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Abstract. MergeInsertion, also known as the Ford-Johnson algorithm,
is a sorting algorithm which, up to today, for many input sizes achieves
the best known upper bound on the number of comparisons. Indeed, it
gets extremely close to the information-theoretic lower bound. While the
worst-case behavior is well understood, only little is known about the av-
erage case. This work takes a closer look at the average case behavior.
In particular, we establish an upper bound of n log n − 1.4005n + o(n)
comparisons. We also give an exact description of the probability dis-
tribution of the length of the chain a given element is inserted into and
use it to approximate the average number of comparisons numerically.
Moreover, we compute the exact average number of comparisons for n up
to 148. Furthermore, we experimentally explore the impact of different
decision trees for binary insertion. To conclude, we conduct experiments
showing that a slightly different insertion order leads to a better aver-
age case and we compare the algorithm to the recent combination with
(1,2)-Insertionsort by Iwama and Teruyama.

Keywords: MergeInsertion · Minimum-comparison sort · Average case
analysis.

1 Introduction

Sorting a set of elements is an important operation frequently performed by
many computer programs. Consequently there exist a variety of algorithms for
sorting, each of which comes with its own advantages and disadvantages.

Here we focus on comparison based sorting and study a specific sorting al-
gorithm known as MergeInsertion. It was discovered by Ford and Johnson in
1959 [5]. Before D. E. Knuth coined the term MergeInsertion in his study of the
algorithm in his book “The Art of Computer Programming, Volume 3: Sorting
and Searching” [7], it was known only as Ford-Johnson Algorithm, named after
its creators. The one outstanding property of MergeInsertion is that the number
of comparisons it requires is close to the information-theoretic lower bound of
log(n!) ≈ n logn−1.4427n (for sorting n elements). This sets it apart from many
other sorting algorithms. MergeInsertion can be described in three steps: first
pairs of elements are compared; in the second step the larger elements are sorted

⋆ The second author has been supported by the German Research Foundation (DFG)
under grant DI 435/7-1.
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recursively; as a last step the elements belonging to the smaller half are inserted
into the already sorted larger half using binary insertion.

In the worst case the number of comparisons of MergeInsertion is quite well
understood [7] – it is n logn+b(n)·n+o(n) where b(n) oscillates between −1.415
and −1.3289. Moreover, for many n MergeInsertion is proved to be the optimal
algorithm in the worst case (in particular, for n ≤ 15 [9,10]). However, there are
also n where it is not optimal [8,2]. One reason for this is the oscillating linear
term in the number of comparisons, which allowed Manacher [8] to show that
for certain n it is more efficient to split the input into two parts, sort both parts
with MergeInsertion, and then merge the two parts into one array.

Regarding the average case not much is known: in [7] Knuth calculated the
number of comparisons required on average for n ∈ {1, . . . , 8}; an upper bound
of n logn− 1.3999n+ o(n) has been established in [3]. Most recently, Iwama and
Teruyama [6] showed that in the average case MergeInsertion can be improved
by combining it with their (1,2)-Insertion algorithm resulting in an upper bound
of n logn − 1.4106n + O(log n). This reduces the gap to the lower bound by
around 25%. It is a fundamental open problem how close one can get to the
information-theoretic lower bound of n logn− 1.4427n (see e. g. [6,11]).

The goal of this work is to study the number of comparisons required in
the average case. In particular, we analyze the insertion step of MergeInsertion
in greater detail. In general, MergeInsertion achieves its good performance by
inserting elements in a specific order that in the worst case causes each element
to be inserted into a sorted list of 2k − 1 elements (thus, using exactly k com-
parisons). When looking at the average case elements are often inserted into less
than 2k−1 elements which is slightly cheaper. By calculating those small savings
we seek to achieve our goal of a better upper bound on the average case. Our
results can be summarized as follows:

– We derive an exact formula for the probability distribution into how many
elements a given element is inserted (Theorem 2). This is the crucial first
step in order to obtain better bounds for the average case of MergeInsertion.

– We experimentally examine different decision trees for binary insertion. We
obtain the best result when assigning shorter decision paths to positions
located further to the left.

– We use Theorem 2 in order to compute quite precise numerical estimates for
the average number of comparisons for n up to roughly 15000.

– We compute the exact average number of comparisons for n up to 148 –
thus, going much further than [7].

– We improve the bound of [3] to n logn− 1.4005n+ o(n) (Theorem 3). This
partially answers a conjecture from [11] which asks for an in-place algorithm
with n logn+1.4n comparisons on average and n logn−1.3n comparisons in
the worst case. Although MergeInsertion is not in-place, the the techniques
from [3] or [11] can be used to make it so.

– We evaluate a slightly different insertion order decreasing the gap between
the lower bound and the average number of comparisons of MergeInsertion
by roughly 30% for n ≈ 2k/3.
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– We compare MergeInsertion to the recent combination by Iwama and Teruyama
[6] showing that, in fact, their combined algorithm is still better than the
analysis and with the different insertion order can be further improved.

Most proofs as well as additional explanations and experimental results can be
found in the appendix. The code used in this work and the generated data is
available on [12].

2 Preliminaries

Throughout, we assume that the input consists of n distinct elements. The av-
erage case complexity is the mean number of comparisons over all input permu-
tations of n elements.

Description of MergeInsertion The MergeInsertion algorithm consists of
three phases: pairwise comparison, recursion, and insertion. Accompanying the
explanations we give an example where n = 21. We call such a set of relations
between individual elements a configuration.

1. Pairwise comparison. The elements are grouped into
⌊

n
2

⌋

pairs. Each pair
is sorted using one comparison. After that, the elements are called a1 to a⌊n

2 ⌋
and b1 to b⌈n

2 ⌉
with ai > bi for all 1 ≤ i ≤

⌊

n
2

⌋

.

b1

a1

b2

a2

b3

a3

b4

a4

b5

a5

b6

a6

b7

a7

b8

a8

b9

a9

b10

a10

b11

2. Recursion. The
⌊

n
2

⌋

larger elements, i. e., a1 to a⌊n
2 ⌋

are sorted recursively.

Then all elements (the
⌊

n
2

⌋

larger ones as well as the corresponding smaller
ones) are renamed accordingly such that ai < ai+1 and ai > bi still holds.

b1

a1

b2

a2

b3

a3

b4

a4

b5

a5

b6

a6

b7

a7

b8

a8

b9

a9

b10

a10

b11

3. Insertion. The
⌈

n
2

⌉

small elements, i. e., the bi, are inserted into the main
chain using binary insertion. The term “main chain” describes the set of
elements containing a1, . . . , atk as well as the bi that have already been in-
serted.
The elements are inserted in batches starting with b3, b2. In the k-th batch

the elements btk , btk−1, . . . , btk−1+1 where tk = 2k+1+(−1)k

3 are inserted in
that order. Elements bj where j >

⌈

n
2

⌉

(which do not exist) are skipped.
Note that technically b1 is the first batch; but inserting b1 does not need any
comparison.
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Because of the insertion order, every element bi which is part of the k-th
batch is inserted into at most 2k − 1 elements; thus, it can be inserted by
binary insertion using at most k comparisons.

b2

a2

b3

a3

b4

a4

b5

a5

b6

a6

b7

a7

b8

a8

b9

a9

b10

a10

b11

x1 x2

Regarding the average number of comparisons F (n) we make the following
observations: the first step always requires

⌊

n
2

⌋

comparisons. The recursion step
does not do any comparisons by itself but depends on the other steps. The
average number of comparisons G(n) required in the insertion step is not obvi-
ous. It will be studied closer in following chapters. Following [7], we obtain the
recurrence (which is the same as for the worst-case number of comparisons)

F (n) =
⌊n

2

⌋

+ F
(⌊n

2

⌋)

+G
(⌈n

2

⌉)

. (1)

3 Average Case Analysis of the Insertion Step

In this section we have a look at different probabilities when inserting one batch
of elements, i. e., the elements btk to btk−1+1. We assume that all elements of
previous batches, i. e., b1 to btk−1

, have already been inserted and together with
the corresponding ai they constitute the main chain and have been renamed to
x1 to x2tk−1

such that xi < xi+1. The situation is shown in Fig. 1.
We will look at the element btk+i and want to answer the following questions:

what is the probability of it being inserted between xj and xj+1? And what is
the probability of it being inserted into a specific number of elements?

x1
x2tk−1 atk−1+1 atk−1+2 atk−1+i atk−1+i+1 atk

btk−1+1 btk−1+2 btk−1+i btk−1+i+1 btk

Fig. 1: Configuration where a single batch of elements remains to be inserted

We can ignore batches that are inserted after the batch we are looking at
since those do not affect the probabilities we want to obtain.

