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Abstract

Here we consider an approach for fast computing the algebraic degree of Boolean
functions. It combines fast computing the ANF (known as ANF transform) and there-
after the algebraic degree by using the weight-lexicographic order (WLO) of the vectors
of the n-dimensional Boolean cube. Byte-wise and bitwise versions of a search based
on the WLO and their implementations are discussed. They are compared with the
usual exhaustive search applied in computing the algebraic degree. For Boolean func-
tions of n variables, the bitwise implementation of the search by WLO has total time
complexity O(n.2n). When such a function is given by its truth table vector and its
algebraic degree is computed by the bitwise versions of the algorithms discussed, the
total time complexity is Θ((9n − 2).2n−7) = Θ(n.2n). All algorithms discussed have
time complexities of the same type, but with big differences in the constants hidden in
the Θ-notation. The experimental results after numerous tests confirm the theoretical
results—the running times of the bitwise implementation are dozens of times better
than the running times of the byte-wise algorithms.
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1 Introduction

Boolean functions are of great importance in the modern cryptography, coding theory, digital
circuit theory, etc. When they are used in the design of block ciphers, pseudo-random
numbers generators (PRNG) in stream ciphers etc., they should satisfy certain cryptographic
criteria [6, 7, 5]. One of the most important cryptographic parameters is the algebraic

degree of a Boolean function or vectorial Boolean function, called also an S-box. This degree
should be higher in order the corresponding Boolean function (or S-box, or PRNG) to be
resistant to various types of cryptanalytic attacks. The process of generating such Boolean
functions needs this parameter, as well as the other important cryptographic parameters, to
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be computed as fast as possible. In this way, more Boolean functions can be generated and
a better choice among them can be done.

Let f be a Boolean function of n variables given by its Truth Table vector denoted
by TT (f). There are two main approaches for computing the algebraic degree of f .
The first one uses the Algebraic Normal Form (ANF) representation of f and selects the
monomial of the highest degree in it. The second approach uses only the TT (f), its weight,
support, etc., without computing the ANF of f . In [10, 6, 5, 8] it is proven that if TT (f)
has an odd weight, then the algebraic degree of f is maximal. This condition holds for the
half of all Boolean functions and it can be verified very easily. The algorithms proposed
in [8] work only with the TT (f) and use this property. They are fast for just over half of
all Boolean functions of n variables. However, when these algorithms are compared with an
algorithm of the first type (i.e., based on ANF), the computational results set some questions
about the efficiency of algorithms used for computing the ANF and thereafter the algebraic
degree. This is one of the reasons that motivated us to do a more comprehensive study
of the first approach—fast computing the algebraic degree of Boolean functions by their
ANFs. We have already done three basic steps in this direction discussed in sections 3 and
4.2. Here we represent the next step which is a natural continuation of the previous ones.
It includes a bitwise implementation of the ANF Transform (ANFT) followed by a bitwise
computing the algebraic degree by using masks for one special sequence representing the
weight-lexicographic order (WLO) of the vectors of Boolean cube.

The paper is structured as follows. The basic notions are given in Section 2. In Section
3 we outline some preliminary results about the enumeration and distribution of Boolean
functions of n variables according to their algebraic degrees, as well as the WLO of the vectors
of the Boolean cube and the corresponding sequences. At the beginning of Section 4, an
algorithm for computing the algebraic degree of Boolean function by using the WLO sequence
is discussed. Section 4.2 starts with a comment on the preliminary results about the bitwise
ANF transform. Thereafter, a search by using masks for the WLO sequence is considered.
Section 5 shows a scheme of computations and used algorithms. The time complexities of the
algorithms under consideration are summarized and the experimental results after numerous
tests are given. They are used for comparison of the byte-wise and bitwise implementations
of the proposed algorithms. The general conclusion is: in computing the algebraic degree
of a Boolean function it is worth to use the bitwise implementation of proposed algorithms
instead of the byte-wise one—it is tens of times faster. In the last section, some ideas about
the forthcoming steps of this study are outlined. Experiments in one of these directions have
already begun and their first results are good.

