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WIENER INDEX AND REMOTENESS IN TRIANGULATIONS AND

QUADRANGULATIONS

ÉVA CZABARKA, PETER DANKELMANN, TREVOR OLSEN, LÁSZLÓ A. SZÉKELY

Abstract. Let G be a a connected graph. The Wiener index of a connected graph is
the sum of the distances between all unordered pairs of vertices. We provide asymptotic
formulae for the maximum Wiener index of simple triangulations and quadrangulations

with given connectivity, as the order increases, and make conjectures for the extremal
triangulations and quadrangulations based on computational evidence. If σ(v) denotes
the arithmetic mean of the distances from v to all other vertices of G, then the remoteness
of G is defined as the largest value of σ(v) over all vertices v of G. We give sharp upper
bounds on the remoteness of simple triangulations and quadrangulations of given order
and connectivity.

1. Definitions and some selected results on the Wiener index

Let G be a connected graph. The Wiener index W (G) of G is the sum of the distances
between all unordered pairs of distinct vertices, i. e.,

W (G) =
∑

{u,v}⊆V (G)

dG(u, v),

where dG(u, v) is the usual distance between vertices u and v, i.e., the minimum number
of edges on a (u, v)-path in G. The Wiener index was first studied by the chemist Wiener
[39], who observed that it relates well to the boiling point of certain alkanes. Several other
applications in chemistry were found subsequently, see for example [33].

The systematic study of the mathematical properties of the Wiener index began with
the classical papers by Doyle and Graver [17], Entringer, Jackson and Snyder [18] and
Plesńık [32]. Several bounds on the Wiener index and closely related parameters, such as
transmission or routing cost (defined as the sum of the distances between all ordered pairs
of vertices), average distance or mean distance (both are defined as the arithmetic mean of
the distances between all unordered pairs of distinct vertices) have been proved since.

The most basic upper bound on W (G) states that if G is a connected graph of order n,
then

(1) W (G) ≤
(n− 1)n(n+ 1)

6
,

which is attained only by paths (see [17] [32], [28]). Many sharp or asymptotically sharp
bounds on W (G) in terms of other graph parameters are known, for example minimum
degree ([4], [10], [26]), connectivity ([13], [20]), edge-connectivity ([11], [12]) and maximum
degree [19]. For recent results on the Wiener index see, for example, [16], [21], [23], [24], [25]
[27], [31], [37], [36] and [38].

Entringer et al. [18] found that among trees on the same number of vertices, the star min-
imizes and the path maximizes the Wiener index (see also [28] problem 6.23). Fischermann,
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Hoffmann, Rautenbach, Székely and Volkmann [18] (see also [22]) characterized binary trees
with minimum and maximum Wiener index.

The notation we use in this paper is as follows. If G is a graph, then we denote its vertex
set and edge set by V (G) and E(G). By n(G) and m(G) we mean the order and size of G,
defined as |V (G)| and |E(G)|, respectively.. The eccentricity e(v) of a vertex v is the distance
to a vertex farthest from v, i.e., e(v) = maxu∈V (G) dG(v, u). The largest and the smallest
of the eccentricities of the vertices of G are the diameter and the radius of G, respectively.
The neighbourhood of a vertex v of G is the set of vertices adjacent to v, it is denoted by
NG(v), and the cardinality |NG(v)| is the degree of v, which we denote by degG(v). If i is
an integer with 0 ≤ i ≤ e(v), then Ni(v) denotes the set of all vertices at distance exactly i
from v, and we write ni(v) for |Ni(v)|. If there is no danger of confusion, we often omit the
subscript G or the argument G or v. If A,B ⊆ V (G), then m(A,B) denotes the number of
edges that join a vertex in A to a vertex in B, and G[A] denotes the subgraph of G induced
by A. If w is a vertex of G and A ⊆ V (G), then a (w,A)-fan is a set of |A| paths from w
to A, where any two paths have only v in common. If G is connected and not complete,
then the connectivity of G, κ(G), is the smallest number of vertices whose deletion renders
G disconnected.

By Cn, Kn and Kn we mean the cycle, the complete graph, and the edgeless graph on n
vertices, respectively. If G and H are graphs then G+H denotes the graph obtained from
the union of G and H by adding edges joining every vertex of G to every vertex of H .

2. Summary of the results of the paper

Another natural class of study for extremal Wiener index is planar graphs. However, as
the maximum Wiener index of graphs (1) is attained by a path, it makes sense to consider
more restricted classes of planar graphs, like simple triangulations and quadrangulations.
Che and Collins [8], and the authors of the present paper [9] investigated independently the
maximum Wiener index of triangulations and presented the same simple triangulation of
order n (see Figures 5, 6, 7) with Wiener index

(2) W (Tn) =
1

3

(

n+ 2

3

)

−
1

3

⌊n+ 2

3

⌋

=











n3

18 + n2

6 if n = 3k
n3

18 + n2

6 − 2
9 if n = 3k + 1

n3

18 + n2

6 − 1
9 if n = 3k + 2,

which they conjectured to be optimal (see Figures 5, 6, 7). [Note that this sequence is present
in the On-Line Encyclopedia of Integer Sequences [35] under A014125, which is the bisection
of A001400. The displayed closed form is due to Bruno Berseli [35].] We [9] announced that
this conjecture is asymptotically true before the paper [8] was submitted. Che and Collins [8]
verified this conjecture for simple triangulations of order not exceeding 10. Using computer,
we verified this conjecture for simple triangulations of order not exceeding 18, see Table 1.

