
Eulerian Properties of

Design Hypergraphs and Hypergraphs with Small Edge Cuts

Andrew Wagner

Thesis submitted to the Faculty of Science in partial fulfillment of the requirements
for the degree of

Doctorate in Philosophy Mathematics and Statistics1

Department of Mathematics and Statistics
Faculty of Science

University of Ottawa

c© Andrew Wagner, Ottawa, Canada, 2019

1The Ph.D. program is a joint program with Carleton University, administered by the Ottawa-
Carleton Institute of Mathematics and Statistics

ar
X

iv
:1

90
5.

06
45

9v
1 

 [
m

at
h.

C
O

] 
 1

5 
M

ay
 2

01
9



Abstract

An Euler tour of a hypergraph is a closed walk that traverses every edge exactly once;

if a hypergraph admits such a walk, then it is called eulerian. Although this notion

is one of the progenitors of graph theory — dating back to the eighteenth century —

treatment of this subject has only begun on hypergraphs in the last decade. Other

authors have produced results about rank-2 universal cycles and 1-overlap cycles,

which are equivalent to our definition of Euler tours.

In contrast, an Euler family is a collection of nontrivial closed walks that jointly tra-

verse every edge of the hypergraph exactly once and cannot be concatenated simply.

Since an Euler tour is an Euler family comprising a single walk, having an Euler fam-

ily is a weaker attribute than being eulerian; we call a hypergraph quasi-eulerian if it

admits an Euler family. Due to a result of Lovász, it can be much easier to determine

that some classes of hypergraphs are quasi-eulerian, rather than eulerian; in this the-

sis, we present some techniques that allow us to make the leap from quasi-eulerian to

eulerian.

A triple system of order n and index λ (denoted TS(n, λ)) is a 3-uniform hypergraph in

which every pair of vertices lies together in exactly λ edges. A Steiner triple system of

order n is a TS(n,1). We first give a proof that every TS(n, λ) with λ ≥ 2 is eulerian.

Other authors have already shown that every such triple system is quasi-eulerian,

so we modify an Euler family in order to show that an Euler tour must exist. We

then give a proof that every Steiner triple system (barring the degenerate TS(3,1))

ii
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is eulerian. We achieve this by first constructing a near-Hamilton cycle out of some

of the edges, then demonstrating that the hypergraph consisting of the remaining

edges has a decomposition into closed walks in which each edge is traversed exactly

once.

In order to extend these results on triple systems, we define a type of hypergraph

called an `-covering k-hypergraph, a k-uniform hypergraph in which every `-subset

of the vertices lie together in at least one edge. We generalize the techniques used

earlier on TS(n, λ) with λ ≥ 2 and define interchanging cycles. Such cycles allow us to

transform an Euler family into another Euler family, preferably of smaller cardinality.

We first prove that all 2-covering 3-hypergraphs are eulerian by starting with an Euler

family that has the minimum cardinality possible, then demonstrating that if there

are two or more walks in the Euler family, then we can rework two or more of them

into a single walk. We then use this result to prove by induction that, for k ≥ 3, all

(k − 1)-covering k-hypergraphs are eulerian.

We attempt to extend these results further to all `-covering k-hypergraphs for ` ≥ 2

and k ≥ 3. Using the same induction technique as before, we only need to give a

result for 2-covering k-hypergraphs. We are able to use Lovász’s condition and some

counting techniques to show that these are all quasi-eulerian.

Finally, we give some constructive results on hypergraphs with small edge cuts. There

has been analogous work by other authors on hypergraphs with small vertex cuts. We

reduce the problem of finding an Euler tour in a hypergraph to finding an Euler tour

in each of the connected components of the edge-deleted subhypergraph, then show

how these individual Euler tours can be concatenated.
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Chapter 1

Introduction

In this thesis, we explore some necessary and sufficient conditions for a hypergraph

to admit an Euler tour. We will focus particularly on hypergraphs that come from

design theory, and as such, we borrow some nomenclature from hypergraphs and some

from designs. However, both of these kinds of objects — from our perspective — are

solidly rooted in graph theory.

The problem of finding Euler tours in graphs is older than graph theory itself. It

begins, like so many disciplines in combinatorics, with a recreational puzzle that has

come to be known as “The Bridges of Königsberg”[23]. As the (perhaps apocryphal)

story goes, in the eighteenth century, residents of the Prussian city of Königsberg

became fascinated with a simple game involving its seven bridges (see Figure 1.1).

It is said that they would spend an idle Sunday afternoon touring around the city,

trying to devise a route that would lead them over each bridge exactly once. However,

despite their efforts, nobody could find a way to do so.

As it happened, from 1735 to 1742, Leonhard Euler was in correspondence with Carl

Leonhard Gottlieb Ehler, the mayor of what was then called Danzig (now the Polish

city of Gdańsk) [23]. From what physical evidence of this correspondence remains,

we can surmise that Ehler may have introduced Euler to the Königsberg bridges

problem, and implored him for a solution and complete proof. Euler’s response was

1



1. INTRODUCTION 2

Figure 1.1: Euler’s diagram of Königsberg. [13]

an unequivocal rebuke:

“...Thus you see, most noble Sir, how this type of solution bears little

relationship to mathematics, and I do not understand why you expect a

mathematician to produce it, rather than anyone else, for the solution is

based on reason alone, and its discovery does not depend on any math-

ematical principle. Because of this, I do not know why even questions

which bear so little relationship to mathematics are solved more quickly by

mathematicians than by others...” [23]

Euler gave the impression that this problem was beneath him. However, the chronol-

ogy of his other correspondences shows that even before he gave this icy rebuke

to Ehler, Euler had confided in another mathematician that he had already solved

it.

“This question is so banal, but seemed to me worthy of attention in that

geometry, nor algebra, nor even the art of counting was sufficient to solve

it. ... And so, after some deliberation, I obtained a simple, yet completely

established, rule with whose help one can immediately decide for all exam-

ples of this kind, with any number of bridges in any arrangement, whether
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such a round trip is possible, or not...” [23]

Euler did indeed solve all problems of this kind with his method, and he invented

a very primitive version of graph theory to do it, outlined in his 1736 paper [13].

His first idea was to focus on the land masses of Königsberg rather than the bridges

directly. He reasoned that, in a successfully constructed walk, each region would need

to be visited a number of times equal to half of its bridges, rounded up. However,

with seven bridges, a walk can only visit eight regions (counting multiplicities), so one

cannot round up for too many regions or a route becomes impossible. Euler proved

that, if such a walk was possible, each region had to have an even number of bridges

incident with it, or else there could be exactly two with an odd number. However, he

evaded the proof of whether this is sufficient to guarantee a walk, concluding instead

the following:

“When it has been determined that such a journey can be made, one still

has to find how it should be arranged. For this I use the following rule:

let those pairs of bridges which lead from one area to another be mentally

removed, thereby considerably reducing the number of bridges; it is then

an easy task to construct the required route across the remaining bridges,

and the bridges which have been removed will not significantly alter the

route found, as will become clear after a little thought. I do not therefore

think it worthwhile to give any further details concerning the finding of

the routes.” [23]

Though he was, of course, correct in that a simple greedy algorithm can solve the

problem, a rigorous proof of his claims was not forthcoming until an 1871 paper,

written and published posthumously by Carl Hierholzer [19]. Furthermore, it was not

until 1878, in a paper of J. J. Sylvester’s [29], that the word “graph” was uttered in

any context resembling modern graph theory. Sylvester was using graphs as a means

of modeling molecules, so it did not even have anything to do with Euler’s earlier
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work.

On the other hand, contrary to the story with graphs — in which eulerian properties

were discovered before graph theory was developed — hypergraphs have been studied

for the last few decades, yet very little work on Euler tours has cropped up. It is our

goal to make a move toward settling the matter, although it is not a simple problem

and certainly not “banal,” as Euler put it!

This thesis is divided into broad chapters, as follows. The proceeding chapter con-

tains all the background information required to understand the graph theory and

hypergraph theory used throughout. We also include a (too-brief!) summary of re-

sults that pertain to Euler tours in hypergraphs, and it is there that we will outline

exactly the results that we are advancing. Each chapter thereafter represents a thor-

ough investigation of one or more sufficient conditions to guarantee an Euler tour.

These results are, in some cases, related to one another, but we attempt to present

them so that they may be read and appreciated independently of the others.



Chapter 2

Preliminaries

2.1 Graphs

We use Bondy and Murty’s text [5] as a starting point for our graph theory defini-

tions. We will be careful to point out where our definitions diverge from theirs.

Definition 2.1.1. (The Basics) A graph G = (V,E) is an ordered pair in which

V is a non-empty finite set of objects called vertices, and E is a finite set of objects

called edges, with V ∩E = ∅. In the event that these sets are not named, we can also

refer to the vertex set of G by V (G) and the edge set of G by E(G).

G is also equipped with an incidence function ψ that associates with each edge an

unordered pair of (not necessarily distinct) vertices. Let e ∈ E(G) and suppose

ψ(e) = {u, v}. It is common to omit reference to the incidence function and instead

say that e = {u, v} if this does not cause ambiguity — usually, this is when ψ is

injective. If ψ is not injective, then referring to ψ(E) simply by E results in E being

a multiset. We generally will also omit the set braces in edges and write e = uv

instead of e = {u, v}.

If e = uv, then we say that e is incident with u and v and that e joins the vertices u

and v, which are also called the ends of e. We call u and v adjacent (via edge e), or

5
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neighbours, since there is an edge joining them. We may also call two edges adjacent

if they have a vertex in common.

Euler certainly did not invent the concept of graphs in his proof of the Königsberg

bridge problem, but he had the same idea. In his paper [13], the landmasses can be

represented by vertices and the bridges can be represented by the edges of a graph.

Two vertices are adjacent if and only if the corresponding landmasses have a bridge

from one to the other. This can be represented visually as in Figure 2.1.

Figure 2.1: A graph representation of Königsberg. [23]

The order of a graph is its number of vertices, and the size of a graph is its number

of edges. A graph that has no edges is called empty or edgeless, while a graph with

just a single vertex (but any number of edges) is called trivial.

An edge is called a loop if both of its ends are the same vertex, while two distinct

edges are called parallel if they have the same ends. Note that a vertex is not adjacent

to itself unless it is in a loop. A graph that has no loops and no parallel edges is

called simple, whereas a graph that explicitly allows loops and parallel edges is called

a multigraph.

The degree of a vertex v in G, denoted degG(v) (or simply deg(v) if it is clear that

we are talking about G), is the number of edges incident with v, although each loop

counts as two incident edges, not one. If every vertex of G has the same degree k, then
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we call G k-regular. If every vertex of G has even degree, then we call G even.

One of the most rudimentary results in graph theory is called the Handshaking

Lemma. Euler implicitly discovered this result when he made his counting argu-

ment about a possible tour around Königsberg.

Lemma 2.1.2. Handshaking Lemma Let G = (V,E) be a graph. Then∑
v∈V

deg(v) = 2|E|.

Proof: We sum the degrees of each vertex of G in two ways. Summing over all

v ∈ V yields the quantity on the left-hand side. On the other hand, each edge con-

tributes 2 to
∑

deg(v) as it is incident with exactly two vertices; therefore, summing

the degrees of the ends of an edge e over all e ∈ E yields 2|E|.

Definition 2.1.3. (Subgraphs) Let G = (V,E) be a graph. A subgraph of G is a

graph G′ = (V ′, E ′) with V ′ ⊆ V and E ′ ⊆ E. For any V ′ ⊆ V , we can define the

subgraph of G induced by V ′ as G[V ′] = (V ′, {e ∈ E : e ⊆ V ′}).

Definition 2.1.4. (Bipartite Graphs) G is called bipartite if V partitions into two

sets X and Y such that every e ∈ E has one end in X and the other end in Y . If this

is the case, then {X, Y } is called a bipartition of G.

Definition 2.1.5. (Operations on Graphs) Let G = (V,E) be a graph. For

V ′ ( V , the vertex-deleted subgraph, obtained by deleting V ′ from G, is defined as

G− V ′ = G[V \ V ′]. If V ′ consists of a single vertex v, then we may also write G− v

to denote G − {v}. For E ′ ⊆ E, the edge-deleted subgraph, obtained by deleting E ′

from G, is defined as G \ E ′ = (V,E \ E ′). If E ′ comprises a single edge e, then we
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may also write G \ e to denote G \ {e}.

Let G1 = (V1, E1) and G2 = (V2, E2) be graphs, neither of which has parallel

edges. The symmetric difference of G1 and G2, denoted G1∆G2, is the graph (V1 ∪

V2, E1∆E2), where E1∆E2 is the symmetric difference of E1 and E2.

We remark that our definition of symmetric difference of graphs G1 and G2 differs

from that of Bondy and Murty [5]. Their definition assumes that the vertex sets of

G1 and G2 are the same; however, it will be more convenient for us if we allow G1

and G2 to have different vertex sets.

Definition 2.1.6. (Walks) A walk (of length k ≥ 0), in a graph G is a sequence

W = v0e1v1e2 . . . vk−1ekvk alternating between vertices v0, . . . , vk and edges e1, . . . , ek,

in which every pair of consecutive vertices of W are adjacent via the interposing edge.

The first vertex v0 and the last vertex vk are called the initial and terminal vertices

of W , respectively, and the vertices v1, . . . , vk−1 are called internal vertices of W .

We may be more specific by calling W a v0vk-walk. A shortest v0vk-walk is one of

minimum length. If k = 0, then the walk consists of a single vertex with no edges

and is called a trivial walk. We say that W traverses (or visits) the vertices v0, . . . , vk

and edges e1, . . . , ek once for each time they appear in the sequence of W .1

Note that if G is a simple graph, it is not necessary to explicitly list the edges in the

sequence of W . Since each pair of consecutive vertices of a walk must be adjacent,

the sequence of vertices alone uniquely determines the edges that are traversed.

There are a few different types of walks that W = v0e1v1e2 . . . vk−1ekvk can be:

(1) If v0 = vk, then W is called closed; otherwise, it is open. (In this exceptional

case, the vertex v0 is traversed a number of times equal to one less than the

1If v0 = vk, then the first and last traversal of v0 count as just one.
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number of times it appears in the sequence of W .)

(2) If e1, . . . , ek are pairwise distinct, then W is a trail. (We may have k = 0; if that

is the case, then W is a trivial trail.)

(3) If v0, v1, . . . , vk are pairwise distinct, then W is a path.

(4) If e1, . . . , ek and v0, v1, . . . , vk−1 are pairwise distinct with k ≥ 1, and W is closed,

then W is a cycle.

A cycle of length k is often called a k-cycle, and a cycle that traverses every vertex

of the graph is called a Hamilton cycle.

Any (contiguous) subsequence of a walk W that is itself a walk can be called a subwalk

of W . Likewise, if W is a path or trail, a subwalk of W can be called a subpath or

subtrail of W , respectively.

We can associate with any trail T a graph G(T ) whose vertex and edge sets are equal

to the sets of vertices and edges it traverses, respectively. Note that, though vertices

may be traversed more than once by T , they nevertheless appear only once in G(T ).

Definition 2.1.7. (Connectivity) A graph G = (V,E) is called connected if, for

all pairs of vertices u, v ∈ V , there exists a uv-walk in G. Similarly, we may call two

vertices u and v connected (in G) if G admits a uv-walk. A connected component of

G is a maximal connected subgraph of G. It is simple to see that connectedness is an

equivalence relation on V , and hence the vertex sets of all the connected components

of G partition V . The number of connected components of G is denoted by c(G).

A vertex v ∈ V (G) is a cut vertex of G if c(G− v) > c(G); that is, if the deletion of v

increases the number of connected components. Likewise, an edge e ∈ E(G) is a cut

edge of G if c(G \ e) > c(G).

A graph G is called 2-edge-connected if it is connected, non-trivial, and has no cut
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edge.

If ∅ 6= S ( V (G), then [S, S] = {e ∈ E(G) : e ∩ S 6= ∅, e ∩ S 6= ∅} is called an edge

cut of G, where S = V (G) \ S denotes the complement of S in V (G).

Remark 2.1.8. It is easy to see that, for any two vertices u, v in a graph G, that a

uv-walk exists if and only if a uv-path exists. To construct a uv-path from a uv-walk

W , we need only delete any closed subwalks of W , so that the path does not traverse

any vertex twice. On the other hand, a uv-path is already a uv-walk.

Using this fact, we can say that G is connected if and only if it admits a uv-path, for

any u, v ∈ V (G).

We can now make a simple observation about connectivity in edge-deleted subgraphs

that will come in handy later.

Proposition 2.1.9. Let G be a connected graph and uv ∈ E(G). If G \ uv admits a

uv-walk, then G \ uv is connected.

Proof: Let x, y ∈ V (G \ uv). Since G is connected, there exists an xy-path P in

G. If P does not traverse the edge uv, then P is an xy-walk in G \ uv. Otherwise,

without loss of generality, write P = xP1uvP2y, for some subpaths P1, P2 of W that

do not traverse uv. Since we assume G \ uv admits a uv-walk, let W be a uv-walk in

G \ uv. Then xP1uWvP2y is an xy-walk in G \ uv.

Therefore, we conclude that G \ uv is connected.

Euler had a particular kind of walk in mind when he was considering the bridges of

Königsberg. He was looking for a trail that traversed every edge exactly once, as this

corresponds to crossing every bridge exactly once.

Definition 2.1.10. (Euler Trails and Euler Tours) Let G be a graph. A trail
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that traverses every edge of G exactly once is called an Euler trail of G if it is open,

or an Euler tour of G if it is closed. If G has an Euler tour, then G is called eulerian.

We note that other sources may refer to an Euler trail as an “Eulerian trail” while an

Euler tour is often called an “Eulerian circuit.” We will reserve the adjectival form

eulerian (with a lower-case “e”) to describe to a graph that admits an Euler tour,

but never to refer to the trail itself.

Finally, we conclude this section with a rudimentary result about eulerian graphs,

which we will make repeated use of.

Proposition 2.1.11. Let G = (V,E) be a non-trivial connected eulerian graph. Then

G is 2-edge-connected.

Proof: Since G is non-trivial and connected, its Euler tour contains an edge, so

|E| ≥ 1. Let e = uv ∈ E be arbitrary, and let T be an Euler tour of G. Let T ′

be a shortest closed subtrail of T traversing e, and without loss of generality, write

T ′ = ueve1v1 . . . vk−1eku. Since T ′ is a trail, it does not traverse e twice.

Then W = uekvk−1 . . . v1e1v does not traverse e at all, so W is a uv-walk in G \ uv.

Then we conclude that G \ uv is connected by Proposition 2.1.9. Then uv is not a

cut edge, and since uv was arbitrary, there are no cut edges in G.

Hence G is 2-edge-connected.

Remark 2.1.12. Let T be a non-trivial closed trail and G(T ) be the graph associated

with T . Then G(T ) is connected since T traverses each of its vertices, and G(T ) is

eulerian, evidenced by the fact that T is a closed trail in G(T ) that traverses each of

its edges exactly once. Once we start talking about hypergraphs, we will regularly

use Proposition 2.1.11 alongside this fact to show that G(T ) is 2-edge-connected.
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2.2 Hypergraphs

Hypergraphs, as we use them, are meant to be generalisations of graphs. Therefore,

we would like it if any definition that applies to graphs can also apply to hypergraphs.

Sometimes, there are multiple ways to extend a concept or we need to define something

that has no analogy in graphs; we will turn our attention to these differences.

There is no definitive authority on hypergraph concepts, but there are commonalities

in the different texts available. We follow the definitions put forth by Bahmanian and

Šajna in [3], but these are by no means universal.

2.2.1 The Basics

Definition 2.2.1. [3] (Basic Terminology) A hypergraph H is a pair (V,E) with

V ∩ E = ∅, where V = V (H) is a non-empty finite set of vertices and E = E(H)

is a finite set of edges. Each edge is associated with a subset of V via the incidence

function ψ : E → 2V . As in graphs, we can often omit the incidence function and

simply say that each edge e is itself a subset of V (given by ψ(e)). However, referring

to ψ(E) as E results in E being a multiset if ψ is not injective, so some care is required.

We may further represent each edge as a set with set braces and commas omitted:

for example, we may write e = uvw instead of e = {u, v, w}, so long as this does

not cause confusion. Since we regard each edge as a set, certain set-theoretic terms

(e.g. singleton, pair, triple, empty) and operations (generally union and intersection)

apply to them as well.

For any pair of distinct vertices u, v ∈ V (H), we say that u and v are adjacent to

each other (via an edge e ∈ E(H)) — and neighbours of each other — if they are

contained in an edge e together. In that case, we also say that e joins u and v, and

that e is incident with each of the vertices it contains. Two edges can also be called

adjacent to each other if they are incident with a common vertex. The degree of a
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vertex v ∈ V (H), denoted degH(v) (or deg(v) if the choice of hypergraph is clear) is

the number of edges in H that are incident with v.

Two distinct edges e, f ∈ E(H) are parallel if ψ(e) = ψ(f). A hypergraph is called

simple if it has no parallel edges.

The set of flags of H, denoted F = F (H), is the collection of all pairs (v, e) with

v ∈ V, e ∈ E, and v ∈ e. Note that if E is considered a multiset, then F , too, is a

multiset. In that case, the multiplicity of (v, e) in F , for each v ∈ e, is inherited from

the multiplicity of e in E.

Definition 2.2.2. [3] (Properties of Hypergraphs) Let H = (V,E) be a hyper-

graph. The order of H is |V | and is usually denoted by n. The size of H is the

number of edges of H (counting multiplicities if E is considered a multiset), and is

usually denoted by |E| = m. If |V | = 1, then H is trivial; if |E| = 0, then H is called

empty or edgeless.

If every edge of H has cardinality k, then H is called k-uniform. If every vertex of H

has degree r, then H is called r-regular. H is called linear if no two edges of H have

more than one vertex in common.

Definition 2.2.3. (Design Hypergraphs) A triple system of order n and index

λ, denoted TS(n, λ), is a non-empty, 3-uniform hypergraph H in which every pair

of vertices lie together in exactly λ edges. A TS(n,1) is also called a Steiner triple

system, and can be denoted STS(n). A TS(n,2) is also called a twofold triple system.

More generally, an `-covering k-hypergraph is a non-empty, k-uniform hypergraph H

in which every `-subset of the vertex set lie together in at least one edge. If ` = k−1,

then we may refer to this simply as a covering k-hypergraph.
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We refer to the kinds of hypergraphs defined above as “design hypergraphs,” since

these concepts come from design theory. We also call the set of all `-covering k-

hypergraphs as “covering hypergraphs.” Observe that triple systems are instances

of covering hypergraphs. Eulerian properties of triple systems, and particularly of

Steiner triple systems, have been well studied by other authors, as we will see in the

following chapter.

2.2.2 Subhypergraphs

Though the notion of subgraphs is quite simple, there are many ways in which we

can construct a hypergraph that is some substructure of another hypergraph. The

canonical substructure that we can construct is called a subhypergraph, but this is not

always the most useful possibility.

Definition 2.2.4. [3, 9] (Subhypergraphs and Strong Subhypergraphs) Let

H = (V,E) be a hypergraph. A subhypergraph of H is a hypergraph H ′ = (V ′, E ′)

with V ′ ⊆ V and E ′ = {e∩V ′ : e ∈ E ′′} for some E ′′ ⊆ E. In other words, the vertex

set of H is restricted to V ′, we remove vertices of V \ V ′ from each edge, and then

discard whichever edges originated from E \ E ′′.

A subhypergraph of H induced by V ′ ⊆ V is the subhypergraph H[V ′] = (V ′, E ′)

where E ′ = {e ∩ V ′ : e ∈ E, e ∩ V ′ 6= ∅}.

For any V ′ ( V , we can delete V ′ from H to obtain the vertex-deleted subhypergraph

H − V ′ = H[V \ V ′]. If V ′ = {v} is singleton, then we may simply write H − v =

H[V \ {v}].

A subhypergraph H ′ = (V ′, E ′) of H is called strong if V ′ ⊆ V and E ′ ⊆ E.

If e ∈ E, then H \ e denotes the edge-deleted subhypergraph (V,E \ {e}). More
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generally, if E ′ ⊆ E, then H \ E ′ denotes the hypergraph (V,E \ E ′), and such a

subhypergraph is also known as a partial hypergraph of H. [11]

A spanning subhypergraph of H = (V,E) is one whose vertex set is V .

We next define hypergraphs obtained by adding edges to H. If e ∈ 2V , then H + e

is obtained from H by adjoining a new copy of the edge e to E. Similarly, if E ′ is

a collection of subsets of 2V , then H + E ′ is the hypergraph obtained from H by

adjoining a new copy of each edge in E ′ to E.

If H1 = (V1, E1) and H2 = (V2, E2) are hypergraphs, then we may define their union

H1 ∪H2 = (V1 ∪ V2, E1 ∪ E2), in which V1 ∪ V2 is set union and E1 ∪ E2 is multiset

union.

Remark 2.2.5. Note that definition of the vertex-induced subhypergraph H[V ′] does

not extend from the same definition on graphs. To obtain H[V ′] from H, we delete the

vertices of V (H)\V ′ from H and from each edge of H, then clean up the hypergraph

by removing any resultant empty edges. In a graph, such an operation could result

in edges of cardinality 1, which is not allowed.

2.2.3 Graphs Associated with Hypergraphs

Definition 2.2.6. [3] (Incidence Graph) The incidence graph G(H) = (VG, EG) of

a hypergraph H is defined as follows:

• VG = V ∪ E;

• EG = {ve : (v, e) ∈ F (H)}.

In VG, the vertices from V are called v-vertices and the vertices from E are called

e-vertices.
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Remark 2.2.7. For a hypergraph H = (V,E), we can observe that G(H) is simple

and bipartite with bipartition (V,E). We will later see that some subgraphs of G(H)

correspond to subhypergraphs of or walks in H.

The following definition originates from [11], but we have modified it (see below).

Definition 2.2.8. [11] (2-section) Let H = (V,E) be a hypergraph with incidence

function ψ. The 2-section of H is a graph G, not necessarily simple, constructed as

follows:

• V (G) = V (H); and

• For all distinct u, v ∈ V , the multiplicity of uv in E(G) is |{e ∈ E(H) : {u, v} ⊆

ψ(e)}|.

That is, we have exactly one edge uv in G for each edge e ∈ E(H) that is incident

with both u and v.

We will generally be interested in the definition of a 2-section that allows for multiple

edges. However, many sources (e.g. [11], [33]) consider the underlying simple graph

instead. We shall call such a graph the simple 2-section (of a hypergraph H), and

consider the non-simple version to be the default.

Definition 2.2.9. [3] (Line Graph) Let H = (V,E) be a hypergraph. The line

graph (or intersection graph) of H, denoted L(H), is the (simple) graph with vertex

set E and edge set {ef : e, f ∈ E, e and f are adjacent to each other in H}.

More generally, for any positive integer `, the level-` line graph of H, denoted L`(H),

is the (simple) graph with vertex set E and edge set {ef : e, f ∈ E, e 6= f, |e∩f | = `}.

The level-`∗ line graph of H is denoted L∗`(H) and is the (simple) graph with vertex

set E and edge set {ef : e, f ∈ E, e 6= f, |e ∩ f | ≥ `}.
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2.2.4 Walks

Definition 2.2.10. [3] (Walks, Paths, Trails, and Cycles) Let H = (V,E)

be a hypergraph. A walk (of length k ≥ 0), in H is defined as a sequence W =

v0e1v1 . . . vk−1ekvk such that v0, . . . , vk ∈ V , and e1, . . . ek ∈ E; for i = 1, . . . , k, we

have that vi is adjacent to vi−1 via edge ei. In this case, we may call W specifically

a v0vk-walk.

We say that W traverses (or visits) the vertices v0, . . . , vk and traverses edge ei (via

vertices vi−1 and vi), for all i = 1, . . . , k, each time they appear in the sequence of

W . (If v0 = vk, then we count the first and last traversals of v0 as just one.) The

vertices that are traversed by W form the set of anchors V (W ) of W . Any vertex

that is in e1 ∪ . . .∪ ek that is not an anchor is called a floater vertex of W . In W , an

anchor flag is a flag (vi, ei) or (vi−1, ei) for i = 1, . . . , k, and each of these flags (v, e)

is traversed once for each time ve or ev appears in the sequence of W . The edges

e1, . . . , ek traversed by W form the set E(W ) of edges of W .

IfW is a collection of walks, then we may say thatW traverses a vertex v (or traverses

an edge e via vertices u and v) if there exists a walk W ∈ W that traverses v (or

traverses e via u and v, respectively). The number of times that a vertex or edge is

traversed by W is equal to the sum of the number of times each W ∈ W traverses

that vertex or edge.

As is the case for graphs, there are a few different types that a walkW = v0e1v1 . . . vk−1

ekvk can be, as follows:

(1) If v0 = vk, then W is called closed; otherwise, it is open.

(2a) If W does not traverse any anchor flags more than once, then it is called a trail.

(2b) If e1, . . . , ek are pairwise distinct, then W is called a strict trail.
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(3a) If v0, . . . , vk are pairwise distinct and W does not traverse any anchor flags

more than once, then W is called a pseudo-path.

(3b) If W is a pseudo-path and we further have that e1, . . . , ek are distinct, then W

is called a path.

(4a) If k ≥ 2, and v0, . . . , vk−1 are pairwise distinct, and v0 = vk, then W is called a

pseudo-cycle.

(4b) If W is a pseudo-cycle and we further have that e1, . . . , ek are distinct, then W

is called a cycle.

Remark 2.2.11. As the reader will note, there are many more categories of walks

in hypergraphs than there are for graphs. These divergent definitions represent al-

ternative ways of extending notions from graphs to hypergraphs. We will generally

disregard pseudo-paths, pseudo-cycles, and trails; and we will be much more inter-

ested in paths, cycles, and strict trails. Each of these traversals corresponds to a

traversal in the incidence graph.

Let W = v0e1v1 . . . vk−1ekvk be a walk in a hypergraph H. Then W ′ = v0e1v1 . . .

vk−1ekvk is a walk in the incidence graph G of H. (Note that, since G is a simple

graph, it suffices to list the vertices of W ′.)

(1) If W is open (closed), and it corresponds to a traversal in G as described below,

then W ′ is open (closed).

(2a) W is a trail in H if and only if W ′ is a trail in G. [3, Lemma 3.6]

(2b) W is a strict trail in H if and only if W ′ is a trail in G that traverses each

e-vertex at most once. [3, Lemma 3.6]

(3) W is a path in H if and only if W ′ is a path in G. [3, Lemma 3.6]
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(4) W is a cycle in H if and only if W ′ is a cycle in G. [3, Lemma 3.6]

Note that if W ′ is a trail, then it corresponds to a subgraph G(W ′) of G. We can also

skip this intermediate step involving W ′ and define GW = G(W ′), the subgraph of G

associated with W . This will get used quite often to prove rudimentary relationships

between traversals in H and subgraphs of G in Chapter 3.

Definition 2.2.12. (Concatenation of (Sub)walks) If W1 = v0e1v1 . . . ekvk is a

v0vk-walk in a hypergraph H and W2 = vkek+1vk+1 . . . e`−1v` is a vkv`-walk in H, then

the concatenation ofW1 andW2 is the v0v`-walk v0e1v1 . . . vk−1ek vkek+1vk+1 . . . v`−1e`v`,

denoted W1W2.

Remark 2.2.13. If T1 = v0e1 . . . ekv0 and T2 = u0f1 . . . f`u0 are edge-disjoint closed

strict trails of H such that vi = u0 ∈ V (T1)∩V (T2), then we may concatenate T1 and

T2. The concatenation of T1 and T2 is a strict closed trail T = v0e1 . . . eiviT2viei+1 . . . ek

v0.

2.2.5 Connectivity

Definition 2.2.14. [3] (Connectedness) A hypergraph H = (V,E) is said to be

connected if, for every u, v ∈ V , there exists a uv-walk. Two vertices u, v ∈ V are

called connected if there exists a uv-walk in H. A connected component of H is a

maximal connected strong subhypergraph of H that does not contain any empty

edges. Observe that connectedness is an equivalence relation on V , and so the vertex

sets of each connected component of H partition V .

The number of connected components of H is denoted by c(H).
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Definition 2.2.15. [3] (Cut Edges and Cut Vertices) Let H be a hypergraph. A

cut edge ofH is an edge e ∈ E(H) such that c(H\e) > c(H). If c(H\e) = c(H)+|e|−1,

then e is called a strong cut edge. A cut edge is trivial if the number of non-trivial

connected components in H \ e is the same as in H.

A cut vertex of H is a vertex v ∈ V (H) such that c(H − v) > c(H).

Remark 2.2.16. [3, Lemma 3.15, Theorem 3.17] Note that for any edge e in a

hypergraph H, we have c(H \ e) ≤ c(H) + |e| − 1. If e is a strong cut edge, then not

only does this hold with equality, but we have that the vertices of e lie in distinct

connected components of H \ e.

There is a nice relationship between the cut vertices or edges of a hypergraph and

the cut vertices of its incidence graph, as follows.

Theorem 2.2.17. [3, Theorem 3.23] Let H be a non-trivial hypergraph whose edges

all have cardinality at least 2, and let G be the incidence graph of H.

(1) For any v ∈ V (H), we have that v is a cut vertex of H if and only if v is a cut

vertex of G.

(2) For any e ∈ E(H), we have that e is a cut edge of H if and only if e is a cut

vertex of G.

We also define edge cuts analogously to how we define them for graphs. We will

discuss edge cuts more in Chapter 7.