2 Basic Notions

Here N denotes the set of natural numbers. We consider that 0 ∈ N and N
+ = N\{0} is the

set of positive natural numbers.
Usually, the n-dimensional Boolean cube is defined as {0, 1}n = {(x1, x2, . . . , xn)| xi ∈
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{0, 1}, ∀ i = 1, 2, . . . , n}, i.e., it is the set of all n-dimensional binary vectors. So |{0, 1}n| =
|{0, 1}|n = 2n. Further, we use the following alternative, inductive and constructive defini-
tion.

Definition 1. 1) The set {0, 1} = {(0), (1)} is called one-dimensional Boolean cube and its
elements (0) and (1) are called one-dimensional binary vectors.

2) Let {0, 1}n−1 = {α0, α1, . . . , α2n−1−1} be the (n − 1)-dimensional Boolean cube and
α0, α1, . . . , α2n−1−1 be its (n− 1)-dimensional binary vectors.

3) The n-dimensional Boolean cube {0, 1}n is built by taking the vectors of {0, 1}n−1

twice: firstly, each vector of {0, 1}n−1 is prefixed by zero, and thereafter each vector of
{0, 1}n−1 is prefixed by one:

{0, 1}n = {(0, α0), (0, α1), . . . , (0, α2n−1−1),

(1, α0), (1, α1), . . . , (1, α2n−1−1)}.

For an arbitrary vector α = (a1, a2, . . . , an) ∈ {0, 1}n, the natural number #α =
∑n

i=1 ai.2
n−i is called a serial number of the vector α. So #α is the natural number having

n-digit binary representation a1a2 . . . an. A (Hamming) weight of α is the natural number
wt(α), equal to the number of non-zero coordinates of α, i.e., wt(α) =

∑n

i=1 ai. For any
k ∈ N, k ≤ n, the set of all n-dimensional binary vectors of weight k is called a k-th layer of
the n-dimensional Boolean cube. It is denoted by Ln,k = {α|α ∈ {0, 1}n : wt(α) = k} and
we have |Ln,k| =

(

n

k

)

, for k = 0, 1, . . . , n. These numbers are the binomial coefficients from
the n-th row of Pascal’s triangle and so

∑n

k=0

(

n

k

)

= 2n = |{0, 1}n|. The family of all layers
Ln = {Ln,0, Ln,1, . . . , Ln,n} is a partition of the n-dimensional Boolean cube into layers.

For arbitrary vectors α = (a1, a2, . . . , an) and β = (b1, b2, . . . , bn) ∈ {0, 1}n, we say that
”α precedes lexicographically β” and denote this by α ≤ β, if α = β or if ∃ k, 1 ≤ k ≤ n,
such that ak < bk and ai = bi, for all i < k. The relation ”≤” is a total (unique) order in
{0, 1}n, called lexicographic order. The vectors of {0, 1}n are ordered lexicographically in the
sequence α0, α1, . . . αk, . . . , α2n−1 if and only if:

• αl ≤ αk, ∀ l ≤ k and αk ≤ αr, ∀ k ≤ r;

• the sequence of their serial numbers #α0,#α1, . . . , #αk, . . . ,#α2n−1 is exactly 0, 1,
. . . , k, . . . , 2n − 1.

A Boolean function of n variables (denoted usually by x1, x2, . . . , xn) is a mapping f :
{0, 1}n → {0, 1}, i.e. f maps any binary input x = (x1, x2, . . . , xn) ∈ {0, 1}n to a single
binary output y = f(x) ∈ {0, 1}. Any Boolean function f can be represented in a unique
way by the vector of its functional values, called a Truth Table vector and denoted by
TT (f) = (f0, f1, . . . f2n−1), where fi = f(αi) and αi is the i-th vector in the lexicographic
order of {0, 1}n, for i = 0, 1, . . . , 2n − 1. The set of all Boolean functions of n variables is
denoted by Bn and its size is |Bn| = 22

n

.
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Another unique representation of the Boolean function f ∈ Bn is the algebraic normal
form (ANF) of f , which is a multivariate polynomial

f(x1, x2, . . . , xn) =
⊕

γ∈{0,1}n

a#γ x
γ .