In this paper we prove that the conjectured bound holds asymptotically. As every simple
triangulation is 3-connected, the following theorem (Theorem 2) covers the proof of the
conjecture: for any 3 ≤ κ ≤ 5, the Wiener index of any κ-connected simple triangulation of
order n is at most 1

6κn
3+O(n5/2). (Note that a simple triangulation cannot be 6-connected

because of the number of edges.) We constructed 4-connected simple triangulations with
Wiener index

(3) W (T 4
n) =



















n3

24 + n2

4 + n
3 − 2 if n = 4k + 2

n3

24 + n2

4 + 5n
24 − 1 if n = 4k + 3

n3

24 + n2

4 + n
3 − 2 if n = 4k

n3

24 + n2

4 + 5n
24 − 3

2 if n = 4k + 1,

see Figures 8, 9, 10, 11. This proves that Theorem 2 is also asymptotically tight for κ =
4. Furthermore, we conjecture that the repetition of the obvious pattern in these figures
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provide the extremal triangulations. Using computer, we verified this conjecture for simple
triangulations of order not exceeding 22, see Table 2.

We constructed 5-connected simple triangulations with Wiener index

(4) W (T 5
n) =































n3

30 + 3n2

10 − 23n
15 + 168

5 if n = 5k + 2
n3

30 + 3n2

10 − 23n
15 + 31 if n = 5k + 3

n3

30 + 3n2

10 − 23n
15 + 161

5 if n = 5k + 4
n3

30 + 3n2

10 − 23n
15 + 32 if n = 5k

n3

30 + 3n2

10 − 23n
15 + 156

5 if n = 5k + 1,

see Figures 12, 13, 15, 16, 17. This proves that Theorem 2 is also asymptotically tight for
κ = 5. Furthermore, we conjecture that the repetition of the obvious pattern in these figures
provide the extremal triangulations. We arrived to these conjectures using computer and
also guesswork regarding the pattern. Therefore these conjectures for the 5-connected case
are less supported with computational evidence than other conjectures in this paper, as we
were able to do the computation only up to the order 32, see Table 3. The issue is that the
pattern slowly develops, and orders following the same pattern differ by 5—therefore we do
not have sufficiently many data points.

We are indebted to Paul Kainen, who after hearing about our triangulation results, asked
whether we can prove similar results for simple quadrangulations. Recall that any simple
quadrangulation is 2-connected, but no simple quadrangulation is 4-connected. We conjec-
ture that the maximum Wiener index of a simple quadrangulation of order n is

(5) W (Qn) =

{

n3

12 + 7n
6 − 2 if n = 2k

n3

12 + 11n
12 − 1 if n = 2k + 1,

based on Figures 18, 19. Furthermore, we conjecture that the repetition of the obvious
pattern in these figures provide the extremal quadrangulations. Using computer, we verified
this conjecture for simple quadrangulations of order not exceeding 20, see Table 4.

We conjecture that the maximum Wiener index of a 3-connected simple quadrangulation
of order n is

(6) W (Q3
n) =











n3

18 + n2

3 − 17n
6 + 206

9 if n = 3k + 14
n3

18 + n2

3 − 17n
6 + 20 if n = 3k + 15

n3

18 + n2

3 − 17n
6 + 184

9 if n = 3k + 16,

based on Figures 20, 21, 22. Furthermore, we conjecture that the repetition of the obvious
pattern in these figures provide the extremal quadrangulations. Using computer, we verified
this conjecture for simple quadrangulations of order not exceeding 28, see Table 5.

We prove the following asymptotically tight result (Theorem 3): for any 2 ≤ κ ≤ 3,
the Wiener index of any κ-connected simple quadrangulation of order n is at most 1

6κn
3 +

O(n5/2). In view of the constructions above, this bound is asymptotically tight.
Section 5 contains the conjectures stated so far in the form of drawings for some fixed

order, but with emphasis on the general pattern. Even more, we conjecture based on com-
putational evidence that those drawings not only provide the maximum Wiener index, but
for sufficiently large n they are unique with this property.

We remark here that the bound above does not hold for non-simple triangulations. For
the construction of non-simple triangulations with asymptotically larger Wiener indices,
see Figure 1. In fact, we conjecture that these constructions are optimal for non-simple
triangulations. The non-simple quadrangulation on Figure 2 has a larger Wiener index than
conjectured best simple quadrangulation on Figure 18, but difference is not in the leading
term. In Figures 1 and 2 the red colored part is the repated pattern. For the rest of the
paper, under the terms triangulation and quadrangulation we will always understand simple
triangulation and quadrangulation.
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Figure 1. A non-simple triangulation with larger Wiener index. W (T ′
n) =

n3

12 + 2n
3 − 1 for even n.

Figure 2. A non-simple quadrangulation with larger Wiener index.

W (Q′
n) =

n3

12 + n2

4 − n
3 for even n. For this sequence, see A131423 [35].

Che and Collins noted [8] that the minimum Wiener index of a triangulation of order
n is a trivial problem, as Euler’s formula determines the number of edges, and there are
constructions, in which every pair of vertices are at most distance two. The situation is
analogous for quadrangulations. For minimizers, see Figure 3.

Figure 3. Minimum Wiener index simple triangulations and quadrangulations.
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In this paper we also give bounds on the total distance σ(v) and the average distance σ(v)
of a vertex v, defined as the sum and the average, respectively, of the distances from v to all
other vertices. Bounds on σ(v) were obtained, for example, in [3] [18] and [41]. Of particular
interest is the maximum value over all v ∈ V (G) of σ(v) in a graph G, usually referred to as
the remoteness ρ(G), of G. It was shown by Zelinka [41] and, independently, by Aouchiche
and Hansen [2] that the remoteness is at most n

2 .For graphs of given minimum degree δ these

bounds were improved in [14] by a factor of about 3
δ+1 . For more recent results remoteness

see, for example, [15], and [40].
In this paper we give sharp upper bounds on remoteness of simple triangulations and

quadrangulations with given connectivity in Corollary 1 and Proposition 2. The bounds are
sharp in Proposition 2 and Corollary 1 by Figures 5 through 12 and Figures 14 through
22. It is not difficult to compute the distances on those figures from the black vertex to
the remaining vertices and show that the sum of distances from the black vertex meets the
upper bound for remoteness. Details will be provided in the Ph.D. dissertation of the third
author. There are, however, lots of different realizations of the maximum of remoteness in
all classes that we investigate, except among quadrangulations.