Definition 2.2.18. (Edge Cut) Let H be a hypergraph and let S ( V (H) be non-

empty. Then [S, S] = {e ∈ E(H) : e ∩ S 6= ∅, e ∩ S 6= ∅} is called an edge cut of H,

where S denotes V (H) \ S, the complement of S in V (H).
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2.2.6 Duality

One advantage of hypergraphs is that the set of non-empty hypergraphs is closed

under duals, something that is not true of the set of graphs.

Definition 2.2.19. (Hypergraph Dual) Let H = (V,E) be a hypergraph, where

V = {v1, . . . , vn} and E = {e1, . . . , em} with m ≥ 1. Then the dual hypergraph of H

is the hypergraph D = (V (D), E(D)) with incidence function ψ, defined as follows.

• V (D) = E(H);

• E(D) = {ev : v ∈ V (H)};

• ψ(ev) = {e ∈ V (D) : e is incident with v in H} for all ev ∈ E(D).

When the dual of H is defined, we also refer to H as the primal hypergraph.

There are many facts about dual hypergraphs that are immediate. First, any 2-

uniform hypergraph (i.e. loopless graph) has a 2-regular dual. In general, the dual

of any k-uniform hypergraph is k-regular. A second immediate observation is that

the incidence graphs of a hypergraph and its dual are isomorphic (and obtained from

each other by exchanging the roles of v-vertices and e-vertices).

2.2.7 Euler Tours and Families

Definition 2.2.20. [4] (Euler Trails, Euler Tours, Euler Families) Let H be

a hypergraph. A strict trail T of H that traverses every edge of H exactly once is

called an Euler trail if T is open, and an Euler tour if T is closed. A hypergraph that

admits an Euler tour is called eulerian.
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An Euler family F is a collection of pairwise edge-disjoint, anchor-disjoint non-trivial

strict closed trails of H such that F traverses every edge of H (exactly once, neces-

sarily). The trails of F are called the components of F . A hypergraph that admits an

Euler family is called quasi-eulerian. F is called minimum if there does not exist an

Euler family of H with fewer closed trails than F has. If |F| ≤ 1, then we associate

F with an Euler tour of H: the single trail of F is an Euler tour if |F| = 1, and any

trivial walk of H is an Euler tour if |F| = 0.

An Euler trail, Euler tour, or Euler family is called spanning if it traverses every

vertex of H.

To familiarise ourselves with some of these new definitions, we present a basic result

to check when certain small (in size) hypergraphs can have Euler tours or families.

Lemma 2.2.21. Let H be a connected hypergraph.

(1) If |E(H)| = 0, then any trivial walk of H is an Euler tour of H, and ∅ is an

Euler family of H.

(2) If |E(H)| = 1, then H does not have an Euler family.

Proof: (1) Assume |E(H)| = 0. Observe that a trivial walk of H satisfies the

definition of an Euler tour of H, and ∅ is a collection of anchor-disjoint, edge-disjoint

closed strict trails that traverses every edge of H.

(2) Assume |E(H)| = 1, and suppose F is an Euler family of H. Then F is non-

empty since H is non-empty, and there must be a single closed strict trail of F that

traverses one edge, so it must be of the form T = vev. However, this is not a trail,

since consecutive anchor vertices must be different — a contradiction. Hence H does

not have an Euler family.
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Analogous to the explosion of definitions for traversals when moving from graphs to

hypergraphs, there are multiple extensions of the term “Euler tour” from graphs. In

addition to the Euler tour and Euler family definitions given above, we can also define

a flag-traversing tour to be a trail (not necessarily strict) that traverses every flag of

the hypergraph exactly once [4]. Applying the hypergraph definitions of Euler tour,

flag-traversing tour, and Euler family to a connected loopless graph yields essentially

the same object, which we will see is not at all the case for hypergraphs. We can

demonstrate the coincidence of Euler families and Euler tours for loopless connected

graphs with the following lemma.

Lemma 2.2.22. Let G be a 2-uniform connected hypergraph, and let F be an Euler

family of G. Then |F| ≤ 1, so F corresponds to an Euler tour of G.

Proof: Let F = {T1, . . . , Tk} be an Euler family of G. By definition, we have

that T1, . . . , Tk are mutually anchor-disjoint (and hence vertex-disjoint), yet jointly

traverse every edge of G. Hence k ≥ 2 implies that G is not connected, a contradic-

tion. Then k = 0 or k = 1, so F corresponds to an Euler tour.

On the other hand, Euler tours, Euler families, and flag-traversing tours are not

only quite different concepts from each other for hypergraphs, but they give rise to

fundamentally different problems. We will not be interested in flag-traversing tours

at all, and likewise we will find no use for (non-strict) trails. In subsequent chapters,

we shall say trails to exclusively mean strict trails.



Chapter 3

Previous Results

3.1 Euler Tours in Graphs

We begin with one of many characterizations of eulerian graphs, first proved by Veblen

in 1912. A cycle decomposition of a graph G is a collection {C1, . . . , Ck} of cycles in

G such that every edge of G is traversed in exactly one cycle.

Although Veblen’s Theorem was proven after Carl Hierholzer proved Euler’s Theo-

rem about the Bridges of Königsberg, it can be used to prove Euler’s Theorem quite

simply. We present original proofs of these theorems using the modern notation we

have cultivated so far.

Theorem 3.1.1. (Veblen’s Theorem, 1912 [32]) Let G be a connected graph. Then

G is eulerian if and only if G admits a cycle decomposition.

Proof: ⇒: Let T = v0e1v1 . . . vm−1emv0 be an Euler tour of G. For any closed

trail W = u0f1u1 . . . ur−1eru0, define a parameter `W = r − |{u0, . . . , ur−1}|; that is,

`W is the number of indices i ∈ {0, . . . , r − 1} such that ui = uj for some j < i. Let

G(T ) be the graph associated with T . We will prove by induction on `T that G(T )

has a cycle decomposition.

24
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If `T = 0, then T does not traverse the same vertex twice, so it is itself either a cycle,

or trivial. In the former case, we can see that {T} is a cycle decomposition of G(T );

in the latter, the empty set is a cycle decomposition of G(T ).

Now assume that for some k ≥ 0, if `T ≤ k, then G(T ) has a cycle decomposi-

tion.

Suppose that `T = k + 1. Then there is a vertex of T that is traversed twice. Let

i, j ∈ {0, . . . ,m− 1} be indices with i < j and vi = vj, such that j − i is as small as

possible.

Define C = viei+1vi+1 . . . ejvj. If two vertices among vi, vi+1, . . . , vj−1 are the same,

then the minimality of j − i is violated, contradicting our stipulation on i and j.

Hence we may assume that C is a cycle.

Let T ′ = v0e1 . . . viej+1vj+1 . . . vm−1emv0 be a closed trail of G(T ) \E(C) obtained by

deleting the cycle C from T . Then T ′ has at least one less repetition of vertices in

its sequence than T does, so `T ′ ≤ k. By the induction hypothesis, we can decom-

pose G(T ) \E(C) into cycles C1, . . . , Cr. Then {C,C1, . . . , Cr} is a decomposition of

G(T ) into cycles. Since T traverses every edge of G exactly once, this gives a cycle

decomposition of G.

By strong induction on `T , we have shown that any Euler tour T gives rise to a cycle

decomposition of G.

⇐: Let C = {C1, . . . , Ck} be a cycle decomposition of G. Since every edge of G is

traversed in exactly one cycle, and all cycles are closed trails, we have that either C

is an Euler family of G; or else two of the cycles have a vertex in common.

Case 1: C is an Euler family of G. If G is loopless, then Lemma 2.2.22 implies

that G is eulerian, which completes the proof. Hence we assume G has some loop

Ci ∈ C. If k = 1, then Ci = C1 is an Euler tour of G. Hence we may assume

k ≥ 2. Since G is connected, we cannot have that Ci traverses an isolated vertex,
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so there exists a different cycle Cj ∈ C that traverses the same vertex that Ci does.

But then C is not vertex-disjoint, so it cannot be an Euler family, contradicting our

assumption.

Case 2: there exist Ci, Cj ∈ C, with i 6= j, such that Ci and Cj traverse

a common vertex. We can concatenate Ci and Cj as trails and obtain a smaller

collection of closed trails. Repeatedly applying this argument to the new collection

of closed trails will eventually yield an Euler family of G, which demonstrates that G

is eulerian.

Unfortunately, a cycle decomposition in a hypergraph is not enough to guarantee that

the hypergraph is eulerian, only quasi-eulerian — we will explore more on this subject

later. For graphs, Veblen’s result is quite useful, and we will use it to easily prove the

most well-known characterization of eulerian graphs: the one conjectured by Euler

himself. A modern statement of the theorem is presented in a tome by Fleischner

[14], and we present our proof that leans on Veblen’s Theorem.

Theorem 3.1.2. [14, Theorem IV.1] Let G be a connected graph. Then G has an

Euler tour if and only if G is even.

Proof: ⇒: Let T = v0e0v1 . . . ei−1viei . . . vm−1em−1v0 be an Euler tour of G. Then,

for each i ∈ Zm, note that ei−1 and ei each contribute 1 to the degree of vi; this

total contribution is even. Since every edge of G appears exactly once in T and the

degree of each of its ends is counted in this fashion, every vertex of G must have even

degree.

⇐: We will first prove that every even graph of size m has a cycle decomposition by

strong induction on m.

Let G′ be an even graph of size m. If m = 0, then G′ has an empty cycle decomposi-
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tion.

Now assume that there exists some k ≥ 0 such that if m ≤ k, then G′ has a cycle

decomposition.

Suppose m = k + 1. Fix some u ∈ V (G′) that is not isolated, and let T be a longest

trail in G′ whose initial vertex is u.

Suppose the terminal vertex of T is some v 6= u. Then the number of edges incident

with v traversed by T must be odd: one edge that is the last edge traversed by T ,

and two edges for each time T visits v earlier in the sequence.

Since v has even degree in G′, it has another incident edge that is not traversed

by T , so we can form a longer trail by appending this edge to T , contradicting the

assumption that T is as long as possible. Hence T is closed.

If T traverses every edge of G′, then T is an Euler tour of G′, and so G′ has just one

non-trivial connected component. This connected component has a cycle decomposi-

tion by Theorem 3.1.1, which serves as a cycle decomposition for G′ since they have

the same edge set.

Otherwise, let G(T ) denote the graph associated with T . We know that T has length

no greater than k, so G(T ) and G′ \ E(G(T )) are both graphs of size at most k.

Since we have already proven that all connected eulerian graphs are even (in the

forward direction of this proof), and G(T ) is connected and eulerian, we conclude

that G(T ) is even. Then, since G′ is also even, we have that G′ \ E(G(T )) is even

as well. Hence G(T ) and G′ \ E(G(T )) each satisfy the conditions of the induction

hypothesis. Applying the induction hypothesis yields cycle decompositions C1 of G(T )

and C2 of G′ \ E(G(T )).

Since G(T ) and G′ \ E(G(T )) are edge-disjoint, so are their cycle decompositions.

Hence C1 ∪ C2 is a cycle decomposition of G′.

In both cases, we have concluded that G′ has a cycle decomposition, so by induction,
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every even graph has a cycle decomposition. In particular, we have that G has a

cycle decomposition. By Veblen’s Theorem 3.1.1, since G is connected and has a

cycle decomposition, we conclude that G is eulerian.

Interestingly, Fleischner defines “eulerian” for a connected graph to mean “even,”

which is of course, by this theorem, equivalent to admitting an Euler tour.

There are also a number of parity results on eulerian graphs that can be found in

[16], of which we present just one.

Theorem 3.1.3. [26] Let G be a graph. Then every vertex of G has even degree if

and only if every edge of G is contained in an odd number of cycles (as subgraphs).

Remark 3.1.4. Note that when we count cycles, we are treating all sequences that

are reversals or cyclic rotations of each other as the same cycle; that is, we are counting

subgraphs isomorphic to a cycle.

The proof of Theorem 3.1.3 relies heavily on the fact that an eulerian graph is even;

that is, all its vertices have even degree. This result does not extend in any meaningful

way to hypergraphs, as we will show with a couple of counterexamples.

Consider the hypergraph H1 = (V1, E1) with V1 = {1, 2, 3, 4} and E1 = {a, b}. Define

a = b = 1234. The incidence graph of H1 is shown in Figure 3.1 below. Note that H1

is eulerian with an Euler tour 1a2b1 (among others), which corresponds to a closed

trail in the incidence graph, per Remark 2.2.11. However, each edge is in
(

4
2

)
= 6

cycles, which is not an odd number.

However, perhaps our reckoning for the number of cycles needs to be different in

hypergraphs. After all, all the cycles above were, in some sense, the same: they
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Figure 3.1: Incidence graph of H1.

merely traversed different anchor vertices but the edges traversed were the same.

There are a number of ways we could attempt to count cycles, so perhaps we were

too näıve with the first attempt. We could regard two cycles as different only if the

cyclic sequences of edges they traverse are different; or perhaps we could construct

a hypergraph associated with a cycle that includes all the edges traversed, along

with all the anchors and floaters, and count these hypergraphs instead. Maybe then,

Theorem 3.1.3 will extend nicely!

Unfortunately, this is not the case either: we can dash both of these ideas with one

counterexample. Let H2 = (V2, E2) with V2 = {1, 2, 3, 4, 5} and E2 = {a, b, c, d}.

Define a = 123, b = 234, c = 345, and d = 15. The incidence graph of H2 is shown in

Figure 3.2 below. It can be observed that any cycle traversing d must also traverse

a and c, and so we can count five cycles whose edge traversals are different. They

are 2a3b2, 3b4c3, 2a3c4b2, 1a3c5d1, and 1a2b3c5d1, the last of which is itself an Euler

tour. Then every edge is in fact in an even number of these cycles, yet H is eulerian.

Furthermore, every hypergraph that we could associate with these cycles will be

different, so once again, each edge of H is in an even number of those, too.

We are left to conclude that Theorem 3.1.3 does not extend to hypergraphs in any

obvious way.
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Figure 3.2: Incidence graph of H2.

3.2 Euler Tours in Hypergraphs

3.2.1 Strongly Connected Hypergraphs

One of the most advanced (and, in our estimation, the first) papers on eulerian hy-

pergraphs is due to Lonc and Naroski [24]. They prove a necessary and sufficient

condition for a hypergraph to be eulerian on a special class of hypergraphs, defined

below.

Definition 3.2.1. [24] Let H be a k-uniform hypergraph without isolated vertices. If

the level-(k−1) line graph Lk−1(H) is connected, then we call H strongly connected.

Lonc and Naroski prove the following theorem about strongly connected hypergraphs:

Theorem 3.2.2. [24, Theorem 2] Let H be a strongly connected k-uniform hyper-

graph and let Vodd(H) be the set of vertices of odd degree in H. Then H is eulerian

if and only if |Vodd(H)| ≤ (k − 2)|E(H)|.

It is perhaps not difficult to see, once we apply the upcoming Theorem 3.4.1, that for
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any k-uniform hypergraph H, the inequality |Vodd(H)| ≤ (k − 2)|E(H)| is necessary

for H to be eulerian. We can regard the construction of an Euler tour as a deletion of

some edges of the incidence graph: for each e-vertex, we must choose k − 2 incident

edges to delete, and when we are done, we need all the v-vertices to have even degree.

If there are more odd-degree v-vertices from the outset than there are edges to be

deleted, then it will be impossible to end up with all v-vertices of even degree.

Furthermore, if k = 2, then H is a connected graph, and then Theorem 3.2.2 states,

as usual, that being eulerian is equivalent to being even.

Lonc and Naroski, in the process of proving Theorem 3.2.2, also make use of the

following general numerical result. We will have tools later in this chapter that help

us prove this more simply, but for now we must make do without.

Proposition 3.2.3. [24, Proposition 1] Let H be an eulerian hypergraph. Then∑
v∈V (H)

⌊
deg(v)

2

⌋
≥ |E(H)|.

Proof: Let G be the incidence graph of H, let T be an Euler tour of H, and let GT

be the subgraph of G corresponding to T as described at the end of Remark 2.2.11.

Note, since T is an Euler tour of H, that GT contains all the e-vertices of G and is

itself eulerian (the latter observed in Remark 2.1.12). Since GT is eulerian, it is even

by Theorem 3.1.2. Observe that each e-vertex e of GT has exactly two neighbours:

namely, the two anchors via which e is traversed in T .

Now, there exists a hypergraph H ′ that has GT as its incidence graph. Now, since all

the edges of H ′ have cardinality 2 and H ′ has no loops, it can be considered to be a

graph. Since GT is even, all the vertices of H have even degree as well.

Then, by the Handshaking Lemma 2.1.2, we have∑
v∈V (H′)

⌊
degH′(v)

2

⌋
=

∑
v∈V (H′)

degH′(v)

2
= |E(H ′)|.
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Now, we have |E(H ′)| = |E(H)| because these quantities are both equal to the number

of e-vertices of GT . Furthermore, for each v ∈ V (H), we have that either v′ 6∈ V (H ′)

or degH(v) ≥ degH′(v). Therefore, we have∑
v∈V (H)

⌊
degH(v)

2

⌋
≥

∑
v∈V (H′)

⌊
degH′(v)

2

⌋
= |E(H)|.

To prove Theorem 3.2.2, Lonc and Naroski first proved the easier case, when k > 3.

(The case k = 2 is self-evident, as our earlier observations showed.)

Theorem 3.2.4. [24, Theorem 3] Let k > 3. A strongly connected k-uniform hyper-

graph H has an Euler tour if and only if |E(H)| 6= 1.

The remaining case, for k = 3, was significantly more difficult and required a few

successive results to pin down. Some of these results refer to a class of hypergraphs

which, roughly speaking, have a minimum number of edges among strongly connected

hypergraphs of the same order.

Definition 3.2.5. [24] Define H to be the smallest class of 3-uniform hypergraphs

such that the following both hold:

(1) The 3-uniform hypergraph of order 3 with a single edge belongs to H.

(2) Let H = (V,E). If H ∈ H, then the hypergraph (V ∪ {v}, E ∪ {e}) belongs to

H, for all v, e such that v 6∈ V, v ∈ e, |e| = 3, and e \ {v} ⊆ e′ for some e′ ∈ E.
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Theorem 3.2.6. [24, Theorem 4] Let H be a strongly connected 3-uniform hyper-

graph. The following are equivalent:

(1) H is eulerian;

(2) |Vodd(H)| ≤ |E(H)|;

(3) H 6∈ H or H has a vertex of even degree.

For the remaining results, we need to define the skeleton of a hypergraph and a wheel

hypergraph.

Definition 3.2.7. [24] Let H = (V,E) be a 3-uniform hypergraph. The skeleton of H,

denoted S(H), is a graph induced by the edge set {e∩f : e, f ∈ E, |e∩f | = 2}.

Definition 3.2.8. [24] Let H be a 3-uniform hypergraph. If Lk−1(H) is a cycle of

length `, for ` ≥ 3, and there is a vertex of H that belongs to all the edges of H, then

H is called a wheel, denoted W`.

Theorem 3.2.9. [24, Theorem 6] Let H be a 3-uniform hypergraph whose skeleton

is connected. Then H is eulerian if both of the following hold:

(1) H 6∈ H or H has a vertex of even degree; and

(2) H is not a wheel.
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3.2.2 Euler Tours in Design Hypergraphs

In Chapters 4, 5, and 6, we will be investigating so-called “design hypergraphs,”

that is, hypergraphs that are uniform, regular, and satisfy some balancing property;

triple systems are an example of such a hypergraph. Such hypergraphs are implicitly

studied in design theory, and there are some results about Euler tours in these de-

signs. Dewar and Stevens proved in 2012 [10] that certain kinds of triple systems are

eulerian, while Horan and Hurlbert proved in 2013 [20, 21] the existence of certain

eulerian designs of every possible order. We will discuss all of these results in this

section, particularly as they apply to our new results.

Definition 3.2.10. Let H1 and H2 be hypergraphs with incidence functions ψ1 and

ψ2, respectively. We call H1 and H2 isomorphic if there exist bijections α : V (H1)→

V (H2) and β : E(H1) → E(H2) such that, for all e ∈ E(H1), we have ψ1(e) =

{v1, v2, . . . , vk} if and only if ψ2(β(e)) = {α(v1), α(v2), . . . , α(vk)}. The pair (α, β) is

called an isomorphism from H1 to H2.

In the event that H1 and H2 are simple, then β can be induced from a bijection

α : V (H1)→ V (H2) that maps edges of H1 to edges of H2.

An automorphism is an isomorphism from a hypergraph to itself, and the collection

of all automorphisms admitted by a hypergraph forms a group under composition,

called the automorphism group.

Definition 3.2.11. [10] Let H be a hypergraph of order n ≥ 2. We call H cyclic if

its automorphism group contains a cyclic subgroup of order n.

Theorem 3.2.12. [10, Corollary 5.10] Let H be a cyclic Steiner triple system of order

n > 3. Then H is eulerian.
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Theorem 3.2.13. [10, Corollary 5.11] Let H be a cyclic twofold triple system. Then

H is eulerian.

The theorems above were originally stated in terms of rank-2 universal cycles, for

which the definition follows. For the purposes of our discussion, a rank function is

an integer-valued function on a set of combinatorial objects, and the rank of such an

object is the value such a rank function assigns to that object.

Definition 3.2.14. [10] Let V be a ground set, and Fn = {F0, . . . , Fm−1} be a set

of combinatorial objects of rank n.

For each F ∈ Fn, let R(F ) be a set of sequences of length n with elements from V ;

these are the sequences representing the combinatorial object F .

A cyclic sequence U = (x0, x1, . . . , xm−1) is called a universal cycle of rank n for Fn
if there exists a function

f : Zm →
⋃
F∈Fn

R(F )

such that f(i) = (xi, xi+1, . . . , xi+n−1) ∈ R(Fi), for all i ∈ Zm.

Remark 3.2.15. Let H = (V,E). We will see how a rank-2 universal cycle of

H is equivalent to an Euler tour of H. The “combinatorial objects” that we are

considering are the edges of H, so Fn = E, and the “ground set” is the set of

vertices V . Then we designate the set of rank-2 representatives of each e ∈ E by

R(e) = {(u, v) : u, v ∈ e, u 6= v}.

Suppose T = v0e1v1e1 . . . vm−1emv0 is an Euler tour of H. Then U = (v0, v1, . . . , vm−1)

is a universal cycle corresponding to T , accompanied by the function f(ei) = (vi−1, vi)

for all i ∈ Zm.
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Conversely, if U = (v0, v1, . . . , vm−1) is a universal cycle for E (with R(e) as defined

above), then there is an ordering e1, . . . , em of the edges of H such that for all i ∈ Zm,

we have vi−1vi ∈ ei. Since vi−1 6= vi for all i by the definition of R(e), we see that

v0e1v1 . . . vm−1emv0 is an Euler tour of H.

In later chapters, we will extend Dewar and Stevens’s results by demonstrating that

all triple systems are eulerian.

Horan and Hurlbert, in slight contrast, stated their results in terms of 1-overlap

cycles, which we define as follows. Let H be an r-uniform1 hypergraph. A cyclic

sequence U = (v0, v1, . . . , vm−1) of vertices of H is called a 1-overlap cycle for H if

each subsequence (vi(r−1), vi(r−1)+1, . . . , v(i+1)(r−1)) is an ordering of the vertices of an

edge of H, and the list of all such subsequences for i = 0, . . . , m
r−1
−1 contains exactly

one representative of each edge of H. (Note that the first entry of each subsequence

“overlaps” the last entry of the previous.) Horan and Hurlbert immediately remarked

in [21] that a 1-overlap cycle is equivalent to a rank-2 universal cycle.

In their work, Horan and Hurlbert gave explicit constructions of Euler tours in an

infinite family of both Steiner triple systems [20] and Steiner quadruple systems [21],

the latter of which is defined as follows.

Definition 3.2.16. A Steiner quadruple system is a 4-uniform hypergraph H in which

every triple of vertices lie together in exactly one edge.

Their main results are the following.

Theorem 3.2.17. [20, Corollary 23] Let n ≡ 1 or 3 (mod 6) with n ≥ 7. Then there

exists an eulerian STS(n).

1We note that Horan and Hurlbert define 1-overlap cycles more generally, not just for uniform
hypergraphs; however, we present only a simple definition.
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Theorem 3.2.18. [21, Theorem 1.2] Let n ≡ 2 or 4 (mod 6) with n > 4. Then there

exists an eulerian Steiner quadruple system of order n.

Since a Steiner triple system of order n exists if and only if n ≡ 1 or 3 (mod 6),

Theorem 3.2.17 covers every possible order, excepting the degenerate case n = 3.

Likewise, a Steiner quadruple system of order n exists if and only if n ≡ 2 or 4 (mod

6), so their result on quadruple systems is comprehensive as well. Once again, our

results will complete Horan and Hurlbert’s above results by proving that all such

designs are eulerian.

3.2.3 Complexity of EULER TOUR

There are a few results about the complexity of recognizing an eulerian hypergraph.

We begin by defining the EULER TOUR problem.

Problem 3.2.19. EULER TOUR

Given: A hypergraph H.

Decide: Does H have an Euler tour?

If we consider only the set of 2-uniform hypergraphs (i.e. graphs), then this problem

reduces to checking that the degree of every vertex is even, hence it is in the class

P. However, when we look at k-uniform hypergraphs for k ≥ 3, this is no longer the

case. The proof [24] makes use of a known NP-complete problem that we adapt for

our purpose.

Problem 3.2.20. HAMILTON CYCLE

Given: A graph G.
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Decide: Does G have a Hamilton cycle?

Famously, the HAMILTON CYCLE problem is NP-complete over several different

classes of graphs. Of interest to us is the following result by Garey, Johnson, and

Tarjan from 1976:

Theorem 3.2.21. [18] The HAMILTON CYCLE problem is NP-complete over the

set of planar, 3-regular, 3-connected graphs.

We are not very interested in what it means for a graph to be planar, so we will relax

that qualification. A 3-connected graph is a connected graph of order at least 3 that

is connected after deletion of any set of up to two vertices. Observe that a 3-regular,

3-connected graph must also be simple, so we can reframe Theorem 3.2.21 as follows.

Corollary 3.2.22. The HAMILTON CYCLE problem is NP-complete over the set

of simple 3-regular graphs.

Now we will look at and prove some results about the complexity of EULER TOUR

in hypergraphs.

Theorem 3.2.23.

(1) [4, Theorem 2.29] EULER TOUR is NP-complete on the set of 3-uniform, 2-

regular, linear hypergraphs.

(2) [24, Theorem 1] Let k ≥ 3. Then EULER TOUR is NP-complete on the set of

k-uniform hypergraphs.

Proof: The proofs of these theorems are similar, as we will now show.

First of all, verification that a given sequence is an Euler tour is a matter of determin-

ing that it is a closed walk of the appropriate length that does not repeat any edges,

which is polynomial in the order and size of the hypergraph. Therefore, EULER

TOUR is in NP.
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To show that EULER TOUR is also NP-hard, we reduce the HAMILTON CYCLE

problem to EULER TOUR. Let G = (V (G), E(G)) be a simple 3-regular graph. Since

G is loopless, we may regard it as a 2-uniform hypergraph. Let H = (V,E) be the

dual hypergraph of G as given in Definition 2.2.19. Note that H is 3-uniform because

G is 3-regular; 2-regular because G is 2-uniform; and no two edges of H share more

than one common vertex because G has no parallel edges (and, therefore, no two

vertices of G are the ends of two distinct edges).

To complete the proof of (1), we show that G has a Hamilton cycle if and only if H

has an Euler tour. First, suppose C = v0e1v1e2 . . . vn−1env0 is a Hamilton cycle of

G. Then T = e1ev1e2ev2 . . . en−1evn−1enev0e1 is a closed walk of H. It traverses every

edge ev0 , . . . evn−1 of H exactly once because C traverses every vertex v0, . . . , vn−1 of

G exactly once. Hence T is an Euler tour of H.

Conversely, suppose T = e1ev1e2ev2 . . . en−1evn−1enev0e1 is an Euler tour of H. We

claim that C = v0e1v1e2 . . . vn−1env0 is a Hamilton cycle of G. It is clear from the

duality of G and H that C is a closed walk of G that traverses every vertex exactly

once. It necessarily traverses no edge more than once because that would imply that

it traverses some vertex more than once. Hence C is indeed a Hamilton cycle of

G.

Since HAMILTON CYCLE is NP-complete on the set of simple 3-regular graphs, this

shows that EULER TOUR is NP-hard (and, therefore, NP-complete) on the set of

3-uniform, 2-regular, linear hypergraphs.

To complete the proof of (2), we must modify the dual hypergraph H. Of course, if

k = 3, then we can complete the proof as we did for (1), but if k ≥ 4 then we will need

to increase the cardinality of the edges somehow. We accomplish this by introducing

“dummy” vertices that will fill out the cardinalities of the edges, but which only have

degree 1, so they cannot be traversed by an Euler tour.

Fix k ≥ 3. For each v ∈ V (G), define a set of new vertices {u1
v, . . . , u

k−3
v }, such that
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these sets are pairwise disjoint and disjoint from V (H). Define a new hypergraph H ′

from H using these extra vertices in the following way:

• V (H ′) = V (H) ∪
(⋃

v∈V (G){u1
v, . . . , u

k−3
v }

)
;

• E(H ′) = {e′v : v ∈ V (G)};

• ψ(e′v) = ev ∪ {u1
v, . . . , u

k−3
v }, for each e′v ∈ E(H ′).

Now, observe that H ′ is k-uniform and its vertices have degree 2 if they come from

V (H), and degree 1 otherwise. None of the degree 1 vertices can be in an Euler tour,

so an Euler tour of H ′ truly does correspond to a Hamilton cycle of G since it traverses

only vertices and edges of H ′ that correspond to edges and vertices of G. Much as in

the proof of (1), we can also see that a Hamilton cycle of G corresponds to an Euler

tour of H ′. Hence EULER TOUR is NP-hard (and, therefore, NP-complete) on the

set of k-regular hypergraphs. (Note that we have also shown that EULER TOUR is

NP-complete on the set of k-regular linear hypergraphs.)

Lonc and Naroski also proved a complexity result about a more specific class of 3-

uniform hypergraphs. Though it is more technical and of less interest to us, we

present it here for completeness.

Theorem 3.2.24. [24, Theorem 7] The EULER TOUR problem on the set of 3-

uniform hypergraphs whose skeleton is connected is NP-complete.

Lonc and Naroski prove Theorem 3.2.24 by reducing the problem to the EULER

TOUR problem on the set of connected 3-uniform hypergraphs, which we have seen

is NP-complete.
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3.2.4 Conditions for a Hypergraph to be (Quasi)-eulerian

The paper by Bahmanian and Šajna [4] was meant to be the definitive paper on eule-

rian hypergraphs. A lot of focus was also given to Euler families, as these are weaker

versions of Euler tours, and results about eulerian and quasi-eulerian hypergraphs are

closely related. They presented several necessary and sufficient conditions for a hy-

pergraph to be eulerian or quasi-eulerian. We begin with the block characterization,

for which additional terminology is required.

Definition 3.2.25. [4] Let H be a hypergraph with no empty edges. A vertex v ∈ V

is a separating vertex for H if H decomposes into two non-empty connected hyper-

subgraphs with just v in common. A block of H is a connected strong subhypergraph

of H with no separating vertices, maximal with respect to this property.

Remark 3.2.26. A separating vertex of a hypergraph H is either a cut vertex of H

or a vertex in a singleton edge [3]. However, it is self-evident that if H has a sin-

gleton edge, then it cannot be eulerian or quasi-eulerian, as such an edge cannot be

part of a walk. Therefore, a block can usually be regarded as a maximally connected

strong subhypergraph with no cut vertices — in particular, this interpretation does

not change the result that follows.

Theorem 3.2.27. [4, Theorem 2.24] Let H be a hypergraph. Then

(1) H is quasi-eulerian if and only if each block of H is quasi-eulerian.

(2) H is eulerian if and only if each block B of H has an Euler tour that traverses

every cut vertex of H contained in B.

Theorem 3.2.27 illustrates that we need to consider cut vertices (and similarly, cut
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edges) carefully when constructing Euler tours and families. We will explore this

concept more in Chapter 7.

Now we turn our attention to a necessary condition that has an impact on other

results on the hamiltonicity of line graphs.

Theorem 3.2.28. [4, Theorem 2.35] Let H be a hypergraph and L(H) be its line

graph. If H is eulerian, then L(H) is hamiltonian.

Remark 3.2.29. There has been much work done on the hamiltonicity of line graphs

for certain designs (see, for example, [1, 22]), and the matter has largely been settled

for designs such as triple systems. However, more recent work in the area is concerned

with variations of the line graph rather than variations on these designs (e.g. [28, 12]).

The reader must take caution, however: the converse of Theorem 3.2.28 does not hold

in general. It is sufficient that the dual of a hypergraph H be hamiltonian in order for

H to be eulerian; however, the line graph is isomorphic to the simple 2-section of the

dual, and we know that information about H is lost when examining the 2-section.

The next result gives conditions under which the converse does hold.

Theorem 3.2.30. [4, Theorem 2.17] Let H be a hypergraph. Let L be a graph and

assume one of the following holds:

(1) L = L(H) and degH(v) ≤ 2 for all v ∈ V ; or

(2) L = L2(H) and L is bipartite; or

(3) L = L3(H).

If L is hamiltonian, then H is eulerian. If L admits a 2-factor, then H is quasi-

eulerian.
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We next present a weakened statement of a result that will nonetheless provide a few

interesting corollaries. The full version of the theorem will be presented, along with

its proof, in Section 3.4.

Theorem 3.2.31. [4, Theorem 2.18] Let H = (V,E) be a hypergraph and G be its

incidence graph. If there exists a spanning subgraph G′ of G such that degG′(e) = 2

for all e ∈ E(H) and degG′(v) is even for all v ∈ V (H), then H is quasi-eulerian. If

G′ additionally has at most one non-trivial connected component, then H is eulerian.