First we define a probability space for the process of inserting one batch of
elements: let Ωk be the set of all possible outcomes (i. e., linear extensions) when
sorting the partially ordered elements shown in Fig. 1 by inserting btk to btk−1+1.
Each ω ∈ Ωk can be viewed as a function that maps an element e to its final
position, i. e., ω(e) ∈ {1, 2, . . . , 2tk}. While the algorithm mandates a specific
order for inserting the elements btk−1+1 to btk during the insertion step, using a
different order does not change the outcome, i. e., the elements are still sorted
correctly. For this reason we can assume a different insertion in order to simplify
calculating the likelihood of relations between individual elements.
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Let us look at where an element will end up after it has been inserted. Not
all positions are equally likely. For this purpose we define the random variable
Xi as follows. To simplify notation we define xtk−1+j := aj for tk−1 < j ≤ tk
(hence, the main chain consists of x1, . . . , x2k).

Xi : ω 7→







0 if ω(btk−1+i) < ω(x1)
j if ω(xj) < ω(btk−1+i) < ω(xj+1) for j ∈ {1, . . . , 2k − 2}
2k − 1 if ω(x2k−1) < ω(btk−1+i).

We are interested in the probabilities P (Xi = j). These values follow a simple
pattern (for k = 4 these are given in Table 2 in the appendix).

Theorem 1. The probability of btk−1+i being inserted between xj and xj+1 is

given by

P (Xi = j) =



















22i−2
(

(tk−1+i−1)!
(tk−1)!

)2
(2tk−1)!

(2tk−1+2i−1)! if 0 ≤ j ≤ 2tk−1

24tk−1−2j+2i−2
(

(tk−1+i−1)!
(j−tk−1)!

)2
(2j−2tk−1)!

(2tk−1+2i−1)! if 2tk−1 < j < 2tk−1+i

0 otherwise

Next, our aim is to compute the probability that bi is inserted into a particular
number of elements. This is of particular interest because the difference between
average and worst case comes from the fact that sometimes we insert into less
than 2k − 1 elements. For that purpose we define the random variable Yi.

Yi : ω 7→
∣

∣

{

v ∈ {x1, . . . , x2k } ∪ {btk−1+i+1, . . . , btk} | ω(v) < ω(atk−1+i)
}∣

∣

The elements in the main chain when inserting btk+i are x1 to x2tk−1+i−1 and
those elements out of btk−1+i+1, . . . , btk which have been inserted before atk−1+i

(which is x2tk−1+i). For computing the number of these, we introduce random

variables Ỹi,q counting the elements in {btk−1+i+1, . . . , btk−1+i+q} that are in-
serted before atk−1+i:

Ỹi,q : ω 7→
∣

∣

{

v ∈ {btk−1+i+1, . . . , btk−1+i+q} | ω(v) < ω(atk−1+i)
}∣

∣ .

By setting q = tk − tk−1 − i, we obtain Yi = Ỹi,tk−tk−1−i + 2tk−1 + i− 1. For an

illustration see Figure 16 in the appendix. Clearly we have P
(

Ỹi,0 = j
)

= 1 if

j = 0 and P
(

Ỹi,0 = j
)

= 0 otherwise. For q > 0 there are two possibilities:

1. Ỹi,q−1 = j−1 andXi+q < 2tk−1+i: out of {btk−1+i+1, . . . , btk−1+i+q−1} there
have been j − 1 elements inserted before atk−1+i and btk−1+i+q is inserted
before atk−1+i.

2. Ỹi,q−1 = j and Xi+q ≥ 2tk−1 + i: out of {btk−1+i+1, . . . , btk−1+i+q−1} there
have been j elements inserted before atk−1+i and btk−1+i+q is inserted after
atk−1+i.

From these we obtain the following recurrence:

P (Ỹi,q = j) = P (Xi+q < 2tk−1 + i | Ỹi,q−1 = j − 1) · P (Ỹi,q−1 = j − 1)
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Fig. 2: Probability distribution of Yi.
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Fig. 3: Mean of Yi for different i. k = 7.

+P (Xi+q ≥ 2tk−1 + i | Ỹi,q−1 = j) · P (Ỹi,q−1 = j)

The probability P (Xi+q < 2tk−1 + i | Ỹi,q−1 = j − 1) can be obtained by
looking at Fig. 1 and counting elements. When btk−1+i+q is inserted, the elements
on the main chain which are smaller than atk−1+i are x1 to x2tk−1

, atk−1+1 to
atk−1+i−1 and j− 1 elements out of {btk−1+i+1, . . . , btk−1+i+q−1} which is a total
of 2tk−1 + 2i + j − 2 elements. Combined with the fact that the main chain
consists of 2tk−1 + 2i + 2q − 2 elements smaller than atk−1+i+q we obtain the

probability 2tk−1+2i+j−1
2tk−1+2i+2q−1 . We can calculate P (Xi+q ≥ 2tk−1 + i | Ỹi,q−1 = j)

similarly leading to

P (Ỹi,q = j) = 2tk−1+2i+j−1
2tk−1+2i+2q−1 · P (Ỹi,q−1 = j − 1) + 2q−j−1

2tk−1+2i+2q−1 · P (Ỹi,q−1 = j).

By solving the recurrence, we obtain a closed form for P (Ỹi,q = j) and, thus,
for P (Yi = j). The complete proof is given in Appendix B.2.

Theorem 2. For 1 ≤ i ≤ tk− tk−1 and 2tk−1+ i−1 ≤ j ≤ 2k−1 the probability

P (Yi = j), that btk−1+i is inserted into j elements is given by

P (Yi = j) = 2j−2tk−1−i+1 (2tk − i− j − 1)!

(j − 2tk−1 − i+ 1)!(2k − j − 1)!

(i+ j)!

(2tk − 1)!

(tk − 1)!

(tk−1 + i− 1)
.

Figure 2 shows the probability distribution for Y1, Y21 and Y42 where k =
7. Y42 corresponds to the insertion of btk (the first element of the batch). Y1

corresponds to the insertion of btk−1+1 (the last element of the batch). In addition
to those three probability distributions Fig. 3 shows the mean of all Yi for k = 7.

Binary Insertion and different decision trees The Binary Insertion step
is an important part of MergeInsertion. In the average case many elements are
inserted in less than 2k − 1 (which is the worst case). This leads to ambiguous
decision trees where at some positions inserting an element requires only k − 1
instead of k comparisons. Since not all positions are equally likely (positions
on the left have a slightly higher probability), this results in different average



On the Average Case of MergeInsertion 7

1 2 3 4 5

(a) center-left

1 2 3 4 5

(b) center-right

1 2 3 4 5

(c) left

1 2 3 4 5

(d) right

Fig. 4: Different strategies for binary insertion.

insertion costs. We compare four different strategies all satisfying that the cor-
responding decision trees have their leaves distributed across at most two layers.
For an example with five elements see Figure 4.

First there are the center-left and center-right strategies (the standard
options for binary insertion): they compare the element to be inserted with the
middle element, rounding down(up) in case of an odd number. The left strategy
chooses the element to compare with in a way such that the positions where only
k−1 comparisons are required are at the very left. The right strategy is similar,
here the positions where one can insert with just k − 1 comparisons are at the
right. To summarize, the element to compare with is

⌊

n+1
2

⌋

strategy center-left
⌈

n+1
2

⌉

strategy center-right

max{n− 2k + 1, 2k−1} strategy left

min{2k, n− 2k−1 + 1} strategy right

where k = ⌊logn⌋. Notice that the left strategy is also used in [6], where it is
called right-hand-binary-search. Figure 5 shows experimental results comparing
the different strategies for binary insertion regarding their effect on the average-
case of MergeInsertion. As we can see the left strategy performs the best,
closely followed by center-left and center-right. right performs the worst.
The left strategy performing best is no surprise since the probability that an
element is inserted into one of the left positions is higher that it being inserted
to the right. Therefore, in all further experiments we use the left strategy.

4 Improved Upper Bounds for MergeInsertion

Numeric upper bound The goal of this section is to combine the probability
given by Theorem 2 that an element btk−1+i is inserted into j elements with an
upper bound for the number of comparisons required for binary insertion.

By [4], the number of comparisons required for binary insertion when insert-

ing into m− 1 elements is TInsAvg(m) = ⌈logm⌉+ 1− 2⌈log m⌉

m
. While only being

exact in case of a uniform distribution, this formula acts as an upper bound in
our case, where the probability is monotonically decreasing with the index.

This leads to an upper bound for the cost of inserting btk−1+i of TIns(i, k) =
∑

j P (Yi = j) · TInsAvg(j + 1). From there we calculated an upper bound for
MergeInsertion. Figure 6 compares those results with experimental data on the
number of comparisons required by MergeInsertion. We observe that the differ-
ence is rather small.
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Fig. 5: Experimental results on the effect of different strategies for binary inser-
tion on the number of comparisons.
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Fig. 6: Comparing our upper bound with experimental data on the number of
comparisons required by MergeInsertion.