3. Upper bounds on remoteness of triangulations and quadrangulations

In this section we present bounds on the remoteness of triangulations and quadrangula-
tions. A sharp upper bound on the remoteness of a triangulation of given order was given
by Che and Collins [8]. We give corresponding bounds for 4-connected and 5-connected
triangulations, as well as for 2-connected and 3-connected triangulations.

We begin by stating a sharp bound on the distance of an arbitrary vertex in a κ-connected
graph of given order due to Favaron, Kouider and Mahéo [20], from which we will derive
some of our bounds.

Proposition 1. [20] Let G be a κ-connected graph of order n, and x an arbitrary vertex of
G. Then

σ(x) ≤ ⌊
n+ κ− 1

κ
⌋(n− 1−

κ

2
⌊
n− 1

κ
⌋).

Every simple triangulation is 3-connected, and every simple quadrangulation is 2-connected.
Proposition 1 yields thus the following sharp bounds for the remoteness of 3-connected and
4-connected triangulations and 2-connected quadrangulations.

Corollary 1. (a) [8] If G is a simple triangulation of order n, then

ρ(G) ≤
n+ 2

6
+ εn,

where εn = 0 if n ≡ 1 (mod 3), and εn = 1
3(n−1) if n ≡ 0, 2 (mod 3).

(b) If G is a 4-connected triangulation of order n, then

ρ(G) ≤
n+ 3

8
+ εn,

where εn = 0 if n ≡ 1 (mod 4), εn = 3
8(n−1) if n ≡ 0, 2 (mod 4), and εn = 1

2(n−1) if n ≡ 3

(mod 4).
(c) If G is a simple quadrangulation of order n, then

ρ(G) ≤
n+ 1

4
+ εn,

where εn = 0 if n ≡ 1 (mod 2), and εn = 1
4(n−1) if n ≡ 0 (mod 2). ✷

Proposition 1 also yields good bounds for the remoteness of 5-connected triangulations
and 3-connected quadrangulations. These bounds are however not sharp for all values of n.
In order to obtain sharp bounds we need some additional terminology and results from [1].
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Let v be a fixed vertex of a connected plane graph and i ∈ N with i < e(v). We say that
a vertex w ∈ Ni(v) is active if it has a neighbour in Ni+1(v).

Lemma 1. [1] Let G be a 3-connected plane graph, v a vertex of G and i ∈ N with 1 ≤ i ≤
e(v) − 1. For every active vertex w ∈ Ni(v) there exist two other active vertices w′, w′′ ∈
Ni(v) such that w and w′ share a face of G, and w and w′′ also share a face of G.

Lemma 2. (a) Let G be a 5-connected simple triangulation, v a vertex of G and d = eG(v).
If nd−1(v) = 5, then nd(v) = 1.
(b) Let G be a 3-connected simple quadrangulation, v a vertex of G and d = eG(v). If
nd−1(v) = 3, then nd(v) = 1. If nd−2 = 3 and nd−1 = 4, then nd(v) 6= 1.

Proof. (a) Assume that G is a 5-connected simple triangulation, v is a vertex of G, and
nd−1 = 5, where d is the eccentricity of v. This implies that Nd−1 is a minimum cutset of
G. Hence, since G is a triangulation, Nd−1 induces a cycle C of length 5. We first show that

(7) the vertices in Nd are all inside C, or all outside C.

Suppose not. Then there exist vertices a, b ∈ Nd such that a is inside C, and b is outside C.
Since G is 5-connected, there exist a (v,Nd−1)-fan Fv, an (a,Nd−1)-fan Fa, and a (b,Nd−1)-
fan Fb. Any two of these three fans share only the vertices of Nd−1. Indeed, other than

vertices inNd−1, fan Fv contains only vertices in
⋃d−1

i=0 Ni, while fan Fa contains only vertices
in Nd−1 ∪Nd that are inside C, while fan Fb contains only vertices in Nd−1 ∪Nd that are
outside C. Now contracting the vertices in Fa − Nd−1, the vertices in Fb − Nd−1, and the
vertices in Fv − Nd−1 to three single vertices yields a graph that contains 3K1 + C5 as a
subgraph. Hence G contains 3K1+C5 as a minor. Contracting three consecutive vertices of
the 5-cycle shows that this implies that G contains K3 +3K1 as a minor, which contradicts
the planarity of G. This contradiction proves (7).

By (7) we may assume that all vertices of Nd are inside the cycle C. Since every vertex
of Nd is adjacent to some vertex of Nd−1, the subgraph G[Nd] is outerplanar. Hence

(8) m(G[Nd]) ≤







0 if nd = 1,
1 if nd = 2,

2nd − 3 if nd ≥ 3.

We now bound the sum of the degrees of the vertices in Nd. Let H be the plane graph
obtained from G[Nd−1 ∪Nd] by adding a new vertex z in the outer face of C and joining it
to all five vertices of C. Then H has order n(H) = 1 + nd−1 + nd = nd + 6. Since H is a
plane graph we have m(H) ≤ 3n(H)−6 ≤ 3nd+12. At least 10 edges of H are incident with
z or belong to C, and are thus not incident with any vertex of Nd, so they don’t contribute
to the sum of the degrees of vertices in Nd. Since the edges of G[Nd] contribute two to the
sum of the degrees of vertices in Nd, we have

∑

x∈Nd

degG(x) ≤ (m(H)− 10) +m(G[Nd]) ≤







(3nd + 2) + 0 if nd = 1,
(3nd + 2) + 1 if nd = 2,

(3nd + 2) + (2nd − 3) if nd ≥ 3.