Here γ = (c1, c2, . . . , cn) ∈ {0, 1}n, the coefficient a#γ ∈ {0, 1}, and xγ means the mono-
mial xc1

1 x
c2
2 . . . xcn

n =
∏n

i=1 x
ci
i , where x0

i = 1 and x1
i = xi, for i = 1, 2, . . . n. A degree of the

monomial x = xc1
1 x

c2
2 . . . xcn

n is the integer deg(x) = wt(γ)—it is the number of variables of
the type x1

i = xi, or the essential variables for xγ. The algebraic degree (or simply degree)
of f is defined as deg(f) = max{deg(xγ)| a#γ = 1}. When f ∈ Bn and the TT (f) is given,
the values of the coefficients a0, a1, . . . , a2n−1 can be computed by a fast algorithm, usually
called an ANF transform (ANFT)1. The ANFT is well studied, it is derived in different ways
by many authors, for example [6, 5, 9]. Its byte-wise implementation has a time-complexity
Θ(n.2n). The vector (a0, a1, . . . , a2n−1) ∈ {0, 1}n obtained after the ANFT is denoted by
Af . When f ∈ Bn is the constant zero function (i.e., TT (f) = (0, 0, . . . , 0)), its ANF is
Af = (0, 0, . . . , 0) and its algebraic degree is defined as deg(f) = −∞. If f is the constant
one function (TT (f) = (1, 1, . . . , 1)), then Af = (1, 0, 0, . . . , 0) and deg(f) = 0.

3 Some Preliminary Results

3.1 Distribution of Boolean Functions According to their Alge-

braic Degrees

It is well-known that half of all Boolean functions of n variables have an algebraic degree
equal to n, for n ∈ N

+ [10, 6, 5, 8]. Furthermore, in [6, p. 49] Carlet notes that when n
tends to infinity, random Boolean functions have almost surely algebraic degrees at least
n − 1. We consider that the overall enumeration and distribution of all Boolean functions
of n variables (n ∈ N

+) according to their algebraic degrees is very important for our study.
The paper where we explore them is still in review, but some results can be seen in OEIS
[11], sequence A319511. We will briefly outline the results needed for further exposition.

Let d(n, k) be the number of all Boolean functions f ∈ Bn such that deg(f) = k.

Theorem 2. For arbitrary integers n ∈ N and 0 ≤ k ≤ n, the number

d(n, k) = (2(
n

k
) − 1).2

∑
k−1

i=0 (
n

i
) .

Sketch of proof: let X be the set of n variables. There are
(

n

k

)

monomials of degree = k
because so many are the ways to choose k variables from X . The first multiplier in the
formula denotes the number of ways to choose at least one such monomial to participate in

1In dependence of the area of consideration, the same algorithm is called also (fast) Möbius Transform,
Zhegalkin Transform, Positive polarity Reed-Muller Transform, etc.
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the ANF. The second multiplier is the number of ways to choose 0 or more monomials of
degrees < k and to add them to the ANF.

Corollary 3. The number d(n, n− 1) tends to
1

2
· |Bn| when n → ∞.

Let p(n, k) be the discrete probability a random Boolean function f ∈ Bn to have an
algebraic degree = k. It is defined as

p(n, k) =
d(n, k)

|Bn|
=

d(n, k)

22n
,

for n ≥ 0 and 0 ≤ k ≤ n. The values of p(n, k) obtained for a fixed n give the distribution
of the functions from Bn according to their algebraic degrees. Table 1 represents this distri-
bution, for 3 ≤ n ≤ 10 and n− 3 ≤ k ≤ n. The values of p(n, k) in it are rounded up to 10
digits after the decimal point. Furthermore, p(n, k) ≈ 0, for 0 ≤ k < n− 3, and their values
are not shown in the table.