Computing the Exact Number of Comparisons In this section we explore
how to numerically calculate the exact number of comparisons required in the
average case. The most straightforward way of doing this is to compute the
external path length of the decision tree (sum of lengths of all paths from the
root to leaves) and dividing by the number of leaves (n! when sorting n elements),
which unfortunately is only feasible for very small n. Instead we use Equation (1),
which describes the number of comparisons. The only unknown in that formula is
G(n) the number of comparisons required in the insertion step of the algorithm.
Since the insertion step of MergeInsertion works by inserting elements in batches,

we write G(n) =
(

∑

1<k≤kn
Cost(tk−1, tk)

)

+ Cost(tkn
, n) for tkn

≤ n < tkn+1.

Here Cost(s, e) is the cost of inserting one batch of elements starting from bs+1 up
to be. The idea for computing Cost(s, e) is to calculate the external path length
of the decision tree corresponding to the insertion of that batch of elements and
then dividing by the number of leaves. As this is still not feasible, we apply some
optimizations which we describe in detail in Appendix C.
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For n ∈ {1, . . . , 15} the computed values are shown in Table 1, for larger n
Fig. 7 shows the values we computed. The complete data set is provided in the
file exact.csv in [12]. Our results match up with the values for n ∈ {1, . . . , 8}
calculated in [7]. Note that for these values the chosen insertion strategy does
not affect the average case (we use the left strategy).

24 25 26 27
−1.4

−1.3

−1.2

n

F
(
n
)
−

n
lo

g
n

n

Fig. 7: Computed values of F (n).

n = 1 2 3 4 5 6 7 8
F (n) ·n! = 0 2 16 112 832 6912 62784 623232

n = 9 10 11
F (n) ·n! = 6743808 79292160 1013736960

n = 12 13
F (n) ·n! = 13921182720 204489999360

n = 14 15
F (n) ·n! = 3199119114240 53153472153600

Table 1: Computed values of F (n) · n!.

Improved theoretical upper bounds In this section we improve upon the
upper bound from [3] leading to the following result:

Theorem 3. The number of comparisons required in the average case of Merge-

Insertion is at most n logn− c(xn) ·n±O(log2 n) where xn is the fractional part

of log(3n), i. e., the unique value in [0, 1) such that n = 2k−log 3+xn for some

k ∈ Z and c : [0, 1) → R is given by the following formula:

c(x) = (3− log 3)− (2−x− 21−x)+ (1− 2−x)

(

3

2x + 1
− 1

)

+
2log 3−x

2292
≥ 1.4005

Hence we have obtained a new upper bound for the average case of MergeIn-
sertion which is n logn− 1.4005n+O(log2 n). A visual representation of c(x) is
provided in Fig. 8. The worst case is near x = 0.6 (i. e., n roughly a power of
two) where c(x) is just slightly larger than 1.4005.

The proof of Theorem 3 analyzes the insertion of one batch of elements more
carefully than in [4]. The exact probability that btk−1+i is inserted into j elements
is given by Theorem 2. We are especially interested in the case of btk−1+u where

u = ⌊ tk−tk−1

2 ⌋, because, if we know P (Yu < m), then we can use that for all
q < u we have P (Yq < m) ≥ P (Yu < m).

However, the equation from Theorem 2 is hard to work with, so we approx-

imate it with the binomial distribution p(j) =
(⌈u

2 ⌉
q

)

(
⌊ u

2 ⌋

2tk−1 )
q(

2tk−1−⌊ u
2 ⌋

2tk−1 )⌈
u
2 ⌉−q

with q = 2k− 1− j, that by construction fulfills
∑j0

j=0 p(j) ≤
∑j0

j=0 P (Yu = j) =
P (Yu ≤ j0) for all j0. By using the approximation P (Yu = j) ≈ p(j) we can
calculate a lower bound for the median of Y tk−tk−1

2

which is 2k− 1−⌊nB · pB⌋ ∈

2k − 1− 2k−6

3 +O(1). Thus, with a probability of one half the elements btk−1+i
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Fig. 10: Effects of replacing tk with t̂k.

for 1 ≤ i ≤ u are inserted in 2k−6

3 elements less compared to the worst case.
Combining that with the bounds from [4] we obtain Theorem 3. The complete
proof is given in Appendix B.3.

5 Experiments

In this section we discuss our experiment, which consist of two parts: first, we
evaluate how increasing tk by some constant factor can reduce the number of
comparisons, then we examine how the combination with the (1,2)-Insertion
algorithm as proposed in [6] improves MergeInsertion.

We implemented MergeInsertion using a tree based data structure, similar
to the Rope data structure[1] used in text processing, resulting in a comparably
“fast” implementation. Implementation details can be found in Appendix D.
All experiments use the left strategy for binary insertion (see Section 3). The
number of comparisons has been averaged over 10 to 10000 runs, depending on
the size of the input.

Increasing tk by a Constant Factor In this section we modify MergeInser-
tion by replacing tk with t̂k = ⌊f · tk⌋ – otherwise the algorithm is the same.
Originally the numbers tk have been chosen, such that each element bi with
tk−1 < i ≤ tk is inserted into at most 2k − 1 elements (which is optimal for the
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Fig. 11: Comparison of different factors f for t̂k.

worst case). As we have seen in previous sections many elements are inserted into
slightly less than 2k − 1 elements. The idea behind increasing tk by a constant
factor f is to allow more elements to be inserted into close to 2k − 1 elements.

Figure 10 shows how different factors f affect the number of comparisons
required by MergeInsertion. The different lines represent different input lengths.
For instance, n = 21845 is an input size for which MergeInsertion works best. An
overview of the different input lengths and how original MergeInsertion performs
for these can be seen in Figure 9. The chosen values are assumed to be repre-
sentative for the entire algorithm. We observe that for all shown input lengths,
multiplying tk by a factor f between 1.02 and 1.05, leads to an improvement.

Figure 11 compares different factors from 1.02 to 1.05. The factor 1.0 (i. e., the
original algorithm) is included as a reference. We observe that all the other fac-
tors lead to a considerable improvement compared to 1.0. The difference between
the factors in the chosen range is rather small. However, 1.03 appears to be best
out of the tested values. At n ≈ 2k/3 the difference to the information-theoretic
lower bound is reduced to 0.007n, improving upon the original algorithm, which
has a difference of 0.01n to the optimum.

Another observation we make from Figure 11 is that the plot periodically
repeats itself with each power of two. Thus, we conclude that replacing tk with
t̂k = ⌊f · tk⌋ with f ∈ [1.02, 1.05] reduces the number of comparisons required
per element by some constant.

Combination with (1,2)-Insertion (1,2)-Insertion is a sorting algorithm pre-
sented in [6]. It works by inserting either a single element or two elements at once
into an already sorted list. On its own (1,2)-Insertion is worse than MergeInser-
tion; however, it can be combined with MergeInsertion. The combined algorithm
works by sorting m = max {uk | uk ≤ n} elements with MergeInsertion. Then
the remaining elements are inserted using (1,2)-Insertion. Let uk =

⌊(

4
3

)

2k
⌋

denote a point where MergeInsertion is optimal.
In Fig. 12 we can see that at the point uk MergeInsertion and the combined

algorithm perform the same. However, in the values following uk the combined
algorithm surpasses MergeInsertion until at one point close to the next optimum
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Fig. 12: Experimental results comparing MergeInsertion, (1,2)-Insertion and the
combined algorithm.

MergeInsertion is better once again. In their paper Iwama and Teruyama calcu-
lated that for 0.638 ≤ n

2⌈log n⌉ ≤ 2
3 MergeInsertion is better than the combined

algorithm. The fraction 2
3 corresponds to the point where MergeInsertion is op-

timal. They derived the constant 0.638 from their theoretical analysis using the
upper bound for MergeInsertion from [3]. Comparing this to our experimental re-
sults we observe that the range where MergeInsertion is better than the combined

algorithm starts at n ≈ 217.242. This yields 217.242

218 = 217.242−18 = 2−0.758 ≈ 0.591.
Hence the range where MergeInsertion is better than the combined algorithm is
0.591 ≤ n

2⌈logn⌉ ≤ 2
3 , which is slightly larger than the theoretical analysis sug-

gested. Also shown in Fig. 12 is the combined algorithm where we additionally
apply our suggestion of replacing tk by t̂k = ⌊f · tk⌋ with f = 1.03. This leads to
an additional improvement and comes even closer to the lower bound of log(n!).