It is easy to verify that his implies
∑

x∈Nd
degG(x) < 5nd whenever nd > 1. But since G

is 5-connected, every vertex of G has degree at least five. Hence we conclude that nd = 1,
which proves (a).

(b) Let G be a 3-connected simple quadrangulation, v a vertex of G, and d = e(v).
To prove the first statement assume that nd−1 = 3. Let Nd−1(v) = {w,w′, w′′}. Since G
is a quadrangulation and thus bipartite, the set {w,w,w′′} is independent in G. Since G is
3-connected, the vertices w,w′, w′′ have a neighbour in Nd and are thus active. By Lemma
1, w and w′ share a face, and so do w and w′′, as well as w′ and w′′. Hence we can add edges
ww′, ww′′ and ww′′ to G to obtain a plane graph (but not a quadrangulation). Let C be
the cycle consisting of the edges ww′, w′w′′, w′′w. A proof similar to that in (a) shows that
the vertices of Nd are all inside C, or all outside C. Without loss of generality we assume
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the former. We now bound the sum of the degrees of the vertices in Nd.
Let H be the plane graph obtained from G[Nd−1 ∪Nd] +E(C) by adding a new vertex z in
the outer face of C and joining it to all three vertices of C. Since G is a quadrangulation,
the only faces of H of length three are the six faces that have one of the three edges of
C on their boundary. Let H ′ be the plane graph H − E(C) = G[Nd−1 ∪ Nd]. Then
n(H ′) = nd−1 + nd + 1 = nd + 4 and, since H ′ has only faces of length at least four,
m(H ′) ≤ 2n(H ′)− 4 = 2nd + 4.
Exactly three edges of H are incident with z and are thus not incident with any vertex of
Nd. Since G is bipartite, G[Nd] contains no edges. Hence

∑

x∈Nd

degG(x) = (m(H ′)− 3) ≤ 2nd + 1.

This implies
∑

x∈Nd
degG(x) < 3nd whenever nd > 1. But since G is 3-connected, every

vertex of G has degree at least three. Hence we conclude that nd = 1, which proves the first
statement of (b).
To prove the second statement of (b) assume that nd−2 = 3 and nd−1 = 4. Suppose to
the contrary that nd = 1.Let Nd−2 = {w,w′, w′′}. The same arguments as in the proof of
the first statement of (b) show that we can add the edges ww′, ww′′, w′w′′ to G to obtain
a plane graph, that these three edges form a cycle C, and that the vertices in Nd−1 ∪ Nd

are either all inside C or all outside C, without loss of generality the former. Let H be
the plane graph obtained from G[Nd−2 ∪ Nd−1 ∪ Nd] + E(C) by adding a new vertex z in
the outer face of C and joining it to all three vertices of C. Since G is a quadrangulation,
the only faces of H of length three are the six faces that have one of the three edges of C
on their boundary. Let H ′ be the plane graph H − E(C) = G[Nd−2 ∪ Nd−1 ∪ Nd]. Then
n(H ′) = nd−2 + nd−1 + nd + 1 = 9 and, since H ′ has only faces of length at least four,
m(H ′) ≤ 2n(H ′) − 4 = 14. Exactly three edges of H ′ are incident with z and thus not
incident with vertices in Nd−1. Since G is bipartite, no edge joins two vertices of Nd−1, and
so we have

∑

x∈Nd−1
degG(x) ≤ 11 < 3nd−1. Therefore, Nd−1 contains a vertex of degree

less than three in G, which contradicts G being 3-connected. The second statement of (b)
follows. �

For the remaining proofs of this section we define the function F which assigns to a finite

sequence X = (x0, x1, . . . , xk) of integers the value F (X) =
∑k

i=0 ixi. So if v is a vertex of

eccentricity d in a connected graph G, then σ(v) =
∑d

i=0 ini(v) = F (n0, n1, . . . , nd).

Proposition 2. (a) Let G be a 5-connected triangulation of order n. Then

ρ(G) ≤
n+ 4

10
+ εn,

where εn = − 3
5(n−1) if n ≡ 0 (mod 5), εn = − 1

n−1 if n ≡ 1 (mod 5), εn = 2
5(n−1) if n ≡ 2

(mod 5), and εn = − 2
5(n−1) if n ≡ 3, 4 (mod 5).

(b) If G is a 3-connected quadrangulation of order n, then

ρ(G) ≤
n+ 2

6
+ εn,

where εn = − 5
3(n−1) if n ≡ 0 (mod 3), εn = − 1

n−1 if n ≡ 1 (mod 3), and εn = 1
3(n−1) if

n ≡ 2 (mod 3).

Proof. (a) It suffices to show that for an arbitrary vertex v of G we have

σ(v) ≤
n2 + 3n

10
+ ε′n,

where ε′n = −10 if n ≡ 0 (mod 5), ε′n = −14 if n ≡ 1 (mod 5), ε′n = 0 if n ≡ 2 (mod 5),
and ε′n = −8 if n ≡ 3, 4 (mod 5).
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Fix v ∈ V (G) and let d = e(v). Then

σ(v) =

d
∑

i=0

ini = F (n0, n1, . . . , nd).

All ni are positive integers, n0 = 1 and
∑d

i=0 ni = n. Since G is 5-connected we also have
ni ≥ 5 for all i ∈ {1, 2, . . . , d − 1}. To bound F (n0, n1, . . . , nd) from above we assume
that n is fixed, and that d′ ∈ N and Xmax(n) = (n′

0, n
′
1, . . . , n

′
d′) maximise the function

F among all integers d and sequences X that satisfy these constraints. We first note that
n′
1 = n′

2 = · · · = n′
d−1 = 5. Indeed, if n′

i ≥ 5 for some i with 1 ≤ i ≤ d′ − 1, then
decreasing n′

i by 1 and increasing n′
i+1 by 1 yields a new sequence X ′ that satisfies the

above constraints and for which F (X ′) = F (Xmax(n)) + 1, contradicting the choice of
Xmax(n). Also, if n′

d′ > 5, then decreasing n′
d′ by 1, appending a new entry n′

d′+1 = 1 at
the end and increasing d′ by 1 yields a sequence that satisfies the requirement but whose
F -value is greater, again a contradiction to the choice of Xmax(n). Therefore, if q and r
are positive integers with 1 ≤ r ≤ 5 such that n − 1 = 5q + r, then the unique sequence
maximising F subject to the above constraints is

Xmax(n) = (1, 5, 5, . . . , 5, r),

where the entry 5 appears exactly q times. If r 6= 1, then it is easy to see that the unique
sequence with the second largest F -value satisfying the constraints is the sequence

X ′
max(n) = (1, 5, 5, . . . , 5, 6, r − 1),

where the entry 5 appears exactly q − 1 times.