Table 1: Distribution of the functions from Bn according to their algebraic degrees, for
n = 3, 4, . . . , 10

The values of p(n, k), for:
n k = n− 3 k = n− 2 k = n− 1 k = n

3 0.00390625 0.0546875 0.4375 0.5

4 0.0004577637 0.0307617187 0.46875 0.5

5 0.0000152439 0.0156097412 0.484375 0.5

6 0.0000002384 0.0078122616 0.4921875 0.5

7 0.0000000019 0.0039062481 0.49609375 0.5

8 0 0.0019531250 0.498046875 0.5

9 0 0.0009765625 0.4990234375 0.5

10 0 0.0004882812 0.4995117187 0.5

These results were used:

• To check for representativeness the files used to test all algorithms discussed here.
These are 4 files containing 106, 107, 108 and 109 randomly generated unsigned integers
in 64-bit computer words. We used each of these files as an input for Boolean functions
of 6, 8, 10, . . . , 16 variables (reading 2n−6 integers from the chosen file) and we computed
the algebraic degrees of all these functions. The absolute value of the difference between
the theoretical and computed distribution is less than 0.88% (it exceeds 0.1% in only
a few cases), for all tests. So we consider that the algorithms work with samples of
Boolean functions which are representative enough.

• When creating the algorithms represented in the following sections. The distribution
shows why the WLO has been studied in detail and what to expect for the running
time of algorithms that use WLO.
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3.2 WLO of the Vectors of n-dimensional Boolean Cube

The simplest algorithm for computing the algebraic degree of a Boolean function is an
Exhaustive Search (we refer to it as ES algorithm): if f ∈ Bn and Af = (a0, a1, . . . , a2n−1)
is given, it checks consecutively whether ai = 1, for i = 0, 1, . . . , 2n − 1. The algorithm
selects the vector of maximal weight among all vectors αi ∈ {0, 1}n such that ai = 1. The
algorithm checks exhaustively all values in Af (which correspond to the lexicographic order
of the vectors of {0, 1}n) and so it performs Θ(2n) checks.

The basic parts of a faster way for the same computing are considered in [1, 2]. Here they
are given in short, but all related notions, proofs, illustrations, algorithms and programming
codes, details, etc., can be seen in [2].

The sequence of layers Ln,0, Ln,1, . . . , Ln,n gives an order of the vectors of {0, 1}n in
accordance with their weights. When α, β ∈ {0, 1}n and wt(α) < wt(β), then α precedes
β in the sequence of layers, and if wt(α) = wt(β) = k, then α, β ∈ Ln,k and there is
no precedence between them. We define the corresponding relation R<wt

as follows: for
arbitrary α, β ∈ {0, 1}n, (α, β) ∈ R<wt

if wt(α) < wt(β) or if α = β. When (α, β) ∈ R<wt

we say that ”α precedes by weight β” and write also α <wt β. Thus R<wt
is a partial

order in {0, 1}n and we refer to it (and to the order determined by it) as a Weight-Order
(WO). To develop an algorithm we use the serial numbers of the vectors in the sequence
of layers instead of the vectors themselves. For an arbitrary layer Ln,k = {α0, α1, . . . , αm}
of {0, 1}n, we define the sequence of serial numbers of the vectors of Ln,k and denote it by
ln,k = #α0,#α1, . . . ,#αm. Let ln = ln,0, ln,1, . . . , ln,n be the sequence of all serial numbers
corresponding to the vectors in the sequence of layers Ln,0, Ln,1, . . . , Ln,n. Thus ln represents
a WO of the vectors of {0, 1}n and we call ln a WO sequence of {0, 1}n. One of all possible
∏n

k=0

(

n

k

)

! WO sequences2 deserves a special attention. Firstly, we define the operation
addition of the natural number to a sequence as follows: if n,m ∈ N

+ and s = a1, a2, . . . , an
is a sequence of integers, then s +m = a1 +m, a2 +m, . . . , an +m. Following Definition 1,
we obtain:

Definition 4. 1) The WO sequence of the one-dimensional Boolean cube is l1 = 0, 1.
2) Let ln−1 = ln−1,0, ln−1,1, . . . , ln−1,n−1 be the WO sequence of the (n − 1)-dimen-sional