Conclusion and Outlook We improved the previous upper bound of n logn−
1.3999n+o(n) to n logn−1.4005n+o(n) for the average number of comparisons of
MergeInsertion. However, there still is a gap between the number of comparisons
required by MergeInsertion and this upper bound.

In Section 4 we used a binomial distribution to approximate the probabil-
ity of an element being inserted into a specific number of elements during the
insertion step. However, the difference between our approximation and the ac-
tual probability distribution is rather large. Finding an approximation which
reduces that gap while still being simple to analyze with respect to its mean
would facilitate further improvements to the upper bound.

Our suggestion of increasing tk by a constant factor f reduced the number of
comparisons required per element by some constant. However, we do not have
a proof for this. Thus, future research could try to determine the optimal value
for the factor f as well as to study how this suggestion affects the worst-case.
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Fig. 13: Batches of the elements btk to btk−1+1 for k ∈ {2, 3, 4}

0 10 20 30 40 50 60

1.2

1.3

1.4

1.5

1.6

1.7
·10−2

position

p
ro
b
a
b
il
it
y

Fig. 14: Probabilities of different positions when inserting btk where k = 6.



On the Average Case of MergeInsertion 15

i 1 2 3 4 5 6

P (Xi = 0) 1
11

1
11
· 12
13

1
11
· 12
13
· 14
15

1
11
· 12
13
· 14
15
· 16
17

1
11
· 12
13
· 14
15
· · · 18

19
1
11
· 12
13
· 14
15
· · · 20

21

P (Xi = 1) 1
11

1
11
· 12
13

1
11
· 12
13
· 14
15

1
11
· 12
13
· 14
15
· 16
17

1
11
· 12
13
· 14
15
· · · 18

19
1
11
· 12
13
· 14
15
· · · 20

21

P (Xi = 2) 1
11

1
11
· 12
13

1
11
· 12
13
· 14
15

1
11
· 12
13
· 14
15
· 16
17

1
11
· 12
13
· 14
15
· · · 18

19
1
11
· 12
13
· 14
15
· · · 20

21

P (Xi = 3) 1
11

1
11
· 12
13

1
11
· 12
13
· 14
15

1
11
· 12
13
· 14
15
· 16
17

1
11
· 12
13
· 14
15
· · · 18

19
1
11
· 12
13
· 14
15
· · · 20

21

P (Xi = 4) 1
11

1
11
· 12
13

1
11
· 12
13
· 14
15

1
11
· 12
13
· 14
15
· 16
17

1
11
· 12
13
· 14
15
· · · 18

19
1
11
· 12
13
· 14
15
· · · 20

21

P (Xi = 5) 1
11

1
11
· 12
13

1
11
· 12
13
· 14
15

1
11
· 12
13
· 14
15
· 16
17

1
11
· 12
13
· 14
15
· · · 18

19
1
11
· 12
13
· 14
15
· · · 20

21

P (Xi = 6) 1
11

1
11
· 12
13

1
11
· 12
13
· 14
15

1
11
· 12
13
· 14
15
· 16
17

1
11
· 12
13
· 14
15
· · · 18

19
1
11
· 12
13
· 14
15
· · · 20

21

P (Xi = 7) 1
11

1
11
· 12
13

1
11
· 12
13
· 14
15

1
11
· 12
13
· 14
15
· 16
17

1
11
· 12
13
· 14
15
· · · 18

19
1
11
· 12
13
· 14
15
· · · 20

21

P (Xi = 8) 1
11

1
11
· 12
13

1
11
· 12
13
· 14
15

1
11
· 12
13
· 14
15
· 16
17

1
11
· 12
13
· 14
15
· · · 18

19
1
11
· 12
13
· 14
15
· · · 20

21

P (Xi = 9) 1
11

1
11
· 12
13

1
11
· 12
13
· 14
15

1
11
· 12
13
· 14
15
· 16
17

1
11
· 12
13
· 14
15
· · · 18

19
1
11
· 12
13
· 14
15
· · · 20

21

P (Xi = 10) 1
11

1
11
· 12
13

1
11
· 12
13
· 14
15

1
11
· 12
13
· 14
15
· 16
17

1
11
· 12
13
· 14
15
· · · 18

19
1
11
· 12
13
· 14
15
· · · 20

21

P (Xi = 11) 0 1
13

1
13
· 14
15

1
13
· 14
15
· 16
17

1
13
· 14
15
· 16
17
· 18
19

1
13
· 14
15
· 16
17
· · · 20

21

P (Xi = 12) 0 0 1
15

1
15
· 16
17

1
15
· 16
17
· 18
19

1
15
· 16
17
· 18
19
· 20
21

P (Xi = 13) 0 0 0 1
17

1
17
· 18
19

1
17
· 18
19
· 20
21

P (Xi = 14) 0 0 0 0 1
19

1
19
· 20
21

P (Xi = 15) 0 0 0 0 0 1
21

Table 2: Values of P (Xi = j) for k = 4.

Algorithm 1 Binary Insertion

1: procedure Insert(a,x1, ..., xn)
2: if n = 0 then
3: return a

4: end if
5: k ← ⌊log n⌋

6: c←



















⌊

n+1
2

⌋

strategy center-left
⌈

n+1
2

⌉

strategy center-right

max{n− 2k + 1, 2k−1} strategy left

min{2k, n− 2k−1 + 1} strategy right

7: if a < xc then
8: y1, ..., yc ←Insert(a,x1, ..., xc−1)
9: return y1, ..., yc, xc, ..., xn

10: else
11: yc, ..., yn ←Insert(a,xc+1, ..., xn)
12: return x1, ..., xc, yc, ..., yn
13: end if
14: end procedure
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Fig. 15: Comparing experimental results with the upper bound from Theorem 3.
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B Missing Proofs

B.1 Proof of Theorem 1

For an arbitrary k we can calculate the probabilities P (Xi = j) with the following
recursive scheme. We start with P (X1 = j). This corresponds to the insertion of
btk−1+1 into x1, . . . , x2tk−1

. The probability of all those is uniformly distributed,
so P (X1 = j) = 1

2tk−1+1 for 0 ≤ j ≤ 2tk−1.

For i > 1 we can express P (Xi = j) in terms of P (Xi−1 = j). Observe that
when inserting btk−1+i there are 2tk−1 + 2i − 2 elements known to be smaller
than atk−1+i. These are x1, . . . , x2tk−1

and atk−1+1, . . . , atk−1+i−1 as well as the
corresponding b’s. The number of elements known to be smaller than atk−1+i−1

is one less: just 2tk−1+2i−3. As a result the probability that btk−1+i is inserted
between atk−1+i−1 and atk−1+i is P (Xi = 2tk−1 + i − 1) = 1

2tk−1+2i−1 . The

probability that is ends up in one of the other positions consequently is P (0 ≤

Xi < 2tk−1 + i − 1) =
2tk−1+2i−2
2tk−1+2i−1 . If we know that btk−1+i is inserted into one

of those other positions, then it is inserted into exactly the same elements as
btk−1+i−1, thus we can write P (Xi = j) =

2tk−1+2i−2
2tk−1+2i−1P (Xi−1 = j). This leads to

Eq. (2).

P (Xi = j) =







































(

i−1
∏

l=1

2tk−1 + 2l

)

·

(

i
∏

l=1

2tk−1 + 2l − 1

)−1

if 0 ≤ j ≤ 2tk−1





i−1
∏

l=j−2tk−1+1

2tk−1 + 2l



 ·





i
∏

l=j−2tk−1+1

2tk−1 + 2l − 1





−1

if 2tk−1 < j < 2tk−1 + i

0 otherwise.

(2)

It remains to simplify Eq. (2). We begin with the first case:

(

i−1
∏

l=1

2tk−1 + 2l

)

·

(

i
∏

l=1

2tk−1 + 2l− 1

)−1

=





tk−1+i−1
∏

l=tk−1+1

2l



 ·





2tk−1+2i−1
∏

l=2tk−1+1

l





−1

·





tk−1+i−1
∏

l=tk−1+1

2l





=

(

tk−1+i−1
∏

l=1

2l

)

·

(

tk−1
∏

l=1

2l

)−1

·

(

2tk−1+2i−1
∏

l=1

l

)−1

·

(

2tk−1
∏

l=1

l

)

·

(

tk−1+i−1
∏

l=1

2l

)

·

(

tk−1
∏

l=1

2l

)−1

= 22i−2

(

(tk−1 + i− 1)!

(tk−1)!

)2
(2tk−1)!

(2tk−1 + 2i− 1)!