Case 1: n ≡ 2 (mod 5).
Then F (n0, n1, . . . , nd) ≤ F (Xmax(n)) =

1
10 (n

2 + 3n), as desired.

Case 2: n ≡ 0, 1, 3, 4 (mod 5).
Then (n0, n1, . . . , nd) 6= Xmax(n) since otherwise, if (n0, n1, . . . , nd) = Xmax(n), then
nd−1 = 5 and nd = r 6= 1, contradicting Lemma 2(a). Therefore, F (n0, n1, . . . , nd) ≤
F (X ′

max(n)), and a simple calculation shows that F (X ′
max)(n) is the claimed upper bound

on σ(v).
(b) The proof of (b) is analogous to that of (a), with only two differences: The condition
ni ≥ 5 for all i ∈ {1, 2, . . . , d − 1} in (a) is replaced by ni ≥ 3 for all i ∈ {1, 2, . . . , d − 1}.
Also, Lemma 2(b) implies that for n ≡ 1, 2 (mod 3) we have (n0, n1, . . . , nd) 6= Xmax(n)
and so F (n0, n1, . . . , nd) ≤ F (Xmax(n)

′), while for n ≡ 0 (mod 3) Lemma 2(b) implies that
(n0, n1, . . . , nd) 6= Xmax(n), Xmax(n)

′ and thus F (n0, n1, . . . , nd) < F (Xmax(n)
′). �

4. Upper bounds on the Wiener index of triangulations and

quadrangulations

In this section we present asymptotically sharp upper bounds on the Wiener index of sim-
ple triangulations and simple quadrangulations, and improved bounds for simple 4-connected
and 5-connected triangulations as well as simple 3-connected quadrangulations.

In the statements and proofs of our results we use the following notation. If S is a
separating cycle of a plane graph G, then we denote the set of vertices inside S by A, and
the set of vertices outside S by B. We often use S also for the set of vertices on this cycle,
and we further let a := |A|, b := |B| and s := |S|. The following separator theorem by Miller
is an important tool for the proof of our bounds.

Theorem 1. ([30]) If G is a 2-connected plane graph of order n whose faces have length at

most ℓ, then G has a separating cycle S of length at most 2
√

2⌊ℓ/2⌋n, such that a, b ≤ 2
3n.

We now define a plane graph which will be used in the proof of the main result of this
section.
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Definition 1. For p ∈ N with p ≥ 3 let Fp be the plane graph constructed as follows. Let C =
u0, u1, . . . , up−1, v0 be a cycle of length p. Inside C we add a cycle C′ = v0, v1, . . . , v2p−1v0 of
length 2p and edges uiv2i−1, uiv2i, uiv2i+1 for i = 0, 1, . . . , p− 1, with indices taken modulo
p for the ui and modulo 2p for the vi. Inside C′ we add a cycle C′′ = w0, w1, . . . , w2p−1, w0

of length 2p and edges viwi, viwi+1 for i = 0.1, . . . , 2p− 1, with all indices taken modulo 2p.
Inside C′′ we add a new vertex z and join it to every vertex of C′′. The graph F4 is shown
in Figure 4.
We define F ′

p to be a plane graph with the same vertex and edge set as Fp, but with the cycle
C′ outside the cycle C, the cycle C′′ outside the cycle C′, and z lying in the unbounded face
whose boundary is C′′.

z

C

C′ C′′

Figure 4. The graph Fs for s = 4. The s-cycle C and 2s-cycles C′ and
C′′ drawn with thick lines.

Lemma 3. Let Fp be the graph defined in Definition 1 above.
(a) κ(Fp) ≥ 5 for p ≥ 3.
(b) If u ∈ V (Fp) and M ⊆ V (C) with |M | ≤ 5, then Fp contains a (u,M)-fan.
(c) If M1,M2 ⊆ V (C) are two sets with |M1 = |M2| ≤ 5, then Fp contains a set of |M1|
disjoint paths from M1 to M2.

Proof. (a) It is easy to verify that any two vertices of Fp are joined by five internally disjoint
paths, hence Fp is 5-connected.
(b) and (c) follow directly from Fp being 5-connected. �

Theorem 2. Let κ ∈ {3, 4, 5}. Then there exists a constant C such that

W (G) ≤
1

6κ
n3 + Cn5/2

for every κ-connected simple triangulation of order n.

Proof. Our proof is by induction on n. Define C := max{C1, C2}, where C1 is the smallest
real x for which the inequality W (G) ≤ 1

6κn
3 + xn5/2 holds for all κ-connected simple

triangulations G of order at most 104, and C2 is the smallest real x for which 8.1+0.76x ≤ x
holds. We prove by induction on n that for all simple triangulations G of order n,

(9) W (G) ≤
1

6κ
n3 + Cn5/2,
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Now (9) holds for all n ≤ 104 by the choice of C. Let n > 104. By our induction hypothesis
we may assume that (9) holds for all graphs of order less than n.