Boolean cube.
3) The WO sequence of n-dimensional Boolean cube ln = ln,0, ln,1, . . . , ln,n is defined as

follows:
• ln,0 = 0 and it corresponds to the layer Ln,0 = {0̃n}, where 0̃n is the zero vector of n

coordinates;
• ln,n = 2n−1 and it corresponds to the layer Ln,n = {1̃n}, where 1̃n is the all-ones vector

of n coordinates;
• ln,k = ln−1,k, ln−1,k−1 + 2n−1, for k = 1, 2, . . . , n− 1. Here ln,k is a concatenation of two

sequences: the sequence ln−1,k is taken (or copied) firstly, and the sequence ln−1,k−1 + 2n−1

follows after it. The sequence ln,k corresponds to the layer Ln,k.

2You can see the sequence A051459 in the OEIS [11] for details.
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Theorem 5. Let n ∈ N
+ and ln = ln,0, ln,1, . . . , ln,n be the WO sequence, obtained in accor-

dance with Definition 4. Then, the serial numbers in the sequence ln,k determine a lexico-
graphic order of the vectors of the corresponding layer Ln,k, for k = 0, 1, . . . , n.

Theorem 5 is proven by mathematical induction in [2]. It states that Definition 4 de-
termines a second criterion for ordering the vectors within the existing WO of the Boolean
cube—this is the lexicographic order. Since it is a total order for each subsequence ln,k,
0 ≤ k ≤ n, a total weight order for the sequence ln is obtained. We call it a Weight-
Lexicographic Order (WLO).

The WLO algorithm is based on Definition 4 and Theorem 5, and so they imply its
correctness. For a given input n ∈ N

+, it starts from l1 and computes consecutively the
sequences l2, l3, . . . , ln. Some results computed by the algorithm are given in Table 2. More
results can be seen in OEIS [11], sequence A294648.

Table 2: Results obtained by the WLO algorithm for n = 1, 2, . . . , 5

n ln
1 0, 1
2 0, 1, 2, 3
3 0, 1, 2, 4, 3, 5, 6, 7
4 0, 1, 2, 4, 8, 3, 5, 6, 9, 10, 12, 7, 11, 13, 14, 15
5 0, 1, 2, 4, 8, 16, 3, 5, 6, 9, 10, 12, 17, 18, 20, 24, 7, 11, 13, 14, 19, 21, 22, 25, . . .

The time complexity of the WLO algorithm is Θ(2n), it is exponential with respect to
the size of the input n. Furthermore, it is linear with respect to the size of the output. The
space complexity of the algorithm is of the same type. We note that the running time for
precomputation of the sequence ln in a lookup table is negligible (≈ 0 seconds).

4 Computing the Algebraic Degree of Boolean Func-

tions by WLO

4.1 Byte-wise Approach

The terms of the WLO sequence ln form a permutation of the numbers 0, 1, . . . , 2n − 1 and
we denote this permutation as ln = (i0, i1, . . . , i2n−1). We use the sequence ln to compute the
algebraic degree of a given Boolean function f ∈ Bn. The proposed algorithm is similar to
the ES algorithm, but it checks the coordinates of Af = (a0, a1, . . . , a2n−1) in accordance with
the values of ln, from right to left. It starts with the i2n−1-th coordinate of Af . If it is equal
to zero the algorithm checks the i2n−2-th coordinate of Af , and so on, looking for the first
coordinate of Af which is equal to one and then it stops. If there is not such a coordinate,
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then f is the constant zero function. Otherwise, if the algorithm stops the searching on the
ij-th coordinate (0 ≤ j < 2n) of Af , it returns the number of the subsequence that contains
the number ij as an output. If ij is a term of ln,k, 0 ≤ k ≤ n, then the layer Ln,k contains
a vector which serial number is ij and therefore deg(f) = k. The algorithm is correct, since
it follows the WLO and stops at the right place—if it continues with the checks, it will find
possible monomials of degree ≤ k. Thus the algorithm performs O(2n) checks and this is its
time complexity. This general estimation concerns a very small number of functions f ∈ Bn

because the computing will finish after O(n) checks at almost 100% of all such functions
(especially when n grows)—as it is shown in Section 3.1. Since this algorithm works in a
byte-wise manner and after the byte-wise ANFT, we call it Byte-wise WLO algorithm .