(3)
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For the second case we have





i−1
∏

l=j−2tk−1+1

2tk−1 + 2l



 ·





i
∏

l=j−2tk−1+1

(2tk−1 + 2l− 1





−1

=





tk−1+i−1
∏

l=j−tk−1+1

2l



 ·





2tk−1+2i−1
∏

l=2j−2tk−1+1

l





−1

·





tk−1+i−1
∏

l=j−tk−1+1

2l





=

(

tk−1+i−1
∏

l=1

2l

)

·

(

j−tk−1
∏

l=1

2l

)−1

·

(

2tk−1+2i−1
∏

l=1

l

)−1

·

(

2j−2tk−1
∏

l=1

l

)

·

(

tk−1+i−1
∏

l=1

2l

)

·

(

j−tk−1
∏

l=1

2l

)−1

= 24tk−1−2j+2i−2

(

(tk−1 + i− 1)!

(j − tk−1)!

)2
(2j − 2tk−1)!

(2tk−1 + 2i− 1)!

(4)

By substitution of (3) and (4) in (2) we obtain Theorem 1.

B.2 Proof of Theorem 2

x1 x2
x2tk−1 atk−1+1 atk−1+2 atk−1+i−1 atk−1+i atk−1+i+q−1 atk−1+i+q atk−1 atk

btk−1+1 btk−1+2 btk−1+i−1 btk−1+i btk−1+i+q−1 btk−1+i+q btk−1 btk

Fig. 16: Configuration where one batch of tk − tk−1 elements remains to be in-
serted. The elements btk−1+i and btk−1+i+q are drawn.

Recall the definitions of Yi, Ỹi,q and their relation:

Yi : ω 7→
∣

∣

{

v ∈ {x1, . . . , x2k } ∪ {btk−1+i+1, . . . , btk} | ω(v) < ω(atk−1+i)
}∣

∣ (5)

Ỹi,q : ω 7→
∣

∣

{

v ∈ {btk−1+i+1, . . . , btk−1+i+q} | ω(v) < ω(atk−1+i)
}∣

∣ (6)

Yi = Ỹi,tk−tk−1−i + 2tk−1 + i− 1 (7)
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To proof Theorem 2 we start with the following closed form for the probability
P (Ỹi,q = j).1

P (Ỹi,q = j) =
(2q − j)!

2q−jj!(q − j)!
2q

(2tk−1 + 2i+ j − 1)!

(2tk−1 + 2i+ 2q − 1)!

(tk−1 + i+ q − 1)!

(tk−1 + i− 1)!
(8)

From the definition of Ỹi,q we can see that 0 ≤ Ỹi,q ≤ q thus P (Ỹi,0 = 0) = 1.
This also holds for Eq. (8).

P (Ỹi,0 = 0) =
0!

20 · 0! · 0!
20

(2tk−1 + 2i− 1)!

(2tk−1 + 2i− 1)!

(tk−1 + i− 1)!

(tk−1 + i− 1)!
= 1 (9)

Recall that for q > 0 there are two possibilities:

1. Ỹi,q−1 = j − 1 and Xi+q < 2tk−1 + i. Informally speaking that means out of
{btk−1+i+1, . . . , btk−1+i+q−1} there have been j − 1 elements inserted before
atk−1+i and btk−1+i+q is inserted before atk−1+i.

2. Ỹi,q−1 = j and Xi+q ≥ 2tk−1 + i. Informally speaking that means out
of {btk−1+i+1, . . . , btk−1+i+q−1} there have been j elements inserted before
atk−1+i and btk−1+i+q is inserted after atk−1+i.

Note that the first case requires j > 0 and the second case requires j < q so we
look at j = 0 and j = q separately.

Using Bayes’ theorem we obtain the following identities:

P (Xi+q ≥ 2tk−1 + i ∧ Ỹi,q−1 = 0) = P (Xi+q ≥ 2tk−1 + i | Ỹi,q−1 = 0) · P (Ỹi,q−1 = 0)

P (Xi+q < 2tk−1 + i ∧ Ỹi,q−1 = q − 1) = P (Xi+q < 2tk−1 + i | Ỹi,q−1 = q − 1) · P (Ỹi,q−1 = q − 1)

(10)

The probability P (Xi+q < 2tk−1 + i | Yi,q−1 = d) can be obtained by looking
at Fig. 16 and counting elements. When btk−1+i+q is inserted, the elements on
the main chain which are smaller than atk−1+i are x1 to x2tk−1

, atk−1+1 to
atk−1+i−1 and d elements out of {btk−1+i+1, . . . , btk−1+i+q−1} which is a total
of 2tk−1 + 2i − 1 + d elements. Combined with the fact that the main chain
consists of 2tk−1 + 2i + 2q − 2 elements smaller than atk−1+i+q we obtain the
following formula

P (Xi+q < 2tk−1 + i | Yi,q−1 = d) =
2tk−1 + 2i+ d

2tk−1 + 2i+ 2q − 1
(11)

1 The first part of Eq. (8): (2q−j)!

2q−jj!(q−j)!
, when substituting q = n and j = n− k yields

a(n, k) = (n+k)!

2k(n−k)!k!
which is the number sequence A001498 from The On-Line En-

cyclopedia of Integer Sequences https://oeis.org/A001498.

https://oeis.org/A001498
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From that we can calculate

P (Xi+q ≥ 2tk−1 + i|Yi,q−1 = d)

= 1− P (Xi+q < 2tk−1 + i|Yi,q−1 = d)

= 1−
2tk−1 + 2i+ d

2tk−1 + 2i+ 2q − 1

=
2tk−1 + 2i+ 2q − 1− 2tk−1 − 2i− d

2tk−1 + 2i+ 2q − 1

=
2q − d− 1

2tk−1 + 2i+ 2q − 1

(12)

Now we have all the necessary ingredients to proof Eq. (8) using induction.

1. Proof of Eq. (8) where j = 0 using Ỹi,q = 0 ⇔ Xi+q ≥ 2tk−1 + i∧ Ỹi,q−1 = 0

P (Xi+q ≥ 2tk−1 + i ∧ Ỹi,q−1 = 0)

= P
(

Xi+q ≥ 2tk−1 + i | Ỹi,q−1 = 0
)

· P (Ỹi,q−1 = 0)

Thm.2,(12)
=

2q − 1

2tk−1 + 2i+ 2q − 1
·

(2q − 2)!

2q−10!(q − 1)!
2q−1 (2tk−1 + 2i− 1)!

(2tk−1 + 2i+ 2q − 3)!

(tk−1 + i+ q − 2)!

(tk−1 + i− 1)!

= (2q − 1)(2tk−1 + 2i+ 2q − 2) ·
(2q − 2)!

2q−10!(q − 1)!
2q−1 (2tk−1 + 2i− 1)!

(2tk−1 + 2i+ 2q − 1)!

(tk−1 + i+ q − 2)!

(tk−1 + i− 1)!

= (2q − 1)2(tk−1 + i+ q − 1) ·
(2q − 2)!

2q0!(q − 1)!
2q

(2tk−1 + 2i− 1)!

(2tk−1 + 2i+ 2q − 1)!

(tk−1 + i+ q − 2)!

(tk−1 + i− 1)!

= (2q − 1)2 ·
(2q − 2)!

2q0!(q − 1)!
2q

(2tk−1 + 2i− 1)!

(2tk−1 + 2i+ 2q − 1)!

(tk−1 + i+ q − 1)!

(tk−1 + i− 1)!

= (2q − 1)2 ·
q

(2q)(2q − 1)
·

(2q − 0)!

2q0!(q − 0)!
2q

(2tk−1 + 2i− 1)!

(2tk−1 + 2i+ 2q − 1)!

(tk−1 + i+ q − 1)!

(tk−1 + i − 1)!

=
(2q − 0)!

2q0!(q − 0)!
2q

(2tk−1 + 2i− 1)!

(2tk−1 + 2i+ 2q − 1)!

(tk−1 + i+ q − 1)!

(tk−1 + i− 1)!

= P (Ỹi,q = 0)

(13)

2. Proof of Eq. (8) where j = q using Ỹi,q = q ⇔ Xi+q < 2tk−1+i∧Ỹi,q−1 = q−1

P (Xi+q < 2tk−1 + i ∧ Ỹi,q−1 = q − 1)

= P
(

Xi+q < 2tk−1 + i | Ỹi,q−1 = q − 1
)

· P (Ỹi,q−1 = q − 1)

Thm.2,(11)
=

2tk−1 + 2i+ q − 1

2tk−1 + 2i+ 2q − 1
·

(q − 1)!

20 (q − 1)!0!
2q−1 (2tk−1 + 2i+ q − 2)!

(2tk−1 + 2i+ 2q − 3)!

(tk−1 + i+ q − 2)!

(tk−1 + i− 1)!

= (2tk−1 + 2i+ q − 1) ·
(q − 1)!

20 (q − 1)!0!
2q

(2tk−1 + 2i+ q − 2)!

(2tk−1 + 2i+ 2q − 1)!