Since G is 2-connected, it follows by Theorem 1 that G contains a separating cycle
S = t0t1 . . . ts−1t0 with a, b ≤ 2

3n, where A,B, a, b, s are as in Theorem 1 and above it. Let
H be the simple triangulation obtained from the plane graph G − A as follows. We first
delete all edges between non-consecutive vertices of S that run inside the cycle S. Inside S
we insert the graph Fs by identifying the cycles S and C, specifically ti ∈ S with ui ∈ V (Fs)
for i = 0, 1, . . . , s − 1. Clearly, H is a simple triangulation of order b + 5s + 1. Similarly
let K be the simple triangulation of order a+ 5s+ 1 obtained from the plane graph G−B
by deleting all edges between non-consecutive vertices of S that run outside the cycle S
and inserting F ′

s (a copy of Fs) into the unbounded face, bounded by the vertices of S, by
identifying ti ∈ S with ui ∈ V (F ′

s) for i = 0, 1, . . . , s− 1.
For an illustration, see Figure 4. We claim that

(10) H and K are κ-connected.

We prove (10) only for H , the proof for K is analogous. Let u, v be two arbitrary vertices of
H . It suffices to show that there exist κ internally disjoint (u, v)-paths in H . First assume
that both, u and v, are in V (Fs), then it follows from Lemma 3(a) and κ ≤ 5 that there are
κ internally disjoint (u, v)-paths in Fs, and thus in H . Now assume that exactly one of the
two vertices, say u, is in V (Fs). Fix a vertex a ∈ A. It follows from the κ-connectedness of
G that in G there exist κ internally disjoint (a, v)-paths P1, P2, . . . , Pκ. For i = 1, 2, . . . , κ
let ai be the last vertex of Pi on C, and let P ′

i be the (ai, v)-section of Pi. By Lemma 3(b),
Fs contains a (u, {a1, . . . , aκ})-fan F . Then F together with P ′

1, . . . , P
′
κ yields a collection of

κ internally disjoint (u, v)-paths in H . Finally assume that both, u and v, are not in V (Fs).
Then it follows from the κ-connectedness of G that there exists internally disjoint (u, v)-
paths P1, P2, . . . , Pκ in G. For those paths, P1, . . . , Pk say, that contain a vertex of V (Fs), let
ai and a′i be the first and last vertex, respectively, of Pi in V (Fs). Let M = {a1, . . . , ak} and
M ′ = {a′1, . . . , a

′
k}. By Lemma 3(c), Fs contains k disjoint paths Q1, . . . , Qk from M to M ′.

Then the (u, ai)-sections and the (a′i, v)-sections of the paths Pi together with Q1, . . . , Qk

and the paths Pk+1, . . . , Pκ form a collection of κ internally disjoint (u, v)-paths in H . This
proves (10).

The two graphs H and K have exactly the vertices in V (Fs) in common. We now bound
the Wiener index of G in terms of the Wiener indices of, and the total distance of Z in H
and K.

W (G) <
∑

{x,y}⊆B∪V (Fs)

dG(x, y) +
∑

{x,y}⊆A∪V (Fs)

dG(x, y) +
∑

x∈A, y∈B

dG(x, y)

<

(

n

2

)

s

2
+

∑

{x,y}⊆B∪V (Fs)

dH(x, y) +
∑

{x,y}⊆A∪V (Fs)

dK(x, y) +
∑

x∈A, y∈B

dH(x, z) + dK(z, y).(11)

Indeed, for any two vertices x and y of G that are both in A ∪ V (Fs), we have dG(x, y) ≤
dH(x, y)+ s

2 since a shortest (x, y)-path in H either contains only vertices in B∪S, in which
case it is also a path in G, or it contains vertices in V (Fs) − S, in which case replacing
the segment between the first and last occurrence of a vertex in V (Fs) − S in the path
by a segment of the cycle S that contains at most s/2 vertices yields an (x, y)-path in G.
Similarly, if x and y are both in B ∪ V (Fs), then dG(x, y) ≤ dK(x, y) + s

2 . Finally, if x ∈ A
and y ∈ B, then we can obtain an (x, y)-path in G from the concatenation of an (x, z)-path
in H and a (z, y)-path in K by replacing z with a segment of S containing at most s/2
vertices. This proves (11).

We now bound each of the terms in (11). Since H and K are κ-connected simple trian-
gulations of order b+ 5s+ 1 and a+ 5s+ 1, respectively, we have by induction

(12)
∑

{x,y}⊆B∪V (Fs)

dH(x, y) = W (H) ≤
1

6κ
(b + 5s+ 1)3 + C(b + 5s+ 1)5/2,
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and

(13)
∑

{x,y}⊆A∪V (Fs)

dK(x, y) = W (K) ≤
1

6κ
(a+ 5s+ 1)3 + C(a+ 5s+ 1)5/2.

It follows from Corollary 1(a)-(c) that σ(v) ≤ 1
2κn

2 + κ−2
2κ n + κ−3

2κ for every vertex v of a

κ-connected triangulation of order n. Hence σ(z,H) ≤ 1
2κ (a+5s+1)2+ κ−2

2κ (a+5s+1)+κ−3
2κ

and σ(z,K) ≤ 1
2κ (b + 5s+ 1)2 + κ−2

2κ (b+ 5s+ 1) + κ−3
2κ . Hence

∑

x∈A, y∈B

(

dH(x, z) + dK(z, y)
)

= b
∑

x∈A

dH(x, z) + a
∑

y∈B

dK(z, y)

< bσ(z,H) + a σ(z,K)

≤
b

2κ

[

(a+ 5s+ 1)2 + (κ− 2)(a+ 5s+ 1) + κ− 3
]

+
a

2κ

[

(b+ 5s+ 1)2 + (κ− 2)(b + 5s+ 1) + κ− 3
]

,

and since a < a+ 5s+ 1 and b < b+ 5s+ 1,

∑

x∈A, y∈B

dH(x, z) + dK(z, y) <
1

2κ
(a+ 5s+ 1)2(b+ 5s+ 1) +

1

2κ
(a+ 5s+ 1)(b+ 5s+ 1)2

+
κ− 2

κ
(a+ 5s+ 1)(b+ 5s+ 1) +

κ− 3

2κ
(a+ b).(14)

