Cycles? Similarity or Equivalence?

Γ(n, P, S) Paths Similarity
Γ(n, P,E) Paths Equivalence
Γ(n,C, S) Cycles Similarity
Γ(n,C,E) Cycles Equivalence

Table 1. Classification of Γ-paths and Γ-cycles.

regular n-gons. Said analogous question is indeed valid—for instance, the “basic”
shapes formed by Hamiltonian cycles in the case n = 4 are

.

For convenience, we will state our results up front. However, before we may do
so, we define some standard notation and a general framework for the problems
addressed here.

Definition 1. Let n ≥ 3 be an integer, and consider the complete graph Kn

defined on the vertices of a regular n-gon. A Γ-path or Γ-cycle is an undirected
Hamiltonian path or cycle in Kn, respectively. We say that two Γ-paths (cycles)
which are obtainable from one another by some combination of reflections and
rotations are similar, and that two Γ-paths (cycles) which are obtainable from one
another by rotations only are equivalent. Otherwise, we say that they are non-

similar or inequivalent, respectively.
We may partition the set of Γ-paths and Γ-cycles on n vertices into equivalence

classes according to these considerations as follows. Denote a set of classes of Γ-
paths or Γ-cycles on n vertices by Γ(n, α1, α2), where

(1) α1 = P if we are considering hamiltonian paths, and α1 = C if we are
considering hamiltonian cycles;

(2) α2 = S if we are considering similarity, and α2 = E if we are considering
equivalence.

This language allows us to restate the questions we posed previously:

Question 1. How many non-similar or inequivalent Γ-paths are there on n ver-

tices? That is, what are the sizes of the sets Γ(n, P, S) and Γ(n, P,E), respectively?

Question 2. How many non-similar or inequivalent Γ-cycles are there on n ver-

tices? That is, what are the sizes of the sets Γ(n,C, S) and Γ(n,C,E), respectively?

Notation. Throughout the paper we use n!! to denote the product of n with every
number of the same parity as n which is less than or equal to n. That is,

n!! =

{

n(n− 2) · · · (2)(1) if n is even,

n(n− 2) · · · (3)(1) if n is odd.

The answers to these questions are as follows.
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n Γ(n, P, S) Γ(n, P,E) Γ(n,C, S) Γ(n,C,E)
3 1 1 1 1
4 3 4 2 2
5 8 12 4 4
6 38 64 12 14
7 192 360 39 54
8 1320 2544 202 332
9 10176 20160 1219 2246
10 91296 181632 9468 18264

Table 2. Table of values for 3 ≤ n ≤ 10.

|Γ(n, P, S)| =

{

1
4 [(n− 1)! + (n2 + 1)(n− 2)!!] if n is even,
1
4 [(n− 1)! + (n− 1)!!] if n is odd.

|Γ(n, P,E)| =

{

1
2 [(n− 1)! + (n− 2)!!] if n is even,
1
2 (n− 1)! if n is odd.

|Γ(n,C, S)| =
1

4n2





∑

d|n

(

(

φ
(n

d

))2 (n

d

)d

d!

)

+

{

n!!n(n+6)
4 if n is even,

n2(n− 1)!! if n is odd.





|Γ(n,C,E)| =
1

2n2





∑

d|n

(

(

φ
(n

d

))2 (n

d

)d

d!

)

+

{

n
2n!! if n is even,

0 if n is odd.





These formulae are proved in Theorems 7, 8, 16, and 17 respectively. Further,
illustrations of Γ(n, P, S) and Γ(n,C, S) for 3 ≤ n ≤ 6 may be found in Figures 3 and
4, respectively. Finally, Table 2 gives the size of each of these sets for 3 ≤ n ≤ 10.

We obtain these answers by converting the original problem into one of enumer-
ating the orbits of a specific group action. These orbits are enumerated by way of
Burnside’s lemma, which is a standard tool in the theory of finite group actions.

Burnside’s lemma. Consider a group G acting on a set A. For each g ∈ G, let

fix(g) denote the set of elements of A which are fixed by g. That is,

fix(g) = {a ∈ A | g · a = a }.

Let A/G denote the set of orbits of this action. Then the number of orbits in the

action of G on A is given by

|A/G| =
1

|G|

∑

g∈G

|fix(g)|.