We can almost immediately conclude the following three results by using Theo-

rem 3.2.31.

Corollary 3.2.32. [4, Corollary 2.19] Let H be a hypergraph and let G be its inci-

dence graph. If G has a 2-factor, then H is quasi-eulerian. If G is hamiltonian, then

H is eulerian.

Corollary 3.2.33. [4, Corollary 2.20] Let H be an r-regular, r-uniform hypergraph

for r ≥ 2. Then H is quasi-eulerian.

Corollary 3.2.34. [4, Corollary 2.21] Let H be a 2k-uniform hypergraph with no

vertices of odd degree. Then H is quasi-eulerian.

Bahmanian and Šajna also settled the question of complexity for the problem of rec-

ognizing a quasi-eulerian hypergraph, as follows.

Problem 3.2.35. [4] EULER FAMILY
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Given: A hypergraph H.

Decide: Does H have an Euler family?

They show that EULER FAMILY on the class of all hypergraphs is in P by reducing

it to the problem of finding a 1-factor in a graph.

We will present more of their results in Section 3.4, for they will be quite pertinent

to the problems we wish to tackle.

3.3 Spanning Euler Families and Vertex Cuts

A recent paper by Steimle and Šajna [31] has characterized the necessary and suffi-

cient conditions for a spanning Euler family (or tour) to exist by examining vertex

cuts and some related subhypergraphs. We first give a definition of vertex cuts, and

explain what subhypergraphs will be used.

Definition 3.3.1. (Vertex Cut) [31] Let H = (V,E) be a hypergraph and let S ( V

be a proper subset of its vertices. We call S a vertex cut of H if H−S is disconnected.

If S has the property that no proper subset of S is a vertex cut of H, then we call S

a minimal vertex cut of H.

Generally, we are most interested in vertex cuts of connected hypergraphs. Note that

the empty set is a vertex cut of a disconnected hypergraph, which is usually not very

interesting. However, if H is connected, then we can usefully define the following

subhypergraphs of H.

Definition 3.3.2. (Derived Hypergraph) [31] Let H be a hypergraph with no

empty edges, let S be a vertex cut of H, and let Hi, for i ∈ I, be the connected
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components of H − S. Then the S-component of H corresponding to Hi is the sub-

hypergraph H ′i with V (H ′i) = V (Hi) ∪ S and E(H ′i) = {e ∈ E(H) : e ⊆ V (H ′i)}.

If |S| is even, then we additionally define the S∗- and S∗∗-components of H corre-

sponding to Hi as the hypergraphs H∗i and H∗∗i obtained by adjoining |S|
2

or |S| copies,

respectively, of the edge S to H ′i.

The hypergraphs H ′i, H
∗
i , and H∗∗i , for all i ∈ I, are collectively referred to as the

derived hypergraphs of H (with respect to S).

The authors of [31] used the derived hypergraphs to give necessary and sufficient

conditions for the existence of spanning Euler families and tours in two kinds of

situations: first, if there exists a vertex cut of small cardinality (1 or 2); second, if

there exists a vertex cut whose vertices all have degree 2.

These results all came in pairs: one for spanning Euler families and one for spanning

Euler tours.

First, the conditions when H has a cut vertex:

Theorem 3.3.3. [31, Theorem 3.11] Let H be a connected hypergraph with a cut

vertex v, and let Hi, for i ∈ I, be the connected components of H − v. Let H ′i, for

i ∈ I, denote the {v}-components corresponding to Hi. Then H has a spanning Euler

family if and only if the following hold.

(1) For some i ∈ I, we have that H ′i admits a spanning Euler family.

(2) For all i ∈ I, at least one of Hi and H ′i admits a spanning Euler family.

Theorem 3.3.4. [31, Corollary 3.12] Let H be a connected hypergraph with a cut

vertex v. Then H has a spanning Euler tour if and only if every {v}-component of
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H admits a spanning Euler tour.

There are two possibilities when H has a vertex cut of cardinality 2, given by Cases

(1) and (2) in each of the following two results:

Theorem 3.3.5. [31, Theorem 3.18, 3.20] Let H be a hypergraph with a vertex cut

S = {u, v} of cardinality 2. For each i ∈ I, let Hi, H
′
i, and H∗i denote the connected

components of H − S, the S-components of H, and the S∗-components of H, respec-

tively. Let ES = {e ∈ E : e = S}. Then H has a spanning Euler family if and only

if one of (1) and (2) hold.

(1) |ES| is even and there exists J ⊆ I of even cardinality such that the following

hold.

(a) For all i ∈ J , we have that H∗i admits a spanning Euler family.

(b) For each i ∈ I \ J , at least one of Hi, H
′
i, H

′
i − u, and H ′i − v admits a

spanning Euler family.

(c) If J = ∅, then at least one of the following holds:

(i) There exists some i ∈ I such that H ′i admits a spanning Euler family;

or

(ii) There exist distinct i, j ∈ I such that H ′i−u and H ′j−v admit spanning

Euler families.

(2) |ES| is odd and there exists J ⊆ I of odd cardinality such that the following hold.

(a) For each i ∈ J , we have that H ′i admits a spanning Euler family.

(b) For each i ∈ I \ J , at least one of Hi and H∗i has a spanning Euler family.
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Theorem 3.3.6. [31, Theorem 3.19, 3.21] Let H be a hypergraph with a vertex cut

S = {u, v} of cardinality 2. For each i ∈ I, let Hi, H
′
i, H

∗
i , and H∗∗i denote the

connected components of H − S, the S-components of H, the S∗-components of H,

and the S∗∗-components of H, respectively. Let ES = {e ∈ E : e = S}. Then H has

a spanning Euler tour if and only if one of (1) and (2) hold.

(1) |ES| is even and there exists J ⊆ I of even cardinality such that the following

hold.

(a) For all i ∈ J , we have that H∗i admits a spanning Euler tour.

(b) For each i ∈ I \ J , at least one of H ′i and H∗∗i admits a spanning Euler

tour.

(c) If J = ∅, then there exists i ∈ I such that H ′i admits a spanning Euler tour.

(2) |ES| is odd and there exists J ⊆ I of odd cardinality such that the following hold.

(a) For each i ∈ J , we have that H ′i admits a spanning Euler tour.

(b) For each i ∈ I \ J , we have that H∗i has a spanning Euler tour.

The situation is a bit simpler when H has a minimal vertex cut S whose vertices

all have degree 2. It can be shown that, in this case, we have just two connected

components in H − S.

Theorem 3.3.7. [31, Theorem 3.7] Let H be a connected hypergraph with a minimal

vertex cut S such that deg(v) = 2 for all v ∈ S. Then the following hold.

(1) If |S| is odd, then H does not have a spanning Euler family.

(2) If |S| is even, then H has a spanning Euler family if and only if both S∗-
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components of H have spanning Euler families.

Steimle and Šajna were only able to prove a necessary condition for spanning Euler

tours, and showed that the converse does not hold.

Theorem 3.3.8. [31, Corollary 3.8] Let H be a connected hypergraph with a minimal

vertex cut S such that deg(v) = 2 for all v ∈ S. If H admits a spanning Euler tour,

then |S| is even and both S∗-components of H admit a spanning Euler tour.

We will be proving analogous results to these, but for edge cuts, in Chapter 7. Al-

though we will not be exclusively looking for spanning Euler families and tours, our

conditions will look similar in appearance to the ones shown above. Instead of inves-

tigating derived hypergraphs, we will look at some analogous hypergraphs associated

to H and the edge cut.

3.4 Tools

In this section, we will give results that have either previously been proven by other

authors, or are general enough to be applied in multiple upcoming chapters. Most of

the previously existing results are due to Bahmanian and Šajna, and have to do with

finding Euler tours or Euler families via the incidence graph. Some of these results

lead to very rudimentary results that are used to begin our investigation; we also

include these here.

We must first explain how the incidence graph can be used to find eulerian traversals

by presenting the full version of Theorem 3.2.31.
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Theorem 3.4.1. [4, Theorem 2.18] Let H = (V,E) be a hypergraph and G be its

incidence graph. Then the following hold:

(1) H is quasi-eulerian if and only if G has a spanning subgraph G′ such that

degG′(e) = 2 for all e ∈ E(H) and degG′(v) is even for all v ∈ V (H).

(2) H is eulerian if and only if G has a spanning subgraph G′ such that degG′(e) = 2

for all e ∈ E(H) and degG′(v) is even for all v ∈ V (H), and G′ has at most one

non-trivial connected component.

Proof: ⇒: Let F be an Euler family for H. Fix some T ∈ F . Then T has

a corresponding trail T ′ in G, per Remark 2.2.11, that traverses each e-vertex at

most once. Let GT = G(T ′) be the graph associated with T ′. Observe that GT is a

connected subgraph of G that has T ′ as an Euler tour. Then Theorem 3.1.2 indicates

that GT is even.

Now, since the GT , for T ∈ F , are pairwise edge-disjoint, we get that G′ =
⋃
T∈F

GT is

an even subgraph of G. Furthermore, since F is an Euler family of H, we have that

the collection {T ′ : T ∈ F} traverses every e-vertex of G exactly once; hence each

e-vertex e has two neighbours in G′, namely the two v-vertices that correspond to the

vertices via which e is traversed in F . We conclude that G′ is an even subgraph of

G that contains each e-vertex of G, and in which each e-vertex has degree 2. Then

GF = (V (G), E(G′)) is a spanning subgraph of G in which every v-vertex has even

degree and every e-vertex has degree 2.

Now, if H is eulerian, then we may assume F = {T}. Hence G′ = GT , which is

connected. Then GF = (V (G), E(G′)) has just one non-trivial connected compo-

nent.

⇐: Suppose that G′ is a spanning subgraph of G with degG′(e) = 2 for all e ∈ E and

degG′(v) even for all v ∈ V . Let Gi, for i ∈ I, be the non-trivial connected components

of G′. Then each Gi admits an Euler tour T ′i . Since degG′(e) = 2 for each e-vertex e,
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we have that T ′i traverses each e-vertex at most once. Then Remark 2.2.11 says that

T ′i corresponds to a (strict) trail Ti of H such that Ti traverses the vertices and edges

of H that correspond to the v-vertices and e-vertices, respectively, that are traversed

by T ′i in G′.

Then we claim F = {Ti : i ∈ I} is an Euler family of H: first of all, the collection of

T ′i is pairwise vertex- and edge-disjoint since each T ′i is a trail of a distinct connected

component of G′. Secondly, each edge of H is traversed exactly once by F because

each e-vertex of G is traversed exactly once by some T ′i , for i ∈ I. Finally, since each

T ′i is an Euler tour of a non-trivial (and hence non-empty) connected component of

G′, the corresponding trail Ti is non-trivial as well.

Furthermore, if G′ has at most one non-trivial connected component, then we have

|F| = 1, and so it yields an Euler tour of H.

We will be making great use of Theorem 3.4.1, especially in Chapters 4, 5, and 6, so

we would do well to equip ourselves with further terminology.

Definition 3.4.2. Let H be a hypergraph with incidence graph G. If F is an Euler

family of H, then we formally define the subgraph of G corresponding to F , usually

denoted GF , as described in the proof of Theorem 3.4.1:

• GF is a spanning subgraph of G;

• For v-vertex v and e-vertex e in GF , we have that v and e are adjacent if and

only if (v, e) is an anchor flag of a component of F .

The justification for calling the trails of F “components” is given in the following

result, which we treat as a corollary of Theorem 3.4.1.
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Corollary 3.4.3. Let H be a hypergraph with incidence graph G. Let F be an Euler

family of H and GF be the corresponding subgraph of G. Let GT , for each T ∈ F , be

the subgraph of G corresponding to T .

Then {GT : T ∈ F} is the set of non-trivial connected components of GF .

Proof: Since GF is uniquely defined from F (although not vice-versa), we can

construct GF (and a graph G′) in the way described in the proof of the forward di-

rection of Theorem 3.4.1. Note that G′ can be obtained from GF by deleting isolated

v-vertices. Then G′ is a subgraph of G containing all the edges of GF and it is evident

that G′ is a vertex-disjoint union of connected subgraphs GT of G. Hence each GT ,

for T ∈ F , is a connected component of G′, and since each trail T is non-trivial, so

is its corresponding connected component GT . Then GF has the same non-trivial

connected components as G′, so {GT : T ∈ F} is the set of non-trivial connected

components of GF .

We also have a basic new result about the nature of some of the connected compo-

nents of GF if H is a covering 3-hypergraph.

Lemma 3.4.4. Let H be a covering 3-hypergraph with incidence graph G. Let F be

an Euler family of H and GF be the corresponding subgraph of G. Then GF has at

most one trivial connected component.

Proof: Suppose x and y are distinct isolated vertices of GF . Since the e-vertices

of GF have degree 2, we have that x and y must both be v-vertices. Additionally,

since H is a covering 3-hypergraph, there exists some e ∈ E(H) containing both x

and y, along with exactly one other vertex z. Then the e-vertex e ∈ V (GF) must

be adjacent to two of x, y, and z, contradicting the fact that neither x nor y has

neighbours.
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Therefore, there can be at most one trivial connected component in GF .

Bahmanian and Šajna also began to investigate the eulerian properties of certain

designs. One important tool that these results are based on is due to Fleischner, as

follows.

Theorem 3.4.5. [16] Let G be a graph with no cut edges and no vertices of degree

less than or equal to 2. Then G has a spanning even subgraph in which every vertex

has degree at least 2.

Fleischner’s Theorem can be used to show that a hypergraph is quasi-eulerian, as long

as we can prove that the incidence graph satisfies the hypothesis of the theorem. In

fact, we can obtain an auxiliary graph from the incidence graph, apply Fleischner’s

Theorem to the auxiliary graph, and still conclude that the incidence graph gives rise

to an Euler family. We will see one such example in the following theorem.

Theorem 3.4.6. [4, Theorem 2.39] Let H = (V,E) be a 3-uniform hypergraph without

cut edges. Then H is quasi-eulerian.

Proof: Let G be the incidence graph of H. We first show that G has no cut edges.

Suppose that ve ∈ E(G) is a cut edge of G, where v ∈ V (H) and e ∈ E(H). Since

H is 3-uniform, we know that e is not isolated in G \ ve, hence G − e is a subgraph

of G \ ve, and G− e has at least as many connected components as G \ ve has. But

now G− e is the incidence graph of H \ e [3, Lemma 2.19], which is connected since

H has no cut edges. This contradicts the fact that G − e is disconnected. Hence G

has no cut edges, as claimed.

Now, if G has any vertices of degree 2 or less, they must be v-vertices, for all of the
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e-vertices of G have degree 3. If G has a v-vertex v of degree 1, then its incident edge

is a cut edge of G, contradicting our earlier finding. Hence there are no vertices of

degree 1.

Now we may obtain an auxiliary graph G′ from G by the following process:

(1) Delete all isolated vertices.

(2) For each v-vertex v of degree 2, replace the 2-path e1ve2 with a single edge e1e2,

and then delete v.

Then G′ is a graph that has no vertices of degree 2 or less, and — as G has — no cut

edges.

We may apply Theorem 3.4.5 to obtain a spanning even subgraph G′1 of G′ with no

isolated vertices. Then we construct a graph G1 by modifying G′1 as follows:

(1) Restore the isolated vertices of G that were deleted previously.

(2) For every v-vertex v ∈ V (G) that has degree 2, if its ends e1 and e2 are adjacent

to each other in G′1, then replace the edge e1e2 ∈ E(G′1) with a 2-path e1ve2 in

G1; otherwise, add an isolated v-vertex v in G1.

Then G1 is a spanning even subgraph of G. By Theorem 3.4.1, this subgraph gives

rise to an Euler family for H, so H is quasi-eulerian.

We have an immediate corollary of Theorem 3.4.6 that applies to covering hyper-

graphs.

Corollary 3.4.7. [4, Corollary 2.40] Let H be a covering 3-hypergraph with at least

two edges. Then H is quasi-eulerian.

Proof: It suffices to show that H has no cut edges. Suppose, for the sake of
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obtaining a contradiction, that e ∈ E(H) is a cut edge of H.

If |V (H)| = 3, then e = V (H), and since H has at least two edges, there is an-

other edge parallel to e. In this case, we obtain a contradiction because H \ e is

connected.

Hence assume |V (H)| ≥ 4, and let w ∈ V (H)\e. Suppose u, v ∈ V (H) lie in different

connected components of H \ e. Then there is an edge of H \ e containing both u and

w and an edge of H \ e containing both v and w. Hence u and v are, in fact, in the

same connected component of H \ e, a contradiction.

Therefore, there are no cut edges of H. We may apply Theorem 3.4.6 to see that H

is quasi-eulerian.

We now present a useful new tool that has broad enough use to feature in Chap-

ters 5, 6, and 7. It demonstrates how to convert an Euler family from one hypergraph

to another if the incidence graph of one of them is a subgraph (spanning on the e-

vertices) of the incidence graph of the other.

Lemma 3.4.8. Let H1 and H2 be hypergraphs. Assume V (H1) ⊆ V (H2) and let

ϕ : E(H1)→ E(H2) be any bijection satisfying e ⊆ ϕ(e) for all e ∈ E(H1). Then the

following hold:

(1) If H1 has an Euler family F1, then H2 has an Euler family F2 obtained from F1

by replacing each edge e with ϕ(e).

(2) If H2 has an Euler family F2, and for all e ∈ E(H2), we have that e is traversed

in F2 via vertices in ϕ−1(e), then H1 has an Euler family F1 obtained from F2

by replacing each edge e with ϕ−1(e).

Proof: (1) Let F1 be an Euler family of H1. Obtain F2 from F1 by replacing

every edge e in a trail of F1 with ϕ(e). Then F2 is a collection of anchor-disjoint



3. PREVIOUS RESULTS 55

closed trails of H2: they are trails because each edge is used at most once and is

traversed via two vertices of H2 that lie in that edge; they are anchor-disjoint and

closed because the anchors are the same as in the trails of F1. Hence F2 is an Euler

family of H2 with the claimed properties.

(2) Let F2 be an Euler family of H2 such that, for all e ∈ E(H2), we have that e is

traversed in F2 via vertices in ϕ−1(e). Obtain F1 from F2 by replacing every edge

e in a trail of F2 with ϕ−1(e). As in (1), we have that F1 is an Euler family of H1,

since our extra assumption ensures that every edge ϕ−1(e) is traversed in F1 only by

anchors that it contains in H1.

A complete characterization of quasi-eulerian hypergraphs comes by way of a theorem

of Lovász [?]. There are a few ways we can use this theorem, and we will see how it

can be directly applied in Chapter 6. First, we must define a (g, f)-factor:

Definition 3.4.9. [2] Let G = (V,E) be a graph, and f, g : V → N be functions. A

(g, f)-factor of G is a spanning subgraph F of G such that g(v) ≤ degF (v) ≤ f(v)

for all v ∈ V . An (f, f)-factor is also called an f -factor.

And now, Lovász’s theorem:

Theorem 3.4.10. (The (g, f)-factor Theorem, Lovász [?, 2]) Let G = (V,E) be a

graph and f, g : V → N be functions such that g(x) ≤ f(x) and g(x) ≡ f(x) (mod 2)

for all x ∈ V . Then G has a (g, f)-factor F such that degF (x) ≡ f(x) (mod 2) for

all x ∈ V if and only if, for all disjoint S, T ⊆ V , we have∑
x∈S

f(x) +
∑
x∈T

(degG(x)− g(x))− εG(S, T )− q(S, T ) ≥ 0, (3.4.1)

where εG(S, T ) denotes the number of edges with one end in S and the other in T ,
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and q(S, T ) is the number of connected components C of G − (S ∪ T ) such that∑
x∈V (C)

f(x) + εG(V (C), T ) ≡ 1 (mod 2).

Bahmanian and Šajna use Theorem 3.4.10 to give a characterization of quasi-eulerian

hypergraphs, by regarding an Euler family as a certain (g, f)-factor of the incidence

graph.

Theorem 3.4.11. [4, Corollary 2.35] Let H = (V,E) be a hypergraph and G be its

incidence graph. For X, Y ⊆ V (G), let εG(X, Y ) denote the number of edges of G

with one end in X and the other in Y . Then H is quasi-eulerian if and only if, for

all disjoint sets S ⊆ E and T ⊆ V ∪ E, we have

2|S|+
∑
x∈T

degG(x)− 2|T ∩ E| − εG(S, T ∩ V )− q′(S, T ) ≥ 0, (3.4.2)

where q′(S, T ) is the number of connected components C of G − (S ∪ T ) such that

εG(V (C), T ) is odd.

Proof: We begin by defining functions g, f : V (G)→ N as follows:

g(x) =

{
0 if x ∈ V
2 if x ∈ E and f(x) =

{
2K if x ∈ V
2 if x ∈ E

where K is a sufficiently large integer.

Now, we can see that a (g, f)-factor F of G, with degF (x) even for all x ∈ V (F ),

corresponds to an Euler family for H by Theorem 3.4.1.

We will next show that, for any disjoint sets S ⊆ E and T ⊆ V ∪ E, we have that

Inequalities 3.4.1 and 3.4.2 are equivalent.

From the definitions of g and f we have∑
x∈T

(degG(x)− g(x))
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=
∑

x∈T∩V

(degG(x)− 0) +
∑

x∈T∩E

degG(x)− 2|T ∩ E|

=
∑
x∈T

degG(x)− 2|T ∩ E|, and

∑
x∈S

f(x) = 2|S|.

Since G is bipartite with S and T ∩ E being subsets of the same part, we have

εG(S, T ∩ E) = 0. Hence εG(S, T ) = εG(S, T ∩ V ).

Finally, since f(x) is even for all x ∈ V (G), we observe that q(S, T ) = q′(S, T ).

Therefore, Inequalities 3.4.1 and 3.4.2 are equivalent in the case where S ⊆ E and

T ⊆ V ∪ E.

Now, when S ∩ V 6= ∅, it suffices to show that Inequality 3.4.1 holds. But since the

left-hand side of the inequality contains a summand of f(x) for some x ∈ V , and this

quantity is arbitrarily large, it is evident that the inequality holds.

Therefore, if H is quasi-eulerian, then there exists a (g, f)-factor F of G such that,

for any x ∈ V (G), we have that degF (x) is even if x is a v-vertex, or degF (x) = 2 if

x is an e-vertex. Then Theorem 3.4.10 states that Inequality 3.4.1 holds for all dis-

joint sets S, T ⊆ V ∪ E, and so Inequality 3.4.2 holds for all disjoint sets S ⊆ E and

T ⊆ V ∪E. Conversely, if Inequality 3.4.2 holds for all disjoint sets S ⊆ E, T ⊆ V ∪E,

then Inequality 3.4.1 holds for all disjoint sets S, T ⊆ V ∪ E. Then Theorem 3.4.10

says that G admits a (g, f)-factor, and this corresponds to an Euler family of H by

Theorem 3.4.1.

Finally, we present a condition of necessity that will be taken into consideration in

Chapter 7.
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Theorem 3.4.12. [4, Theorem 2.7] Let H be a hypergraph. If H is eulerian, then H

has no non-trivial cut edges. If H is quasi-eulerian, then H has no strong cut edges.

Proof: Let H be a hypergraph. We first assume that H is eulerian. If H is

edgeless, then it is evident that it has no non-trivial cut edges, so assume H is not

edgeless. Let e ∈ E(H), and without loss of generality, let T = v0ev1e2v2 . . . vm−1emv0

be an Euler tour for H. Then W = v1e2v2 . . . vm−1emv0 is an open Euler trail for

H \ e.

Now, every edge of H \ e is in the same connected component of H \ e, so H \ e has

no more non-trivial connected components than H has. Hence e is not a non-trivial

cut edge of H, and we conclude that H does not have any non-trivial cut edges.

Now, assume instead that H is quasi-eulerian. Let F = {T1, . . . , Tk} be an Euler

family for H and suppose, for the sake of obtaining a contradiction, that e ∈ E(H)

is a strong cut edge of H. Without loss of generality, let T1 = v0ev1e2v2 . . . v`−1e`v0

be the component of F that traverses e.

Since e is a strong cut edge of H, its vertices lie in distinct connected components of

H \ e (see Remark 2.2.16). However, we can see that v1e2v2 . . . v`−1e`v0 is a walk in

H \ e from one of the vertices of e to another, a contradiction. Hence H contains no

strong cut edges.



Chapter 4

Eulerian Properties of Triple
Systems

As we have seen, there are some existing results about Euler families and Euler tours

for 3-uniform hypergraphs, and particularly triple systems. It seems natural to begin

our exploration with triple systems since they are highly structured hypergraphs. In

this chapter, we first find that it is not difficult to show that a TS(n, λ) is eulerian

if λ ≥ 2. We present the result as it was originally proven in a paper by Šajna and

the author [30], although more recent developments have greatly simplified the proof.

These updated tools will be discussed in Chapter 5.

After giving the proof for λ ≥ 2, we introduce some new notation in order to prove

that TS(n, 1) is eulerian for all n ≥ 13, and we use techniques that are specific to

Steiner triple systems. There are three other Steiner triple systems for n < 13; in two

cases we construct an Euler tour, while the remaining case TS(3, 1) is degenerate and

does not admit an Euler tour.

59
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4.1 Basic Tools and Lemmas

The following Theorem 4.1.1 and Lemma 4.1.2 are simple observations about a hyper-

graph and its incidence graph, but are nevertheless important and will be used freely

in our upcoming proof of Theorem 4.2.1, regarding triple systems of index 2 or greater.

Theorem 4.1.1. [3, Theorem 3.11] Let H be a hypergraph without empty edges, and

let G be its incidence graph. Then H is connected if and only if G is connected.

Lemma 4.1.2. [3, Lemma 2.8] Let H = (V,E) be a hypergraph, and suppose |V | ≥ 2

and that H has no empty edges. If v ∈ V is such that {v} 6∈ E, then G(H − v) =

G(H)− v.

4.2 Main Results

We use a different proof strategy depending on the index of the triple system, so we

divide the results into two main sections.

4.2.1 Results on Triple Systems of Index 2 or Greater

Here we present the main theorem for triple systems that are not Steiner triple sys-

tems. We develop new tools later, in Chapter 5, that enable us to prove this very

simply. However, we present a proof without those tools in order to properly motivate

their development.

Theorem 4.2.1. Let H be a 3-uniform hypergraph in which every pair of vertices lie

together in at least two edges. Then H is eulerian.

Proof: Since H is a covering 3-hypergraph, Corollary 3.4.7 implies that H has an

Euler family. Let F be a minimum Euler family of H, with |F| = k. Suppose k ≥ 2.
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Let G be the incidence graph of H and GF the spanning subgraph of G corresponding

to F . By Corollary 3.4.3, GF has exactly k non-trivial connected components, say

G1, . . . , Gk. We show that two of these components can be re-routed to yield an Euler

family with fewer than k closed strict trails.

Fix i ∈ {1, 2}. We first wish to find a v-vertex ui ∈ V (Gi) that is not a cut vertex. Let

Hi be a hypergraph whose incidence graph is Gi. Note that Hi is a graph since each

e-vertex of Gi has degree 2. Moreover, Theorem 4.1.1 implies that Hi is connected

since Gi is. Hence Hi has a vertex ui that is not a cut vertex [6, Corollary 2.7]. It

follows that Hi − ui is connected, and since G(Hi − ui) = G(Hi) − ui = Gi − ui by

Theorem 4.1.2, the graph Gi− ui is connected by Theorem 4.1.1. Therefore, we have

that ui is a v-vertex of Gi that is not a cut vertex.

By our assumption on H, v-vertices u1 and u2 are adjacent in G to two common

e-vertices, say e and f . In G, e is adjacent to u1, u2, and exactly one other vertex,

because |e| = 3. Since u1 and u2 are in distinct connected components of GF and

degGF (e) = 2, exactly one of u1 and u2 is a neighbour of e in GF , and the same is

true of f .

Case 1: e and f are adjacent in GF to the same v-vertex in {u1, u2}, say

to u1. Since u1 is not a cut vertex of G1, we have that G1 − u1 is connected. Hence

G1 \ {u1e, u1f} is either connected, or has u1 as an isolated vertex and G1 − u1 as

the unique non-trivial connected component. In either case, G1 \ {u1e, u1f} has a

unique non-trivial connected component; call it G∗1. Then, since u2e joins a vertex of

G∗1 to a vertex of G2, we have that (G∗1 ∪ G2) + {u2e, u2f} is connected. Obtain a

graph G∗ from GF by replacing connected components G1 and G2 with the connected

component (G∗1 ∪G2) + {u2e, u2f}.

Now, G∗ is a subgraph of G that either does not contain u1, or else degG∗(u1) =

degGF (u1) − 2. Furthermore, degG∗(u2) = degGF (u2) + 2, and degG∗(x) = degGF (x)

for all x ∈ V (G)\{u1, u2}. Therefore, Theorem 3.4.1 states that G∗ corresponds to an
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Euler family F∗ of H. Since G∗ has fewer non-trivial connected components than GF ,

we conclude that F∗ contains fewer closed strict trails than F , a contradiction.

Case 2: e and f are adjacent in GF to distinct v-vertices in {u1, u2}; say

e is adjacent to u1, and f is adjacent to u2. Since G1 and G2 are even graphs, they

have no cut edges [5, Theorem 2.10], and so G∗1 = G1 \ u1e and G∗2 = G2 \ u2f are

connected. It follows that (G∗1∪G∗2)+{u1f, u2e} is connected. Obtain a graph G∗ from

GF by replacing connected components G1 and G2 with the connected component

(G∗1 ∪ G∗2) + {u1f, u2e}. Then the degree of each vertex in G∗ is the same as in GF ,

so Theorem 3.4.1 implies that G∗ corresponds to an Euler family F∗ of H. Since G∗

has fewer non-trivial connected components than GF , as in the previous case, we see

that F∗ contradicts the minimality of F .

We conclude that k = 1, and the unique member of F is an Euler tour of H.

The following corollary settles the matter for triple systems of order 3.

Corollary 4.2.2. Let H = (V,E) be a TS-(3, λ). Then H is eulerian if and only if

λ ≥ 2.

Proof: If λ = 1, then it is evident that H has only a single edge. Clearly, a

hypergraph with a single edge cannot be eulerian.

On the other hand, if λ ≥ 2, then Theorem 4.2.1 implies that H is eulerian.

4.2.2 Results on Steiner Triple Systems

The proof that Steiner triple systems are eulerian is more difficult than for triple

systems of higher index. We will need some extra tools to accomplish this. We define
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an edge-corresponding function and the labeled 2-section so that we can recreate the

hypergraph from its 2-section. Following these definitions, Lemma 4.2.5 will tell us

when cycles in the 2-section correspond to cycles in the hypergraph.

Definition 4.2.3. Let H be a hypergraph with incidence function ψH and let G be

the 2-section of H with incidence function ψG. An edge-corresponding function from

G to H is any function ϕ : E(G)→ E(H) satisfying the following:

• for all e ∈ E(G), we have ϕ(e) = e′ for some e′ ∈ E(H) such that ψG(e) ⊆

ψH(e′); and

• for all e1, e2 ∈ E(G), e1 6= e2, with ψG(e1) = ψG(e2), we have ϕ(e1) 6= ϕ(e2).

Definition 4.2.4. Let H = (V,E) be a 3-uniform hypergraph, G be the 2-section of

H, and ϕ be an edge-corresponding function from G to H. Define a labeling function

` : E(G)→ V (G), for all uv ∈ E(G), by `(uv) = x where ϕ(uv) = {u, v, x}. Then we

call (G, `) the labeled 2-section of H.

Lemma 4.2.5. Let H = (V,E) be a simple 3-uniform hypergraph with 2-section G.

Let ϕ be an edge-corresponding function from G to H, and let (G, `) be the labeled

2-section of H.

Let C = v0e1v1 . . . vk−1ekv0 be a cycle in G, let C ′ = v0ϕ(e1)v1 . . . vk−1ϕ(ek)v0, and

assume that for all i ∈ Zk, we have (`(vi−1vi), `(vivi+1)) 6= (vi+1, vi−1). Then C ′ is a

cycle in H.

Proof: Let C and C ′ be be defined as above. Since each edge ϕ(ei) of H is incident

with both vi−1 and vi (because ei is, and ei ⊆ ϕ(ei)), and vi−1 6= vi for all i ∈ Zk, we

have that C ′ is a walk. Clearly, C ′ is closed. We must show that no vertices and no
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edges are repeated in the sequence.

Since C is a cycle, we have that v0, . . . , vk−1 are pairwise distinct, so C ′ does not repeat

any vertices. Suppose, however, that ϕ(ei) = ϕ(ej) for some i, j ∈ {1, . . . , k}, i 6=

j.

If |i−j| 6≡ 1 (mod k), then ϕ(ei) and ϕ(ej) are nonconsecutive in C ′, and consequently

ei and ej are disjoint. Since ei ⊆ ϕ(ei) and ej ⊆ ϕ(ej) = ϕ(ei), we conclude that

|ϕ(ei)| ≥ 4, a contradiction.

On the other hand, if |i − j| ≡ 1 (mod k), then without loss of generality, we have

j ≡ i + 1 (mod k). Then we must have ϕ(ei) = ϕ(ei+1) = {vi−1, vi, vi+1}. However,

ei = vi−1vi and ei+1 = vivi+1. Therefore, we must have (`(ei), `(ej)) = (vi+1, vi−1);

that is, (`(vi−1vi), `(vivi+1)) = (vi+1, vi−1). This contradicts our assumption on the

labels.

Therefore, the edges of C ′ are pairwise distinct, so C ′ is a cycle in H.

We need just one more small definition that will only be used in Theorem 4.2.7.