Hence we obtain from (11), (12), (13). amd (14),

W (G) <
1

6κ
(a+ 5s+ 1)3 + C(a+ 5s+ 1)5/2 +

1

6κ
(b+ 5s+ 1)3 + C(b + 5s+ 1)5/2

+
1

2κ
(a+ 5s+ 1)2(b+ 5s+ 1) +

1

2κ
(a+ 5s+ 1)(b + 5s+ 1)2 +

(

n

2

)

s

2

+
κ− 2

κ
(a+ 5s+ 1)(b + 5s+ 1) +

κ− 3

2κ
(a+ b)

=
1

6κ
(a+ b + 10s+ 2)3 + C

[

(a+ 5s+ 1)5/2 + (b+ 5s+ 1)5/2
]

+
κ− 2

κ
(a+ 5s+ 1)(b + 5s+ 1) +

κ− 3

2κ
(a+ b) +

(

n

2

)

s

2
.(15)

We bound the terms of the right hand side of (15) separately. We make use of the facts
that a + b + s = n, and that by Theorem 1 in conjunction with n > 104 we have s ≤
23/2n1/2 < 0.03n−1. We bound the first term of (15) by (a+b+10s+2)3 = (n+9s+2)3 ≤
(n+9 · 23/2n1/2 +2)2. To bound the second term note that the real function f(x) = x5/2 is
concave up and that a, b ≤ 2

3n by Theorem 1, which implies that (a+5s+1)5/2+(b+5s+1)5/2

is maximised if a = 2
3n and b = 1

3n − s (or vice versa). Therefore, (a + 5s + 1)5/2 + (b +

5s + 1)5/2 ≤ (23n + 5s + 1)5/2 + (13n + 4s + 1)5/2 ≤ (23n + 0.15n)5/2 + (13n + 0.12n)5/2 =
(

(23 +0.15)5/2+(13 +0.12)5/2
)

n5/2 < 0.76n5/2. To bound the third term note that κ−2
κ < 1,

a+5s+1 < n and b+5s+1 < n, so κ−2
κ (a+5s+1)(b+5s+1) < n2. To bound the fourth

term note that κ−3
2κ < 1 and a + b < n, so κ−3

2κ (a + b) < n. Finally,
(

n
2

)

< 1
2n

2, and so we

bound the fifth term by
(

n
2

)

s
2 < 2−1/2n5/2. In total we obtain from (15),

W (G) <
1

6κ
(n+ 9 · 23/2n1/2 + 2)3 + 0.76 Cn5/2 + n2 + n+ 2−1/2n5/2

=
1

6κ
n3 +

(13

κ
+ 0.76C + 1 + 2−1/2

)

n5/2 +
338

κ
n2 +

8788

3κ
n3/2.
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Since n ≥ 104, we have 338
κ n2 + 8788

3κ n3/2 < 2n5/2. Also, 13
κ + 0.76C + 1 + 2−1/2 <

6.1 + 0.76C, and so

W (G) <
1

6κ
n3 +

(

8.1 + 0.76C
)

n5/2

≤
1

6κ
n3 + Cn5/2

since C satisfies 8.1 + 0.76C ≤ C. The theorem follows. �

The following bound on the Wiener index of simple quadrangulations is proved in a similar
way. The only difference is that a slightly modified version Qp of the plane graph Fp is used
in the proof. For an even p with p ≥ 4 let Qp be the plane graph obtained from a cycle
C = u0, u1, . . . , up−1, u0 of length p, inside which we add a cycle C′ = v0, v1, . . . , vp−1, v0 of
length p and edges uivi for i = 0, 1, . . . , p− 1, inside which we add a vertex z and joint it to
all vi with i even. It is easy to verify that a 3-connected quadrangualation with the insertion
of Qp stays 3-connected. Apart from this difference, the proof of Theorem 3 follows closely
that of Theorem 2, hence we omit the proof.

Theorem 3. Let κ ∈ {2, 3}. Then there exists a constant C such that

W (G) ≤
1

6κ
n3 + Cn5/2

for every κ-connected simple quadrangulation G of order n. ✷

The leading coefficients in the bounds in Theorems 2 and 3 are optimal, as shown by the
graphs in Figures 5 through 13 and Figures 15 through 20.

5. Computational Results and Conjectures

This section contains numerous figures and tables summarizing months of computer
searches. None of this would have been possible without the help provided by Plantri, a
program that generates triangulations and quadrangulation on numerous surfaces. For each
category of problem (triangulations, 4-connected triangulations, 5-connected triangulations,
quadrangulations and 3-connected quadrangulations) there is a table, which summarizes the
largest Wiener index and remoteness found for a given order in that category, along with
“Count”, telling how many graphs attain the optimal value. Note that remoteness in this
section is not normalized to keep the calculations in the domain of integers. In other words,
in the Tables we show (n− 1)ρ(G) and (n − 1)π(G) under the name of “Remoteness” and
“Proximity”. Our Wiener index findings match those of [8] for triangulations. The number
of isomorphism classes that our code searched matches the numbers in [5], [6], [7], [29], [34],
verifying that the values that the search provides are in fact maximal. In each figure be-
low, purple edges represent the repeating pattern and the black node marks a vertex which
maximizes the remoteness. The computational evidence suggests that for sufficiently large
order, the maximum Wiener index is uniquely realized in every category, while remoteness
is not, except for quadrangulations.

5.1. Computational Results for Triangulations.
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Figure 5. A triangulation Tn on n = 3k vertices which maximizes the
remoteness and is conjectured to maximize the Wiener index.

Figure 6. A triangulation Tn on n = 3k+1 vertices which maximizes the
remoteness and is conjectured to maximize the Wiener index.