(tk−1 + i + q − 1)!

(tk−1 + i− 1)!

=
(q − 1)!

20 (q − 1)!0!
2q

(2tk−1 + 2i+ q − 1)!

(2tk−1 + 2i+ 2q − 1)!

(tk−1 + i+ q − 1)!

(tk−1 + i− 1)!

=
(q)!

20 (q)!0!
2q

(2tk−1 + 2i+ q − 1)!

(2tk−1 + 2i+ 2q − 1)!

(tk−1 + i+ q − 1)!

(tk−1 + i− 1)!

= P (Ỹi,q = q)

(14)
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3. Proof of Eq. (8) where 0 < j < q using
Ỹi,q = j ⇔ (Xi+q < 2tk−1 + i ∧ Ỹi,q−1 = j − 1) ∨ (Xi+q ≥ 2tk−1 + i ∧ Ỹi,q−1 = j)

P (Xi+q < 2tk−1 + i ∧ Ỹi,q−1 = j − 1)

+ P (Xi+q ≥ 2tk−1 + i ∧ Ỹi,q−1 = j)

= P
(

Xi+q < 2tk−1 + i | Ỹi,q−1 = j − 1
)

· P (Ỹi,q−1 = j − 1)

+ P
(

Xi+q ≥ 2tk−1 + i | Ỹi,q−1 = j
)

· P (Ỹi,q−1 = j)

Thm.2,(11),(12)
=

2tk−1 + 2i+ j − 1

2tk−1 + 2i+ 2q − 1
·

(2q − j − 1)!

2q−j (j − 1)! (q − j)!
2q−1 (2tk−1 + 2i+ j − 2)!

(2tk−1 + 2i+ 2q − 3)!

(tk−1 + i+ q − 2)!

(tk−1 + i − 1)!

+
2q − j − 1

2tk−1 + 2i+ 2q − 1
·

(2q − j − 2)!

2q−j (j − 1)! (q − j)!
2q−1 (2tk−1 + 2i+ j − 1)!

(2tk−1 + 2i+ 2q − 3)!

(tk−1 + i + q − 2)!

(tk−1 + i− 1)!

= (2tk−1 + 2i+ j − 1) ·
(2q − j − 1)!

2q−j (j − 1)! (q − j)!
2q

(2tk−1 + 2i+ j − 2)!

(2tk−1 + 2i+ 2q − 1)!

(tk−1 + i+ q − 1)!

(tk−1 + i − 1)!

+ (2q − j − 1) ·
(2q − j − 2)!

2q−j (j − 1)! (q − j)!
2q

(2tk−1 + 2i+ j − 1)!

(2tk−1 + 2i+ 2q − 1)!

(tk−1 + i+ q − 1)!

(tk−1 + i− 1)!

=

(

(2q − j − 1)!

2q−j (j − 1)! (q − j)!
+

(2q − j − 1)!

2q−j (j − 1)! (q − j)!

)

2q
(2tk−1 + 2i+ j − 1)!

(2tk−1 + 2i+ 2q − 1)!

(tk−1 + i+ q − 1)!

(tk−1 + i− 1)!

=

(

j

2q − j
+

2(q − j)

2q − j

)

(2q − j)!

2q−jj! (q − j)!
2q

(2tk−1 + 2i+ j − 1)!

(2tk−1 + 2i+ 2q − 1)!

(tk−1 + i+ q − 1)!

(tk−1 + i− 1)!

=
(2q − j)!

2q−jj! (q − j)!
2q

(2tk−1 + 2i+ j − 1)!

(2tk−1 + 2i+ 2q − 1)!

(tk−1 + i + q − 1)!

(tk−1 + i− 1)!

= P (Ỹi,q = j)

(15)

From Eq. (8) we can derive Theorem 2 using the Eq. (7).

P (Yi = j)

= P (Ỹi,tk−tk−1−i + 2tk−1 + i− 1 = j)

= P (Ỹi,tk−tk−1−i = j − 2tk−1 − i+ 1)

=
(2tk − 2tk−1 − 2i− j + 2tk−1 + i− 1)!

2tk−tk−1−i−j+2tk−1+i−1 (j − 2tk−1 − i+ 1)! (tk − tk−1 − i− j + 2tk−1 + 1− 1)!

· 2tk−tk−1−i (2tk−1 + 2i+ j − 2tk−1 − i+ 1− 1)!

(2tk−1 + 2i+ 2tk − 2tk−1 − 2i− 1)!

(tk−1 + i+ tk − tk−1 − i− 1)!

(tk−1 + i− 1)!

=
(2tk − i− j − 1)!

22k−j−1 (−2tk−1 − 1 + j + 1)! (2k − j − 1)!
· 2tk−tk−1−i (i + j)!

(2tk − 1)!

(tk − 1)!

(tk−1 + i − 1)!

= 2j−2tk−1−i+1 (2tk − i− j − 1)!

(−2tk−1 − 1 + j + 1)! (2k − j − 1)!

(i+ j)!

(2tk − 1)!

(tk − 1)!

(tk−1 + i− 1)!
(16)

B.3 Proof of Theorem 3

The exact probability that btk−1+i is inserted into j elements is given by Theo-

rem 2. We are especially interested in the case of btk−1+u where u = ⌊ tk−tk−1

2 ⌋,
because if we know P (Yu < m) then we can use that for all q < u the proba-
bility of btk−1+q being inserted into less than m elements is at least P (Yu < m),
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x1 x2
x2tk−1 atk−1+1 atk−1+2

a
tk−1+

d
2

a
tk−1+

d
2
+1

a
tk−1+⌊ 34 d⌋−1 a

tk−1+⌊ 34 d⌋ atk

btk−1+1 btk−1+2 b
tk−1+

d
2

b
tk−1+

d
2
+1 b

tk−1+⌊ 34 d⌋−1 b
tk−1+⌊ 34 d⌋ btk

A B

Fig. 17: Configuration where one batch is to be inserted.

i.e. P (Yq < m) ≥ P (Yu < m). This is because when btk−1+i is inserted into m
elements, then no matter which position it is inserted into, the next element,
btk−1+i−1, is inserted into at most m elements.

However Theorem 2 is hard to work with, so we approximate it with a bi-
nomial distribution. For a given k let d = tk − tk−1 be the number of ele-
ments that are inserted as part of the batch. This configuration is illustrated
in Fig. 17. Remember u =

tk−tk−1

2 = d
2 . To calculate into how many elements

btk−1+u = btk−1+
d
2
is inserted, we ask how many elements out of b

tk−1+⌊ 3
4d⌋

to btk (marked as section B in Fig. 17) are inserted between atk−1+
d
2+1 and

a
tk−1+⌊ 3

4 d⌋−1 (marked as section A).

The rationale is that for each element from section B that is inserted into
section A, btk−1+u is inserted into one less element. As a lower bound for the
probability that an element from section B is inserted into one of the positions
in section A we use the probability that btk is inserted between atk−1 and atk
which is 1

2tk−1 .

That is because if we assume that all bi with i < tk are inserted before
inserting btk , then btk is inserted into 2tk − 2 elements, so the probability for
each position is 1

2tk−1 . Since none of the bi with i < tk can be inserted between
atk−1 and atk because they are all smaller than atk−1, the probability that btk
is inserted between atk−1 and atk does not change when we insert it first as the
algorithm demands.

To calculate the probability that an element btk−q with q > 0 is inserted into
the rightmost position we assume that all bi with i < tk − q are inserted before
inserting btk−q. Then btk−q is inserted into at most 2tk − q − 2 elements, i. e.,
the elements x1 to x2tk−1

, atk−1+1 to atk−q−1, btk−1+1 to btk−q−1 and at most q
elements out of btk−q+1 to btk .

Hence the probability for each position is greater than 1
2tk−q−1 which is

greater than 1
2tk−1 . Since none of the bi with i < tk − q can be inserted to the

right of atk−q−1, the probability that btk − q is inserted into any of the positions
between atk−q−1 and atk−q remains unchanged when inserting the elements in
the correct order.

The probability that an element is inserted at a specific position is monoton-
ically decreasing with the index. This is because if an element bi is inserted to
the left of an element ai−h then bi−h is inserted into one more element than it
would be if bi had been inserted to the right of ai−h. As a result any position
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further to the left is more likely than the right-most position, so we can use that
as a lower bound.

There are
⌊

d
4

⌋

− 1 elements in section A, i. e., there are at least
⌊

d
4

⌋

positions
where an element can be inserted. Hence the probability that an element from

section B is inserted into section A is at least
⌊d

4 ⌋
2tk−1 and consequently the prob-

ability that it is not inserted before btk−1+u is at least
⌊ d

4 ⌋
2tk−1 . That is because all

positions part of section A are after atk−1+u.