Definition 4.2.6. (Cycle Exchange) [5] LetG be a graph, and C = v0v1v2 . . . vk−1v0

be a cycle of G. Fix some i, j ∈ Zk such that |j − i| ≥ 2.

If vivj, vi+1vj+1 ∈ E(G), then we can perform a cycle exchange on vivi+1 and vjvj+1

by deleting vivi+1 and vjvj+1 from the cycle and adding vivj and vi+1vj+1 to the

cycle and rerouting appropriately. The cycle we obtain from this cycle exchange is

C ′ = v0v1 . . . vi−1vivjvj−1vj−2 . . . vi+1vj+1vj+2 . . . vk−1v0.

We are now ready to present the main theorem for Steiner triple systems. Our strat-

egy is to obtain a subgraph of the incidence graph G that corresponds to an Euler
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tour. Recall from Theorem 3.4.1 that we must find a spanning subgraph of G that

is even and connected, except that it may have up to one isolated v-vertex. We

take advantage of this exception by first finding a cycle C of H that traverses all of

the vertices except one. We then show that H \ E(C) is quasi-eulerian using Theo-

rem 3.4.6. We translate both C and the trails of the Euler family into G, and this

gives a subgraph of G that is connected and satisfies the degree requirements.

Theorem 4.2.7. Let H be an STS(n) with n ≥ 13. Then H is eulerian.

Proof: Let H = (V,E). We shall construct an Euler tour of H by concatenating

an (n− 1)-cycle CH with an Euler family of H \ E(CH).

Let G = (V,EG) be the complete graph on vertex set V . Let ϕ be an edge-

corresponding function from G to H, and let ` be the corresponding labeling function.

Observe that, for every v ∈ V , the set {e ∈ EG : `(e) = v} is a perfect matching of

G− v, and keep in mind that n is odd.

Fix a vertex u0 ∈ V , and let F = {e ∈ EG : `(e) = u0}. Since G − u0 is a complete

graph, we can extend F to a Hamilton cycle C = v0v1 . . . vn−2v0 of G− u0. We may

assume without loss of generality that `(v2iv2i+1) = u0 for all 0 ≤ i ≤ n−3
2

, while all

other edges of C have labels distinct from u0.

For each v ∈ V , define mv = |{e ∈ E(C) : `(e) = v}|, and let MC = max{mv :

v ∈ V \ {u0}}. Moreover, we define the labeling profile of C as the sequence LC =

(mu1 ,mu2 , . . .) containing all positive terms mui such that mu1 ≥ mu2 ≥ . . ., for

u1, u2, . . . , un−1 ∈ V \ {u0}. Observe that
n−1∑
i=1

mui = n−1
2

.

Let C be a Hamilton cycle of G − u0 that contains F and minimizes MC . We shall

now show that MC ≤ n−9
2

.

Suppose MC >
n−9

2
. Since n ≥ 13, we have MC ≥ n−7

2
≥ 3. Let v ∈ V \ {u0} be such

that mv = MC . Observe that at most three edges of C have their label in V \{u0, v},
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and the following cases arise.

Case 1: LC = (MC). Let v2i−1v2i and v2j−1v2j be two edges of C with label v.

Perform a cycle exchange on these two edges to obtain a Hamilton cycle C ′ of G−u0.

Since adjacent edges in G cannot have the same label, we have exchanged edges

labeled v for edges that are not labeled v, so we can see that MC′ ≤ max{MC−2, 2} <

MC , a contradiction.

Case 2: LC = (MC , i), where i ∈ {1, 2, 3}. Let u ∈ V \ {u0} be such that mu = i,

and let e and e′ be edges of C with label u and v, respectively. Performing a cycle

exchange on these two edges, we obtain a Hamilton cycle C ′ of G− u0 that contains

F and satisfies MC′ = max{MC − 1, 2} < MC , a contradiction.

Case 3: LC = (MC , 2, 1) or LC = (MC , 1, 1). Let u and x be distinct vertices in

V \ {u0} such that mu = 1 and mx ∈ {1, 2}. In C, there are two edges incident to u:

one is labeled u0 and the other edge, e, has a label in {v, x}. If `(e) = v, then let e′

be an edge of C labeled x; otherwise, let e′ be an edge labeled v. Performing a cycle

exchange on e and e′ we obtain a Hamilton cycle C ′ of G− u0 that contains F . Now

MC′ = max{MC − 1, 2} < MC , a contradiction.

Case 4: LC = (MC , 1, 1, 1). Let u, x, y ∈ V \ {u0} be such that mu = mx = my = 1.

If n ≥ 15, then MC ≥ n−7
2
≥ 4. We perform a cycle exchange to replace two of the

edges labeled v in C to obtain a Hamilton cycle C ′ of G− u0 that contains F . Now

MC′ ≤ max{MC − 2, 3} < MC , a contradiction.

We may thus assume n = 13, and since LC = (MC , 1, 1, 1), we have MC = 3. Obtain

C ′ by performing a cycle exchange on an edge labeled v and the edge labeled u.

Unless both of the new edges are labeled x or both are labeled y, we have that

MC′ < MC , a contradiction. Hence assume, without loss of generality, that both of

the new edges are labeled x. Then LC′ = (3, 2, 1), and we proceed as in Case 3 to

obtain a contradiction.
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We conclude that MC ≤ n−9
2

.

Next, we show that our cycle C = v0v1 . . . vn−2v0 corresponds to a cycle of H. Let

CH = v0ϕ(v0v1)v1 . . . vn−2ϕ(vn−2v0)v0. In order to apply Lemma 4.2.5, we must show

that, for all i ∈ Zk, we have (`(vi−1vi), `(vivi+1)) 6= (vi+1, vi−1). However, this follows

immediately from the fact that every second label of an edge in C is u0, and u0 is not

equal to vi for any i ∈ Zk. Hence we may apply Lemma 4.2.5 to find that CH is a

cycle in H. Since CH has length n − 1 and it does not traverse u0, it must traverse

all the vertices of V \ {u0}.

Let E(CH) denote the set of edges of H traversed by CH , and let H ′ = (H \E(CH))−

u0. We wish to show that H ′ has no cut edges. Since H ′ is 3-uniform, Theorem 3.4.6

will then imply that H ′ has an Euler family.

Take any u ∈ V (H ′) = V \{u0}. We have that degH(u) = n−1
2

. In C, there are exactly

two edges incident with u, and u appears as the label of at most MC other edges.

Therefore, u is contained in at most MC + 2 edges traversed by CH , and degH′(u) ≥
n−1

2
− (MC + 2). In particular, since MC ≤ n−9

2
, we have degH′(u) ≥ 2.

Suppose H ′ has a cut edge e = {x1, x2, x3}. Let X1 be the vertex set of a connected

component of H ′\e, and X2 = V (H ′)\X1. For i = 1, 2, we may assume without loss of

generality that xi ∈ Xi, and since degH′\e(xi) ≥ 1, we must have that |Xi| ≥ 3.

Consider the set S = {{y1, y2} : yi ∈ Xi, i = 1, 2}. Observe that every pair in S

must be contained in an edge in E(CH) ∪ {e}. There are n−1
2

edges in E(CH) that

contain u0, each containing one pair of vertices that could be an element of S; there

are n−1
2

edges in E(CH) that contain three vertices of X1 ∪X2, each containing up to

two pairs from S; and finally, e contains exactly two pairs of S. Therefore, edges in

E(CH) ∪ {e} contain at most n−1
2

+ 2 · n−1
2

+ 2 = 3n+1
2

pairs of S. Hence

|S| = |X1| · |X2| ≤
3n+ 1

2
.

Since |Xi| ≥ 3 for i = 1, 2, and |X1| + |X2| = n − 1, the left-hand side of this
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inequality is a quadratic function in |X1|, and is minimum when |X1| = 3. Hence

3(n−4) ≤ |X1|·|X2| ≤ 3n+1
2

, which simplifies to 3n ≤ 25, contradicting the assumption

n ≥ 13. We conclude that H ′ has no cut edges.

Theorem 3.4.6 now implies that H ′ admits an Euler family F = {T1, . . . , Tk}. Since

CH contains a common anchor with each trail in F , a concatenation of T1, . . . , Tk

with CH results in an Euler tour of H.

Finally, we give constructions of Euler tours in Steiner triple systems of order less

than 13.

Lemma 4.2.8. Let H = (V,E) be a TS(n, 1). If 4 ≤ n < 13, then H is eulerian.

Proof: Given that 4 ≤ n < 13 and H is a Steiner triple system, there are precisely

two possibilities for H up to isomorphism [8].

Case 1: H is the unique STS(7). Let V = {1, 2, . . . , 7} and (without loss of

generality) E = {123, 145, 167, 247, 256, 346, 357}. Then

(1, 145, 5, 256, 2, 123, 3, 357, 7, 247, 4, 346, 6, 167, 1)

is an Euler tour of H.

Case 2: H is the unique STS(9). Let V = {1, 2, . . . , 9} and (without loss of

generality) E = {123, 456, 789, 147, 258, 369, 159, 267, 348, 168, 249, 357}. Then

(1, 147, 7, 357, 3, 369, 6, 267, 2, 123, 3, 348, 8, 168, 6, 456, 4, 249, 9, 789, 8, 258, 5, 159, 1)

is an Euler tour of H.

We summarize our results in this chapter with a single theorem.
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Theorem 4.2.9. Let H be a TS(n, λ). Then H is eulerian if and only if H is not a

TS(3, 1).

Proof: If H is a TS(3, 1), then Corollary 4.2.2 states that H is not eulerian.

Conversely, assume H is not a TS(3, 1). If λ ≥ 2, then Theorem 4.2.1 states that H

is eulerian. If λ = 1 and n ≥ 13, then Theorem 4.2.7 states that H is eulerian. If

λ = 1 and 4 ≤ n < 13, then Lemma 4.2.8 demonstrates that H is eulerian.

Having settled the matter for triple systems, we shall set our sights on more general

hypergraphs in upcoming chapters. We will see that some of the strategies we used (for

triple systems of index at least 2) have great value when proving the more advanced

results.



Chapter 5

Eulerian Properties of Covering
Hypergraphs

In Chapter 4, we saw that all triple systems, with one exception, are eulerian. How-

ever, for Steiner triple systems, we relied on the highly structured nature of the edge

set in order to establish an Euler tour; for triple systems of higher index, we needed

the existence of two edges containing a certain pair of vertices.

The motivation for this chapter is to prove that Steiner quadruple systems are eule-

rian. An easy observation is that a Steiner quadruple system has, embedded in it, a

Steiner triple system plus some additional edges. To see this, delete any vertex from

a Steiner quadruple system, and note that the edges that contained that vertex now

have cardinality 3 and jointly contain every pair of vertices. However, the “leftover”

edges present a problem because it is not clear that we can add them to our Euler

tour of the Steiner triple system. What we have, in fact, can be reduced to a covering

3-hypergraph, so we need to know whether such hypergraphs are eulerian in order to

easily show that Steiner quadruple systems are eulerian.

We will spend the majority of our time in this chapter proving that covering 3-

hypergraphs are indeed eulerian, formally written as follows.

70
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Theorem 5.0.1. Let H be a covering 3-hypergraph. Then H is eulerian if and only

if it has at least two edges.

However, we need not stop at Steiner quadruple systems. Using the process described

earlier allows us to reduce any covering (k+1)-hypergraph to a covering k-hypergraph.

We will use Theorem 5.0.1 as the basis of induction for the main result of this chapter,

as follows.

Theorem 5.0.2. Let k ≥ 3, and let H be a covering k-hypergraph. Then H is

eulerian if and only if it has at least two edges.

5.1 Basic Facts

In order to prove a helpful result about cut vertices in graphs, we will need to present

some additional facts about graphs.

Definition 5.1.1. [5] A graph T is called a tree if it is connected and has no cycles.

If G is a graph, then a spanning tree of G is a connected spanning subgraph of G that

has no cycles. A leaf of a tree is a vertex of degree 1.

Note that every connected graph has a spanning tree, which can be obtained simply

by successively deleting edges of the graph that are not cut edges.

Proposition 5.1.2. [5, Proposition 4.2] Let T be a tree of order at least 2. Then T

has at least two leaves.

Proposition 5.1.3. Let G be a connected graph of order at least 2. Then G has at

least two vertices that are not cut vertices. Furthermore, if G admits a cycle of length
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k, then G has at least k vertices that are not cut vertices.

Proof: Since G is connected, there exists a spanning tree T in G. Then there

exist two leaves u and v of T , which are not cut vertices of T . These leaves cannot

be cut vertices of G either, for G− u and G− v contain T − u and T − v as spanning

trees, respectively. Hence G has at least two vertices that are not cut vertices.

Now suppose there exists a cycle C of length k ≥ 3 in G. Each vertex of C is either

a cut vertex of G or not. Fix some v ∈ V (C), and suppose v is a cut vertex of G.

Then G− v has connected components G1, . . . , G`, with ` ≥ 2. The vertices in C− v

are all in the same connected component, so assume G` is the connected component

containing the vertices of C−v. Now consider the following two connected subgraphs

of G: let X1 = G[V (G1) ∪ . . . ∪ V (G`−1) ∪ {v}] and let X2 = G[V (G`) ∪ {v}].

We first show that X1 and X2 are connected. Let a, b ∈ V (Xi) for some i ∈ {1, 2}.

Since G is connected, it admits an av-path P1. Since v is a cut vertex of G, we have

that a and the internal vertices of P1 all lie in V (Gj) for some j. Likewise, there

exists a vb-path P2 in G such that b and the internal vertices of P2 all lie in V (Gj) for

some (possibly different) j. Hence aP1vP2b is an ab-path in Xi, so Xi is connected

for i = 1, 2.

Note that X1 is a connected graph of order at least 2, since it contains v and at least

one other vertex in G1. We have shown that such a graph contains two vertices that

are not cut vertices. Let u be one of the non-cut vertices of X1 that is distinct from

v.

Observe that G− u is connected: for any x ∈ V (X1 − u), since X1 − u is connected,

there exists an xv-walk in X1 − u. For any y ∈ V (X2), since X2 is connected, there

exists a yv-walk in X2. Therefore, for any a, b ∈ V (G − u), there exists an ab-walk

obtained by concatenating an appropriate av-walk with a vb-walk. Hence G − u is

connected, so u is not a cut vertex of G.
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Therefore, letting v vary over all V (C), we obtain a collection N = {v′ : v ∈ V (C)} in

which v′ = v if v is not a cut vertex of G, and v′ is the non-cut vertex determined by

v, as above, otherwise. Note that if v′ is of the latter form, then it is not connected to

vertices of V (C) \ {v} in G− v. What remains to be seen is that N contains |V (C)|

distinct vertices.

Let x, y ∈ V (C) be different from each other, with corresponding vertices x′, y′ ∈ N ,

and suppose x′ = y′. Denote z = x′ = y′. If z ∈ V (C), then we have x = y, so

assume z 6∈ V (C). Let P1 be a shortest zx-path in G and P2 be a shortest zy-path

in G.

Since x 6= y, we have x ∈ V (C) \ {y}, so x and z are not connected in G− y. From

this, we conclude that P1 traverses y, so P1 contains a zy-path. Similarly, we find

that P2 traverses x, so P2 contains a zx-path. By the minimality of P1 and P2, this

implies that |V (P1)| > |V (P2)| > |V (P1)|, a contradiction.

Therefore, if x 6= y, then x′ 6= y′. Hence N contains |V (C)| = k distinct vertices that

are not cut vertices of G, so G has at least k vertices that are not cut vertices.

Corollary 5.1.4. Let H be a hypergraph with an Euler family F and let G be the

incidence graph of H. Let GF be the subgraph of G corresponding to F , and let G1

be one of the non-trivial connected components of GF . Then at least two v-vertices of

G1 are not cut vertices of GF . Furthermore, if G1 admits a cycle containing k of its

v-vertices, then at least k v-vertices of G1 are not cut vertices of GF .

Proof: Since G1 corresponds to a component of F , it has at least two vertices, its

v-vertices have even degree at least 2, and its e-vertices have degree 2. Hence G1 is

the incidence graph to some connected hypergraph H ′ that has order at least 2 and

whose edges have cardinality 2. Then Proposition 5.1.3 implies that H ′ has at least

two vertices that are not cut vertices. Since H ′ has only edges of cardinality 2, we

may apply Theorem 2.2.17 to find that these two vertices that are not cut vertices



5. EULERIAN PROPERTIES OF COVERING HYPERGRAPHS 74

correspond to v-vertices of G1 that are not cut vertices. Hence G1 has two v-vertices

that are not cut vertices.

Furthermore, suppose C is a cycle in G1 traversing k v-vertices. Then C corresponds

to a cycle of length k in H ′ by Remark 2.2.11. In this case, Proposition 5.1.3 implies

that H has at least k vertices that are not cut vertices. Once again, the cut vertices

of H correspond exactly to cut v-vertices of G by Theorem 2.2.17, so we conclude

that at least k v-vertices of G are not cut vertices.

5.2 Main Tool: Interchanging Cycles

As proved in Theorem 3.4.1, an Euler family of a hypergraph H can be represented

in its incidence graph G by an even subgraph of G in which every e-vertex has degree

2. If this subgraph has only one non-trivial connected component, then H is eule-

rian. Therefore, our strategy in attacking Theorem 5.0.1 is to start with a subgraph

corresponding to an Euler family, which may have many non-trivial connected com-

ponents. We will then swap some edges of the subgraph with some edges outside of

it to obtain a new subgraph with fewer non-trivial connected components.

We accomplish this by taking the symmetric difference of the corresponding subgraph

with an interchanging cycle.

Definition 5.2.1. (Interchanging Cycles) Let H be a hypergraph with Euler

family F . Denote by G the incidence graph of H, and by GF the subgraph of G

corresponding to F . For any e ∈ E(G), we call e a GF -edge if e ∈ E(GF), and a

non-GF -edge otherwise.

Suppose C is a cycle in G. If every e-vertex of G traversed by C is incident with

exactly one GF -edge of C (that is, an edge in E(GF) ∩E(C)), then we call C an F-
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interchanging cycle. Further, if C is an F -interchanging cycle and GF∆C has fewer

non-trivial connected components than GF , then we call C an F-diminishing cycle.

Lemma 5.2.2. Let H be a hypergraph and let F be an Euler family of H. Let G be the

incidence graph of H, and GF be the subgraph of G corresponding to F . Suppose there

is an F-interchanging cycle C in G. Then GF∆C is a subgraph of G corresponding to

an Euler family of H. Additionally, if F is minimum, then C is not F-diminishing.

Proof: We show that, in GF∆C, every v-vertex has even degree and every e-vertex

has degree 2.

Since C is a cycle ofG, every vertex ofG is incident with exactly 0 or 2 of its edges. Let

v be a v-vertex of G. If v is incident with no edges of C, then degGF∆C(v) = degGF (v).

If v is incident with two edges of C, then any number of these may be GF -edges: if

zero, then degGF∆C(v) = degGF (v) + 2; if one, then degGF∆C(v) = degGF (v); if two,

then degGF∆C(v) = degGF (v) − 2. In any case, we have that degGF∆C(v) is even

because degGF (v) is.

Now let e be an e-vertex ofG. If e is incident with no edges of E(C), then degGF∆C(e) =

degGF (e) = 2. Otherwise, e is incident with two edges of E(C), and exactly one of

them is a GF -edge because C is an F -interchanging cycle. Once again, we have

degGF∆C(e) = degGF (e) = 2.

Therefore, GF∆C is a subgraph of G corresponding to an Euler family of H, as

claimed.

The last statement follows immediately from the definition of F -diminishing.
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5.3 Technical Lemmas

In this section, we produce results that will be repeatedly used in the larger theo-

rems to come. These reflect broad techniques or strategies that we employ to find

F -diminishing cycles, leaving only specific case work to be done in the main theo-

rems.

Lemma 5.3.1 gives us a simple way of determining whether an F -interchanging cycle

is F -diminishing, by investigating the connectedness of the incidence graph.

Corollaries 5.3.2 and 5.3.3 provide ways to find a cycle that satisfies the conditions of

Lemma 5.3.1.

Corollary 5.3.4 is a direct result of Corollary 5.3.3, assuring us that we can always

find an F -diminishing cycle of the kind described therein as long as the corresponding

subgraph of the incidence graph has at least three connected components.

Finally, Corollary 5.3.5 summarizes these results, reducing the set of cases we need

to check. We conclude that the only non-eulerian covering 3-hypergraphs must have

Euler families of cardinality exactly 2.

Lemma 5.3.1. Let H be a hypergraph with incidence graph G. Let F be an Eu-

ler family of H and let GF be the subgraph of G corresponding to F . Let C be

an F-interchanging cycle in G, and suppose C traverses vertices that lie in distinct

connected components G1, . . . , Gk of GF .

If, for each i = 1, . . . , k, we have that Gi \ E(C) has just one non-trivial connected

component, then (GF∆C)[V (G1) ∪ . . . ∪ V (Gk)] has just one non-trivial connected

component.

Proof: Note that all vertices of C lie in GF , but not all edges. Hence we can

write C = x0P0y0x1P1y1 . . . x`−1P`−1y`−1x0, where
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• x0, . . . , x`−1, and y0, . . . , y`−1 are vertices of GF ;

• Pi, for each i ∈ Z`, is a maximal xiyi-subpath of C contained in a single

connected component, say Gf(i), of GF .

Hence y0x1, y1x2, . . . y`−2x`−1, and y`−1x0 each join a pair of vertices that are in dif-

ferent connected components of GF . Hence these edges are non-GF -edges of C, so we

see that these are in E(GF∆C). Note that some Pi may be trivial, and f(i) = f(j)

for i 6= j is possible.

Define an auxiliary graph L as follows:

• V (L) = {connected components of Gi \ E(C), for i = 1, . . . , k};

• L has an edge gh for each edge of C with one end in g and the other in h.

L has a single non-trivial connected component, with an Euler tour TL corresponding

to C. If TL traverses the non-trivial connected component of Gi \ E(C) for all i ∈

{1, . . . , k}, then (GF∆C)[V (G1) ∪ . . . ∪ V (Gk)] has a unique non-trivial connected

component. (Observe that this graph is the union of the connected components of

all Gi \E(C), together with the edges of C \E(GF), that is, edges corresponding to

L.)

Suppose, to the contrary, that there exists s ∈ {1, . . . , k} such that the non-trivial

connected component of Gs\E(C) is not traversed by TL. Then for all i ∈ {0, . . . , `−

1} such that f(i) = s, we have that Pi is trivial, and so Gs contains no edges of C.

Hence Gs \ E(C) = Gs. But C traverses a vertex of Gs by assumption, so Gs must

be trivial — a contradiction.

We conclude that CL does traverse the non-trivial connected component of Gi \E(C)

for all i ∈ {1, . . . , k}, so (GF∆C)[V (G1)∪ . . .∪ V (Gk)] has a unique non-trivial con-

nected component.
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Corollary 5.3.2. Let H be a hypergraph with incidence graph G. Let F be an Eu-

ler family of H and let GF be the subgraph of G corresponding to F . Let C =

v0e1v1e2 . . . vk−1ekv0 be a cycle in G.

If C traverses exactly one GF -edge of each of at least two connected components of

GF , then C is an F-diminishing cycle.

Proof: Let Gi, for i = 1, . . . , k, be the non-trivial connected components of GF .

Since the connected components that have an edge traversed by C in the assump-

tion must be non-trivial, let us assume that G1 and G2 are two of the connected

components of GF that each have exactly one GF -edge traversed by C.

Let i ∈ {1, 2}. Then Theorem 3.4.1 demonstrates that Gi is even, so Theorem 3.1.2

implies that it is eulerian. Proposition 2.1.11 states that Gi is 2-edge-connected, hence

Gi \E(C) is connected. Finally, Lemma 5.3.1 implies that (GF∆C)[V (G1) ∪ V (G2)]

has just one non-trivial connected component.

Hence GF∆C has k − 1 non-trivial connected components. By definition, we have

that C is an F -diminishing cycle.

Corollary 5.3.3. Let H be a covering 3-hypergraph with incidence graph G. Let F

be an Euler family of H and let GF be the subgraph of G corresponding to F . Let

C = v0e1v1e2 . . . vk−1ekv0 be a cycle in G.

(i) Suppose v0, . . . , vk−1 are v-vertices of pairwise distinct connected components of

GF , and that none of v0, . . . , vk−1 are cut vertices of GF . Further, suppose

that at least two of these v-vertices are non-isolated in GF . Then C is an F-

diminishing cycle.

(ii) If C traverses a v-vertex in every non-trivial connected component of GF , then

H is eulerian, with an Euler tour corresponding to GF∆C.

Proof: We first show that C is an F -interchanging cycle by showing that every
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e-vertex traversed by C is incident with exactly one edge in E(GF) ∩ E(C). The e-

vertices traversed by C are e1, e2, . . . , ek, so fix i ∈ {1, 2, . . . , k}. Then ei is adjacent

to vi−1 and vi in C (where indices of v-vertices are evaluated modulo k). Since vi−1

and vi lie in distinct connected components of GF , we cannot have that both vi−1ei

and viei are GF -edges. On the other hand, since degG(ei) = 3, we know that ei

is incident with only one non-GF -edge in G, hence at least one of vi−1ei and viei

is a GF -edge. Thus we conclude that exactly one of vi−1ei and viei is a GF -edge,

demonstrating that C is an F -interchanging cycle.

Now, let G0, . . . , Gk−1 be the connected components of GF containing v0, . . . , vk−1,

respectively. We will show that G0 \E(C), . . . , Gk−1 \E(C) each have just one non-

trivial connected component, so that we may apply Lemma 5.3.1.

Consider connected component Gi, for some i ∈ Zk. It contains a single v-vertex vi

traversed by C, so necessarily there are only up to two edges of C contained in Gi.

If zero or one edge, then Gi \ E(C) is connected because Gi is a 2-edge-connected

graph. However, if there are two edges of C in Gi, then we observe that, since vi is

not a cut vertex of Gi, we know that Gi−vi is connected. Then Gi−vi is a connected

subgraph of Gi \ E(C) with just one vertex fewer: this vertex may be isolated in

Gi \ E(C) or not. In either case, there is just one non-trivial connected component

in Gi \ E(C).

Therefore, we may apply Lemma 5.3.1 and conclude that (GF∆C)[V (G0) ∪ . . . ∪

V (Gk−1)] has just one non-trivial connected component. By assumption, at least

two of v0, . . . , vk−1 are not isolated in GF , so at least two of G0, . . . , Gk−1 are non-

trivial. Hence GF∆C has fewer non-trivial connected components than GF , so C is

an F -diminishing cycle.

In addition, if GF has no non-trivial connected components except those among

G0, . . . , Gk−1, then GF∆C has just one non-trivial connected component. In that

case, Lemma 5.2.2 and Theorem 3.4.1 imply that GF∆C corresponds to an Euler
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tour, and thus H is eulerian.

Corollary 5.3.4. Let H be a covering 3-hypergraph with incidence graph G. Let F

be an Euler family of H and GF be the subgraph of G corresponding to F . If GF has

at least three connected components, then H is eulerian.

Proof: Let Gi, for i ∈ Zk, be the connected components of GF , and suppose

k ≥ 3. Corollary 5.1.4 implies that each non-trivial connected component of GF has

a v-vertex that is not a cut vertex of GF , whereas any v-vertices of trivial connected

components are not cut vertices of GF , either. From each Gi, choose a v-vertex vi

that is not a cut vertex. We will construct an F -interchanging cycle that traverses vi

for each i ∈ Zk.

Since H is a covering 3-hypergraph, there exists an edge ei ∈ E(H) containing vi−1

and vi, for each i = 1, . . . , k (where vk denotes v0). Define C = v0e1v1e2 . . . vk−1ekv0,

a closed walk of G.

To show that C is a cycle, we must show that e1, . . . , ek are pairwise distinct. Suppose,

however, that ei = ej for some i < j ≤ k. Then vi−1, vi, vj−1, vj ∈ ei. However, since

|ei| = 3 in H, we must have either that vi = vj−1, or vj = vi−1 (the latter implying

i = 1 and j = k). In either case, we see that ei is adjacent in G to three v-vertices

that lie in different connected components in GF . This implies that ei is incident with

at least two non-GF -edges, a contradiction since ei is incident with two GF -edges.

Hence ei 6= ej for every i < j ≤ k.

Now, by our selection of v1, . . . , vk, we see that C is a cycle that traverses every

connected component of GF . By Lemma 3.4.4, at most one of these connected com-

ponents is trivial, so at least two are not. Therefore, Corollary 5.3.3 allows us to

conclude that H is eulerian.



5. EULERIAN PROPERTIES OF COVERING HYPERGRAPHS 81

Corollary 5.3.5. Let H be a covering 3-hypergraph with incidence graph G. Let F

be a minimum Euler family of H and GF be the subgraph of G corresponding to F .

Then |F| ≤ 2. If GF has an isolated vertex, then H is eulerian.

Proof: Suppose |F| ≥ 3. Then GF has at least three non-trivial connected

components. Corollary 5.3.4 implies that H is eulerian, a contradiction. So |F| ≤

2.

Suppose GF has an isolated vertex. If |F| = 1, then H is eulerian. On the other

hand, if |F| = 2, then F has three connected components: two non-trivial and one

trivial. Corollary 5.3.4 implies that H is eulerian.

5.4 Proof of Theorem 5.0.1 for n ≥ 7

This is a long proof, so it is necessary to summarize it in sections.

We first prove Lemma 5.4.1, which will lay down the groundwork for our proof strat-

egy. Lemma 5.4.2 will furnish our proof with most of the details needed to set up

the case work. In Theorem 5.4.3, we will begin with a minimum Euler family F

for H that has two components and which minimizes the degree of an arbitrary, but

fixed, vertex v0. Lemma 5.4.1 assures us that we need only find an F -interchanging

cycle — not an F -diminishing cycle, as expected — as long as it traverses v0. No

matter what the Euler family looks like after we perform such an interchange, it will

either contradict one of the minimality conditions, or be an Euler family with three

components.

There are two main stages involved in proving Theorem 5.4.3.

In the first stage, handled by Lemma 5.4.2, we explore the neighbourhood of v0. Since

we would like to find an F -interchanging cycle traversing v0, we need to consider every
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way that this might not be possible. Such a cycle would have to traverse two of v0’s

neighbours in H, called a and b, which are not joined to v0 via a 2-path in GF . This

reduces the problem to finding a particular ab-path in G. We assume such a path

does not exist, and so we force a and b to be in certain locations relative to v0.

Once Lemma 5.4.2 is completed, we use these facts about a, b, and the rest of GF

and start the proof of Theorem 5.4.3 by breaking it into cases. The cases depend on

the location of at least two v-vertices that have not been explored already. We need

both of these v-vertices to complete the proof, which is why the proof only applies

when the order of H is at least 7. Generally, we find an explicit F -diminishing cycle,

but sometimes we find an F -interchanging cycle that brings us back to one of the

previous, solved cases.

Lemma 5.4.1. Let H be a covering 3-hypergraph with incidence graph G, and let

v0 ∈ V (H). Let F be a minimum Euler family for H such that degGF (v0) is minimum

over all minimum Euler families, where GF is the subgraph of G corresponding to F .

Suppose C is an F-interchanging cycle. If H is not eulerian, then degGF∆C(v0) ≥

degGF (v0) and GF∆C has exactly two connected components, both non-trivial.

Proof: Assume H is not eulerian. Then Corollary 5.3.5 implies that GF has

exactly two connected components, both non-trivial. Suppose, to the contrary, that

C is an F -interchanging cycle with degGF∆C(v0) < degGF (v0). If GF∆C has more

non-trivial connected components than GF , then GF∆C has at least three connected

components, so Corollary 5.3.4 implies that H is eulerian, a contradiction. Hence

GF∆C has exactly two non-trivial connected components, and so it corresponds to

a minimum Euler family, contradicting the fact that degGF (v0) is minimum over all

minimum Euler families.

Therefore, we find that degGF∆C(v0) ≥ degGF (v0). Furthermore, Corollary 5.3.5 im-

plies that GF∆C cannot have any isolated vertices. Hence GF∆C has exactly two
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connected components, both non-trivial.

Lemma 5.4.2. Let H be a covering 3-hypergraph of order n ≥ 7 that is not eulerian.

Let G be the incidence graph of H, and let v0 be a v-vertex of G. Let F be a minimum

Euler family of H with the property that degGF (v0) is minimum over all minimum

Euler families of H, where GF is the subgraph of G corresponding to F .

Suppose further that there exist distinct e-vertices e1, e2 ∈ V (G) such that v0e1, v0e2 ∈

E(GF). Let e1 = v0v1a for some v1 and a, and let e2 = v0v2b for some vertices v2 and

b of H. Assume that v1e1 and v2e2 are GF -edges.

Then the following hold:

(0) |F| = 2 and a 6= b;

(1) If there exists an e-vertex e of G with e 6∈ {e1, e2}, such that ea, eb ∈ E(G), then

both ea and eb are GF -edges.

(2) a and b lie in the same connected component of GF ;

(3) Let x ∈ V (H) \ {v0, v1, v2} such that x lies in a different connected component

of GF from a and b. Then there exists an edge ex = abx in H; any edge of H

containing x and a, or x and b, must be parallel to ex; and xex is a non-GF -edge.

(4) a and b do not lie in the same connected component of GF as v0.

Proof: (0): If |F| ≥ 3, then Corollary 5.3.5 implies that H is eulerian, contradict-

ing our assumption. Likewise, if |F| ≤ 1, then H is eulerian or empty, a contradiction.

Hence |F| = 2.

Suppose a = b. Then C = v0e1ae2v0 is an F -interchanging cycle with degGF∆C(v0) <

degGF (v0), a contradiction by Lemma 5.4.1. Hence a 6= b.