Figure 7. A triangulation Tn on n = 3k+2 vertices which maximizes the
remoteness and is conjectured to maximize the Wiener index.
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Order Wiener index Count Remoteness Count

4 6 1 3 1
5 11 1 5 1
6 18 2 7 1
7 27 5 9 4
8 39 2 12 2
9 54 1 15 4
10 72 1 18 17
11 94 1 22 7
12 120 1 26 25
13 150 1 30 107
14 185 1 35 35
15 225 1 40 171
16 270 1 45 743
17 321 1 51 217
18 378 1

Table 1. A summary of the largest Wiener Index and remoteness among
all triangulations on n vertices, and a count for how many isomorphism
classes attain this value.

Figure 8. A 4-connected triangulation T 4
n on n = 4k + 2 vertices, which

maximizes the remoteness and is conjectured to maximize the Wiener index.

Figure 9. A 4-connected triangulation T 4
n on n = 4k + 3 vertices, which

maximizes the remoteness and is conjectured to maximize the Wiener index.
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Figure 10. A 4-connected triangulation T 4
n on n = 4k vertices, which

maximizes the remoteness and is conjectured to maximize the Wiener index.

Figure 11. A 4-connected triangulation T 4
n on n = 4k + 1 vertices, which

maximizes the remoteness and is conjectured to maximize the Wiener index.

Vertices Wiener Index Count Remoteness Count

6 18 1 6 1
7 27 1 8 1
8 38 2 10 2
9 51 4 12 4
10 68 1 15 4
11 87 1 18 6
12 110 1 21 16
13 135 1 24 50
14 166 1 28 24
15 199 1 32 66
16 238 1 36 186
17 279 1 40 653
18 328 1 45 250
19 379 1 50 879
20 438 1 55 2599
21 499 1 60 9429
22 570 1 66 3313

Table 2. A summary of the largest Wiener Index and remoteness among
all 4-connected triangulations on n vertices, and a count for how many
isomorphism classes attain this value.
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Figure 12. A 5-connected triangulation T 5
n on n = 5k + 2 vertices, which

maximizes the remoteness and is conjectured to maximize the Wiener Index.

Figure 13. A 5-connected triangulation T 5
n on n = 5k + 3 vertices, which

is conjectured to maximize the Wiener Index.



WIENER INDEX AND REMOTENESS IN TRIANGULATIONS AND QUADRANGULATIONS 17

Figure 14. A 5-connected triangulation T 5
n on n = 5k + 3 vertices which

maximizes the remoteness.

Figure 15. A 5-connected triangulation T 5
n on n = 5k + 4 vertices, which

maximizes the remoteness and is conjectured to maximize the Wiener Index.
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Figure 16. A 5-connected triangulation T 5
n on n = 5k vertices, which

maximizes the remoteness and is conjectured to maximize the Wiener Index.

Figure 17. A 5-connected triangulation T 5
n on n = 5k + 1 vertices which

maximizes the remoteness and is conjectured to maximize the Wiener index.
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Order Wiener index Count Remoteness Count

12 108 1 18 1
13 — 0 — 0
14 159 1 23 1
15 189 1 26 1
16 222 2 29 1
17 259 1 34 1
18 300 1 37 1
19 342 1 41 2
20 391 1 45 4
21 444 1 49 9
22 500 2 55 4
23 560 1 59 11
24 630 1 64 36
25 702 1 69 66
26 780 1 74 193
27 867 1 81 39
28 955 1 86 240
29 1053 1 92 805
30 1156 1 98 1470
31 1265 1 104 4327
32 1384 1

Table 3. A summary of the largest Wiener Index and remoteness among
all 5-connected triangulations on n vertices, and a count for how many
isomorphism classes attain this value.
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Figure 18. A quadrangulation Qn on n = 2k vertices, which maximizes
the remoteness and is conjectured to maximize the Wiener index.

Figure 19. A quadrangulationQn on n = 2k+1 vertices, which maximizes
the remoteness and is conjectured to maximize the Wiener index.

5.2. Computational Results for Quadrangulations.

Order Wiener Index Count Remoteness Count

4 8 1 4 1
5 14 1 6 1
6 23 1 9 1
7 34 2 12 1
8 50 1 16 1
9 68 1 20 1
10 93 1 25 1
11 120 1 30 1
12 156 1 36 1
13 194 1 42 1
14 243 1 49 1
15 294 1 56 1
16 358 1 64 1
17 424 1 72 1
18 505 1 81 1
19 588 1 90 1
20 688 1 100 1

Table 4. A summary of the largest Wiener Index and remoteness among
all quadrangulations on n vertices, and a count for how many isomorphism
classes attain this value.
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Figure 20. A 3-connected quadrangulation Q3
n on n = 3k + 14 vertices,

which maximizes the remoteness and is conjectured to maximize the Wiener
index.

Figure 21. A 3-connected quadrangulation Q3
n on n = 3k + 15 vertices,

which maximizes the remoteness and is conjectured to maximize the Wiener
index.

Figure 22. A 3-connected quadrangulation Q3
n on n = 3k + 16 vertices

which maximizes the remoteness and is conjectured to maximize the Wiener
index.
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Order Wiener index Count Remoteness Count

8 48 1 12 1
9 — 0 — 0
10 83 1 17 1
11 106 1 22 1
12 136 1 24 2
13 164 1 29 2
14 201 1 35 2
15 240 1 38 6
16 288 2 44 7
17 344 1 51 5
18 401 1 55 26
19 468 1 62 33
20 544 1 70 22
21 622 1 75 136
22 711 1 83 172
23 810 1 92 97
24 912 1 98 729
25 1026 1 107 923
26 1151 1 117 505
27 1280 1 124 3930
28 1422 1 134 4959

Table 5. A summary of the largest Wiener Index and remoteness among
all 3-connected quadrangulations on n vertices, and a count for how many
isomorphism classes attain this value.
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