Section B contains
⌈

d
2

⌉

elements. Using that and substituting u = d
2 we obtain

the binomial distribution with the parameters nB =
⌈

u
2

⌉

and pB =
⌊ d

4 ⌋
2tk−1 . As a

result we have

p(j) =

(
⌈

u
2

⌉

q

)

(
⌊u
2 ⌋

2tk − 1
)q(

2tk − 1− ⌊u
2 ⌋

2tk − 1
)⌈

u
2 ⌉−q (17)

with q = 2k − 1 − j, that by construction fulfills the property given in Equa-
tion (18) for all j0.

j0
∑

j=0

p(j) ≤

j0
∑

j=0

P (Yu = j) = P (Yu ≤ j0) (18)

Fig. 18 compares our approximation p(j) with real distribution P (Yu = j).
We observe that the maximum of our approximation is further to the right than
the one of the real distribution.

210 215 220 225 230 235 240 245 250 255
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p
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b
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y

P (Yu = j)

p(j)

Fig. 18: Difference between the real distribution and our approximation for k = 8
and u = 43.
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By using the approximation P (Yu = j) ≈ p(j) we can calculate a lower bound
for the median of Y tk−tk−1

2

2k − 1− ⌊nB · pB⌋

= 2k − 1−









⌈

tk − tk−1

4

⌉

⌊

tk−tk−1

4

⌋

2tk − 1









= 2k − 1−

⌊(

2k−2 + (−1)k − 3

3
+

1

2
(−1)k +

1

2

)(

2k−2 + (−1)k − 3

3
+

1

2
(−1)k −

1

2

)

1

2tk − 1

⌋

= 2k − 1−

⌊(

2k−2

3
+

1

6
(−1)k +

1

2

)(

2k−2

3
+

1

6
(−1)k −

1

2

)

1

2tk − 1

⌋

= 2k − 1−

⌊(

22k−4

9
+

2k−2

9
(−1)k +

1

36
−

1

4

)

1

2tk − 1

⌋

= 2k − 1−

⌊

(

22k−4

9
+

2k−2

9
(−1)k +

1

36
−

1

4

)

(

1

2 2k+1+(−1)k

3 − 1

)⌋

= 2k − 1−

⌊

(

22k−4

9
+

2k−2

9
(−1)k +

1

36
−

1

4

)

(

1

2 2k+1

3

±O(2−k)

)⌋

= 2k − 1−

⌊

(

22k−4

9
+

2k−2

9
(−1)k +

1

36
−

1

4

)

1

2 2k+1

3

±O(1)

⌋

= 2k − 1−

⌊

2k−6

3
+

1

3
(−1)k]±O(1)

⌋

∈ 2k − 1−
2k−6

3
+O(1)

This tells us that with a probability ≥ 50%, btk−1+u is inserted into 2k −

1 − 2k−6

3 ± O(1) or less elements. In conclusion all bi with i ≤ u = tk−tk−1

2 are

inserted into less than 2k − 1− 2k−6

3 ±O(1) elements with a probability ≥ 50%.
Using that result we can calculate a better upper bound for the average case

performance of the entire algorithm.
According to Knuth [7] in its worst case MergeInsertion requires W (n) =

n logn− (3− log 3)n+ n(y + 1− 2y) +O(log n) comparisons where y = y(n) =
⌈log(3n/4)⌉ − log(3n/4) ∈ [0, 1).

We calculate the number of comparisons required in the average case in a
similar fashion to [4]. Recall Eq. (1) which is the number of comparisons required
by the algorithm.

F (n) =
⌊n

2

⌋

+ F
(⌊n

2

⌋)

+G
(⌈n

2

⌉)

G(m) corresponds to the work done in the third step of the algorithm and is
given by

G(m) = (km − αm)(m− tkm−1) +
∑

1≤k<km

(k − βk) (tk − tk−1)

where tkm−1 ≤ m < tkm
and αm, β ∈ [0, 1]. Inserting an element bi with tki−1 <

i ≤ tki
requires at most ki comparisons. However, since we are looking at the
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average case we need to consider that in some cases bi can be inserted using just
ki−1 comparisons. This is reflected by αm and βk, the first of which has already
been studied by [4].

To estimate the cost of an insertion we use the formula TInsAvg(m) = ⌈logm⌉+

1− 2⌈logm⌉

m
by [4]. Technically this formula is only correct if the probability of an

element being inserted is the same for each position. This is not the case with
MergeInsertion. Instead the probability is monotonically decreasing with the in-
dex. Binary insertion can be implemented to take advantage of this property, as
explained in Section 3, in which case TInsAvg(m) acts as an upper bound on the
cost of an insertion.

Using our result from above that on average 1
4 of the elements are inserted

in less than 2k − 1− 2k−4

9 ±O(1) elements we can calculate βk as the difference
of the cost of an insertion in the worst-case (k) and in the average case.

βk ≥ k −

(

3

4
TInsAvg

(

2k
)

+
1

4
TInsAvg

(

2k −
2k−6

3
±O(1)

))

= k −

(

3

4

(

k + 1−
2k

2k

)

+
1

4

(

k + 1−
2k

2k − 2k−6

3 ±O(1)

))

= −1 +
3

4
+

1

4
·

1

1− 1

1− 2−6

3

±O(2−k)

= −
1

4
+

1

4
·

1

1− 1
192

±O(2−k)

= −
1

4
+

1

4
·

1
191
192

±O(2−k)

= −
1

4
+

1

4
·
192

191
±O(2−k)

=
1

764
±O(2−k)

Combining this with Appendix B.3 we can calculate the difference between
the worst-case and the average-case as

Gworst-case(m)−Gaverage-case(m)

= km(m− tkm−1) +
∑

1≤k<km

k (tk − tk−1)

− (km − αm)(m− tkm−1)−
∑

1≤k<km

(k − βk) (tk − tk−1)

= αm(m− tkm−1) +
∑

1≤k<km

βk (tk − tk−1)

≥ αm(m− tkm−1) +
∑

1≤k<km

(
1

764
±O(2−k)) (tk − tk−1)
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= αm(m− tkm−1) +
1

764
(tkm−1 − t1)±O(logm)

= αm(m− tkm−1) +
1

764
tkm−1 ±O(logm)

= αm(m− tkm−1) +
1

764

2km + (−1)km−1

3
±O(logm)

= αm(m− tkm−1) +
1

764

2km

3
±O(logm) (19)

By writing m as m = 2lm−log 3+x with x ∈ [0, 1) we get lm = ⌊log 3m⌋. To
approximate km with lm we need to show that km ≥ lm. Recall that tkm−1 ≤
m < tkm

. For all tkm−1 < m < tkm
we have

2km + (−1)km−1

3
< m <

2km+1 + (−1)km

3

Since m ∈ N and tk ∈ N adding/subtracting 1
3 does not alter the relation, so we

obtain
2km

3
< m <

2km+1

3

which resolves to
km < log 3n < km + 1

Thus km = ⌊log 3m⌋ = lm.
For m = tkm−1 we get

2km + (−1)km−1

3
= m

⇐⇒ 2km = 3m+ (−1)km

⇐⇒ km = log
(

3m+ (−1)km
)

If km = log (3m+ 1) that resolves to km = log (3m+ 1) > log (3m) >
⌊log 3m⌋ = lm.

If instead km = log (3m− 1) using km ∈ N we have km = ⌊log(3m− 1)⌋ and
for all m ≥ 1 this is equal to ⌊log 3m⌋ = lm.

Hence in all cases lm ≤ km holds. Therefore we can replace km with lm in
Eq. (19):

Gworst-case(m)−Gaverage-case(m) ≥ αm(m− tkm−1) +
1

764

2lm

3
±O(logm)

From [4] we know that the αm(m − tkm−1) term can be approximated with
(

m− 2lm−log 3
)

(

2lm

m+2lm−log 3 − 1
)

.

Gworst-case(m)−Gaverage-case(m)

≥
(

m− 2lm−log 3
)

(

2lm

m+ 2lm−log 3
− 1

)

+
1

764

2lm

3
±O(logm)
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Now we calculate

S(n) = Fworst-case(m)− Faverage-case(m)

=
⌊n

2

⌋

+ Fworst-case

(⌊n

2

⌋)

+Gworst-case

(⌈n

2

⌉)

−
⌊n

2

⌋

− Faverage-case

(⌊n

2

⌋)

−Gaverage-case

(⌈n

2

⌉)

= S(
⌊n

2

⌋

) +Gworst-case

(⌈n

2

⌉)

−Gaverage-case

(⌈n

2

⌉)

≥ S(
⌊n

2

⌋

) +
(

m− 2lm−log 3
)

(

2lm

m+ 2lm−log 3
− 1

)

+
1

764

2lm

3
±O(logm)

(20)

We split S(n) into Sα(n) + Sβ(n) with

Sα(n) ≥ Sα(
⌊

n
2

⌋

) +
(

m− 2lm−log 3
)

(

2lm

m+2lm−log 3 − 1
)

Sβ(n) ≥ Sβ(
⌊

n
2

⌋

) + 1
764

2lm

3 ±O(logm)

From [4] we know Sα(n) ≥
(

n− 2ln−log 3
)

(

2ln

n+2ln−log 3 − 1
)

+O(1).