2. Enumerating Γ-paths

We will begin by enumerating non-similar Γ-paths on n vertices, as this case will
form the basis from which we approach the others. To accomplish this, we first
associate each Γ-path with a string which encodes it. We then construct a group
which will act on this set of strings. The number of orbits in this action will be the
number of non-similar Γ-paths.
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Figure 1. String representations of Γ-paths.

We associate each Γ-path with a string as follows. Let n be given, and label
the vertices of the underlying graph with {0, 1, . . . , n − 1}. Then each Γ-path is
associated with a string x1x2 · · ·xn such that each entry xi is the label of the ith
vertex visited (as illustrated in Figure 1). Let Xn denote this set of strings, and
note that Xn has n! elements.

Next we construct a group to act on Xn such that any two similar Γ-paths are
in the same orbit. First, all strings which represent symmetry-preserving rotations
and reflections of a Γ-path should be contained in the same orbit. Further, since
Γ-paths are undirected, two strings which are reversals of one another should also
be contained in the same orbit. As such, it is natural that the group we seek will
be isomorphic to the direct product D2n × Z2 of the dihedral group of order 2n
with the cyclic group of order 2. Let Gp(n) denote this group, and consider its
presentation as

Gp(n) = 〈r, s, v | rn = s2 = v2 = e, vs = sv, vr = rv, srs = r−1〉

where e denotes the identity. Note also that Gp(n) has order 4n. Here r represents
a (clockwise) rotation, s a reflection over the axis through the vertex labelled by 0,
and v a reversal of a string. The action of Gp(n) on Xn is given by

r · x1x2 · · ·xn = (x1 + 1)(x2 + 1) · · · (xn + 1),

s · x1x2 · · ·xn = (−x1)(−x2) · · · (−xn),

v · x1x2 · · ·xn = xnxn−1 · · ·x1,

(1)

where all arithmetical operations are considered modulo n. Figure 2 illustrates how
the actions of elements of Gp(n) on strings are associated to geometric actions on
Γ-paths.

With this in hand, we may proceed according to Burnside’s lemma. The number
of non-similar Γ-paths will be the number of orbits in the action of Gp(n) on Xn.
The set of orbits in this action is denoted by Xn/Gp(n), and the size of this set is
given by

|Xn/Gp(n)| =
1

4n

∑

g∈Gp(n)

|fix(g)|.

We will now determine the number of strings in Xn which are fixed by each
g ∈ Gp(n). Since v commutes with all elements of Gp(n), all elements of Gp(n) may
be written as one of the forms rk, srk, rkv, and srkv, where k is an integer and
0 ≤ k < n. Considering this fact in the context of Burnside’s lemma results in the
following Proposition.1

1Note that the actions of these elements are composed right to left.
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Figure 2. Illustration of the action of r, s on strings in Xn.

Proposition 2. The number of orbits in the action of Gp(n) on Xn is given by

|Xn/Gp(n)| =
1

4n

∑

0≤k<n

(

|fix(rk)|+ |fix(srk)|+ |fix(rkv)|+ |fix(srkv)|
)

.

Lemma 3. The number of strings in Xn fixed by all elements of Gp(n) of the form

rk for 0 ≤ k < n are given by
∑

0≤k<n

|fix(rk)| = |fix(e)| = n!.

Proof. Clearly rk will fix x1x2 · · ·xn only when k = 0. That is, only the identity
will fix n! strings. �

Lemma 4. The number of strings in Xn fixed by all elements of Gp(n) of the form

srk for 0 ≤ k < n is given by
∑

0≤k<n

|fix(srk)| = 0.

Proof. Notice that srk will fix x1x2 · · ·xn if and only if xi = −xi−k for all 1 ≤ i ≤ n,
and so 2xi + k = 0. But since there is some xj such that xj = 0, it follows that
2xj + k = k = 0 and so necessarily srk = s, which will clearly fix no strings. �

Lemma 5. The number of strings in Xn fixed by all elements of Gp(n) of the form

rkv for 0 ≤ k < n is given by

∑

0≤k<n

|fix(rkv)| =

{

n!! if n is even,

0 if n is odd.