4.2 Bitwise Approach

In [3] we represented a comprehensive study of the bitwise implementation of the ANFT.
When 64-bit computer words are used, the obtained algorithm has a time-complexity Θ((9n−
2).2n−7) and a space complexity Θ(2n−6), i.e., both are of the type Θ(2n). But the exper-
imental results show that the bitwise version of the algorithm is about 25 times faster in
comparison to the byte-wise version3. Analogous research concerning the parallel bitwise
implementation of the ANFT is represented in [4] and similar results about its efficiency are
obtained.

After these results it is natural to think about a bitwise implementation of the last
algorithm. Otherwise, bitwise computing an ANFT seems unnecessary, since computing the
other cryptographic parameters of Boolean functions needs a byte-wise representation (see
Fig. 1). Our first idea is to check all vectors in the same layer in one (or several) step(s).
For this purpose we use n+1 masks mn,0, mn,1, . . . , mn,n corresponding to the vectors in the
layers Ln,0, Ln,1, . . . , Ln,n. The mask mn,i is a binary vector of the same length as Af and
mn,i contains units only in these bits, whose coordinates correspond to the numbers in the
subsequence ln,i, for i = 0, 1, . . . , n. So we need to repeat bitwise conjunctions between Af

and mn,i, for i = n, n− 1, . . . , 0, until Af ∧mn,i = 0. If this equality holds for all values of i,
then f is the constant zero function. Otherwise, if k is the first value of i (when i decreases
from n to 0) such that Af ∧mn,k > 0, then k is the algebraic degree of f . So the algorithm
stops and returns k. We call it Bitwise WLO algorithm accepting that it always uses
masks.

When Af occupies one computer word, the algorithm performs at most n + 1 steps and
so its time complexity is O(n), i.e., it is of logarithmic type (n = log2 2

n) with respect
to the size of the input. If the size of the computer word is 64 = 26 bits and f is a
function of n > 6 variables, then TT (f) and Af occupy s = 2n/64 = 2n−6 computer words.
So mn,i will occupy s computer words too and the computing Af ∧ mn,i will be done in
s steps, for i = n, n − 1, . . . , 0. If on some of these steps the conjunction between the

3Both algorithms have been implemented as C++ programs in Code::Blocks 13.12 IDE, built as 32-bit
applications in Release mode and tested with the largest file of 109 integers.
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corresponding computer words of Af and mn,i is greater than zero, the algorithm returns i
and stops. Therefore, in the general case, the bitwise WLO algorithm has a time complexity
O(n + 1).O(s) = O(n.2n−6). This estimation concerns a very small number of functions
f ∈ Bn again—the computing will finish after O(1 + s) = O(2n−6) checks at almost 100% of
all such functions.

Let us consider the masks’ generating. For arbitrary i, 0 ≤ i ≤ n, it is easy to put units
in all these bits of mn,i that correspond to the numbers in the subsequence ln,i. We note that
we use the serial numbers of the masks, stored in the necessary number of 64-bit computer
words, as well as the vectors TT (f) and Af . Furthermore, we generate them in accordance
with the following definition.

Definition 6. 1) For n = 1, the serial numbers of the masks corresponding to the subse-
quences l1,0 and l1,1 are #m1,0 = 2 and #m1,1 = 1.

2) Let #mn−1,0,#mn−1,1, . . . ,#mn−1,n−1 be the serial numbers of the masks correspond-
ing to the subsequences ln−1,0, ln−1,1, . . . , ln−1,n−1.

3) The serial number of the mask mn,i corresponding to the subsequence ln,i is:

#mn,i =







22
n−1

.#mn−1,0 = 22
n−1, if i = 0 ,

1, if i = n ,

22
n−1

.#mn−1,i +#mn−1,i−1, if 0 < i < n ,

for i = 0, 1, . . . , n.