(1): Suppose to the contrary that at least one (and hence exactly one) of ea and eb is a
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non-GF -edge. Then C = v0e1aebe2v0 is an F -interchanging cycle with degGF∆C(v0) <

degGF (v0), a contradiction by Lemma 5.4.1.

Therefore, both ea and eb are GF -edges, as claimed.

(2): Suppose a and b lie in different connected components of GF . Since H is a

covering 3-hypergraph, there exists an edge e ∈ E(H) containing both a and b. By

our supposition, one of ea and eb is necessarily a non-GF -edge, so (1) implies that

e = e1 or e = e2. Without loss of generality, assume e = e1; hence v1 = b.

Observe that v0, v1, and v2 lie in the same connected component of GF . We must

have a 6= v2, otherwise a and b are in the same connected component of GF . Let

e3 ∈ E(H) be an edge containing a and v2. Let C1 = ae1be2v2e3a. Then C1 is an

F -interchanging cycle because a and v2 are in distinct connected components of GF ,

so at least one (and hence exactly one) of v2e3 and ae3 is not in GF .

Define F ′ to be an Euler family corresponding to GF∆C1, and let GF ′ = GF∆C1 for

brevity’s sake. Since H is not eulerian, Lemma 5.4.1 implies that GF ′ has exactly

two connected components, both non-trivial. We claim that v0 and v2 lie in different

connected components of GF ′ : first of all, we have that be2v0e1a is a path in GF ′ ,

so these v-vertices all lie in a connected component of GF ′ together. If v2 also lies

in this connected component of GF ′ , then all the other v-vertices of the graph lie in

the same connected component with them as well, since their connectivity to v0, b, v2,

and a are the same in GF as in GF ′ . Since we know GF ′ must have two connected

components, we must have v2 disconnected from v0, b, and a.

Now, we cannot have that a is isolated in GF because Corollary 5.3.5 implies that H

is eulerian, contradicting our assumptions on H. Let c 6= a be a v-vertex in the same

connected component of GF as a. We wish to construct an F ′-interchanging cycle

traversing b, v2, c, and v0, but we must first find an edge containing c and b, and a

different edge containing c and v2.
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Suppose, however, that there exists an edge e′ = v2bc ∈ E(H). Since c is in a different

connected component of GF from b and v2, we have that e′c is a non-GF -edge. Since

e′ 6∈ V (C1), this implies e′c is a non-GF ′-edge as well. However, since v2 and b are in

different connected components of GF ′ , we have that either e′v2 or e′b is a non-GF ′-

edge, contradicting the fact that e′ is only incident with one non-GF ′-edge.

So v2bc 6∈ E(H). Then there exist distinct edges e4, e5 ∈ E(H), where e4 contains b

and c, and e5 contains v2 and c. Since c is in a different connected component of GF

from both v2 and b, we have that one of be4 and ce4 is a non-GF -edge and one of v2e5

and ce5 is a non-GF -edge. As neither e4 nor e5 is in V (C1), the status of these edges

as non-GF -edges is preserved so that they are non-GF ′-edges as well.

Now, let C2 = v0e1be4ce5v2e2v0. Observe that C2 is an F ′-interchanging cycle of

GF ′ with degGF′∆C2
(v0) < degGF (v0). Since |F ′| = 2 and degGF′ (v0) = degGF (v0) is

minimum over all minimum Euler families, we may apply Lemma 5.4.1 to obtain a

contradiction.

Therefore, we must have a and b lying in the same connected component of GF ,

completing the proof of (2).

(3): Let x ∈ V (H)\{v0, v1, v2} and assume x lies in a different connected component

of GF from a and b. Since H is a covering 3-hypergraph, there exists an edge e ∈

E(H) containing a and x, and some e′ ∈ E(H) containing b and x. If e 6= e′,

then C = v0e1aexe
′be2v0 is an F -interchanging cycle with degGF∆C(v0) < degGF (v0),

contradicting Lemma 5.4.1. Hence e = abx = e′, and ae and be are GF -edges by (1),

so xe is a non-GF -edge.

(4): Suppose that a and b lie in the same connected component of GF as v0. Since

GF consists of two non-trivial connected components, there must be at least two

v-vertices in the other connected component. Let G1 be the connected component

containing v0 and let G2 be the other connected component, which contains some

v-vertices c and d.
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(3) states that there are edges ec = abc and ed = abd such that cec and ded are

non-GF -edges.

Now, there exists an edge e3 ∈ E(H) containing v0 and c. Note e3 6∈ {e1, e2} because

e3 contains c, but neither e1 nor e2 do. Let C = v0e1aecce3v0. Then C is an F -

interchanging cycle because c and v0 do not lie in the same connected component

of GF . If v0e3 ∈ V (G1), then there are two GF -edges of C incident with v0 and so

degGF∆C(v0) < degGF (v0), contradicting Lemma 5.4.1. Hence v0e3 is a non-GF -edge

and so e3 ∈ V (G2).

Since G2 is a 2-edge-connected graph and G2\E(C) = G2\ce3, we have that G2\E(C)

is connected.

Since G1 is 2-edge-connected, we have that G1 \ v0e1 is connected. Then aedbec is

an aec-path in (G1 \ v0e1) \ aec, so (G1 \ v0e1) \ ae = G1 \ E(C) is connected, by

Proposition 2.1.9. Then GF∆C has just one non-trivial connected component by

Lemma 5.3.1, contradicting the fact that H is not eulerian.

We conclude that a and b are not in the same connected component of GF as v0,

completing the proof of (4).

With the setup afforded by Lemma 5.4.2, we know a lot about five of the v-vertices

of GF , namely v0, v1, v2, a, and b. In Theorem 5.4.3, we need only investigate the

positions of two other vertices, and this will be enough to show that there must be

an F -interchanging cycle that contradicts our assumption that H is not eulerian.

Theorem 5.4.3. Let H be a covering 3-hypergraph of order n ≥ 7. Then H is

eulerian.

Proof: Suppose H is not eulerian. We establish the same setup as in the statement

of Lemma 5.4.2. Let G be the incidence graph of H, and fix some v-vertex v0.
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Corollary 3.4.7 states that H is quasi-eulerian, so let F be a minimum Euler family

of H with the property that degGF (v0) is minimum over all minimum Euler families

of H. By Corollary 5.3.5, we know that |F| = 2 and that v0 is not isolated in GF ,

hence degGF (v0) ≥ 2.

We have distinct e-vertices e1, e2 ∈ V (G) such that v0e1, v0e2 ∈ E(GF). Let e1 = v0v1a

for some v1 and a, and let e2 = v0v2b for some vertices v2 and b. (Note that we cannot

assume that v1, v2, a, and b are pairwise distinct, except that v1 6= a and v2 6= b.) Since

the e-vertices e1 and e2 are each incident with one non-GF -edge, let ae1 and be2 be

non-GF -edges. Then v1e1 and v2e2 are GF -edges.

Now H satisfies the assumptions of Lemma 5.4.2, with v-vertices and e-vertices named

exactly as in the statement of that lemma. We have that v0, v1, and v2 lie in the same

connected component G1 of GF , and a and b lie in the other connected component G2

of GF . (Hence {v1, v2} ∩ {a, b} = ∅ and a 6= b, but it is possible that v1 = v2.)

Since |V (H)| ≥ 7, we must have at least two v-vertices in GF besides v0, v1, v2, a,

and b. We shall complete the proof by splitting into cases depending on where two of

these additional v-vertices lie.

Case 1: there exist v-vertices c ∈ V (G1) \ {v0, v1, v2} and d ∈ V (G2) \

{a, b}.

Since c lies in a different connected component from a and b, Lemma 5.4.2 (3) states

that there exists an edge ec = abc.

Let e3 ∈ E(H) be an edge containing a and d, and let e4 ∈ E(H) be an edge

containing b and d. Suppose ae3 or de3 is a non-GF -edge. We know there exists

an edge f ∈ E(H) containing c and d, and f 6= e3 because e3 must contain three

v-vertices of G2, but f does not. Hence C = v0e1ae3dfcecbe2v0 is an F -interchanging

cycle with degGF∆C(v0) < degGF (v0), a contradiction with Lemma 5.4.1. Hence ae3

and de3 are GF -edges. By a similar argument, we conclude that be4 and de4 are
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GF -edges. (Note that this also implies that e3 6= e4.)

Let x be the v-vertex such that xe3 is a non-GF -edge (so x 6∈ {a, d}). If x = b,

then C = v0e1ae3be2v0 is an F -interchanging cycle with degGF∆C(v0) < degGF (v0),

contradicting Lemma 5.4.1. Hence x 6= b.

If x ∈ V (G2), then there exists an edge f containing x and c, and as we have

seen before, we have that C = v0e1ae3xfcecbe2v0 is an F -interchanging cycle with

degGF∆C(v0) < degGF (v0), contradicting Lemma 5.4.1. Hence x ∈ V (G1).

If x ∈ {v0, v1}, then C = xe1ae3x is an F -interchanging cycle with just one GF -edge

in each of G1 and G2. Then Corollary 5.3.2 states that C is an F -diminishing cycle,

contradicting Lemma 5.2.2.

If x ∈ V (G1) \ {v0, v1, v2}, then by Lemma 5.4.2 (3), there exists an edge ex =

abx. Then C = v0e1ae3xexbe2v0 is an F -interchanging cycle with degGF∆C(v0) <

degGF (v0), contradicting Lemma 5.4.1.

We thus conclude that x = v2 (and v1 6= v2), so e3 = adv2. By an analogous argument

(swapping the roles of a and b, of v1 and v2, and of e1 and e2), we may conclude that

e4 = bdv1.

Let e5 be an edge containing c and d; note that e5 6∈ {ec, e3, e2} because none of

those edges contain both c and d. Let C = becce5de3v2e2b. Then C is an F -

interchanging cycle. Define GF ′ = GF∆C and let F ′ be an Euler family corresponding

to GF ′ . Lemma 5.4.1 states that GF ′ has exactly two connected components, both

non-trivial.

Notice that be2 and v0e2 are GF ′-edges, so v0 and b are in the same connected com-

ponent of GF ′ . We also have that be4d is a 2-path of GF that is edge-disjoint from

C, so be4d is a 2-path of GF ′ as well. Finally, we have that v0e1v1 is a 2-path of GF ′

as it is in GF and is edge-disjoint from C. Hence v0, b, d, and v1 are all in the same

connected component of GF ′ .
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On the other hand, we have that ae3v2 and aecc are 2-paths of GF ′ , so a, v2, and c

are in a connected component of GF ′ together. Of course, this must be a different

connected component from the one containing v0, for if not, then every non-isolated

vertex of GF ′ lies in the same connected component (any non-isolated v-vertex other

than these seven must lie in the same connected component as one of them, for they

do so in GF).

To summarize what we know about GF ′ , we have v0, v1, b, and d in one connected

component, and v2, a, and c in the other. (Any additional v-vertices may be in either

connected component.)

Observe that, since F is a minimum Euler family such that degGF′ (v0) = degGF (v0)

is a minimum, we have that GF ′ satisfies the initial assumptions made of GF . We

may apply Lemma 5.4.2 to GF ′ , with the roles of v2 and b swapped. Since d is an

additional v-vertex in v0’s connected component and c is an additional v-vertex in a’s

connected component, we conclude that GF ′ falls into Case 1 of this proof as well,

with the roles of c and d swapped.

We conclude that, in particular, there exists an e-vertex in GF ′ that corresponds to

e4 in GF . Since e4 = bdv1 ∈ E(H), the corresponding edge must be v1v2c.

Call this edge e6 = v1v2c ∈ E(H). Let C ′ = v0e1aecbe4v1e6v2e2v0. Observe that C ′ is

an F ′-interchanging cycle with degGF′∆C′(v0) < degGF′ (v0), contradicting Lemma 5.4.1.

This concludes Case 1.

Case 2: a and b are the only v-vertices in G2.

Let X = V (H)\{v0, v1, v2, a, b}. We know |X| ≥ 2 since |V (H)| ≥ 7, and X ⊆ V (G1)

by assumption.

Fix some x ∈ X. There exists an edge ex = abx by Lemma 5.4.2 (3).

Claim: For any e ∈ E(H): if xe is a non-GF -edge, then e = abx.
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Suppose xe is a non-GF -edge, but e 6= abx. Evidently, we must have a 6∈ e and b 6∈ e

by Lemma 5.4.2.3.

If v0 ∈ e, then C = v0e1aexxev0 is an F -interchanging cycle with degGF∆C(v0) <

degGF (v0), since v0e is a GF -edge. This contradicts Lemma 5.4.1.

If e = xv1v2, then this implies v1 6= b and so there must be an edge e4 (distinct

from e2) containing b and v1. Let C = v0e1aexxev1e4be2v0. Observe that C is an F -

interchanging cycle with degGF∆C(v0) < degGF (v0), contradicting Lemma 5.4.1.

Therefore, we must have y ∈ e for some y ∈ X, y 6= x. Lemma 5.4.2 (3) states

that there exists an edge ey = aby ∈ E(H). Let C = v0e1aexxeyeybe2v0. Observe

that C is an F -interchanging cycle with degGF∆C(v0) < degGF (v0), contradicting

Lemma 5.4.1.

This completes the proof of the claim.

Now, there exists an edge e3 containing v0 and x, and, by the above claim, we know

that xe3 is a GF -edge. Suppose first that v0e3 is a GF -edge, and let y be the v-vertex

such that ye3 is a non-GF -edge.

If y = a, then C = v0e1ae3v0 is an F -interchanging cycle with degGF∆C(v0) <

degGF (v0), contradicting Lemma 5.4.1. If y = b, then C = v0e2be3v0 similarly yields

a contradiction.

Hence y ∈ V (G1). Note that we may apply Lemma 5.4.2 to GF in which x takes the

role of v2, and y takes the role of b, and e3 = v0xy takes the role of e2 = v0v2b (all

other named vertices and edges take the role of themselves). Then Lemma 5.4.2 (2)

implies that a and y lie in the same connected component, a contradiction.

Since we obtain a contradiction if v0e3 is a GF -edge, it must be a non-GF -edge. Let

C = v0e1aexxe3v0. Then C is an F -interchanging cycle. Define GF ′ = GF∆C and

let F ′ be an Euler family corresponding to GF ′ . Lemma 5.4.1 implies that GF ′ has

exactly two connected components, both non-trivial. We will use GF ′ to show that
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v1 6= v2.

We have that v0e2v2 is a 2-path of GF ′ , so v0 and v2 are in the same connected

component.

Let z be an arbitrary element of X \ {x}. By Lemma 5.4.2 (3), there exists an edge

ez = abz ∈ E(H), and aezb is a 2-path in GF . Hence aezb is also a 2-path in GF ′ .

This implies that a and b are in the same connected component of GF ′ .

We have that ae1v1 is a 2-path of GF ′ , so a and v1 are in the same connected compo-

nent as well.

We also have that bexx is a 2-path of GF ′ , so b and x are in the same connected

component of GF ′ .

To summarize what we know of GF ′ so far, we have a, b, v1, and x together in a

connected component, and v0 and v2 together in a connected component. For any

v ∈ V (H)\{v0, v1, v2, a, b, x}, there exists a minimum-length path P in GF connecting

v to one of these six v-vertices that does not traverse any of the other six v-vertices,

so P is also a path in GF ′ . Therefore, every vertex in V (H) \ {v0, v1, v2, a, b, x} is

connected in GF ′ to one of these six vertices. Hence we cannot have b and v2 together

in the same connected component, otherwise GF ′ has only one connected component;

but we know GF ′ has exactly two connected components.

If v1 = v2, then we immediately obtain a contradiction since that would imply that

GF ′ has just one non-trivial connected component. Hence v1 6= v2, completing our

claim, so we return our attention to GF and H. We now have that there exists an

edge e5 6= e1 containing a and v2.

If e5 = av2y for some y ∈ X, then we obtain a contradiction since there cannot be an

edge containing a and y without b, by Lemma 5.4.2 (3).

If e5 = av2b, then C ′ = v2e2be5v2 is an F -interchanging cycle with one GF -edge

in each connected component. Since the connected components are even graphs,
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Theorem 3.1.2 and Proposition 2.1.11 together imply that they are 2-edge-connected,

so Gi \ E(C ′), for each i ∈ {1, 2}, is connected. Then C ′ satisfies the conditions of

Lemma 5.3.1, so C ′ is F -diminishing, contradicting Lemma 5.2.2.

If e5 = av2v0, then C ′ = v0e1ae5v0 is an F -interchanging cycle with degGF∆C′(v0) <

degGF (v0), contradicting Lemma 5.4.1.

Hence e5 = av2v1, so C ′ = v1e1ae5v1 is an F -interchanging cycle. Let GF∗ = GF∆C ′,

and let F∗ be an Euler family corresponding to GF∗ . We have that v0e1 and v0e2 are

GF∗-edges, while e1v1 and e2b are non-GF∗-edges. Lemma 5.4.1 assures us that GF∗

has exactly two connected components, both non-trivial.

Note that F∗ is a minimum Euler family with degGF∗ (v0) = degGF (v0) a minimum.

We may apply Lemma 5.4.2 to GF∗ with the roles of a and v1 swapped. Lemma 5.4.2

(2) then shows that b and v1 lie in the same connected component of GF∗ . However,

note that G2 is a subgraph of GF∗ , and a and v0 are in the same connected component

in GF∗ . This implies that all the v-vertices lie in a single connected component in GF∗ ,

contradicting our assumption that there are exactly two connected components.

In all cases, we obtain a contradiction, concluding Case 2.

Case 3: v0, v1, and v2 are the only v-vertices of G1.

Let ex = abx be an edge of H containing a, b, and some vertex x. By Lemma 5.4.2

(1), we have that aex and bex are GF -edges, and hence xex is a non-GF -edge.

If x ∈ {v0, v1}, then C = xe1aexx is an F -diminishing cycle because G1 \ E(C) and

G2 \ E(C) are each connected, meaning GF∆C is connected.

If x = v2, then C = v2e2bexv2 is an F -diminishing cycle for the same reason as

above.

In either case, we obtain a contradiction by Lemma 5.2.2. Hence x ∈ V (G2).

Since G1 has at least two v-vertices that are not cut vertices (by Corollary 5.1.4), at
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least one of v0 and v1 is not a cut vertex. Let y ∈ {v0, v1} be a vertex that is not a

cut vertex of G1. Let e3 be an edge of H containing x and y.

Then C = ye1aexxe3y is an F -interchanging cycle. Let GF ′ = GF∆C and let F ′ be

an Euler family corresponding to GF ′ .

Since H is not eulerian, Lemma 5.4.1 implies that GF ′ has exactly two connected

components, both non-trivial.

Suppose y = v0. If v0e3 is a GF -edge, then degGF′ (v0) < degGF (v0), which contradicts

Lemma 5.4.1. Hence v0e3 must be a non-GF -edge and we can conclude that G1 \

E(C) is connected. Now, observe that F ′ is a minimum Euler family that minimizes

degGF′ (v0) = degGF (v0), so it satisfies our assumptions on F . Since a is also in the

same connected component of GF ′ as v0, v1, and v2 via edge ae1 ∈ E(GF ′), we have

that v0 lies in the same connected component in GF ′ as at least three other v-vertices.

Then if we attempt to apply this theorem to GF ′ , we conclude that F ′ falls into either

Case 1 or 2, and so we obtain a contradiction.

Hence y = v1. Assume first that v1 and x are in the same connected component of

GF ′ . Since v1 is not a cut vertex of G1, we know that either G1 \E(C) is connected,

or (G1 \ E(C)) − v1 is connected and v1 is isolated in G1 \ E(C). If v1 is isolated

in G1 \ E(C), then we deduce that it is isolated in GF ′ as well, contradicting the

assumption that it is in the same connected component as x. Hence G1 \ E(C) is

connected. Since v1 and x are assumed to be in the same connected component in

GF ′ , and b and x lie in the same connected component of GF ′ as each other (via path

bexx), we see that v0, v1, v2, a, x, and b lie in a connected component of GF ′ together.

Since all other v-vertices are in the same connected component as one of these in GF ′ ,

we see that GF ′ is connected, a contradiction.

Hence v1 and x must be in different connected components of GF ′ . Since b and x lie

in the same connected component of GF ′ (again via path bexx), we conclude that b

and v1 are in different connected components from each other in GF ′ . Now e1 = v0v1a
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and e2 = v0v2b, and v1e1 and be2 are non-GF ′-edges, so we may apply Lemma 5.4.2

(2) to F ′ — swapping the roles of v1 and a — to conclude that v1 and b lie in the

same connected component of GF ′ . However, this is a contradiction, concluding Case

3.

Therefore, we conclude that H is eulerian.

5.5 Proof of Theorem 5.0.1 for Orders 3 ≤ n ≤ 6

In this section, we prove Theorem 5.0.1 for the orders that were missed by Theo-

rem 5.4.3. The proof for orders 3, 4, and 5 — found in Lemmas 5.5.1, 5.5.2, and 5.5.3,

respectively, are relatively short due to the small number of possibilities in the hy-

pergraph.

Lemma 5.5.1. Let H be a covering 3-hypergraph of order 3 and with at least two

edges. Then H is eulerian.

Proof: Note that H is a TS-(3,λ) with λ ≥ 2 equal to the number of edges of H.

Then Corollary 4.2.2 states that H is eulerian.

In the upcoming Lemma 5.5.2, we employ a sort of counting strategy that has not been

used since the proof of Theorem 4.2.7, where we showed that Steiner triple systems

are eulerian. We count the number of pairs of vertices that must be contained in

edges, since the hypergraph is a covering 3-hypergraph. We use this information to

deduce that one pair must be in multiple edges, so we can form an F -diminishing

cycle with those edges.

In the case where the hypergraph has order 4, this method keeps the proof reason-
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ably neat, though the number of possibilities is rather small. However, this strategy

returns in Lemma 5.5.4, where the number of cases is more unwieldy, and it is there

that it proves its worth.

Lemma 5.5.2. Let H be a covering 3-hypergraph of order 4. Then H is eulerian.

Proof: Let G be the incidence graph of H. Since H necessarily has at least two

edges, Corollary 3.4.7 implies that H is quasi-eulerian. Let F be a minimum Euler

family for H, with corresponding subgraph GF of G. Suppose H is not eulerian:

then Corollary 5.3.4 implies that GF has exactly two connected components, both

non-trivial.

Let G1 be one connected component of GF , and let G2 be the other. Define S =

{{x, y} : x ∈ V (G1), y ∈ V (G2), x and y are v-vertices}.

Since H has order 4, it must be the case that G1 and G2 contain two v-vertices

each. Since each edge of H contains two vertices of one connected component and

one vertex of the other, we have that each edge contains two elements from S. Now,

each connected component must have at least two e-vertices, so H must have at

least four edges. This implies that the edges of H contain eight elements (counting

multiplicities) of S. Since |S| = 4, there exists an element {x, y} of S that is contained

in two edges e1 and e2 of H, by Pigeonhole Principle.

Now, Corollary 5.1.4 says that G1 and G2 each contain at least two v-vertices that

are not cut vertices, so neither x nor y can be a cut vertex.

Let C = xe1ye2x. Then C is an F -diminishing cycle by Corollary 5.3.3, contradicting

Lemma 5.2.2.

We conclude that H is eulerian.

Lemma 5.5.3. Let H be a covering 3-hypergraph of order 5. Then H is eulerian.
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Proof: Let G be the incidence graph of H. Since H necessarily has at least two

edges, Corollary 3.4.7 implies that H is quasi-eulerian. Let F be a minimum Euler

family for H, with corresponding subgraph GF of G. Suppose H is not eulerian: then

Corollary 5.3.4 implies that GF has exactly two connected components, and they

must both be non-trivial by Corollary 5.3.5.

Without loss of generality, let {a, b} be the set of v-vertices of one connected compo-

nent G1, and let {u, v, w} be the set of v-vertices of the other connected component

G2. Now, there must be at least two e-vertices e1 and e2 in G1.

If e1 and e2 are parallel edges of H — say e1 = abu = e2 — then let C = ae1ue2a.

Observe that C is an F -interchanging cycle, and that b, u, v, and w are in the

same connected component of GF∆C. This implies that GF∆C has just one non-

trivial connected component, and so C is an F -diminishing cycle, contradicting

Lemma 5.2.2.

Hence, without loss of generality, assume that e1 = abu and e2 = abv. Since H is

a covering 3-hypergraph, there exists an edge e3 containing a and w. Suppose first

that e3 ∈ V (G1), that is, that e3 = abw; then, as there must be an even number of

e-vertices in G1, there exists another edge e4 = abx, where x ∈ {u, v, w}. In this case,

let C = aexe4a, where e is chosen appropriately from among e1, e2, and e3. As above,

we see that C is an F -diminishing cycle, a contradiction with Lemma 5.2.2.

Hence e3 6∈ V (G1). Then u ∈ e3 or v ∈ e3. Suppose, without loss of generality, that

u ∈ e3. Let C = ae1ue3a. Then C is an F -interchanging cycle with one GF -edge in

each connected component of GF , so Corollary 5.3.2 says that C is an F -diminishing

cycle. However, this is a contradiction with Lemma 5.2.2.

Therefore, we conclude that H is eulerian.

Now we approach the proof for covering 3-hypergraphs of order 6, an order that
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is too large to be proved simply, yet too small to be accomplished by the proof of

Theorem 5.4.3. There are enough vertices in the hypergraph that we must now break

the proof down into two broad cases, employing a different proof strategy for each.

Since we know the Euler family must have at most two components, those components

can either have a 3-3 split or a 4-2 split on the vertices.

In the 3-3 case, we use the familiar counting argument to show that there exists an

interchanging cycle of length 4. If it is not a diminishing cycle, then we can modify

it to find one that is.

In the 4-2 case, we have somewhat more difficulty. We perform an interchange on a

cycle that might not be diminishing, but can be used to scout information about the

hypergraph. In the end, this information will be vital in counting the pairs that are

covered by the hypergraph, which leads to a contradiction.

Lemma 5.5.4. Let H be a covering 3-hypergraph of order 6. Then H is eulerian.

Proof: Let G be the incidence graph of H, and suppose H is not eulerian. Corol-

lary 3.4.7 assures us that H is quasi-eulerian, so let F be a minimum Euler family

for H, and let GF be the subgraph of G corresponding to F .

If GF has an isolated vertex or any number of non-trivial connected components other

than two, then H is eulerian, by Corollary 5.3.5 or 5.3.4, respectively. Hence we may

assume that GF has exactly two connected components G1 and G2, and neither of

them is trivial.

Case 1: G1 and G2 each have three v-vertices. Let a, b, and c be the v-

vertices of G1, and let x, y, and z be the v-vertices of G2. Now, there are no GF -edges

joining vertices of G1 to vertices of G2, and yet every pair in S = {{u, v} : u ∈

{a, b, c}, v ∈ {x, y, z}} must be contained in some edge of H.

In fact, any edge of H containing one pair in S must contain exactly two such pairs,
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since the edge is a triple containing two v-vertices of one connected component of GF

and one v-vertex of the other. Since there are nine pairs in S, and every edge of H

contains an even number of such pairs, at least one pair must be contained in two

edges.

Without loss of generality, assume that a, x ∈ e1 and a, x ∈ e2, where e1, e2 ∈ E(H).

Then C = ae1xe2a is an F -interchanging cycle of GF , and since F is minimum, we

have that C is not an F -diminishing cycle by Lemma 5.2.2.

If G1 \ E(C) and G2 \ E(C) each have just one non-trivial connected component, C

is an F -diminishing cycle by Lemma 5.3.1, a contradiction. Hence, without loss of

generality, we assume that G1\E(C) has two non-trivial connected components. Since

G1 has no cut edge, we have that both ae1 and ae2 are GF -edges. Consequently, both

xe1 and xe2 are non-GF -edges, and so G2 \ E(C) has just one non-trivial connected

component. If degGF (a) = 2, then a is isolated in G1 \ E(C). Then G1 \ E(C) must

have just one connected component, for if not, then deleting xe2 from the connected

graph G1 \ xe1 yields three connected components, in violation of Remark 2.2.16.

Since G1 \E(C) and G2 \E(C) each have just one non-trivial connected component,

again Lemma 5.3.1 says that C is an F -diminishing cycle, a contradiction. Hence

degGF (a) ≥ 4 and, since deleting two edges incident with a disconnects G1 without

isolating a, we deduce that a is a cut vertex of G1.

Since a is a cut vertex of G1, Corollary 5.1.4 implies that b and c are not cut vertices

of G1. Observe that, since each of e1 and e2 lies in G1, each contains b or c. Without

loss of generality, assume b ∈ e1. If we also have b ∈ e2, then let C = be1xe2b. Observe

that C is an F -interchanging cycle, and since b is not a cut vertex of G1, we addi-

tionally have that G1 \E(C) (as well as G2 \E(C)) is connected. Then Lemma 5.3.1

implies that C is an F -diminishing cycle, a contradiction with Lemma 5.2.2 since F

is minimum. Hence c ∈ e2.

Suppose P is a 2-path from c to b. Then ae2cPbe1a is a cycle of G1 containing a, b,
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and c. Then Corollary 5.1.4 implies that a is not a cut vertex of G1, contradicting

our assumption on a. Hence no 2-path from c to b exists in GF .

However, since b and c each have degree at least 2 in GF , they must each be connected

to a by a 2-path that does not traverse e1 or e2. But then G1 \E(C) is connected, a

contradiction.

We conclude that G1 and G2 cannot each have three v-vertices.

Case 2: G1 has two v-vertices and G2 has four, without loss of gener-

ality. Let a and b be the v-vertices of G1, and let w, x, y, and z be the v-vertices of

G2. Note that neither a nor b is a cut vertex of G1, by Corollary 5.1.4.

There must exist an e-vertex e1 ∈ V (G1), adjacent to both a and b in G1. It must

also be joined to another v-vertex — say w — via a non-GF -edge.

Suppose there exists an edge e, distinct from e1, containing w and a. Then let C =

ae1wea, and observe that C is an F -interchanging cycle. Then G2\E(C) is connected,

and either G1 \E(C) is connected or has a as an isolated vertex, since a is not a cut

vertex of G1, so G1\E(C) has just one non-trivial connected component. Lemma 5.3.1

states that C is in fact an F -diminishing cycle, contradicting Lemma 5.2.2.

Therefore, no edge containing w also contains a, except for e1. (∗)

An analogous statement holds for w and b.

Now, since H is a covering 3-hypergraph, there must be edges of H containing w and

the other v-vertices of G2. By (∗), any such edge must contain three v-vertices of G2.

Without loss of generality, let e2 = wxy be such an edge of H. Exactly one edge of G

incident with e2 is a non-GF -edge. We may assume, without loss of generality, that

this non-GF -edge is either we2 or ye2. (Assuming xe2 is the non-GF -edge would be

equivalent to assuming ye2 is.)

Let e3 be an edge of H containing y and a. We have that e3 is distinct from both e1
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and e2 because neither of those contains both y and a.

Let C = ae1we2ye3a, and observe that C is an F -interchanging cycle.

Suppose ae3 is a GF -edge. Then G2 \ E(C) is connected as it is G2 with one edge

(we2 or ye2) deleted. Since a is not a cut vertex of G1, we also have that G1 \E(C) =

G1 \ {ae1, ae3} is either connected or has a single non-trivial connected component

with vertex set V (G1) \ {a}. In either case, Lemma 5.3.1 implies that C is an F -

diminishing cycle, contradicting Lemma 5.2.2. Hence ae3 is a non-GF -edge, and so

ye3 must be a GF -edge.

Since F is minimum, Lemma 5.2.2 implies that C cannot be an F -diminishing cycle.

Let F ′ be an Euler family corresponding to GF∆C, so that we may denote GF∆C =

GF ′ . Note that we must have |F ′| = 2, for if |F ′| ≥ 3, then Corollary 5.3.4 implies

that H is eulerian, a contradiction.

We now split into two cases, depending on which of we2 and ye2 is a GF -edge. Since

we assumed earlier that one of them is a non-GF -edge, exactly one of them must be

a GF -edge.

Case A: ye2 is a GF-edge and we2 is a non-GF-edge. Since GF ′ has two

connected components, let G′1 be the connected component of GF ′ containing a, and

let G′2 be the other connected component. Since a and b are the sole v-vertices of G1

and they each have degree at least 2 in GF ′ , there must be another edge e4 ∈ E(H)

containing them both, where ae4 and be4 are both GF - (and hence GF ′-) edges. Then

b ∈ V (G′1). We also have w ∈ V (G′1) since we1b is a path in GF ′ , and x ∈ V (G′1)

since xe2w is a path in GF ′ . This leaves y and z in V (G′2), since G′2 must contain two

v-vertices.

Now, we have that a, y ∈ e3, but do not yet know the third vertex of e3. However,

this third vertex corresponds to a v-vertex that is adjacent to e3 in both GF and GF ′ .

It must be a v-vertex that is in both G2 (since ye3 is a GF -edge) and G′1 (since ae3
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is a GF ′-edge): we must have x ∈ e3. (By (∗), it cannot be w.)

In G′1, we now have a cycle ae4be1we2xe3a traversing four v-vertices. Corollary 5.1.4

asserts that none of the four v-vertices of G′1 are cut vertices of G′1; in particular,

we have that x is not a cut vertex of G′1. Observe that C ′ = xe3ye2x is an F ′-

interchanging cycle in which xe3 and xe2 are GF ′-edges. Then G′1 \ E(C ′) has at

most one non-trivial connected component, since all GF ′-edges of C ′ are incident to

x, which is not a cut vertex in G′1. We also have that G′2 \ E(C ′) = G′2 is connected,

so Lemma 5.3.1 implies that GF ′∆C
′ has just one non-trivial connected component;

hence C ′ is F ′-diminishing. Since F ′ is minimum, this contradicts Lemma 5.2.2.