Proof. Notice that rkv will fix x1x2 · · ·xn if and only if xi = x1−i + k and x1−i =
xi + k for all 1 ≤ i ≤ n. This implies that xi = xi + 2k and thus that 2k = 0 = n.
Therefore nmust be even and k must equal n/2. Then, observe that xi = x1−i+n/2
implies that xi − x1−i = n/2. Thus there are n choices for x1, each of which
determines xn and leaves n− 2 choices for x2, each of which determines xn−1, and
so on. �
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Lemma 6. The number of strings in Xn fixed by all elements of Gp(n) of the form

srkv for 0 ≤ k < n is given by

∑

0≤k<n

|fix(srkv)| =

{

(n2 )n!! if n is even,

n(n− 1)!! if n is odd.

Proof. Notice that srkv will fix x1x2 · · ·xn if and only if xi = −(x1−i + k) for all
1 ≤ i ≤ n. There are the following cases.

If both n and k are even there must be some entry xj such that xj = −k/2, and
so

xj = −k/2 = −x1−j − k ⇒ k/2 = −x1−j

⇒ −xj = −x1−j

⇒ xj = x1−j

⇒ n is odd.

Since we supposed that n is even, this is a contradiction and so k must be odd.
Thus there are n/2 possible values of k, and for each of these there are n choices
for x1, each of which will determine xn and leave n−2 choices for x2, each of which
will determine xn−1, and so on.

If n is odd, then the action of v does not move the central entry of the string. It
follows that if srkv fixes x1x2 · · ·xn, then each of n choices of k will determine the
central entry. Thus there are n− 1 choices for x1, each of which will determine xn

and leave n− 3 choices for x2, each of which will determine xn−1, and so on. �

Theorem 7. Let n ≥ 3 be a integer. Then the number of non-similar Γ-paths on

n vertices, denoted by |Γ(n, P, S)|, is equal to

|Γ(n, P, S)| =

{

1
4 [(n− 1)! + (n2 + 1)(n− 2)!!] if n is even,
1
4 [(n− 1)! + (n− 1)!!] if n is odd.

Proof. The theorem follows from the application of Lemmas 3, 4, 5, and 6 to
Proposition 2. �

Theorem 8. The number of inequivalent Γ-paths on n vertices, denoted by |Γ(n, P,E)|,
is equal to

|Γ(n, P,E)| =

{

1
2 [(n− 1)! + (n− 2)!!] if n is even,
1
2 (n− 1)! if n is odd.

Proof. Consider a subgroup of Gp(n) isomorphic to Zn × Z2 acting on the set of
string-representations Xn. Denote this acting subgroup by G′

p(n), and consider its
presentation as

G′
p(n) = 〈r, v | rn = v2 = e, rv = vr〉

where e denotes the identity and the action of r, v are defined as in (1). Every
element of G′

p(n) can be written as either rk or rkv for some 0 ≤ k < n. The
theorem follows immediately from this fact and Lemmas 3 and 5. �
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Figure 3. Illustration of Γ(n, P, S) for n = 3, 4, 5, 6.

3. Enumerating Γ-cycles

We now turn to the more difficult problem of enumerating Γ-cycles. The case
of non-similar Γ-cycles is illustrated in Figure 4. We will begin by enumerating
non-similar Γ-cycles, and the enumeration of inequivalent Γ-cycles will follow as a
corollary.

As before, we will proceed by applying Burnside’s lemma to the action of a
particular group on a set of strings which encode Γ-cycles. We represent cycles
using the previously defined set Xn, but with the caveat that there is a slight
change in their interpretation. Namely, we consider there to be an additional edge
traversed between the vertices labelled by the first and last entries of the string. This
means that we must also consider any cyclic permutation of a string to represent
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Figure 4. Illustration of Γ(n,C, S) for n = 3, 4, 5, 6.

Figure 5. String representations of Γ-cycles.

the same cycle, as there are no longer any distinguished start or end points. This
interpretation is illustrated by Figure 5.