For Sβ(n) we obtain

Sβ(n) ≥

ln−1
∑

i=1

2i

764 · 3
±O(log 2i)

=
2ln

2292
±O(log2 n)

We can represent n as 2k−log 3+xn with xn ∈ [0, 1). This leads to

S(n)

n
=

Sα(n) + Sβ(n)

n

=
2k−log 3+xn − 2k−log 3

2k−log 3+xn

(

2k

2k−log 3+xn + 2k−log 3
− 1

)

+
2k

2292 · 2k−log 3+xn
±O(

log2 n

n
)

= (1− 2−xn)

(

3

2xn + 1
− 1

)

+
2log 3−xn

2292
±O(

log2 n

n
)

By writing F (n) as F (n) = n logn− c(xn) · n±O(log2 n) we get

c(xn) ≥ −
(F (n)− n logn)

n

= −
(W (n)− S(n)− n logn)

n

= (3− log 3)− (y + 1− 2y) + (1− 2−xn)

(

3

2xn + 1
− 1

)

+
2log 3−xn

2292

With y = 1− xn we obtain Theorem 3.
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x1 x2s as+1 as+2 ae

bs+1 bs+2 be

Fig. 19: Configuration where one batch of e− s elements, bs+1 to be, remains to
be inserted.

C Details on Computing the Exact Number of

Comparisons

The code for calculating F (n) and G(n) is shown in Algorithm 2 and Algorithm 3
respectively.

Cost(s, e) is the number of comparisons required for inserting the batch of
elements that consists of bs+1 to be. Such a configuration can be seen in Fig. 19.
Cost(s, e) is computed by calculating the external path length of the decision
tree and dividing by the number of leaves. To improve performance we apply
the following optimization: We collapse “identical” branches of the decision tree.
E.g. whether be is inserted between x1 and x2 or between x2 and x3 does not
influence the number of comparisons required to insert the subsequent elements.
So we can neglect that difference. However, if be is inserted between ae−1 and
ae then the next element (and all thereafter) is inserted into one less element.
So this is a difference we need to acknowledge. Same if an element is inserted
between any ai and ai+1. By the time we insert bi the element inserted between
ai and ai+1 is known to be larger than bi and thus is no longer part of the main
chain, resulting in bi being inserted into one element less. In conclusion that
means that our algorithm needs to keep track of the elements inserted between
any ai and ai+1 as well as those inserted at any position before as+1 as two
branches of the decision tree that differ in any of these cannot be collapsed.
Algorithm 4 shows how this is implemented.

Algorithm 2 Computation of F (n)

1: procedure ComputeF(n)
2: if n = 1 then
3: return 0
4: else
5: return

⌊

n

2

⌋

+ComputeF(
⌊

n

2

⌋

)+ComputeG(
⌈

n

2

⌉

)
6: end if
7: end procedure
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Algorithm 3 Computation of G(n)

1: procedure ComputeG(n)
2: k ← 2
3: c← 0
4: while tk < n do
5: c← c+Cost(tk−1, tk)
6: k ← k + 1
7: end while
8: c← c+Cost(tk−1, n)
9: return c

10: end procedure

Algorithm 4 Computation of Cost(s, e)

1: procedure Cost(s, e)
2: r ← e− s ⊲ next element to be inserted is br
3: q1 ← 2s ⊲ number of elements on the main chain that are < as+1

4: q2, . . . , qr ← 0 ⊲ qi is the number of elements between as+ i− 1 and as+i

5: (p, l)←CostInsert(r, q1, ..., qr)
6: return p

l

7: end procedure
8:
9: procedure CostInsert(r, q1, ..., qr)
10: if r = 0 then
11: return (0, 1) ⊲ We reached a leave
12: end if
13: elements← r − 1 +

∑

qi ⊲ number of elements br is inserted into
14: k ← ⌈log(elements+ 1)⌉
15: cheap insertions← 2k − elements− 1
16: p← 0 ⊲ external path length
17: l← 0 ⊲ number of leaves
18: index← 0 ⊲ We iterate over all indices where br can be inserted
19: for all 0 < i ≤ r do
20: (pc, lc)←CostInsert(r − 1, q1, ..., qi−1, qi + 1, qi+1, ..., qr−1)
21: repeat qi + 1 times ⊲ qi + 1 positions between as+i−1 and as+i

22: if index < cheap insertions then
23: p← p+ pc + (k − 1) · lc
24: else
25: p← p+ pc + k · lc
26: end if
27: l ← l + lc
28: index← index+ 1
29: end
30: end for
31: return (p, l)
32: end procedure
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D Implementing MergeInsertion

To perform experiments we first need to implement the algorithm. For the pur-
pose of our implementation we assume that each element is unique. This con-
dition is easy to fulfill for synthetic test data. You can see our implementation
in Algorithm 5. We now go over some of the key challenges when implementing
MergeInsertion.

Algorithm 5 MergeInsertion

1: procedure MergeInsertion(d : array of n elements)
2: Step 1: Pairwise comparison
3: for all 1 ≤ i ≤

⌊

n

2

⌋

do ⊲ Split into larger and smaller half

4: ai ← max
{

di, ai+⌊n2 ⌋

}

5: bi ← min
{

di, ai+⌊n2 ⌋

}

6: end for
7: if n mod 2 = 1 then
8: b⌈n2 ⌉

← dn

9: end if
10: Step 2: Recursion and Renaming
11: m←

{

(ai, bi) | 1 ≤ i ≤
⌊

n

2

⌋}

⊲ Store mapping
12: a←MergeInsertion(a)
13: for all 1 ≤ i ≤

⌊

n

2

⌋

do ⊲ Permute smaller half
14: bi ← e where (ai, e) ∈ m

15: end for
16: Step 3: Insertion
17: d← b1, a1, . . . , a⌊n2 ⌋
18: k ← 2
19: while tk−1 <

⌈

n

2

⌉

do
20: m← min

{

tk,
⌈

n

2

⌉}

⊲ first element of the batch
21: u← tk−1 +m ⊲ position of am in d

22: for i in m down to tk−1 + 1 do
23: d←BinaryInsertion(bi, d1, ..., du−1), du, ..., d2m+tk−1−i

24: while du 6= ai−1 do ⊲ adjust u
25: u← u− 1
26: end while
27: end for
28: k ← k + 1
29: end while
30: return d

31: end procedure

1. MergeInsertion requires elements to be inserted into arbitrary positions.
When using a simple array to store the elements this operation requires
moving O(n) elements. Since MergeInsertion inserts each element exactly
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once this results in a complexity of O(n2). To avoid this we store the el-
ements in a custom data structure inspired by the Rope data structure[1]
used in text processing. Being based on a tree it offers O(log n) performance
for lookup, insertion and deletion operations, thus putting our Algorithm in
O(n log2 n).

2. In the second step of the algorithm we need to rename the bi after the
recursive call. Our chosen solution is to store which ai corresponds to which
bi in a hash map(line 11) before the recursive call and use the information to
reorder the bi afterwards(line 13). The disadvantage of this solution is that
it requires each element to be unique and the hash map might introduce
additional comparisons.
An alternative would be to have the recursive call generate the permutation
it applies to the larger elements and then apply that to the smaller ones. That
is a cleaner solution as it does not require the elements to be unique and it
avoids potentially introducing additional comparisons. It is also potentially
faster, though not by much. However, we stuck with using a hash map as
that solution is easier to implement.

3. In the insertion step we need to know into how many elements a specific bi
is inserted. For btk this is 2k − 1 elements. However, for other elements that
number can be smaller depending on where the previous elements have been
inserted. To account for that we create the variable u in line 21. It holds the
position of the ai corresponding to the element bi that is inserted next. Thus
bi is inserted into u− 1 elements (since bi < ai). After the insertion of bi, we
decrease u in line 25 until it matches the position of ai−1, which is what we
want as bi−1 is the next element to be inserted. This step also makes use of
the requirement that each element is unique.
At this point we have to be aware that testing whether the element at posi-
tion u is ai−1 might introduce additional comparisons to the algorithm. This
is acceptable because we do not count these comparisons. Also these are not
necessary. We could keep track of the positions of the elements ai however
we choose not to, in order to keep the implementation simple.
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