Case B: we2 is a GF-edge and ye2 is a non-GF-edge. Now, since GF ′ is

disconnected, we have a, b, and w in one connected component of GF ′ , called G′1; and

x and y in another connected component, called G′2. If z is in G′2 as well, then we

have two connected components with three v-vertices each, a contradiction with (∗).

Hence z is in G′1.

First, consider what vertices are contained in e3 ∈ E(H): we already know it contains

a and y. Since the e-vertex e3 is adjacent to y in G2 and adjacent to a in G′1, it must

be adjacent to another v-vertex in both G2 and G′1. The only candidates are w and z,

but it cannot be w because e3 also contains a and this would lead to a contradiction

with (∗). Therefore, we conclude that z ∈ e3.

Since x and y are the only v-vertices in a connected component of GF ′ , there must

be two 2-paths from x to y in G′2, of which one exists in GF ; call this path P1.

Since degGF (z) ≥ 2 and degGF′ (z) ≥ 2 and we only know of edge ze3, vertex z must

be adjacent in G2 and in G′1 to another e-vertex. This e-vertex cannot be any of

e1, e2, and e3, so there must be one in both G2 and G′1; call it e5. Now, since e5 is not

traversed by C, it must have the same neighbours in both G2 and G′1, hence it must

be adjacent to w in both. So ze5w is a zw-path of length 2 in GF .
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Finally, we already know that we2x and ye3z are 2-paths inGF . Hence we2xP1ye3ze5w

is a cycle of GF containing all the v-vertices of G2. Then Corollary 5.1.4 implies

that G2 has no v-vertices that are cut vertices. It should be clear, again by Corol-

lary 5.1.4, that neither a nor b are cut vertices of G1, since they are the only v-vertices

in G1.

In order to derive a contradiction, we consider the set of pairs of v-vertices in opposite

connected components of GF . Let S = {{u, v} : u ∈ {a, b}, v ∈ {w, x, y, z}} be this

set of all such pairs. Since H is a covering 3-hypergraph, every element of S must be

contained in at least one edge. We already know e1 = abw, e2 = wxy, e3 = ayz, and

also that w, z ∈ e5, so we will be able to deduce what pairs are contained in edges of

H and which have yet to be covered (by edges that we know about).

In terms of what pairs of S are covered by edges we know about, we have the follow-

ing:

• e1 contains the pairs {a, w} and {b, w};

• As in Case A, there exists an edge e4, distinct from e1, containing a and b in

GF , so e4 contains the pairs {a, v} and {b, v} for some v ∈ {w, x, y, z}; and

• e3 contains the pairs {a, y} and {a, z}.

Suppose there exists a pair {s, t} ∈ S contained in two edges e, f ∈ E(H). Then

C = setfs is an F -interchanging cycle traversing one v-vertex from each connected

component, and neither s nor t is a cut vertex of GF or isolated in GF . Then

Corollary 5.3.3 implies that H is eulerian, a contradiction.

This implies that no pair can be contained in two edges. We see, therefore, that v

cannot be equal to w, y, or z, so it must be x. Then the only pairs left to cover are

{b, y} and {b, z}, implying that there exists an edge e = byz. Since b ∈ V (G1) and

y, z ∈ V (G2), we see that e ∈ V (G2), so ye and ze are GF -edges. Since e 6∈ V (C), we

must have that ye and ze are edges in GF ′ as well, contradicting the fact that y and



5. EULERIAN PROPERTIES OF COVERING HYPERGRAPHS 103

z lie in different connected components of GF ′ .

In all cases, we have obtained a contradiction, so we conclude that H is eulerian, as

required.

5.6 Summary of Main Results

Theorem 5.6.1. Let H be a covering 3-hypergraph of order at least 3 and with at

least two edges. Then H is eulerian.

Proof: Let n be the order of H. If n = 3, 4, 5, or 6, then H is eulerian by

Lemma 5.5.1, 5.5.2, 5.5.3, or 5.5.4, respectively.

If n ≥ 7, then H is eulerian by Theorem 5.4.3.

Therefore, H is eulerian.

Having settled the matter for covering 3-hypergraphs, we now turn our attention to

covering k-hypergraphs, for any k ≥ 3. We use induction to prove Theorem 5.0.2, for

which the induction step is quite simple. Theorem 5.6.1 serves as the induction basis

necessary to complete this proof.

Theorem 5.0.2. Let k ≥ 3, and let H be a covering k-hypergraph. Then H is

eulerian if and only if H has at least two edges.

Proof: We may assume that H is non-empty, for an empty hypergraph cannot be

a covering k-hypergraph.

It should be clear that a hypergraph with only one edge cannot admit a closed walk,

so it is not eulerian. We need only prove sufficiency.
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We prove this using induction on k. When k = 3, we have that H is a covering 3-

hypergraph with at least two edges, so Theorem 5.6.1 implies that H is eulerian. Sup-

pose that, for some fixed k ≥ 3, our result holds: that is, any covering k-hypergraph

with at least two edges is eulerian.

Let H = (V,E) be a covering (k + 1)-hypergraph with |E(H)| ≥ 2. Fix some v ∈ V

and let B = {e \ {v} : e ∈ E such that v ∈ e}. Let H ′ = (V \ {v},B). Note that

H ′ is a k-uniform hypergraph. It also has the property that every (k − 1)-tuple of

V (H ′) lies in at least one edge: to see this, let X ⊂ V (H ′) be a set of cardinality

k − 1. Then, in H, the k-subset X ∪ {v} lies in some edge e. Then there exists in B

a corresponding edge e \ {v}, which contains X.

Now, let E ′ = {e ∈ E : v 6∈ e}. Obtain a set C of edges, each of cardinality k, by

taking all the edges of E ′ and removing an arbitrary vertex from each of them (the

choice of vertex does not matter). Let H∗ = (V \{v},B∪C), in which the edges of H∗

are obtained by the multiset union of B and C. Then H∗ is a k-uniform hypergraph

such that every (k − 1)-tuple of V (H∗) lies in at least one edge: that is, we have

that H∗ is a covering k-hypergraph. Since |E(H∗)| = |E(H)| ≥ 2, we may apply the

induction hypothesis to get that H∗ is eulerian, so it admits an Euler tour T .

Define a function ϕ : E(H∗) → E(H) by mapping e to e ∪ {v} if e originally comes

from B, or by mapping e to its corresponding edge in E ′ if e originally comes from C.

Then ϕ is a bijection, and since V (H∗) ⊆ V (H), we may apply Lemma 3.4.8 to obtain

an Euler tour of H (by regarding {T} as an Euler family of cardinality 1).

Therefore, the result holds by induction.



Chapter 6

Eulerian Properties of `-Covering
k-Hypergraphs

6.1 Introduction

Following the results of Chapter 5, we would like to prove that all `-covering k-

hypergraphs are eulerian. Recall that an `-covering k-hypergraph is a k-uniform

hypergraph in which every `-subset of vertices lie together in at least one edge. We

have already proven that when k = `+ 1, such hypergraphs are eulerian, so perhaps

we can use similar techniques to extend these results to larger k (relative to `).

Unfortunately, the first thing we would need to do is prove a result about (k − 2)-

covering k-hypergraphs, necessarily with k ≥ 4. But the interchanging cycles that

we used to prove Theorem 5.0.1 are much more unwieldy if the hypergraph is not 3-

uniform. When we looked at the incidence graph of a 3-uniform hypergraph admitting

an Euler family F , we knew that every pair of edges incident with an e-vertex had at

least one GF edge. This is not the case for k-uniform hypergraphs with k ≥ 4, so it

is much harder to find interchanging cycles.

Instead, we will have to be satisfied to prove that `-covering k-hypergraphs are quasi-

eulerian using Lovász’s (g, f)-factor Theorem. We will be able to prove the following

105
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result.

Theorem 6.1.1. Let H be an `-covering k-hypergraph for some 2 ≤ ` < k. Then H

is quasi-eulerian if and only if it has at least two edges.

We will prove this by induction on k using a method similar to Theorem 5.0.2. Once

again, the induction step will be relatively simple, but the basis of induction is the

focus of a majority of this chapter. Part of the basis of induction comes from The-

orem 5.0.2, and another part comes from the following result, which we will prove

later in this chapter.

Theorem 6.1.2. Let k ≥ 4, and let H be a 2-covering k-hypergraph of order at least

k and size at least 2. Then H is quasi-eulerian.

We have already presented Lovász’s Theorem as Theorem 3.4.10, but we will present

it again here. The techniques that Bahmanian and Šajna used to modify Theo-

rem 3.4.10 form the starting point for our ideas, and we expand on them to suit our

purposes for `-covering k-hypergraphs.

Theorem 6.1.3. (The (g, f)-factor Theorem, Lovász [?, 2]) Let G = (V,E) be a

graph and f, g : V → N be functions such that g(x) ≤ f(x) and g(x) ≡ f(x) (mod 2)

for all x ∈ V . Then G has a (g, f)-factor F such that degF (x) ≡ f(x) (mod 2) for

all x ∈ V if and only if, for all disjoint S, T ⊆ V , we have∑
x∈S

f(x) +
∑
x∈T

(degG(x)− g(x))− eG(S, T )− q(S, T ) ≥ 0, (6.1.1)

where eG(S, T ) denotes the number of edges with one end in S and the other in T ,

and q(S, T ) is the number of connected components C of G− (S ∪ T ) such that∑
x∈V (C)

f(x) + eG(V (C), T ) ≡ 1 (mod 2).
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Lovász’s Theorem gives us the necessary and sufficient conditions for existence of

spanning subgraphs with specific degree requirements. Since we will only be using it to

find subgraphs corresponding to Euler families in bipartite graphs, we can strengthen

the conditions to obtain a sufficient (but not necessary) condition instead. These

strengthened conditions, however, are much easier to work with, and are satisfiable

when applied to 2-covering k-hypergraphs, as we shall see.

Recall that c(G∗ −X) denotes the number of connected components of G∗ −X.

Lemma 6.1.4. Fix k ≥ 4. Let H be a k-hypergraph of order n and size m, free of

cut edges, and let G be its incidence graph. Define r = (m+ n)2, and obtain a graph

G∗ from G by appending 2r loops to every v-vertex.

Define f : V (G∗)→ Z by

f(x) =

{
2 : x is an e-vertex
2r : x is a v-vertex.

If, for all X ⊆ E(H) with |X| ≥ 2, we have |X| ≥ 2b c(G
∗−X)+3
k

c, then G∗ has an

(f, f)-factor. Furthermore, this (f, f)-factor can be used to obtain an Euler family

for H, so H is quasi-eulerian.

Proof: Let G∗ and f be defined as in the statement of the lemma, and let g = f .

Assume that for all X ⊆ E(H) satisfying |X| ≥ 2, we have |X| ≥ 2b c(G
∗−X)+3
k

c.

Let S, T ⊆ V (G∗) be disjoint subsets. We show that (6.1.1) holds for G∗, f, g, S, and

T .

First we note that Condition (6.1.1) becomes

γ(S, T ) =
∑
x∈S

f(x) +
∑
x∈T

(degG∗(x)− f(x))− eG∗(S, T )− q(S, T ) ≥ 0, (6.1.2)

where q(S, T ) is the number of connected components C of G∗ − (S ∪ T ) such that

eG∗(V (C), T ) is odd.
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Furthermore, observe that eG∗(S, T ) ≤ mn, the number of edges in Kn,m; and

q(S, T ) ≤ m + n, the number of vertices in G∗. We also have that degG∗(x) ≥ f(x)

for any x ∈ V (G∗).

Case 1: S contains a v-vertex v. Then

γ(S, T ) =
∑
x∈S

f(x) +
∑
x∈T

(degG∗(x)− f(x))− eG∗(S, T )− q(S, T )

≥ 2r + 0−mn−m− n,

since degG∗(x) ≥ f(x) for all x ∈ T , and eG∗(S, T ) ≤ mn and q(S, T ) ≤ m+ n. Then

2r −mn−m− n ≥ 0 since 2r = 2(m+ n)2, so Condition (6.1.2) is satisfied.

Case 2: T contains a v-vertex v. Then

γ(S, T ) =
∑
x∈S

f(x) +
∑
x∈T

(degG∗(x)− f(x))− eG∗(S, T )− q(S, T )

≥
∑
x∈S

f(x) + (degG∗(v)− f(v))− eG∗(S, T )− q(S, T )

≥ 0 + (4r − 2r)−mn−m− n

≥ 2r −mn−m− n,

since f(x) ≥ 0 for all x ∈ V (G∗), and degG∗(v)−f(v) ≥ 4r−2r, and eG∗(S, T ) ≤ mn

and q(S, T ) ≤ m+n. Then 2r−mn−m−n ≥ 0 since 2r = 2(m+n)2, so Condition

(6.1.2) is satisfied.

Case 3: Neither S nor T contains v-vertices. Then eG∗(S, T ) = 0 since S

and T are subsets of the set of e-vertices, which is an independent set.

• Case 3A: T = ∅. We have that eG∗(V (C), T ) = 0 for all connected components

C of G∗−(S∪T ), and f takes only even values. Then by the definition of q(S, T ),

we have q(S, T ) = 0. Hence

γ(S, T ) =
∑
x∈S

f(x) ≥ 0,

since f is nonnegative. Therefore, Condition (6.1.2) holds.
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• Case 3B: S = ∅ and |T | = 1. Note that T contains a single e-vertex. Since

H has no cut edges, Theorem 2.2.17 implies that G has no cut e-vertices, so

neither does G∗. Then q(S, T ) ≤ 1 since there is only one connected component

of G∗ − (S ∪ T ). Then

γ(S, T ) =
∑
x∈S

f(x) +
∑
x∈T

(degG∗(x)− f(x))− eG∗(S, T )− q(S, T )

≥ 0 + (k − 2)− 0− 1

= k − 3

≥ 0.

• Case 3C: T 6= ∅ and |S ∪ T | ≥ 2.

Since q(S, T ) is the number of connected components C of G∗−(S∪T ) such that

eG∗(V (C), T ) is odd, it cannot be greater than either the number of connected

components of G∗− (S ∪T ) or the number of edges in an edge cut [T, T ] of G∗.

Since all the vertices of T are e-vertices that have degree k in G∗, we have that

the latter quantity is at most k|T |. Hence q(S, T ) ≤ min{c(G∗−(S∪T )), k|T |}.

Then

γ(S, T ) =
∑
x∈S

f(x) +
∑
x∈T

(degG∗(x)− f(x))− eG∗(S, T )− q(S, T )

= 2|S|+ (k − 2)|T | − q(S, T )

≥ 2|S|+ 2|T |+ (k − 4)|T | −min{c(G∗ − (S ∪ T )), k|T |}

= 2|S ∪ T |+ (k − 4)|T | −min{c(G∗ − (S ∪ T )), k|T |}. (6.1.3)

Define t = b c(G
∗−(S∪T ))+3

k
c, and suppose first that |T | > t. Then |T | ≥ t + 1.

Furthermore, we note that kt−3 ≤ c(G∗−(S∪T )) ≤ kt+k−4 from the definition

of t. In particular, since k|T | ≥ kt + k, we have min{c(G∗ − (S ∪ T )), k|T |} =

c(G∗ − (S ∪ T )) ≤ kt+ k − 4. Then

γ(S, T ) ≥ 2|S ∪ T |+ (k − 4)(t+ 1)− kt− k + 4
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= 2|S ∪ T | − 4t

= 2|S ∪ T | − 4
⌊c(G∗ − (S ∪ T )) + 3

k

⌋
.

Letting X = S ∪ T , we have that |X| ≥ 2. By the assumption of the lemma

that |X| ≥ 2b c(G
∗−X)+3
k

c, we see that γ(S, T ) ≥ 0. Therefore, in the case where

|T | > t, Condition (6.1.2) holds.

Hence we may assume that |T | ≤ t. Then from γ(S, T ) ≥ 2|S∪T |+(k−4)|T |−

min{c(G∗ − (S ∪ T )), k|T |} in (6.1.3), we have

γ(S, T ) ≥ 2|S ∪ T |+ (k − 4)|T | − k|T |

= 2|S ∪ T | − 4|T |

≥ 2|S ∪ T | − 4t

= 2|S ∪ T | − 4
⌊c(G∗ − (S ∪ T )) + 3

k

⌋
,

and again we see that our assumption on X = S ∪ T suffices to show that

γ(S, T ) ≥ 0.

Hence Condition (6.1.2) holds in this case.

Since Condition (6.1.2) holds for all disjoint S, T ⊆ V (G∗), we conclude that G∗ has

an (f, f)-factor F by Theorem 6.1.3.

If we delete loops of F , we obtain a spanning subgraph F ′ of G in which all v-vertices

have even degree and all e-vertices have degree 2. This corresponds to an Euler family

for H by Theorem 3.4.1, and so H is quasi-eulerian.

Even with the strengthened condition of Lemma 6.1.4, we will be able to prove that

all 2-covering k-hypergraphs satisfy it, for all k ≥ 4.
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6.2 Technical Lemmas

In preparation to prove that all 2-covering k-hypergraphs are quasi-eulerian, we need

a few technical lemmas. Most of them are used to clean up certain cases in the main

proof.

Lemma 6.2.1. Let k ≥ 4, and let H be a 2-covering k-hypergraph of order at least

k + 1. Then H has no cut edges.

Proof: Fix distinct u, v ∈ V (H). We will show that u and v are in a cycle of

H.

If u and v are contained in at least two edges together, then u and v are in a 2-cycle

that traverses two of these edges.

Now, assume that u and v are contained in exactly one edge together, say e. Let

w ∈ V (H) \ e. Now, since H is a 2-covering k-hypergraph, there exist edges e1, e2 ∈

E(H) such that u and w lie in e1 together, and v and w lie in e2 together. We have

e 6∈ {e1, e2} because e does not contain w, but e1 and e2 do. Furthermore, if e1 = e2,

then e1 contains both u and v, so there are at least two distinct edges containing u

and v, a contradiction.

Now, since e, e1, and e2 are three distinct edges, we have that ueve2we1u is a cycle of

H containing both u and v. We conclude that there are two edge-disjoint uv-paths

in H for any pair u, v ∈ V (H). Hence H has no cut edges.

Lemma 6.2.2. Let k ≥ 4, and let H be a 2-covering k-hypergraph of order n ≥ k+1.

Suppose one of the following holds:

• n > 3k
2

; or

• k ≥ 7.
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Then H has at least 2bn+3
k
c edges.

Proof: Since there are
(
n
2

)
pairs of vertices to cover, and each edge covers

(
k
2

)
pairs, we necessarily have |E(H)| ≥ n(n−1)

k(k−1)
.

Case 1: n ≤ 2k − 4. It suffices to show that |E(H)| ≥ 2 because now 2bn+3
k
c ≤ 2.

Clearly H has at least two edges, since it has order at least k + 1. Therefore, in this

case we have |E(H)| ≥ 2bn+3
k
c.

Case 2: n ≥ 3k − 3. Then

|E(H)| ≥ n(n− 1)

k(k − 1)
≥ (3k − 3)(n− 1)

k(k − 1)

=
3(n− 1)

k

=
2n+ n− 3

k

≥ 2n+ 3k − 6

k

≥ 2n+ 6

k
since k ≥ 4

≥ 2
⌊n+ 3

k

⌋
.

Case 3: 2k − 3 ≤ n ≤ 3k − 4. It suffices to show that |E(H)| ≥ 4 because we

now have 2bn+3
k
c ≤ 4. Suppose |E(H)| ≤ 3. Since n ≥ k + 1 by assumption, we

cannot have any vertices of degree 1: such a vertex would only have k− 1 neighbours

via its incident edge, but it needs to be neighbours with at least k others. Then the

Handshake Lemma implies that

2n ≤
∑

v∈V (H)

deg(v) = k|E(H)| ≤ 3k,

hence 2n ≤ 3k,

so n ≤ 3k

2
.

Now, this brooks a contradiction if n > 3k
2

, so we must have k ≥ 7. Then from

2k − 3 ≤ n ≤ 3k
2

we get k ≤ 6, a contradiction.
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Therefore, in all cases we have |E(H)| ≥ 2bn+3
k
c.

Lemma 6.2.3. Let H be a hypergraph with |E(H)| ≥ 2, and suppose E(H) satisfies

the following:

• For all e, f ∈ E(H), we have |e ∩ f | ≥ 2; and

• There exist distinct e, f ∈ E(H) such that |e ∩ f | ≥ 3.

Then H is eulerian.

Proof: Let E(H) = {e1, . . . , em} and let e1, em be a pair of distinct edges such

that |e1 ∩ em| ≥ 3.

Fix some v1 ∈ e2 ∩ e1. For i = 2, . . . ,m− 1, let vi be a vertex in (ei+1 ∩ ei) \ {vi−1}.

Since |ei+1 ∩ ei| ≥ 2, there is always at least one vertex to choose from. Let W =

v1e2 . . . em−1vm−1 be the walk determined by these choices of v1, . . . , vm−1.

To extend W to an Euler tour, choose v0 from among the vertices in (e1 ∩ em) \

{v1, vm−1}. By our assumption, this set is non-empty, so this choice is well defined.

Then v0e1v1 . . . vm−1emv0 is a closed strict trail that traverses every edge of E(H), so

it is an Euler tour of H. Hence H is eulerian.

Corollary 6.2.4. Let H be a 2-covering k-hypergraph of order n. If (k, n) = (4, 6)

or n ≤ 2k − 3, then H is eulerian.

Proof: First, suppose (k, n) = (4, 6). For all e, f ∈ E(H), we have |e ∩ f | ≥ 2. If

there exists a pair of distinct edges e, f ∈ E(H) such that |e∩f | ≥ 3, then Lemma 6.2.3

implies that H is eulerian. Hence assume |e ∩ f | = 2 for all e, f ∈ E(H).

Let V (H) = {v1, . . . , v6} and E(H) = {e1, . . . , em}, where m is the size of H. Since

H is a 2-covering 4-hypergraph, for every vi ∈ V (H), we necessarily have deg(vi) ≥
n−1
k−1

= 5
3
, so every vertex of H has degree at least 2. Without loss of generality, let
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e1 = v1v2v3v4 and e2 = v1v2v5v6 be two edges of H. Since (V (H), {e1, e2}) is not a

2-covering 4-hypergraph, there must be at least one more edge in E(H). Such an

edge e3 must contain exactly two vertices of e1 and exactly two vertices of e2. If e3

contains any vertices in e1 ∩ e2, then it will necessarily contain at least three vertices

from either e1 or e2, so we must have e3 = v3v4v5v6.

Observe that e3 is the unique 4-subset that satisfies |e3 ∩ e1| = |e3 ∩ e2| = 2. Hence

E(H) = {e1, e2, e3} and W = v3e1v2e2v5e3v3 is an Euler tour of H, so H is eule-

rian.

Now suppose n ≤ 2k − 3. Then every pair of edges e, f ∈ E(H) satisfies |e ∩ f | ≥ 3.

Then H is eulerian by Lemma 6.2.3.

Lemma 6.2.5. Let k ≥ 3, and let H be a 2-covering k-hypergraph of order k. Then

H is eulerian if and only if H has at least two edges.

Proof: If H has just one edge, then it is not eulerian as no closed trail can be

formed.

Note that our assumptions indicate that each edge e ∈ E(H) satisfies e = V (H). In

particular, we have e ∩ f = V (H) for all e, f ∈ E(H).

Then H satisfies the conditions of Lemma 6.2.3, so H is eulerian.

We now present an optimization problem that will be used to establish an upper

bound on the number of edges in a certain graph. Since we have not seen optimiza-

tion problems elsewhere in this thesis, we will need to review some basic definitions.

Definition 6.2.6. (Optimization) Let x = (x1, x2, . . . , xq) ∈ Rq be a q-tuple of

indeterminates. An optimization problem (P) consists of a real-valued function f in
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x that is to be maximized or minimized, called the objective function, along with a

set of constraints on x.

If x∗ ∈ Rq satisfies the given constraints, then x∗ is called a feasible solution for (P).

The set {y ∈ Rq : y is a feasible solution for (P)} is called the feasible set of (P).

If x∗ is a feasible solution, and f(x∗) ≥ f(y) (or f(x∗) ≤ f(y), if (P) is a minimization

problem) for all feasible solutions y, then x∗ is an optimal solution for (P).

Lemma 6.2.7. Let n, k, q ∈ Z+ be such that n ≥ qk. Define the following optimiza-

tion problem:

maximize f(x1, . . . , xq) =

(
x1

2

)
+ · · ·+

(
xq
2

)
(P )

subject to x1 + · · ·+ xq = n,

x1, . . . , xq ≥ k,

x1, . . . , xq ∈ Z+.

Then x1 = · · · = xq−1 = k, xq = n− k(q − 1) is an optimal solution to (P).

Proof: First of all, observe that x1 = x2 = · · · = xq−1 = k, xq = n− k(q − 1) is a

feasible solution to (P). Furthermore, there exists an optimal solution for (P) because

the feasible set of (P) is finite.

Let x∗ = (x∗1, . . . , x
∗
q) be an optimal solution for (P) in which x1 ≤ x2 ≤ . . . ≤ xq.

Suppose, for the sake of obtaining a contradiction, that xq < n− k(q − 1).

Then there exists 1 ≤ i ≤ q − 1 such that xi > k. Let i be the smallest index with

this property.

We claim that f(x1, . . . , xi−1, xi − 1, xi+1, . . . , xq−1, xq + 1) > f(x∗). Indeed, we

have

f(x1, . . . , xi−1, xi − 1, xi+1, . . . , xq−1, xq + 1)
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=

q−1∑
j=1
j 6=i

(
xj
2

)
+

(
xi − 1

2

)
+

(
xq + 1

2

)

=

q−1∑
j=1
j 6=i

(
xj
2

)
+

(xi − 1)(xi − 2)

2
+

(xq + 1)xq
2

=

q−1∑
j=1
j 6=i

(
xj
2

)
+
xi(xi − 1)

2
− 2(xi − 1)

2
+
xq(xq − 1)

2
+

2xq
2

=

q∑
j=1

(
xj
2

)
− (xi − 1) + xq

=f(x∗)− xi + 1 + xq

>f(x∗) since xq ≥ xi.

Observe that we have x1 ≤ . . . ≤ xi−1 ≤ xi − 1 ≤ xi+1 ≤ . . . ≤ xq−1 ≤ xq + 1 because

we know xi − 1 ≥ k and xi−1 ≤ k by our choice of i. This contradicts the optimality

of x∗ since (x1, . . . , xi−1, xi − 1, xi+1, . . . , xq−1, xq + 1) is a feasible solution to (P)

whose components are in nondecreasing order, and its objective value is higher than

f(x∗).

Therefore, any optimal solution satisfying x1 ≤ . . . ≤ xq must also satisfy xq ≥

n − k(q − 1). However, if xq > n − k(q − 1), then we have x1 + . . . + xq−1 + xq >

k+ . . .+ k+ n− k(q− 1) = n, a contradiction. Therefore, we have xq = n− k(q− 1)

in such an optimal solution, and so we must have x1 = . . . = xq−1 = k.

We conclude that (x1, . . . , xq−1, xq) = (k, . . . , k, n− k(q − 1)) is an optimal solution

for (P).
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6.3 Main Results

We present our two main results of the chapter in this section. First, we show in

Theorem 6.3.1 that all 2-covering k-hypergraphs with at least two edges are quasi-

eulerian. We then use this result in Theorem 6.3.2 as the basis of induction to show

that all `-covering k-hypergraphs with at least two edges are quasi-eulerian.

Theorem 6.3.1. Let k ≥ 4, and let H be a 2-covering k-hypergraph of order n with

at least two edges. Then H is quasi-eulerian.

Proof: First, assume that n = k. Since H has at least two edges, Lemma 6.2.5

implies that H is eulerian, so it is quasi-eulerian. Hence we may assume n > k and,

consequently, n ≥ 5.

Suppose n ≤ 2k − 3. Then Corollary 6.2.4 implies that H is eulerian, so H is quasi-

eulerian. Hence we may assume n ≥ 2k − 2.

Now suppose k ≤ 6 and n ≤ 3k
2

. Since n ≥ 2k − 2, this assumption implies

(k, n) = (4, 6). In this case, Corollary 6.2.4 implies that H is eulerian, so H is

quasi-eulerian. Hence we have k ≥ 7 or n > 3k
2

. Lemma 6.2.2 then implies that

|E(H)| ≥ 2
⌊
n+3
k

⌋
.

We will show that H satisfies the condition of Lemma 6.1.4.

Let m be the size of H, and define r = (m+n)2. Let G be the incidence graph of H,

and let G∗ be the graph obtained from G by adjoining 2r loops to every v-vertex.

Define f, g : V (G∗)→ Z by

f(x) = g(x) =

{
2 if x is an e-vertex
2r if x is a v-vertex.

Fix any X ⊆ E(H) with |X| ≥ 2, and denote q = c(G∗ −X). Now, suppose

|X| < 2
⌊q + 3

k

⌋
. (6.3.1)
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Note that any connected component of G∗ − X must contain at least one v-vertex,

so q ≤ n. Furthermore, any non-trivial connected component of G∗ −X has at least

k v-vertices.

Observe that, if q ≤ 2k− 4, then from our assumption that |X| < 2b q+3
k
c we get that

|X| < 2, so |X| = 1. This is a contradiction with the assumption that |X| ≥ 2, hence

we may assume that

q ≥ 2k − 3. (6.3.2)

Let ` denote the number of isolated v-vertices of G∗ −X.

Case 1: ` ≥ 1. First, suppose ` = n. Then X = E(H), q = n, and |X| = |E(H)| ≥

2bn+3
k
c = 2b q+3

2
c. Then we have |X| ≥ 2b c(G

∗−X)+3
k

c, contradicting our assumption

on X. Hence we may assume ` < n.

In fact, since any non-trivial connected component of G∗−X has at least k v-vertices,

and there must be q − ` non-trivial connected components, so we have

n ≥ `+ k(q − `). (6.3.3)

Rearranging, we can write
n− `
k
≥ q − `. (6.3.4)

We may rearrange this to get

q ≤ `+
n− `
k

, (6.3.5)

which will be used later. Since q > `, we may also infer from (6.3.3) that

n ≥ `+ k. (6.3.6)

Let U = {v1, . . . , v`} denote the set of isolated v-vertices in G∗−X. Let S = {{u, v} :

u ∈ U, v ∈ V (H) \ U}. Then |S| = `(n− `).

For e ∈ E(H), if the edge e contains b vertices in U , then it contains k − b vertices

in V (H) \ U , and covers b(k − b) pairs of S. Then b(k − b) is maximized when b and
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k − b are as close to equal as possible, so we may conclude that every edge of E(H),

and hence every edge of X, covers up to bk
2
cdk

2
e ≤ k2

4
pairs of S.

By dividing the number of pairs of S that X covers (i.e. `(n− `)) by the maximum

number that each edge of X can cover, we get |X| ≥ 4`(n−`)
k2

.

Our assumption (6.3.1) that |X| < 2b q+3
k
c implies that |X| ≤ 2q+6

k
− 1.

By putting these together, we get

4`(n− `)
k2

≤ 2q + 6

k
− 1. (6.3.7)

Then we substitute q ≤ ` + n−`
k

from Inequality (6.3.5) and rearrange the inequality

to arrive at

n(4`− 2) ≤ 2k`− 2`+ 6k − k2 + 4`2. (6.3.8)

At this point, we will substitute n ≥ `+ k from (6.3.6) and isolate ` to get

` ≤ 4− k

2
≤ 2. (6.3.9)

On the other hand, if in the left-hand side of Inequality (6.3.7) we substitute n−`
k
≥

q − ` from (6.3.4), we get 4`(q − `) ≤ 2q + 6− k. We can simplify this to

(4`− 2)q − 4`2 ≤ 6− k. (6.3.10)

Substitute k ≥ 4 into Inequality (6.3.10) to obtain

(4`− 2)q − 4`2 ≤ 2. (6.3.11)

Now, we have ` ≥ 1 by our assumption at the beginning of this case, and ` ≤ 2 from

Inequality (6.3.9). Substituting either ` = 1 or ` = 2 yields q ≤ 3. However, this

contradicts our assumption that q ≥ 2k − 3 ≥ 5, concluding Case 1.

Case 2: ` = 0. Therefore, every connected component of G∗ − X has at least k

v-vertices.
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Let C1, C2, . . . , Cq be the connected components of G∗ −X.

We count the number of pairs of vertices that are not covered by edges in H−X, and

count how many edges must be in X for this to be the case. We are counting pairs of

v-vertices that lie in distinct connected components of H−X (and hence, of G∗−X):

this is equivalent to counting the number of edges in the complete multipartite graph

with part sizes |V ′(C1)|, . . . , |V ′(Cq)|, where V ′(Ci) represents the set of v-vertices in

V (Ci).

There are (
n

2

)
−

q∑
i=1

(
|V ′(Ci)|

2

)
(6.3.12)

edges in such a graph; hence, at least that many pairs of vertices are covered by edges

of X. We apply Lemma 6.2.7 to the sum, using the constraints |V ′(Ci)| ≥ k for all

1 ≤ i ≤ q, noting that we have n ≥ kq as well. Then the quantity on Line (6.3.12) is

bounded from below by(
n

2

)
−

q∑
i=1

(
|V ′(Ci)|

2

)
≥
(
n

2

)
− (q − 1)

(
k

2

)
−
(
n− k(q − 1)

2

)
. (6.3.13)

On the other hand, each edge of X covers up to
(
k
2

)
pairs of v-vertices in distinct

connected components. Hence

|X| ≥
(
n
2

)
− (q − 1)

(
k
2

)
−
(
n−k(q−1)

2

)(
k
2

)
=
n(n− 1)− (q − 1)k(k − 1)− (n− k(q − 1))(n− k(q − 1)− 1)

k(k − 1)
.