We will now construct a group to act on Xn with respect to the above considera-
tions. Let Gc(n) denote this group, and note that Gc(n) is isomorphic to D2n×D2n.
Consider the presentation of Gc(n) as

Gc(n) = 〈r, s, v, c | rn = s2 = cn = v2 = e, vs = sv, vr = rv,

cr = rc, srs = r−1, vcv = c−1〉

where e denotes the identity. Note that Gc(n) has order 4n2. The elements r, s, v
act on strings x1x2 · · ·xn ∈ Xn as defined in (1), and c acts by a cyclic permutation
of the string:

(2) c · x1x2 · · ·xn = x2x3 · · ·xnx1.

As before, the number of non-similar Γ-paths will be the number of orbits in the
action of Gc(n) on Xn. The set of these orbits is denoted by Xn/Gc(n), and the
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size of this set is given by

|Xn/Gc(n)| =
1

4n2

∑

g∈Gc(n)

|fix(g)|.

We will now consider the number of elements of Xn fixed by each g ∈ Gc(n).
Since all elements of Gc(n) can be written as one of cmrk, cmrkv, cmsrk, or cmsrkv
for some 0 ≤ k,m < n, we have the following proposition.

Proposition 9. The number of orbits in the action of Gc(n) on Xn is given by

|Xn/Gc(n)| =
∑

0≤k,m<n

(

|fix(cmrk)|+ |fix(cmrkv)|+ |fix(cmsrk)|+ |fix(cmsrkv)|
)

.

Notation. It is convenient from this point onward to let x̄ denote the string
x1x2 · · ·xn ∈ Xn.

First, we enumerate strings fixed by elements of the form cmrk for all 0 ≤ k,m <
n. To do this, we will adapt an argument from [Mos90].

For each 0 ≤ k,m < n, notice that rk is of order n
gcd(k,n) and cm is of order

n
gcd(m,n) . Since c−mrk · x̄ = x̄ if and only if rk · x̄ = cm · x̄, it follows that

∑

0≤k,m<n

|fix(cmrk)| =
∑

0≤k,m<n

|
{

x̄ ∈ Xn | c−mrk · x̄ = x̄
}

|,

=
∑

0≤k,m<n

|
{

x̄ ∈ Xn | rk · x̄ = cm · x̄
}

|.

Let F(k,m) =
{

x̄ ∈ Xn | rk · x̄ = cm · x̄
}

. Thus we have

(3)
∑

0≤k,m<n

|fix(cmrk)| =
∑

0≤k,m<n

|fix(c−mrk)| =
∑

0≤k,m<n

|F(k,m)|.

The sizes of F(k,m) for each choice of k,m are determined in the following
Lemmas.

Lemma 10. If rk · x̄ = cm · x̄, then gcd(k, n) = gcd(m,n), and therefore

(4)
∑

0≤k,m<n

|fix(cmrk)| =
∑

d|n

∑

gcd(k,n)=d
gcd(m,n)=d

|F(k,m)|

Proof. To show the first assertion, notice that the action rkn/ gcd(k,n) · x̄ keeps each
xi fixed, while the action cmn/ gcd(k,n) · x̄ takes each xi to xi+mn/ gcd(k,n). It follows
that

rkn/ gcd(k,n) · x̄ = cmn/ gcd(k,n) · x̄ ⇒ xi = xi+mn/ gcd(k,n) for all xi,

⇒ n |
mn

gcd(k, n)
,

⇒ gcd(k, n) | m.

Since gcd(k, n) divides n, it follows that gcd(k, n) divides gcd(m,n).
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Similarly, the action rkn/ gcd(m,n) · x̄ takes each xi to (xi +
kn

gcd(m,n)) while the

action cmn/ gcd(m,n) · x̄ keeps each xi fixed. It follows that

rkn/ gcd(m,n) · x̄ = cmn/ gcd(m,n) · x̄ ⇒ xi = (xi +
kn

gcd(m,n)
) for all xi,

⇒ n |
kn

gcd(m,n)
,

⇒ gcd(m,n) | k.

Since gcd(m,n) divides n, it follows that gcd(m,n) divides gcd(k, n), and so gcd(k, n) =
gcd(m,n). This proves the first assertion. The second assertion follows immediately
from the application of the first assertion to (3). �

Lemma 11. Let k, m, and d be given such that d | n and gcd(k, n) = gcd(m,n) =

d. Then |F(k,m)| = (n/d)d d!.