Definition 6 corresponds to definitions 1 and 4. Its correctness can be proven strictly
by mathematical induction on n. The running time for generating (precomputation of) the
masks in accordance with Definition 6 is negligible (≈ 0 seconds). We note that when n > 6,
the generating algorithm has some particularities because it works with s = 2n−6 computer
words for each mask. The serial numbers of masks grow exponentially—see Table 3, as well
as the sequence A305860 in OEIS [11].

Table 3: Serial numbers of the masks, for n = 1, . . . , 5
n #mn,0 #mn,1 #mn,2 #mn,3 #mn,4 #mn,5

1 2 1 – – – –

2 8 6 1 – – –

3 128 104 22 1 – –

4 32768 26752 5736 278 1 –

5 2147483648 1753251840 375941248 18224744 65814 1

Example 7. Let us consider f ∈ B4 whose ANF, the coordinates’ (or bits’) numbers (these
which are greater than 9 are represented by their last digit) and the masks (for n = 4) are
given in Table 4. When we use the byte-wise WLO Algorithm, it checks consecutively the
coordinates of Af , from right to left, i.e., 15, 14, 13, 11, 7, 12—see the WLO sequence l4 in
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Table 2. Af contains zeros in all coordinates before 12-th, in this coordinate Af contains
one and so the algorithm stops after 6 checks. Since 12 is a term of l4,2, hence deg(f) = 2.
When the bitwise WLO algorithm is used, it computes the conjunctions: Af ∧ m4,4 = 0,
Af ∧m4,3 = 0, Af ∧m4,2 > 0 and thereafter it stops. So deg(f) = 2 and it is computed in 3

steps.

Table 4: The data used in Example 7
Coordinates’ numbers 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

Af = 1 0 0 1 0 1 1 0 1 0 1 0 1 0 0 0

#m4,0 = 32768, m4,0 = 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

#m4,1 = 26752, m4,1 = 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0

#m4,2 = 5736, m4,2 = 0 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0

#m4,3 = 278, m4,3 = 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0

#m4,4 = 1, m4,4 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

The second idea for a new bitwise algorithm is to check the bits of Af in accordance
with the WLO sequence. This algorithm will be similar to the byte-wise WLO algorithm
and it will have a time complexity of the same type: O(2n). We discarded this idea because
the time complexity of the bitwise WLO algorithm is O(n.2n−6) and n.2n−6 < 2n when
6 < n < 64. But during the revision of this paper, we noticed that for almost 100% of all
f ∈ Bn, the bitwise WLO algorithm performs O(2n−6) checks, whereas the byte-wise WLO
algorithm (as well as the new bitwise algorithm) performs O(n) checks. Furthermore, the
check of a serial bit of Af (in accordance with the WLO sequence) needs no more than 5
bitwise operations. Hence the new bitwise algorithm will have a small constant hidden in
the O-notation. For example, the bitwise WLO algorithm will be better for small n (say
n ≤ 8). But for n = 16 the bitwise WLO algorithm will perform quite more operations than
the new bitwise algorithm. The forthcoming tests will show when and how faster is the new
algorithm.

5 Experimental Results

We return to the main problem of this study—fast computing the algebraic degree of a
Boolean function f ∈ Bn given by its TT (f). A scheme of the computations and used
algorithms is shown in Fig. 1.

In accordance with this scheme, the time complexities of the algorithms considered are
summarized as follows:

1. The byte-wise ANFT algorithm followed by the ES algorithm are referred asByte-wise

ANFT&ES further. So, their time complexity is a sum of Θ(n.2n)+Θ(2n) = Θ(n.2n).

2. The byte-wise ANFT algorithm followed by the byte-wise WLO algorithm are referred
as Byte-wise ANFT&WLO. Their time complexity is Θ(n.2n) +O(2n) = Θ(n.2n).
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Figure 1: A scheme for computing the algebraic degree of Boolean functions

3. The bitwise ANFT algorithm followed by the bitwise WLO algorithm are referred as
Bitwise algorithms. When 64-bit computer words are used, the time complexity of
the bitwise algorithms is Θ((9n− 2).2n−7) +O(n.2n−6) = Θ((9n− 2).2n−7) = Θ(n.2n).