Now, by assumption we have |X| ≤ 2q+6
k

, so

n(n− 1)− (q − 1)k(k − 1)− (n− k(q − 1))(n− k(q − 1)− 1)

k(k − 1)
≤ 2q + 6

k
.

Collecting n on the left-hand side yields

n(2kq − 2k) ≤ k2q2 − k2q + 2kq + 6k − 2q − 6.
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When we substitute n ≥ kq, we can obtain a quadratic in q on the left-hand side:

k2q2 − (k2 + 2k − 2)q − 6(k − 1) ≤ 0. (6.3.14)

Let f(x) = k2x2 − (k2 + 2k − 2)x − 6(k − 1). Then the discriminant of f(x) is

(k2 + 2k − 2)2 + 24k2(k − 1), which is non-negative since k ≥ 4. Hence we get two

real roots of f(x) :

x1, x2 =
k2 + 2k − 2±

√
(k2 + 2k − 2)2 + 24k2(k − 1)

2k2
. (6.3.15)

Define

g(k) = (k2 + 2k − 2)2 + 24k2(k − 1)− k6

= −k6 + k4 + 28k3 − 24k2 − 8k + 4.

We can verify using a computer algebra system that the real roots of g(k) are all less

than 3, so we have g(k) < 0 for k ≥ 4.

Then (k2 +2k−2)2 +24k2(k−1) < k6. Note that the left-hand side of this inequality

is the discriminant of f(x), so we know it is non-negative. We may take square roots

of both sides and substitute the resulting right-hand side into (6.3.15) to write

x1 <
k2 + 2k − 2 + k3

2k2
.

Since f(q) ≤ 0 from (6.3.14), we have q < x1. From our assumption (6.3.2), we have

2k − 3 ≤ q. Putting these together, we get

2k − 3 < x1<
k2+2k−2+k3

2k2

⇒ 4k3 − 6k2 < k2 + 2k − 2 + k3

⇒ 3k3 − 7k2 − 2k + 2 < 0.

Let h(k) denote 3k3− 7k2− 2k+ 2. It is easy to verify that h(k) has no real roots on

the interval k ≥ 4. Hence h(k) ≥ 0, which is a contradiction.

Since we have obtained a contradiction in every case, we conclude that |X| ≥ b c(G
∗−X)+3
k

c.

H has no cut edges by Lemma 6.2.1, so we may apply Lemma 6.1.4 and conclude
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that H is quasi-eulerian.

We are now ready to prove our main result, using Theorem 6.3.1 in the basis of

induction of Theorem 6.3.2. We use Theorem 5.0.2 as well as a strategy similar to its

proof.

Theorem 6.3.2. Let H be an `-covering k-hypergraph for 2 ≤ ` < k. Then H is

quasi-eulerian if and only if H has at least two edges.

Proof: ⇒: Let H be a quasi-eulerian `-covering k-hypergraph for 2 ≤ ` < k.

Then Lemma 2.2.21 implies that we cannot have |E(H)| = 1. Since H is non-empty

by definition, we must have |E(H)| ≥ 2.

⇐: Fix some k′ ≥ 1 and, for all ` ≥ 2, define the proposition

Pk′(`): “All `-covering (`+k′)-hypergraphs with at least two edges are quasi-eulerian.”

If k′ = 1, then Theorem 5.0.2 states that Pk′(`) holds for all ` ≥ 2. Hence assume

k′ ≥ 2.

We will prove Pk′(`) by induction on `. Pk′(2) follows from Theorem 6.3.1. Suppose

that, for some ` ≥ 2, the proposition Pk′(`) holds: that is, any `-covering (` + k′)-

hypergraph with at least two edges is quasi-eulerian.

Let H = (V,E) be an (`+ 1)-covering (`+k′+ 1)-hypergraph with |E| ≥ 2. Fix some

v ∈ V and let B = {e \ {v} : e ∈ E such that v ∈ e}. Let H ′ = (V \ {v},B). Note

that H ′ is an (`+k′)-uniform hypergraph. It also has the property that every `-tuple

of V (H ′) lies in at least one edge. To see this, let X ⊂ V (H ′) be a set of cardinality

`. Then, in H, the (` + 1)-subset X ∪ {v} lies in some edge e. Then there exists in

B a corresponding edge e \ {v}, which contains X.

Now, let E ′ = {e ∈ E : v 6∈ e}. Obtain a set C of edges, each of cardinality `+ k′, by

taking all the edges of E ′ and removing an arbitrary vertex from each of them (the

choice of vertex does not matter). Define H∗ = (V \ {v},B ∪ C), in which the edge
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set of H∗ is taken as a multiset union of B and C. Then H∗ is an (` + k′)-uniform

hypergraph such that every `-tuple of V (H∗) lies in at least one edge: that is, we

have that H∗ is an `-covering (` + k′)-hypergraph. Since |E(H∗)| = |E(H)| ≥ 2, we

may apply the induction hypothesis to get that H∗ is quasi-eulerian, so it admits an

Euler family F∗.

Define a function ϕ : E(H∗)→ E(H) by defining ϕ(e) = e∪{v} if e originally comes

from B, or ϕ maps e to its corresponding edge from E ′ if e originally comes from C.

Since V (H∗) ⊂ V (H) and ϕ is a bijection, we may apply Lemma 3.4.8 to obtain an

Euler family F for H. Hence H is quasi-eulerian and Pk′(`+ 1) holds.

Therefore, by induction, we have proven that Pk′(`) holds for all ` ≥ 2. Letting k′

vary over all k′ ≥ 2, we have proven that, for 2 ≤ ` < k, all `-covering k-hypergraphs

with at least two edges are quasi-eulerian.



Chapter 7

Eulerian Properties of
Hypergraphs with Particular Edge
Cuts

7.1 Introduction

In this chapter, we leave design hypergraphs behind and focus on constructing Euler

families and Euler tours in hypergraphs that have certain kinds of edge cuts. Analo-

gous results on vertex cuts in hypergraphs have been produced by Steimle and Šajna

[31]. The reason edges of edge cuts are valuable to investigate is that they serve a

very crucial role when constructing a closed walk: they allow a traversal to reach

edges that are only accessible by using these edge-cut edges. This is not an impor-

tant issue for graphs since an Euler tour can be constructed efficiently using a greedy

algorithm.

Recall Theorem 3.4.12, which implies that a hypergraph that has a cut edge may be

eulerian (though it must be a trivial cut edge). One thing that makes dealing with

graphs easier than dealing with hypergraphs is that a cut edge precludes an Euler

tour in a graph, as we can see in the following result.

124
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Proposition 7.1.1. Let G be a graph. If G is eulerian, then G has no cut edges.

Proof: Assume G is eulerian and let e ∈ E(G). Let T = v0e1v1e2v2 . . . emv0 be an

Euler tour of G, and without loss of generality, assume e1 = e. Then v0emvm−1em−1

vm−2 . . . e2v1 is a v0v1-walk of G\e, so Proposition 2.1.9 states that G\e is connected.

Hence e is not a cut edge of G. Letting e vary over all E(G), we see that G has no

cut edges, as required.

Of course, we will not solely investigate hypergraphs that have just a single cut

edge, but this distinction between graphs and hypergraphs is instructive nonetheless.

Between this result and Euler’s result about connected graphs being eulerian if and

only if they are even (Theorem 3.1.2), there are easy ways to check whether a graph

is eulerian or not. As we saw in Chapter 3 (and, in particular, Theorem 3.2.23),

deciding whether a hypergraph is eulerian, even when restricted to a specific class of

hypergraphs, is NP-complete.

This jump in difficulty when going from graphs to hypergraphs is due to (among

other things) the fact that, in a hypergraph, there are multiple ways that any given

edge can be traversed. However, since edges in a fixed edge cut are in some way

responsible for affording access to different parts of the hypergraph, the possibilities

for how and when these edges are traversed in a closed trail is more limited than it

is for other kinds of edges.

We can take advantage of the limitations of edge-cut edges to reduce the problem

of existence of an Euler family or tour to finding one in some related, and smaller,

hypergraphs. The main idea is that these edge-cut edges get traversed in a way that

is reliant on how the others get traversed, so in prescribing how one gets traversed,

we gain information about the others.

This chapter is separated into sections based on the kind of edge cut the hypergraph
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has. There are, generally speaking, similar results for Euler tours and Euler families

in each section. We will introduce some new tools that help us analyze these hyper-

graphs, and these tools can be used for problems that are beyond the scope of this

chapter.

At the end of the chapter, we produce an algorithm that uses the accrued results to

search for an Euler tour in any hypergraph.

7.2 Definitions and Basic Facts

Recall the definition of an edge cut for hypergraphs:

Definition 7.2.1. Let H be a hypergraph and let S ( V (H) be nonempty. Then

F = [S, S̄] = {e ∈ E(H) : e∩S 6= ∅, e∩S 6= ∅} is called an edge cut of H. F is called

minimal if H has no edge cut properly contained in F .

If F is an edge cut of H, then we necessarily have that H \ F is disconnected. We

will usually denote the connected components of H \ F by Hi, i ∈ I, for some index

set I.

We first give a result that demonstrates that deleting an edge cut yields a disconnected

subhypergraph, and vice-versa: any disconnected subhypergraph of H is obtained

from H by deleting, at minimum, an edge cut from it (and then possibly some more

edges).

Lemma 7.2.2. Let H be a hypergraph, and let F ⊆ E(H). Then H\F is disconnected

if and only if H has an edge cut F ′ ⊆ F .

Proof: ⇒: Assume that H \ F is disconnected, and let H1, . . . , Hk, with k ≥ 2,

be the connected components of H \F . Define S = V (H1), so that S̄ = V (H2)∪ . . .∪
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V (Hk). Let F ′ = [S, S̄], so F ′ is an edge cut of H.

We now show that F ′ ⊆ F . Suppose f ∈ F ′. Then f contains a vertex u ∈ S and

a vertex v ∈ S̄. If f 6∈ F , then u and v are connected in H \ F , a contradiction

because u and v lie in different connected components of H \ F . Hence f ∈ F , and

we conclude that F ′ ⊆ F .

⇐: Assume H has an edge cut F ′ ⊆ F . Let F ′ = [S, S̄], where ∅ ( S ( V (H). Let

u ∈ S and v ∈ S̄. If there exists a uv-walk W in H \ F ′, then W traverses an edge e

that contains a vertex in S and a vertex in S̄. Then e must be in F ′, a contradiction.

Therefore, there is no such walk W .

Hence H \ F ′ is disconnected. Since F ⊇ F ′, it follows that H \ F is disconnected as

well.

A lot of results we will be developing in this chapter require minimal edge cuts, since

they have a handy property that we will see in the upcoming lemma. Accordingly,

we will introduce some convenient terminology to help us along.

Definition 7.2.3. Let H be a hypergraph and H ′ be a subhypergraph of H. We say

that an edge e ∈ E(H) intersects H ′ if e ∩ V (H ′) 6= ∅.

Lemma 7.2.4. Let H be a hypergraph, and let F be an edge cut of H. Let Hi, for

i ∈ I, be the connected components of H \ F .

Then F is a minimal edge cut if and only if every edge of F intersects Hi for all

i ∈ I.

Proof: ⇒: We prove the contrapositive: assume there is some f ∈ F and some

i such that f does not intersect Hi. Let F ′ = F \ {f}. Since Hi is a connected

component of H \ F , there is no edge in H \ F that joins a vertex of V (Hi) to a
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vertex of V (H) \ V (Hi). Likewise, since f does not intersect Hi, there is no edge in

H \ F ′ that joins a vertex of V (Hi) to a vertex of V (H) \ V (Hi). Then H \ F ′ is

disconnected, so Lemma 7.2.2 implies that there is an edge cut F ′′ ⊆ F ′ ⊂ F . Hence

F is not a minimal edge cut.

⇐: Suppose each edge of F intersects every connected component of H \F . Fix some

f ∈ F and let F ′ = F \ {f}.

Since f intersects every connected component of H \ F , we see that H \ F ′ is con-

nected. Then Lemma 7.2.2 implies that there is no edge cut contained in F ′. As f

is arbitrary, this shows that there is no edge cut properly contained in F , so F is a

minimal edge cut.

We next present a simple result that shows that an Euler family of a hypergraph H

contains an Euler family of every union of connected components of H.

Lemma 7.2.5. Let H be a hypergraph with connected components Hi, for i ∈ I. Then

the following hold:

(1) If, for each i ∈ I, we have that Hi has an Euler family Fi, then
⋃
i∈I
Fi is an Euler

family of H. If each Fi is spanning in Hi, then so is F in H.

(2) If H has an Euler family F , then F has a partition {Fi : i ∈ I} such that, for

each i ∈ I, we have that Fi is an Euler family of Hi. If F is spanning in H,

then so is each Fi in Hi.

Proof: (1) For each i ∈ I, assume Hi has an Euler family Fi.

Then F =
⋃
i∈I
Fi is a collection of anchor-disjoint closed trails that traverses every

edge of
⋃
i∈I
Hi = H exactly once. Hence F is an Euler family of H.

Suppose each Fi is spanning. Then F traverses all the vertices that are traversed by
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any Fi. Since each vertex of every connected component of H is traversed by some

Fi, we see that F is spanning in H.

(2) Assume H has an Euler family F . For each i ∈ I, define Fi = {T ∈ F :

T is a trail in Hi}. Since every trail of F is in exactly one Hi, we have that {Fi : i ∈

I} is a partition of F .

Now, fix i ∈ I and let e ∈ E(Hi). Then e is traversed in F , so there exists unique

T ∈ F that traverses e. We then have that T is a trail of Hi, so T ∈ Fi. Hence e is

traversed exactly once in Fi. Since the trails of F are anchor-disjoint, so too are the

trails of Fi, hence Fi is an Euler family of Hi.

Suppose now that Fi is not spanning in Hi, for some i ∈ I. Then there exists

v ∈ V (Hi) not traversed by Fi. It must be the case that v is not traversed by F , so

F is not spanning in H. Therefore, by the contrapositive, each Fi is spanning in Hi

if F is spanning in H.

Corollary 7.2.6. Let H be a hypergraph with connected components Hi, for i ∈ I.

Assume that F is an Euler family of H, and {Fi : i ∈ I} a partition of F such that,

for all i ∈ I, we have that Fi is an Euler family of Hi.

Then, for each J ⊆ I, we have that
⋃
i∈J
Fi is an Euler family of

⋃
i∈J

Hi.

Proof: Let F be an Euler family of H. Then Lemma 7.2.5 (2) produces the re-

quired partition {Fi : i ∈ I} of F . Fix some J ⊆ I and let H ′ =
⋃
i∈J

Hi. Lemma 7.2.5

(1) demonstrates that
⋃
i∈J
Fi is an Euler family of H ′.
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7.3 Technical Lemmas

We are now ready to present the two main tools of this chapter that generate an aux-

iliary graph (or hypergraph). The simpler nature of these auxiliary (hyper)graphs

allows us to focus on how a trail might traverse edges of an edge cut.

Definition 7.3.1. Let H be a connected hypergraph with a minimal edge cut F and

an Euler family F . Let Hi, for i ∈ I, denote the connected components of H \ F .

(a) For every f ∈ F such that f is traversed in F via an anchor in Hi and an anchor

in Hj, we denote fG = ij.

(b) Define a multigraph G = G(H,F,F) as follows:

• V (G) = I, and

• E(G) = {fG : f ∈ F}.

(c) Let PG be the partition of I into vertex sets of the connected components of G;

that is,

PG = {J ⊆ I : G[J ] is a connected component of G}.

(d) For any J ⊆ I, we define the following:

• FJ = {f ∈ F : fG ∈ E(G[J ])};

• for each f ∈ FJ : f ′ = f ∩
( ⋃
i∈J

V (Hi)
)
;

• F ′J = {f ′ : f ∈ FJ};

• H ′J =
( ⋃
i∈J

Hi

)
+ F ′J .
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Note that, since G is a multigraph, it may have loops and parallel edges. A loop

is produced when an edge f ∈ F is traversed in F via two vertices of the same

connected component of H \ F . Parallel edges are produced when multiple edges of

F are traversed via anchors of the same pair of connected components (though not

necessarily the same anchors).

We explore some ramifications of these definitions in the following lemma.

Lemma 7.3.2. Let H be a nonempty connected hypergraph with a minimal edge cut

F and Euler family F , and let Hi, for i ∈ I, be the connected components of H \ F .

Then G = G(H,F,F) satisfies the following:

(1) G is an even graph with |I| vertices and |F | edges.

(2) H ′ =
⋃

J∈PG

H ′J has an Euler family F ′ obtained from F by replacing each edge

f ∈ F with f ′ ∈ F ′J for some appropriate choice of J ∈ PG.

(3) F ′ has a partition {F ′J : J ∈ PG} such that F ′J is an Euler family of H ′J for each

J ∈ PG. Hence |F| =
∑
J∈PG

|F ′J |.

(4) If F is spanning in H, then F ′ is spanning in H ′, and F ′J is spanning in H ′J for

all J ∈ PG.

(5) If |F| = 1, then there exists a unique J ∈ PG such that G[J ] is nonempty. For

this J , we have that H ′J has a nontrivial Euler tour, and Hi is empty for all

i 6∈ J .

Proof: (1): It is evident that G has |I| vertices and |F | edges from its definition,

so we need only show that G is an even graph.

Let T ∈ F . Then T = u1T1v1f1u2T2v2f2 . . . vsfsu1, where Ti is a trail in Hji , ui, vi ∈

V (Hji), and fi ∈ F , for each i = 1, . . . , s.

Then T ′ = j1(f1)Gj2(f2)G . . . (fs)Gj1 is a closed trail in G, and {T ′ : T ∈ F} is a
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decomposition of G into closed trails. Hence G is even.

(2) Let f ∈ F . Then, since PG is a partition of I into the vertex sets of the connected

components of G, we have that there exists a unique J ∈ PG such that fG ∈ E(G[J ]).

Hence there is a unique J ∈ PG such that F ′J contains the corresponding edge f ′.

Furthermore, since f is traversed in F via vertices in V (H ′J), we know that f ′ =

f ∩ V (H ′J) contains those vertices.

We obtain F ′ from F by replacing each edge f ∈ F with the corresponding edge f ′

that lies in F ′J for the unique J ′ ∈ PG as described above. Note that H ′ is obtained

from H by replacing each f ∈ F with f ′, so this suggests that F ′ is an Euler family

of F .

Formally, we define a bijection ϕ : E(H) → E(H ′) that maps each f ∈ F to the

corresponding f ′ described above, and preserves all the other edges. Since we have

V (H) = V (H ′) and ϕ(e) ⊆ e for all e ∈ E(H), and every e ∈ E(H) is traversed

in F via vertices in ϕ(e), we may apply Lemma 3.4.8 (2) using the bijection ϕ−1 to

conclude that F ′ is an Euler family of H ′.

(3) Observe that {H ′J : J ∈ PG} is the set of connected components of H ′. Then

Lemma 7.2.5 implies that F ′ has a partition {F ′J : J ∈ PG} such that, for each

J ∈ PG, we have that F ′J is an Euler family of H ′J .

It should be clear from our construction of F ′ that |F ′| = |F|, so by summing

cardinalities of a disjoint union of sets, we have |F| = |F ′| =
∑
J∈PG

|F ′J |.

(4) Assume F is spanning in H.

F ′ has the same set of anchors as F , and V (H ′) = V (H), so we have that F ′ is

spanning in H ′.

Let v ∈ V (H ′J) for some J ∈ PG. Then there exists T ∈ F ′ that traverses v, since F ′

is spanning in H ′ and v ∈ V (H ′). Then T must be a closed trail in H ′J , so necessarily

we have T ∈ F ′J . Hence v is traversed by F ′J , and so every vertex of V (H ′J) is traversed
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by F ′J .

(5) Assume |F| = 1. Since F is nonempty, so is G, so assume that J ∈ PG is such

that G[J ] is nonempty.

Let K ∈ PG be distinct from J . Then by (3) of this lemma, there exists an Euler

family F ′J of H ′J and F ′K of H ′K . Again by (3), we have that 1 = |F| ≥ |F ′J | + |F ′K |,

hence one of F ′J and F ′K is empty. But G[J ] is nonempty, which implies that FJ (and

hence F ′J) is nonempty. So H ′J is nonempty, so it cannot have an empty Euler family.

Therefore, we have that F ′K is empty, and so we must conclude that H ′K is empty for

all K 6= J . This implies that F ′K is empty, so we also conclude that G[K] is empty

for all K 6= J , hence K is singleton. Hence H ′K = Hk for some k ∈ I and Hi is empty

for all i 6∈ J .

Furthermore, since F ′J is an Euler family of H ′J of cardinality 1, it contains a non-

trivial Euler tour of H ′J .

Definition 7.3.3. (Collapsed Hypergraph) Let H be a hypergraph and let

{V0, V1, . . . , Vk} be a partition of V (H) with k ≥ 1. We define the collapsed hypergraph

H ◦ {V1, . . . , Vk} = (V ◦, E◦) as follows:

• V ◦ = V0 ∪ {v1, . . . , vk} for some distinct vertices v1, . . . , vk 6∈ V (H);

• First take E ′ = {(e ∩ V0) ∪ {vi : 1 ≤ i ≤ k and e intersects Vi} : e ∈ E(H)},

then define E◦ = {e ∈ E ′ : |e| ≥ 2}.

The new vertices v1, . . . , vk are called the collapsed vertices of the collapsed hyper-

graph.

If k = 1, then we may simply write H ◦ V1 instead of H ◦ {V1}, i.e., we may omit the

set braces around V1, so long as this does not cause ambiguity.
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The idea behind collapsed hypergraphs is that we identify all the vertices of V1, then

all the vertices of V2, and so on. The collapsed vertices are introduced, for clarity’s

sake, to stand in for these vertices that have been identified. The edges of E ′ are

obtained from E(H) in exactly the way one would expect after identifying sets of

vertices; the difficulty that can arise is that we end up with edges of cardinality 1 if

an edge of E(H) lies entirely in one of the vertex sets Vi. We discard these to obtain

E◦, for we do not want edges of cardinality 1.

Remark 7.3.4. The goals of defining G(H,F,F) and a collapsed hypergraph are

similar: we wish to simplify the parts of the hypergraph that we are not terribly

interested in, so that we may focus on how the edge-cut edges must be used to

navigate to each of those parts. In the case of G(H,F,F), we are already given an

Euler family F , and so we use this auxiliary graph to analyze what the traversals

must say about the connected components of H \ F .

In the case of the collapsed hypergraph, we do not need to already have an Euler

family in mind, and we can choose to simplify only certain parts of the hypergraph.

This can be very useful in certain situations (as we will see in Theorem 7.7.1), but

since we have a hypergraph, it is not permitted to have any “loops,” a restriction

that G(H,F,F) does not have. If the collapsed hypergraph is to be used in situations

beyond what we explore in this chapter, then this weakness will have to be navigated

with care, for it might not correctly model what is required.

We now present a lemma that allows us to show that certain collapsed hypergraphs

are quasi-eulerian when the original hypergraph is.

Lemma 7.3.5. Let H be a nonempty connected hypergraph with a minimal edge cut

F and Euler family F . Let Hi, for i ∈ I, be the connected components of H \F , and

assume that G = G(H,F,F) is connected.
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Take any K ⊆ I such that G[K] is loopless, and denote H(K) = H ◦{V (Hk) : k ∈ K}.

Then H(K) has an Euler family F (K) such that the following hold:

(1) |F (K)| ≤ |F|;

(2) F and F (K) have the same anchors in
⋃

i∈I\K
V (Hi); and

(3) For any T ∈ F and k ∈ K, we have that T traverses a vertex in V (Hk) and

a vertex outside of V (Hk) if and only if F (K) traverses the collapsed vertex uk

corresponding to V (Hk).

Proof: Let K ⊆ I and assume that G[K] is loopless. Let uk, for k ∈ K, be the

collapsed vertices of H(K). Define a map ϕ : V (H)→ V (H(K)) as follows:

ϕ(v) =

{
v : v ∈ V (Hi) for some i ∈ I \K
uk : v ∈ V (Hk) for some k ∈ K.

That is, ϕ maps each vertex of H to its corresponding (possibly collapsed) vertex in

H(K). Then, for each e ∈ E(H), we can refer to ϕ(e) as the image of the set e under

ϕ, which is either an edge of H(K), or a singleton.

Now, for each e ∈ E(H), we can investigate how ϕ(e) looks depending on where e is

from. If e ∈ F , then Lemma 7.2.4 tells us that ϕ(e) contains every collapsed vertex

of H(K), in addition to vertices from
⋃

i∈I\K
V (Hi). On the other hand, if e 6∈ F , then

e ∈ E(Hi) for some i ∈ I. If i ∈ K, then ϕ(e) is a singleton. If i ∈ I \ K, then

ϕ(e) = e.

Since we assume that H has an Euler family F , let T = v0e1v1 . . . vr−1erv0 be a trail

of F . Denote by ϕ(T ) the sequence obtained by applying ϕ to each of its anchors

and edges. Since T is a trail, we have that each ei contains vi−1 and vi, for 1 ≤ i ≤ r

(where vr denotes v0). Hence each ϕ(ei) contains ϕ(vi−1) and ϕ(vi).

Now, we construct a new sequence T ∗ from ϕ(T ) by deleting any subsequence ϕ(ei)ϕ(vi)

such that ϕ(ei) is singleton. Observe that ϕ(ei) being singleton implies that ϕ(vi) =
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ϕ(vi−1), so T ∗ has the property that each remaining ϕ(ej) contains the vertices im-

mediately preceding and following it in the sequence. Furthermore, we now have that

no two consecutive anchors of T ∗ are the same, so T ∗ is a walk in H(K).

In fact, observe that all the remaining ϕ(ei) in T ∗ are edges of H(K). Since each

edge of T ∗ corresponds to a distinct edge of T , we have that T ∗ is a trail. Since

ϕ(E(H)) includes every element of E(H(K)) and F traverses every edge of H exactly

once, we have that the resulting collection F (K) = {T ∗ : T ∈ F , T ∗ is nontrivial}

traverses every edge of H(K) exactly once. Hence F (K) is an Euler family of H(K),

and |F (K)| ≤ |F|. This proves (1).

Furthermore, suppose v ∈
⋃

i∈I\K
V (Hi) is a vertex traversed by F but not by F (K).

This implies that for each trail T ∈ F that traverses v, the corresponding trail T ∗ is

trivial and so is excluded from F (K). Since T is not trivial, this implies that for any

edge e of T that is traversed via v, we have that ϕ(e) is singleton. But this implies

that e ∈ E(Hk) for some k ∈ K, while v ∈ e does not lie in V (Hk) — a contradiction.

It should be evident that the set of anchors of F (K) in
⋃

i∈I\K
V (Hi) is contained in

the set of anchors of F , so this is sufficient to show that F and F (K) have the same

anchors in
⋃

i∈I\K
V (Hi), completing the proof of (2).

Finally, let T ∈ F and k ∈ K be such that T traverses a vertex of V (Hk) and a vertex

outside of V (Hk). Then ϕ(T ) contains uk as well as a vertex that is not uk, so the

resulting trail T ∗ is nontrivial. Hence T ∗ ∈ F (K) and it traverses uk. On the other

hand, now suppose F (K) traverses the collapsed vertex uk. There must be some trail

T ∗ ∈ F (K) that traverses uk, and, by virtue of T ∗ being nontrivial, the corresponding

trail T ∈ F cannot be a trail of Hk, although it traverses a vertex of V (Hk). Hence

T traverses a vertex in V (Hk) and a vertex outside of V (Hk), completing the proof

of (3).
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We will begin to see how these auxiliary graphs and hypergraphs can help us pin

down Euler families and Euler tours when we present the main results in subsequent

sections.

7.4 Eulerian Properties of Hypergraphs with Non-

specific Edge Cuts

We first give a broad result about the existence of Euler families in hypergraphs with

edge cuts. It states that an Euler family is equivalent to some “choice function” α

that determines into which two connected components of H \F each edge of the edge

cut F should go. Of course, if we already have an Euler family F , then the edges

of our graph G(H,F,F) tell us how each edge of F is assigned, and so it naturally

produces such a choice function. However, if we start off with a function and we want

to ensure that it is a valid assignment of the edges of F , it needs to satisfy several

conditions.

Theorem 7.4.1. Let H be a nonempty connected hypergraph with a minimal edge

cut F . Let Hi, for i ∈ I, be the connected components of H \ F . Then H has a

(spanning) Euler family F if and only if there exist a function α : F → {ij : i, j ∈ I}

and a multigraph Gα defined by

• V (Gα) = I;

• for each i, j ∈ V (Gα), the multiplicity of the edge ij in Gα is |α−1(ij)|.

such that for each connected component C of Gα, we have that the hypergraph

H(C) =
( ⋃
i∈V (C)

Hi

)
+
{
f ∩

( ⋃
i∈V (C)

V (Hi)
)

: f ∈ α−1(E(C))
}

has a (spanning) Euler family FC.
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Furthermore, if C denotes the collection of connected components of Gα, then these

Euler families can be chosen to satisfy |F| =
∑
C∈C
|FC |.

Proof: ⇒: Assume H has an Euler family F , and let G = G(H,F,F). Adopt

the rest of the notation from Definition 7.3.1.

Now define α : F → {ij : i, j ∈ I} by α(f) = fG. Then Gα = G.

Let C be a connected component of Gα (and, hence, a connected component of G).

Then C = G[J ] for some J ∈ PG, so by Lemma 7.3.2 (3), we know that H ′J has an

Euler family, which we will call FC .

From Definition 7.3.1, we can see that

FJ = {f ∈ F : fG ∈ E(G[J ])}

= {f ∈ F : α(f) ∈ E(C)}

= {f ∈ F : f ∈ α−1(E(C))}, so

F ′J = {f ′ : f ∈ FJ}

= {f ∩
(⋃
i∈J

V (Hi)
)

: f ∈ α−1(E(C))},

hence H ′J = H(C) and so FC is an Euler family of H(C).

Furthermore, if F is spanning in H, then Lemma 7.3.2 (4) states that FC is spanning

in H(C).

Finally, Lemma 7.3.2 (3) implies that the collection of FC , for C ∈ C, satisfies |F| =∑
C∈C
|FC |.

⇐: Let α : F → {ij : i, j ∈ I} be a function and Gα be the corresponding multigraph.

Assume that, for each connected component C of Gα, we have that H(C) has an Euler

family FC .

Let C be a connected component of Gα. Define E(C) = E
( ⋃
i∈V (C)

Hi

)
∪ α−1(E(C))
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and ϕ : E(C) → E(H(C)) by

ϕ(e) =

{
e ∩
( ⋃
i∈V (C)

V (Hi)
)

: e ∈ F

e : otherwise.

Then ϕ is a bijection and ϕ(e) ⊆ e for all e ∈ E(C). Lemma 3.4.8 (1) then states that

(V,E(C)) has an Euler family F ′C obtained from FC by replacing each edge e with

ϕ−1(e).

We claim that F =
⋃
C∈C
F ′C is the required Euler family of H. Since {V (H(C)) : C ∈

C} is a partition of V (H), the components of F are pairwise anchor-disjoint, and

since {E(H(C)) : C ∈ C} is a partition of E(H), every edge of H is traversed exactly

once in F .

Furthermore, assume each FC is spanning in H(C). Then each F ′C traverses the

same set of anchors as FC , and
⋃
C∈C

V (H(C)) = V (H), so F traverses every vertex of

H.

Finally, since the families FC , for C ∈ C, are pairwise disjoint, so are the families F ′C .

Then we have that |F| =
∑
C∈C
|F ′C | =

∑
C∈C
|FC |.

We also present a version of Theorem 7.4.1 for Euler tours.

Corollary 7.4.2. Let H be a nonempty connected hypergraph with a minimal edge

cut F . Let Hi, for i ∈ I, be the connected components of H \F . Then H has an Euler

tour T if and only if there exists a function α : F → {ij : i, j ∈ I} and a multigraph

Gα defined by

• V (G) = I;

• For each i, j ∈ V (G), the multiplicity of the edge ij in Gα is |α−1(ij)|.

such that the following hold:
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(1) Gα has a single nonempty connected component C∗, and

H(C∗) =
( ⋃
i∈V (C∗)

Hi

)
+
{
f ∩

( ⋃
i∈V (C∗)

V (Hi)
)

: f ∈ α−1(E(C∗))
}

has an Euler tour TC∗;

(2) Hi is an empty connected component of H, for each i 6∈ V (C∗).

Furthermore, we have that T is spanning in H if and only if TC∗ is spanning in H(C∗)

and C∗ is the only connected component of Gα.

Proof: ⇒: Let T be an Euler tour of H, and G = G(H,F, {T}). Define α as in

the proof of Theorem 7.4.1 (⇒), so that Gα = G. Let C be the set of all connected

components of G. By Theorem 7.4.1, for each C ∈ C, we have that H(C) has an

Euler family FC , and 1 = |{T}| =
∑
C∈C
|FC |.

Hence there exists C∗ ∈ C such that |FC∗| = 1 and |FC | = 0 for all C ∈ C \ {C∗}.

Therefore, we have that H(C∗) has an Euler tour TC∗ . On the other hand, for all

C 6= C∗, we have that H(C) is empty; hence C is empty and
⋃

i∈V (C)

Hi is empty. It

follows that C = {i} for some i 6∈ V (C∗) and Hi is empty.

Further, assume T is spanning. Theorem 7.4.1 says that TC∗ is spanning. It also

implies that FC is spanning in H(C) for each C 6= C∗. However, we have established

that FC is empty for such C, and an empty Euler family cannot traverse any vertices.