Proof. Suppose rk · x̄ = cm · x̄. It follows (in particular) that rtk · x̄ = ctm · x̄ for all
1 ≤ t ≤ n/d, and so

xi+tm = (xi + tk) for all 1 ≤ t ≤
n

d
and 1 ≤ i ≤ d.

It follows that the entries of x̄ are entirely dependent on x1x2 · · ·xd. Further, since
rk has order n/d, it follows that x1, x2, . . . , xd must be pairwise incongruent modulo
k. Therefore x1x2 · · ·xd must be a permutation of the string y1y2 · · · yd with entries

y1 ∈
{

1, 1 + k, 1 + 2k, . . . , 1 +
(n

d
− 1

)

k
}

,

y2 ∈
{

2, 2 + k, 2 + 2k, . . . , 2 +
(n

d
− 1

)

k
}

,

...

yd ∈
{

d, d+ k, d+ 2k, . . . , d+
(n

d
− 1

)

k
}

.

Thus since there are n/d choices for each of d entries of y1y2 · · · yd, and each permu-
tation leads to d! possible strings x1x2 · · ·xd, it follows that for each fixed k,m, d

we have |F(k,m)| = (n/d)d d!. �

Lemma 12. The number of strings in Xn fixed by all elements of Gc(n) of the form

cmrk for all 0 ≤ k,m < n is given by

∑

0≤k,m<n

|fix(cmrk)| =
∑

d|n

(

φ
(n

d

)

· φ
(n

d

)

·
(n

d

)d

· d!

)

,

where φ denotes the Euler totient function.
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Proof. A straightforward application of Lemma 11 to (4) shows that
∑

0≤k,m<n

|fix(cmrk)| =
∑

d|n

∑

gcd(k,n)=d
gcd(m,n)=d

|F(k,m)|,

=
∑

d|n

(n

d

)d

d!
∑

gcd(k,n)=d

∑

gcd(m,n)=d

1,

=
∑

d|n

(

φ
(n

d

)

· φ
(n

d

)

·
(n

d

)d

· d!

)

. �

Lemma 13. The number of strings Xn fixed by all elements of Gc(n) of the form

cmsrk for all 0 ≤ k,m < n is given by

∑

0≤k,m<n

|fix(cmsrk)| =

{

n
2n!! if n is even,

0 if n is odd.

Proof. Notice that cmsrk · x̄ = x̄ if and only if srk · x̄ = c−m · x̄. This is the case
if and only if −xi − k = xi−m for all xi; or, equivalently, −xi−m − k = xi−2m for
all xi. It follows that xi−2m = xi for all xi, and so either m = n/2 or m = 0. But
if m = 0 then by Lemma 4 no strings are fixed. Thus m = n/2 and so n must be
even.

Then since −xi − k = xi−n/2 and −xi−n/2 − k = xi for all xi, it follows that
xi + xi−n/2 = −k for all xi and therefore k must be odd. Thus for each of n/2 odd

choices of k, cmsrk will fix n!! strings. �

Lemma 14. The number of strings Xn fixed by all elements of Gc(n) of the form

cmrkv for all 0 ≤ k,m < n is given by

∑

0≤k,m<n

|fix(cmrkv)| =

{

n
2n!! if n is even,

0 if n is odd.

Proof. Notice that cmrkv · x̄ = x̄ if and only if rkv · x̄ = c−m · x̄. This is the case if
and only if x1−i + k = xi−m for all xi.

If n is odd, then for all values of m there will be exactly one entry xa such that
xa−m = x1−a. It follows that xa−m + k = xa−m and so k = 0. But since all other
entries are moved, no odd-length strings will satisfy this condition.

If n is even, there are two cases. Ifm is odd, then there exist precisely 2 entries xa

and xb such that xa−m = x1−a and xb−m = x1−b. It follows that xa−m+k = xa−m

and xb−m + k = xb−m, and thus that k = 0. But for the same reason as above, no
even-length strings will satisfy this condition.