It has to be noted that these time complexities are:

• dominated by the time complexity of the corresponding ANFT—the cost of search is
relatively small and it is absorbed into the cost of ANFT;

• of the same type Θ(n.2n), and the differences between them are in the constants hidden
in the Θ-notation.

To understand what these theoretical time complexities mean in practice, we have done
a lot of tests. Some more important tests’ parameters are:

1. Hardware parameters: Intel Pentium CPU G4400, 3.3 GHz, 4GB RAM, Samsung SSD
650 120 GB.

2. Software parameters: Windows 10 OS and MVS Express 2015 for Windows Desktop.
The algorithms are written in C++. All programs were built in Release mode as 32-bit
and 64-bit console applications and executed without Internet connection.

3. Methodology of testing: all tests were executed 3 times, on the same computer, un-
der the same conditions. The running times are taken in average. All results were
checked for coincidence. The time for reading from file and conversion to byte-wise
representation is excluded.
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Table 5 shows the obtained running times of the compared algorithms for all 232 Boolean
functions of 5 variables.

Table 5: Experimental results about all 232 Boolean functions of 5 variables
Tested Pure running time in seconds for:

algorithms 32-bit application 64-bit application

Byte-wise ANFT&ES 540.824 507.407

Byte-wise ANFT&WLO 450.521 378.374

Bitwise algorithms 6.470 6.512

Functions of 6 and more variables have been tested with the file of 108 integers. Depending
on the number of variables, 2n−6 integers are read from the file and so they form the serial
Boolean function. Tables 6 and 7 show the results for Boolean functions (BFs) of 6 and more
variables (vars).

Table 6: Experimental results for 32-bit applications
32-bit Pure running time in seconds for Boolean functions of:

implementation 6 vars, 8 vars, 10 vars, 12 vars, 16 vars,
of: 108 BFs 108/4 BFs 108/16 BFs 108/64 BFs 97 656 BFs

Byte-wise ANFT&ES 38.834 42.400 42.664 43.466 44.740

Byte-wise ANFT&WLO 22.003 20.022 18.758 18.230 18.808

Bitwise algorithms 1.078 1.958 1.560 1.563 1.431

Table 7: Experimental results for 64-bit applications
64-bit Pure running time in seconds for Boolean functions of:

implementation 6 vars, 8 vars, 10 vars, 12 vars, 16 vars,
of: 108 BFs 108/4 BFs 108/16 BFs 108/64 BFs 97 656 BFs

Byte-wise ANFT&ES 37.429 39.178 37.699 38.789 40.350

Byte-wise ANFT&WLO 17.443 15.880 14.224 14.243 14.454

Bitwise algorithms 0.861 0.819 0.709 0.640 0.718

6 Conclusions

We hope that the obtained results show convincingly the advantages of the WLO approaches
in computing the algebraic degree of Boolean functions. The bitwise implementations of the
considered algorithms are dozens of times faster than the byte-wise implementations. Their
usage economizes valuable time, especially in generating S-boxes. The natural continuation
of the topic under consideration includes an experimental study of:
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• The second bitwise algorithm proposed at the end of Section 4.2.

• Combination of both approaches discussed in Section 1 as follows. First, compute the
weight of TT (f). If it is an odd number, then f is of maximal degree. Otherwise,
continue with the bitwise algorithms. Some tests with the largest file (of 109 integers)
have already begun. The first results show that due to this modification, the bitwise
algorithms run about two times faster.

• More appropriate software environment (for example, Linux) in order to minimize the
effects of background processes running during the executions of the tests. Afterward,
repeat all tests since some running times in the last two tables are less than one second
and they might not been precise enough.

• Application of the bitwise algorithms in computing the algebraic degree of true exam-
ples of S-boxes.

• Parallel implementations of the bitwise algorithms.
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