Therefore, in this case, there are no connected components of Gα except for C∗.

⇐: Let α be a function and Gα be the corresponding multigraph satisfying (1) and

(2). If C = {i} is an empty connected component of Gα, then Hi = H(C) is an empty

connected component of H and has an empty Euler family FC . Let FC∗ = {TC∗}.

Then α and Gα satisfy the conditions of Theorem 7.4.1, and H has an Euler family

F . Morever, we have |F| =
∑
C∈C
|FC | = |{TC∗}| = 1, so H has an Euler tour.

Furthermore, if TC∗ is spanning in H(C∗) and C∗ is the only connected component

of G, then Theorem 7.4.1 implies that T is spanning in H.
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Theorem 7.4.1 can seem unwieldy, but it leads to more digestible results on both

Euler families and Euler tours, which we now present.

Theorem 7.4.3. Let H be a hypergraph with a nonempty minimal edge cut F . Let

Hi, for i ∈ I, denote the connected components of H \ F .

Then H has a (spanning) Euler family F if and only if there exists J ⊆ I with

1 ≤ |J | ≤ |F | such that the following hold:

(1) H[
⋃
j∈J

V (Hj)] has a nonempty (spanning) Euler family FJ ; and

(2) Hi has a (spanning) Euler family Fi for all i 6∈ J .

Furthermore, the Euler families F ,FJ , and each Fi can be chosen so that they satisfy

|F| = |FJ |+
∑
i∈I\J

|Fi|.

Proof: ⇒: Let F be an Euler family of H. Construct G = G(H,F,F) and adopt

the notation from Definition 7.3.1.

Let C ′ be the set of nonempty connected components ofG, and let J =
⋃
C∈C′

V (C).

Since
⋃
C∈C′

C is a graph with |J | vertices, |F | edges, and minimum degree at least 2,

the Handshaking Lemma 2.1.2 gives 2|F | ≥ 2|J |. Furthermore, since G is nonempty,

we have |J | ≥ 1. Hence 1 ≤ |J | ≤ |F |.

If i ∈ I \ J , then i is an isolated vertex of G, and {i} ∈ PG. Hence H{i} = Hi has an

Euler family F ′i , by Lemma 7.3.2 (3).

Also by Lemma 7.3.2 (3), there exists an Euler family F ′K of H ′K for each K ∈ PG.

Let F ′′J =
⋃

K∈PG
K⊆J

F ′K and H ′′J =
⋃

K∈PG
K⊆J

H ′K .

Lemma 7.2.5 (1) states that F ′′J is an Euler family of H ′′J .
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We use F ′′J to construct an Euler family of H[
⋃
i∈J

V (Hi)] as follows. First, observe

that since FJ = F , we have H[
⋃
i∈J

V (Hi)] = H ′J , and that V (H ′J) = V (H ′′J ) =⋃
i∈J

V (Hi).

Define ϕ : E(H ′J)→ E(H ′′J ) as follows. If e ∈ E(Hi) for some i ∈ J , then let ϕ(e) = e.

Otherwise, we have e = f ∩ V (H ′J) for some f ∈ F . We then let ϕ(e) = f ∩ V (H ′K),

where K ∈ PG is such that fG ⊆ K. Then ϕ is well defined since each edge of G lies

in exactly one connected component of G. Moreover, we have that ϕ is a bijection,

and ϕ(e) ⊆ e for all e ∈ E(H ′J). It now follows from Lemma 3.4.8 (1) that H ′J has an

Euler family FJ with |FJ | = |F ′′J |.

Finally, from Lemma 7.3.2, we have that

|F| =
∑
K∈PG

|F ′K |

=
∑
K⊆J
K∈PG

|F ′K |+
∑
i∈I\J

|F ′i |

= |F ′′J |+
∑
i∈I\J

|F ′i |

= |FJ |+
∑
i∈I\J

|F ′i |.

Furthermore, assume now that F is spanning in H. Then Lemma 7.3.2 (4) implies

that, for each K ∈ PG, we have that F ′K is spanning in H ′K . Note that if K 6⊆ J , we

have that H ′K = Hi for some i ∈ I \ J , so this implies that F ′i , for each i ∈ I \ J , is

spanning in Hi.

Now, if K ⊆ J , then we are given that F ′′J is spanning in H ′′J by Lemmas 7.3.2 (4)

and 7.2.5 (1). Hence FJ , constructed from F ′′J using Lemma 3.4.8 (1), is spanning in

H ′J , since F ′′J and FJ traverse the same vertices and V (H ′′J ) = V (H ′J).

Therefore, the Euler families FJ and Fi, for all i ∈ I \ J , are spanning in their

respective hypergraphs if F is spanning in H.
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⇐: Assume there exists J ⊆ I with the properties listed in the statement of this

theorem. Let FJ be a nonempty Euler family of H
[ ⋃
j∈J

V (Hj)
]
, and let Fi be an

Euler family of Hi for all i ∈ I \ J . Then F ′ = FJ ∪ (
⋃

i∈I\J
Fi) is an Euler family of

H ′ := H
[ ⋃
j∈J

V (Hj)
]
∪ (

⋃
i∈I\J

Hi), since H ′ is a disjoint union of hypergraphs. We can

observe that F ′ is spanning in H ′ if and only if FJ and all Fi are spanning in their

respective hypergraphs, and that |F ′| = |FJ | +
∑
i∈I\J

|Fi| since F ′ is a disjoint union

of sets FJ and Fi, for i ∈ I \ J .

Construct a bijection ϕ : E(H)→ E(H ′) by defining, for all e ∈ E(H):

ϕ(e) =

{
e : e 6∈ F
e ∩
( ⋃
j∈J

V (Hj)
)

: e ∈ F.

Since F is a minimal edge cut, we have that f ∩ V (HJ) 6= ∅ for all f ∈ F by

Lemma 7.2.4. Hence ϕ is well defined since f ∩ V (HJ) ∈ E(H ′) for all f ∈ F .

Furthermore, we have that ϕ is a bijection because each edge f ∈ F is canonically

mapped to a distinct f ∩ V (HJ) in the construction of the induced subhypergraph

H
[ ⋃
j∈J

V (Hj)
]
, and ϕ does the same.

Then, since V (H ′) = V (H) and ϕ is a bijection with ϕ(e) ⊆ e for all e ∈ E(H),

we may apply Lemma 3.4.8 (1) (using ϕ−1) to obtain an Euler family F of H that

satisfies |F| = |F ′| = |FJ |+
∑
i∈I\J

|Fi|.

Furthermore, if FJ and each Fi, for i ∈ I \ J , are spanning in their respective hyper-

graphs, then F ′ is spanning in H ′ as observed earlier, and so Lemma 3.4.8 (1) states

that F is spanning in H.

Corollary 7.4.4. Let H be a hypergraph with a nonempty minimal edge cut F . Let

Hi, for i ∈ I, denote the connected components of H \ F .

Then H has a (spanning) Euler tour T if and only if there exists J ⊆ I with 1 ≤

|J | ≤ |F | such that the following hold:



7. HYPERGRAPHS WITH PARTICULAR EDGE CUTS 144

(1) H
[ ⋃
j∈J

V (Hj)
]

has a (spanning) Euler tour TJ ; and

(2) Hi is empty for all i ∈ I \ J .

Furthermore, if |I| > |F |, then H does not have a spanning Euler tour.

Proof: ⇒: Let T be an Euler tour of H. Then F = {T} is an Euler family of H

of cardinality 1. By Theorem 7.4.3, there exists J ⊆ I with 1 ≤ |J | ≤ |F | such that

H
[ ⋃
j∈J

V (Hj)
]

has an Euler family FJ of cardinality 1, which is spanning if F is, and

each Hi, for i ∈ I \ J , has an empty Euler family.

This implies that H
[ ⋃
j∈J

V (Hj)
]

has an Euler tour TJ that is spanning if T is, and

each Hi is empty, for i ∈ I \ J .

⇐: Assume we have J ⊆ I with 1 ≤ |J | ≤ |F | satisfying properties (1) and (2) in the

statement of this corollary. Then FJ = {TJ} is an Euler family of H
[ ⋃
j∈J

V (Hj)
]
, and

each Hi has an empty Euler family Fi for i ∈ I \ J . We may apply Theorem 7.4.3

to obtain an Euler family F of H of cardinality 1, so F gives rise to an Euler tour of

H.

Finally, suppose that T is a spanning Euler tour of H, but |I| > |F |. Then The-

orem 7.4.3 implies that there exists an empty spanning Euler family of Hi for all

i ∈ I \ J . Since I \ J is nonempty, this implies the existence of an empty spanning

Euler family; however, an empty Euler family, by definition, cannot be spanning.

Therefore, there cannot be any spanning Euler tour of H if |I| > |F |.
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7.5 Eulerian Properties of Hypergraphs with a Cut

Edge

Situations in which our hypergraph H has a cut edge are rather straightforward. In

order for the cut edge f to be traversed in a closed trail, it must be traversed via two

vertices in the same connected component of H \ f . What we state here is simply a

specific example of Theorem 7.4.3.

Theorem 7.5.1. Let H be a connected hypergraph with a cut edge f . Let Hi, for

i ∈ I, be the connected components of H \ f . Then

(1) H has a (spanning) Euler family if and only if there exists i ∈ I such that

• H[V (Hi)] has a nonempty (spanning) Euler family; and

• Hj has a (spanning) Euler family for all j 6= i.

(2) H has an Euler tour if and only if there exists i ∈ I such that

• H[V (Hi)] has an Euler tour; and

• Hj is empty for all j 6= i.

(3) H has no spanning Euler tour.

Proof: These results follow directly from Theorem 7.4.3 and Corollary 7.4.4 when

|F | = 1.
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7.6 Euler Tours in Hypergraphs With Edge Cuts

of Cardinality 2

When our hypergraph H has an edge cut F with just two edges in it, we can apply

a new strategy involving some collapsed hypergraphs. This strategy enables us to

find Euler tours in a new way that is usually computationally less expensive than

the strategy of Corollary 7.4.4, providing us with an additional avenue of attack. We

require that H \ F have exactly two nonempty connected components; however, this

is not much of an additional assumption. If H \ F has more than two nonempty

connected components, then of course there cannot be an Euler tour at all, by Corol-

lary 7.4.4; if it has fewer than two, then the strategy of this theorem ends up being

identical to the one employed by Corollary 7.4.4.

Theorem 7.6.1. Let H be a hypergraph with a minimal edge cut F = {f1, f2} of

cardinality 2. Let Hi, for i ∈ I, denote the connected components of H \ F . Further,

assume that H1 and H2 are nonempty and that Hi is empty for all i 6∈ {1, 2}.

For each i ∈ {1, 2}, let H∗i be the hypergraph H ◦
( ⋃
j 6=i

V (Hj)
)
. Then H has an Euler

tour T if and only if each H∗i , for i = 1, 2, has an Euler tour Ti that traverses the

collapsed vertex of H∗i .

Furthermore, we have that T is spanning in H if and only if |I| = 2 and Ti, for

i = 1, 2, is spanning in H∗i .

Proof: ⇒: Let T be an Euler tour of H. We will use the notation from Defini-

tion 7.3.1 with respect to G = G(H,F, {T}), although we will not use G itself. By

Corollary 7.4.4, there exists J ⊆ I with |J | ≤ 2 such that H ′J = H
[ ⋃
j∈J

V (Hj)
]

has

an Euler tour TJ and each Hi is empty, for i ∈ I \J . By our assumption that H1 and

H2 are nonempty, we have J = {1, 2}. If T is spanning in H, then Corollary 7.4.4

tells us that TJ is spanning in H ′J .
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Let F ′J = {f ′1, f ′2}. We claim that F ′J must be a minimal edge cut of H ′J . It

is certainly an edge cut because, for example, we can write F ′J = {e ∈ E(H ′J) :

e intersects both V (H1) and V (H2)} = {f ′1, f ′2}.

Suppose, however, that F ′J is not a minimal edge cut of H ′J . Without loss of generality,

assume f ′1 is a cut edge of H ′J . Observe that f2 intersects H1 and H2, so f ′2 does as well.

Since H1 and H2 are connected subhypergraphs of H ′J , we have that (H1 ∪H2) + f ′2

is connected. However, we have (H1 ∪ H2) + f ′2 = H ′J \ f ′1, so f ′1 is not a cut edge

of H ′J , contradicting our assumption. We conclude that F ′J is a minimal edge cut of

H ′J .

Construct G′ = (H ′J , F
′
J , {TJ}). Now, Lemma 7.3.2 parts (1) and (5) imply that G′

has two vertices, two edges, and is even and connected. We conclude that G′ is a

2-cycle, so it has no loops.

Since H ′J has an Euler tour and G′ is connected and loopless, Lemma 7.3.5 states

that H ′J ◦ V (H2) and H ′J ◦ V (H1) have Euler families of cardinality at most 1. These

cardinalities must both be equal to 1, since neither H ′J ◦ V (H2) nor H ′J ◦ V (H1) are

empty. Let T1 and T2 be Euler tours of H ′J ◦V (H2) and H ′J ◦V (H1), respectively.

Observe that H ′J ◦V (H2) is isomorphic to H∗1 : first of all, their vertex sets are V (H1)

together with some collapsed vertex v. Since F is a minimal edge cut of H, we have

that any edge containing a vertex of Hi for i ≥ 3, also contains vertices of H1 and

H2. Hence the edge sets of these collapsed hypergraphs will both consist of E(H1)

along with (f1 ∩ V (H1)) ∪ {v} and (f2 ∩ V (H1)) ∪ {v}. A similar argument shows

that H ′J ◦ V (H1) is isomorphic to H∗2 .

Therefore, we conclude that each Ti corresponds to an Euler tour T ∗i ofH∗i , for i = 1, 2.

Furthermore, since H1 and H2 are nonempty, we know that T traverses vertices of

each. Then T1 and T2 traverse the collapsed vertex in their respective hypergraphs

by Lemma 7.3.5 (3), so T ∗1 and T ∗2 do as well.
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In addition, again by Lemma 7.3.5, if T is a spanning Euler family of H, then T ∗1

and T ∗2 are spanning in H∗1 and H∗2 , respectively, and by Corollary 7.4.4, we have

|I| = 2.

⇐: For each i = 1, 2, let vi be the collapsed vertex of H∗i , and let T ∗i be an Euler tour

of H∗i traversing vi.

Let f ji = (fi ∩ V (Hj)) ∪ {vj}, for each i, j ∈ {1, 2}, be the edge of H∗j corresponding

to fi.

Since T ∗1 traverses v1, and v1 has only two incident edges, namely f 1
1 and f 1

2 , we can

write T ∗1 = v1f
1
1uRvf

1
2 v1, where u, v ∈ V (H1) and R is a trail in H1 that traverses

every edge of H1. Similarly, we can write T ∗2 = v2f
2
2wSxf

2
1 v2, where w, x ∈ V (H2)

and S is a trail in H2 that traverses every edge of H2.

Then T = uRvf2wSxf1u is an Euler tour of H.

If T ∗1 and T ∗2 are both spanning, then R and S traverse all the vertices of H1 and H2,

respectively. Hence T traverses all the vertices in V (H1) ∪ V (H2). If |I| = 2, then

V (H1) ∪ V (H2) = V (H), so T is spanning as well.

7.7 Eulerian Properties of Hypergraphs with Edge

Cuts Whose Edges Have Cardinality 2

We now turn our attention to something more unusual: edge cuts whose edges all have

cardinality 2. Investigating such edge cuts gives us a lot of information about how

these edges are traversed, so it is in some sense a powerful property. As it turns out,

we will get some mileage out of collapsed hypergraphs in this section, too. Whenever

we are able to use a collapsed hypergraph, the computational cost of searching for an

Euler tour is reduced, so we are motivated to do so whenever we can. However, our
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technique will not help us find Euler tours, so we will have to settle for finding Euler

families.

Theorem 7.7.1. Let H be a hypergraph with a minimal nonempty edge cut F such

that |e| = 2 for all e ∈ F . Let Hi, for i ∈ I, denote the connected components of

H \ F .

For each i ∈ I, let H∗i be the hypergraph H ◦ {V (Hj) : j 6= i}. Then the following

hold:

(1) |I| = 2; and

(2) H has a (spanning) Euler family if and only if H∗i has a (spanning) Euler family

for i = 1, 2.

Proof: (1) Lemma 7.2.4 implies that, since F is a minimal edge cut, every edge

of F intersects each Hi for i ∈ I. Since each of these edges has cardinality 2, there

must be only two connected components of H \ F , hence |I| = 2.

(2)⇒: Let F be an Euler family of H. Construct G = G(H,F,F). Then G consists

of two vertices with |F | parallel edges joining them.

Since G is connected and has no loops, Lemma 7.3.5 implies that H∗1 = H ◦ V (H2)

and H∗2 = H ◦ V (H1) have Euler families F1 and F2, respectively. Furthermore, if

F is spanning in H, then Lemma 7.3.5 implies that F1 and F2 are spanning in their

respective hypergraphs as well.

⇐: Let F∗i be an Euler family for H∗i , for i = 1, 2. Let h2 ∈ V (H∗1 ) be the collapsed

vertex corresponding to H2, and h1 ∈ V (H∗2 ) be the collapsed vertex corresponding

to H1.

Let T1 be the (unique) trail of F∗1 traversing h2 and let T2 be the trail of F∗2 traversing

h1. Note that degH∗1 (h2) = |F | = degH∗2 (h1), so we write T1 and T2 as a concatenation
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of closed trails, as follows:

T1 = h2S0h2S1h2 . . . h2S |F |
2
−1
h2,

T2 = h1R0h1R1h1 . . . h1R |F |
2
−1
h1,

where each Si is a nontrivial closed strict trail whose internal vertices and edges are

in H1, and similarly for each Ri in H2, for all i ∈ Z |F |
2

.

We can further write Si = h2e2iu2iS
′
iu2i+1e2i+1h2 and Ri = h1f2iv2iR

′
iv2i+1f2i+1h1 for

each i ∈ Z |F |
2

, where

• S ′i is a trail in H1 and R′i is a trail in H2;

• u0, . . . , u|F |−1 ∈ V (H1) and v0, . . . , v|F |−1 ∈ V (H2); and

• {e0, . . . , e|F |−1} = F = {f0, . . . , f|F |−1}.

Now, let G be the incidence graph of H. Let (S ′i)G and (R′i)G denote the trail of G cor-

responding to S ′i or R′i, respectively, for each i ∈ Z|F |, as described in Remark 2.2.11.

Similarly, let TG represent the trail in G corresponding to any closed trail T of F∗1 \T1

or F∗2 \ T2. Such a trail does correspond to a subgraph of G because it traverses only

vertices and edges of H1 or H2, which are subhypergraphs of H.

Consider the subgraph G′ of G whose vertex set is V (G) and whose edge set is( ⋃
i∈Z|F|

(
E((S ′i)G) ∪ E((R′i)G))

)
∪
( ⋃
T∈(F∗1 \T1)∪(F∗2 \T2)

E(TG)
)
.

Observe that G′ is essentially an e-vertex-disjoint union of trails of G, and these

trails jointly traverse every e-vertex of G exactly once, except for those e-vertices

corresponding to edges of F . Hence the degree of any e-vertex e in G is 2 if e 6∈ F ,

and 0 if e ∈ F . The degree of a v-vertex v is a bit more complicated: it is twice the

number of times v is traversed by one of the constituent trails as an internal vertex,

plus the number of times v is traversed by some R′i or S ′i as an initial or terminal

vertex.
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Let F ′ = {ue, ev : e = uv ∈ F}, so F ′ is a set of edges of G. Note that E(G′)∩F ′ = ∅

because the e-vertices corresponding to edges of F are isolated in G′. Then G′ + F ′

is a subgraph of G in which every e-vertex has degree 2, and, for any v-vertex v, we

have deg(G′+F ′)(v) = degG′(v)+ |{e ∈ F : v ∈ e}|. Note that |{e ∈ F : v ∈ e}| is equal

to the number of times that v is traversed by some R′i or S ′i as an initial or terminal

vertex because precisely the vertices of edges of F are traversed in that way. Hence

deg(G′+F ′)(v) is even for each v-vertex v. Then G′+F ′ corresponds to an Euler family

F of H by Theorem 3.4.1.

Finally, if F∗1 and F∗2 are spanning in their respective hypergraphs, then G′ + F ′ has

no v-vertices of degree 0, so F must be spanning in H.

The reason that Euler tours elude us in the above proof is that we cannot necessarily

thread together our trails of the collapsed hypergraphs in a way that produces only one

trail inH, even if we insist on having an Euler tour in each collapsed hypergraph.

7.8 Using Edge Cuts to Compute an Euler Tour

As discussed in Problem 3.2.35, the problem of determining whether a hypergraph has

an Euler family is in P. As such, though our results in this chapter could contribute

to improvements in such algorithms, it is more useful to put these results to work

in an algorithm to solve the Euler tour problem, which is NP-complete (see e.g.

Theorem 3.2.23).

We use the results from this chapter to produce a branch-and-bound algorithm, called

findEulerTour (Algorithm 7.8.1), that improves upon the näıve brute-force algo-

rithm. findEulerTour relies on the ability to compute minimal edge cuts, which we
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know can be done efficiently [7]. findEulerTour makes use of the results we have

accumulated in this chapter and recursively pares down the hypergraph by removing

vertices from edges. It then applies a brute-force algorithm on the pared-down hyper-

graph. We assume that a brute-force algorithm, which we call bruteForceEulerTour,

is available, but do not describe it here. The search space is exponential in the num-

ber of edges of the hypergraph, as well as the cardinalities of each edge, so it is crucial

to cut down on these values wherever we can.

A large part of the simplification process relies on the “choice function” α described

in Theorem 7.4.1. We can prune the search space by making sure that α satisfies some

of the simple necessary requirements described in the theorem, before attempting an

expensive search utilizing it. The goal is to produce the graph Gα = G(H,F,F)

before we even have an Euler family (or in our case, an Euler tour) F .

findEulerTour cannot simplify the hypergraph any further once we have an edge cut

whose deletion disconnects the hypergraph into just two connected components.

For organizational purposes, we also make use of three helper functions, and they

each correspond to one of the results from this chapter. They are findETCollapsed,

for when we apply Theorem 7.6.1; findETOneComponent, for when we apply Corol-

lary 7.4.4; and findETLargeEdgeCut, for when we use Corollary 7.4.2.
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Algorithm 7.8.1.
1 findEulerTour function:

input : A connected hypergraph H with at least two vertices
output: An Euler tour of H, or null if H is not eulerian

2 // initialization:
3 H ← H − {v ∈ V (H) : deg(v) = 1}; // Delete vertices of degree 1

4 if H has edges of cardinality 1 or H has no vertices then return null;
5 F ← minimal edge cut of H;
6 Hi ← connected components of H \ F , for i ∈ I, indexed from 1 and sorted in

nonincreasing order of size;
7 k ← number of nonempty connected components of H \ F ;

8 if k > |F | then
9 // Not possible to have an Euler tour (Corollary 7.4.4)

10 return null;

11 // Note: |F | = 1, k ≤ 1 not possible due to line 3

12 if |F | = 2 then
13 if k = 2 then

14 // Check collapsed hypergraphs according to Theorem 7.6.1

15 T1, T2 ← findETCollapsed (H,H1, H2);
16 if T1 = null or T2 = null then
17 return null

18 else

19 // We have Euler tours in both collapsed hypergraphs

20 return Euler tour of H assembled from T1 and T2;

21 else if k = 1 then

22 /*

23 * We can get rid of all empty connected components of H \ F
24 * except for one, then search for an Euler tour. This

25 * corresponds to Corollary 7.4.4, where |J | = 1 or 2.

26 */

27 return findETOneComponent(H,F,H1, H2);

28 else // k = 0, so H has just two edges

29 return any 2-cycle;

30 else // if |F | ≥ 3
31 if |I| = 2 then // We cannot reduce any further

32 return bruteForceEulerTour(H);
33 else
34 return findETLargeEdgeCut(H,F );
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1 findETCollapsed function (called on line 15 of findEulerTour):
inputs :
1) A connected hypergraph H with at least two vertices and no vertices of degree 1;
2-3) Disjoint subhypergraphs H1 and H2 of H that represent the nontrivial

connected components of H when an edge cut of cardinality 2 is deleted
output: A pair of closed trails T1, T2 such that each Ti is either an Euler tour of

H ◦ (V (H) \ V (Hi)), or null if such an Euler tour does not exist

2 for i = 1 to 2 do
3 collapsedHi ← H ◦ (V (H) \ V (Hi));
4 vi ← collapsed vertex of collapsedHi;
5 Ti ← null;

6 foreach edge e containing vi in collapsedHi do
7 foreach vertex v ∈ e \ vi do
8 if Ti = null then
9 /*

10 * Try to find Euler Tour of H ◦ (V (H) \ V (Hi)) that

11 * traverses e via v and vi:
12 */

13 Ti ← findEulerTour(collapsedHi \ e+ {v, vi});

14 return T1, T2;
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1 findETOneComponent function (called on line 27 of findEulerTour):
inputs :
1) A connected hypergraph H with at least two vertices and no vertices of degree 1;
2) An edge cut F of H of cardinality 2;
3) H1, the sole nonempty connected component of H \ F ;
4) H2, an empty connected component of H \ F
output: An Euler tour of H, or null if H is not eulerian

2 /*

3 * An Euler tour of H either doesn’t traverse the vertex

4 * of H2, or it does. We check these possibilities in order.

5 */

6 // initialization:
7 Let F = {f1, f2};
8 f1 ← f1 ∩ V (H1);
9 f2 ← f2 ∩ V (H1);

10 Let v be the vertex of H2;
11 T ← null;
12 if |f1| ≥ 2 and |f2| ≥ 2 then
13 /*

14 * It might be possible to circumvent v. We had to make

15 * sure that f1 and f2 are edges in H[V (H1)].
16 */

17 T ← findEulerTour(H[V (H1)]);

18 if T = null then
19 /*

20 * We will try to find a traversal through v, but we must

21 * brute force it, or else we will get stuck in this case.

22 */

23 foreach vertex a ∈ f1 and vertex b ∈ f2 do
24 T ← bruteForceEulerTour((H \ F ) + {av, bv});
25 if T 6= null then return T ;

26 return T ;
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1 findETLargeEdgeCut function (called on line 34 of findEulerTour):
inputs :
1) A connected hypergraph H with at least two vertices and no vertices of degree 1;
2) A minimal edge cut F of H of cardinality at least 3
output: An Euler tour of H, or null if H is not eulerian

2 /*

3 * Here, we are making use of Corollary 7.4.2 to choose

4 * how to traverse each edge of the cut. We can tell right away

5 * that some choice functions won’t work.

6 */

7 foreach function α : F → {ij : i, j ∈ I} do

8 // Construct a multigraph Gα based on α
9 Gα ← (I, α(F )); // α(F ) is the multiset image of F

10 if Gα is even and Gα has just one nonempty connected component then

11 // Trim the edges of F according to α
12 foreach edge e ∈ F do
13 e′ ← e ∩

( ⋃
i∈α(e)

V (Hi)
)
;

14 F ′ ← {e′ : e ∈ F};
15 /*

16 * If F ′ = F, then we have not made any improvements

17 * to H, so we can just brute force a solution now.

18 */

19 if F ′ = F then
20 return bruteForceEulerTour(H);

21 /*

22 * It is possible that F ′ now has edges of cardinality

23 * 1. If it doesn’t, we can continue to try to find

24 * more reductions. If it does, just go to the next choice

25 * function.

26 */

27 if (H \ F ) + F ′ is connected and has no edges of cardinality 1 then
28 T ← findEulerTour((H \ F ) + F ′);
29 if T 6= null then return T ;

30 // If we get to this point, then H has no Euler tour

31 return null;
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Remark 7.8.2. Though findEulerTour can undoubtedly be improved, we have

chosen to present it in a relatively basic form so that it can serve as a proof-of-

concept. We first remark that a minimum edge cut in a hypergraph, not just a

minimal one, can be found efficiently [7]. This means that the parts of the algorithm

that deal with smaller edge cuts will be used more often, to our benefit, since we have

more effective tools for such small edge cuts.

Because minimum edge cuts can be found efficiently, findEulerTour can perhaps be

improved by choosing a random minimum edge cut, or a “best” minimum edge cut.

Currently, we assume for now that it is chosen deterministically and indiscriminately.

The deterministic nature of the algorithm does give it some weaknesses, such as the

necessity to resort to brute forcing quite early, so redesigning it to take advantage of

random edge cuts could pay off. A best edge cut might be one that includes edges of

large cardinality because we can trim those edges earlier in the recursion rather than

later or not at all.

Aside from randomness, there are other ways to possibly improve the efficacy of

findEulerTour. We have chosen to treat all edge cuts of cardinality 3 or greater in

the same way as each other. However, we could find an extension of Theorem 7.6.1

to edge cuts of cardinality greater than 2 by investigating the possible cases for Gα:

an Euler tour is only possible if Gα is even and has just one nonempty connected

component. While the number of non-isomorphic even connected multigraphs of size

|F | is only two when |F | = 2, this number (only) grows to three for |F | = 3; seven for

|F | = 4; twelve when |F | = 5; and at least twenty-eight when |F | = 6: it is certainly

within reach to extend these results a little further! Note that, though there are two

cases when |F | = 2, we investigated the 2-cycle case in Theorem 7.6.1. The other

case is a single vertex with two loops, which, in practice, is treated similarly to the

|F | = 1 case.

Specifically, when |F | = 3, the only extra case we must account for is when Gα is a 3-
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cycle. In that case, we would investigate three collapsed hypergraphs — H ◦{V (Hj) :

j 6= i} for each i = 1, 2, 3 — and reassemble an Euler tour for H from an Euler tour

in each collapsed hypergraph that traverses all the collapsed vertices. In fact, the

author believes that this strategy generalizes whenever Gα is a cycle or a cycle with

additional loops, and this would certainly be the next point of investigation for future

research.



Chapter 8

Concluding Remarks

8.1 On Design Hypergraphs

We have seen a few results about eulerian properties of design hypergraphs since the

turn of the century. Dewar and Stevens showed that certain kinds of triple systems are

eulerian, using the terminology of universal cycles (Theorems 3.2.12 and 3.2.13 [10]),

while Horan and Hurlbert constructively proved the existence of eulerian Steiner

triple systems and Steiner quadruple systems of every admissible order, using the

language of overlap cycles (Theorems 3.2.17 [20] and 3.2.18 [21]). Bahmanian and

Šajna extended the language for Euler tours and families in particular, and answered

the question of whether triple systems (among many other kinds of hypergraphs) are

quasi-eulerian in the affirmative (Corollary 3.4.7 [4]).

We have expanded on these results by (non-constructively) proving that all Steiner

triple systems are eulerian in Chapter 4 (Theorem 4.2.9), then proving that all cov-

ering k-hypergraphs, for k ≥ 3, are eulerian in Chapter 5 (Theorem 5.0.2), which

includes Steiner quadruple systems.

Chapters 4, 5, and 6 culminate to yield the following result on design hypergraphs.

Theorem 8.1.1. Let H be an `-covering k-hypergraph with 2 ≤ ` < k. If H has at
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least two edges, then H is quasi-eulerian; if we additionally have ` = k − 1, then H

is eulerian.

While it seems plausible that all `-covering k-hypergraphs are eulerian, there is as of

yet no clear technique that would allow us to prove this. However, due to the highly

structured nature of such hypergraphs, we will make the following conjecture.

Conjecture 8.1.2. All `-covering k-hypergraphs with 2 ≤ ` < k and at least two

edges are eulerian.

Some consideration was also given to a sort of “pairwise-balanced block design,” in

which all `-tuples of vertices lie in at least one edge together, but edges have cardinal-

ities taken from some permissible set. Using an appropriate strengthening of Lovász’s

(g, f)-factor Theorem, as we have seen for `-covering k-hypergraphs, one may be able

to prove that such hypergraphs are quasi-eulerian.

Question 8.1.3. Let H be a hypergraph of order at least 3 and size at least 2. Let

` ≥ 2, and let K ⊆ N≥2 be a set of the cardinalities of the edges in E(H), each 2 or

greater. Assume that every `-subset of V (H) lie together in at least one edge of H.

Under what conditions on K is H quasi-eulerian? Under what conditions on K is H

eulerian?

8.2 On Edge Cuts

On the side of edge cuts, there have already been results on the topic of using vertex

cuts to reduce the problem of existence of spanning Euler family or tour, by Steimle

and Šajna [31]. Our work in Chapter 7 is a continuation of that. Their results

showed necessary and sufficient conditions for a spanning Euler family or tour to

exist by checking whether certain derived hypergraphs admit a spanning Euler family

or tour.
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In Chapter 7, we produced results analogous to theirs that are focused on edge cuts

instead of vertex cuts. Perhaps the most interesting avenue for future research builds

off of Theorem 7.6.1, which looks into collapsed hypergraphs for Euler tours when an

edge cut of cardinality 2 exists. We have touched upon this in Remark 7.8.2, but we

would like to ask how the proof strategy might extend to larger edge cuts.

Question 8.2.1. For each m ≥ 0, how many connected even multigraphs of size m

are there, down to isomorphism? That is, how many possible configurations are there

for G = G(H,F,F) if |F | = m? For which of these multigraphs G can we (simply)

use the collapsed hypergraphs to reduce the Euler tour problem to finding an Euler

tour in each collapsed hypergraph?

There is, at time of writing, no sequence registered in the On-line Encyclopedia of

Integer Sequences (OEIS) [27] concerning the number of connected even multigraphs

of size m = 0, 1, 2, . . . , and, it must be admitted, the author finds this question quite

captivating. If one were able to classify a number of these multigraphs, it could be

put to use in Algorithm 7.8.1.
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