If m is even then each of n/2 even choices of m fully determines the value of k.
Thus for each of n/2 valid choices of m, cmrkv will fix n!! strings. �

Lemma 15. The number of strings Xn fixed by all elements of Gc(n) of the form

cmsrkv for 0 ≤ k < n and 0 ≤ m < n is given by

∑

0≤k<n
0≤m<n

|fix(cmsrkv)| =

{

(n2 + 1)n2n!! if n is even,

n2(n− 1)!! if n is odd.
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Proof. Notice that cmsrkv · x̄ = x̄ if and only if srkv · x̄ = c−m · x̄. This is the case
if and only if −x1−i − k = xi−m for all xi.

If n is odd, then the argument for Lemma 6 applies for all n choices of m. Thus
there are n2(n− 1)!! fixed odd-length strings in total.

If n is even, there are two cases. If m is even, the argument for Lemma 6 applies
for all n/2 even choices of m. Thus each choice of m leaves n/2 possible odd choices
of k, for each of which cmsrkv will fix n!! elements.

If m is odd, there will be exactly two entries xa, xb such that 2a ≡n 2b ≡n m+1.
It follows that 2xa−m ≡n 2xb−m ≡n −k, and so k must be even. Therefore for each
of n/2 odd choices of m, there are n/2 even choices of k, each of which allows 2
choices for these particular entries xa and xb, both of which leave (n− 2)!! choices
in total for the remaining entries of the string. Thus there are (n2 + 1)n2n!! fixed
even-length strings in total. �

Theorem 16. The number of non-similar Γ-cycles on n vertices, denoted by Γ(n,C, S),
is equal to

|Γ(n,C, S)| =
1

4n2





∑

d|n

(

(

φ
(n

d

))2 (n

d

)d

d!

)

+

{

n!!n(n+6)
4 if n is even,

n2(n− 1)!! if n is odd.





Proof. The theorem follows from the application of Proposition 9 to Lemmas 12,
13, 14, and 15. �

Theorem 17. The number of inequivalent Γ-cycles on n vertices, denoted by

Γ(n,C,E), is equal to

|Γ(n,C,E)| =
1

2n2





∑

d|n

(

(

φ
(n

d

))2 (n

d

)d

d!

)

+

{

n
2n!! if n is even,

0 if n is odd.





Proof. Consider the action of a subgroup of Gc(n) isomorphic to Zn ×D2n on Xn.
Let G′

c(n) denote this subgroup, and consider its presentation as

G′
c(n) = 〈r, v, c | rn = v2 = cn = e, rv = vr, rc = cr, vcv = c−1〉,

where e denotes the identity, and the action of r, v, c on Xn are defined as in (1)
and (2). Note that G′

c(n) is of order 2n2. The theorem follows immediately from
the application of Burnside’s lemma to Lemmas 12 and 14. �

Finally, it is worth noting a small corollary to the above theorems. Since φ(p) =
(p− 1) for any prime p, we have the following.

Corollary 18. Let p be an odd prime. Then

|Γ(p, C, S)| =
1

4p

[

(p− 1)2 + p(p− 1)!! + (p− 1)!
]

,

and

|Γ(p, C,E)| =
1

2p
[(p− 1)2 + (p− 1)!].
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4. Further Remarks

Here we note some interesting connections which the authors noticed over the
course of writing this paper. After completing the enumeration of non-similar Γ-
paths, we discovered that there are exactly as many of them as there are tone

rows in n-tone music—the enumeration of which may be found in [Rei85]. The
corresponding OEIS sequence is sequence A099030—which, as has been noted, is
identical to sequence A089066.

Further, for reasons which should be clear, there are exactly as many non-similar
Γ-cycles as there are classes of similar n-gons (that is, classes of n-gons which are
equivalent up to rotations and reflections). These classes—as well as the analogous
case of n-gons equivalent up to rotations only—were enumerated by Golomb and
Welch in [GW60]. As such, this paper provides an alternative proof of their result.
The corresponding OEIS sequences are A000940 and A000939, respectively. It
should also be noted that an adaptation of an argument found in [Mos90] is vital
to the proof of Lemma 12. In particular, the sum of Euler φ terms which makes an
appearance in this paper as well as [GW60] is the same as that which appears in
the case of a = 1 in [Mos90]. This connection is (as far as the authors are aware)
not yet noted anywhere.
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