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Abstract

A digit πj in a permutation π = [π1, . . . , πn] ∈ Sn is defined to be a separator of π if by omitting it
from π we get a new 2−block. In this work we introduce a new statistic, the number of separators, on
the symmetric group Sn and calculate its distribution over Sn. We also provide some enumerative and
asymptotic results regarding this statistic.

1 Introduction

Let Sn be the Symmetric group of n elements. Let σ, π ∈
⋃

n∈N
Sn. We say that σ contains π if

there is a sub-sequence of elements of σ that is order-isomorphic to π. As an example, the permutation
σ = [3624715] (written in one-line-notation) contains π = [3142] as both the sub-sequences 6275 and
6475 testify. If π is contained in σ, then we write π � σ. The set of all permutations ∪n∈NSn is a poset
under the partial order given by containment. This is called the permutation pattern poset.

Example 1.1. Let σ = [53241] ∈ S5. In order to find the permutations in S4 which are contained in σ, we
shall remove each of the digits of π and standardize. If we remove σ1 = 5, we get the permutation [3241],
while if we remove σ2 = 3 or σ3 = 2 we get the permutation [4231]. The removal of σ4 = 4 produces the
permutation [4321], and the removal of σ4 = 1 produces the permutation [4213]. The situation can also
be read from the the following picture:

[53241]

[3241]

5

[4231]

3 2

[4321]

4

[4213]

1

In the example above, the removal of the digits 2 and 3 produced the same permutation. This is not
coincidental. It happens since these two digits form a 2-block in π as we define below: (See also in [6],
Definition 4)

Definition 1.2. Let π = [π1, . . . , πn] be a permutation and let i ∈ [n−1]. We say that the pair (πi, πi+1)
is a 2-block or a bond in π if πi − πi+1 = ±1 . We say that the sequence (πi, πi+1, . . . , πi+k−1) is a run
of length k > 1 if, for 0 ≤ j ≤ k − 2, the pair (πi+j , πi+j+1) is a bond. We allow also (trivial) runs of
length k = 1. Note that a run of a permutation might be ascending or descending. Occasionally, we omit
the parentheses when we write blocks or runs.

Example 1.3. The permutation π = [45187623] has 45, 1, 876 and 23 as its maximal runs.

The distribution of the bonds has been examined previously in [4, 5, 6]. Each run of length n ≥ 1
contains n− 1 bonds. The number of bonds in a permutation σ ∈ Sn affects the structure of the poset
of all permutations contained in σ, the downset of σ. This happens since the number of permutations
π ∈ Sn−1 such that π � σ is n− β(σ), where β(σ) is the number of bonds in σ. (See Theorem 6 in [6]).

To better understand the structure of the poset
⋃

n∈N
Sn, we would like to get information not only

about the number of bonds of a given σ ∈ Sn, but also about the number of bonds of the permutations
contained in σ. Hence we introduce a new concept: A digit of a permutation, a removal of which produces
a new bond, will be called a separator. (see the formal definition below).
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Example 1.4. In the permutation π = [567139482] we can omit π7 = 4 and after standardizing we get
the permutation [45613872] which has the new 2-block 87, so 4 is a separator. The digit 2 is also a
separator of π, since the removal of it creates the permutation [45612837] containing the new bond 12.
Note that if we remove π2 = 6 from π, we get the permutation [56138472] which contains the bond 56
that already exists in π, so 6 is not a separator in π.

Formally:

Definition 1.5. For σ = [σ1, . . . , σn] ∈ Sn we say that σi separates σj1 from σj2 in σ if by omitting σi

from σ we get a new 2−block. This happens if and only if one of the following cases holds:

1. j1, i, j2 are subsequent numbers and |σj1 − σj2 | = 1, i.e σi = b and

σ = [. . . , a,b,a± 1, . . .]

We call σi a separator of type I or a vertical separator.

2. σj1 , σi, σj2 are subsequent numbers and |j1 − j2| = 1, i.e σi = a and

σ = [. . . ,a, . . . ,a± 1,a∓ 1, . . .]

or
σ = [. . . , a± 1, a∓ 1, . . . , a, . . .].

We call σi a separator of type II or a horizontal separator.

The choice of the names of the separators of types I and II is explained in the following picture in
which σ1 = 3 is a horizontal separator (which its omitting forms the 2-block 23), σ3 = 5 is a vertical
separator (which its omitting forms the 2-block 12) and σ4 = 2 is both (which its omitting forms the two
2-blocks 21 and 43).

Horizontal separator and Vertical separator and separators of both types .

[31524] [31524] [31524]

Definition 1.6. Let SepV (π) and SepH(π) be the sets of vertical and horizontal separators of a permu-
tation π respectively. Let Sep(π) = SepV (π) ∪ SepH(π) and sep(π) = |Sep(π)|.

Example 1.7. Let σ = [132465879]. Then SepV (σ) = {3, 2, 6, 7}, and SepH(σ) = {3, 2, 5, 8}. Note that
7 is a vertical separator, even though 7 is a part of a 2−block: 87, since by omitting 7 from σ we get a
new 2−block: 78.

Remark 1.8. Several comments are now in order:

1. Notice the significance of the word ’new’ in Definition 1.5. For example, the identity permutation
has plenty of 2-blocks even though it has no separators.

2. The numbers 1 and n can only be vertical separators, while σ1 and σn can only be horizontal
separators.

3. If σi is a vertical separator in σ then i is a horizontal separator in σ−1. Hence SepV (σ) =
SepH(σ−1)

4. SepV (σ) = SepV (σr) and SepH(σ) = SepH(σr) where σr is the reverse of σ.

5. A separator can be of both types, vertical and horizontal. For instance, in example 1.7, the digits
2, 3 are separators of both types.
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Permutations of Sn which have no bonds are connected to the problem of placing n non-attacking kings
in an n×n chess board. These permutations were counted in [2], and the structure of their containment
poset is discussed in a recent paper by the authors of this note [1]. The set of such permutations will be
denoted by Kn.

If σ ∈ Kn then even though σ has no bonds, after omitting a digit from σ, the resulting permutation
might have (at least) one. Recall that in this case the omitted digit is a separator of σ. The connection
between the number of separators in σ and the number of π ∈ Kn−1 such that π � σ is given by the
following:

Observation 1.9. Let σ ∈ Kn. Then the number of π ∈ Kn−1 such that π � σ is n − sep(σ) where
sep(σ) is the number of separators in σ.

In [6], Homberger built a multivariate generating function which presented the distribution of the
bonds throughout all permutations. He used the principal of inclusion-exclusion in its generating function
version. The main result of this paper uses the same method for producing a multivariate generating
function representing the distribution of the vertical separators (and thus also of horizontal separators,
by Remark 1.8.3).

2 Permutations with no separators and permutations with

maximal number of separators

The permutations in Sn that have no separators of any type, are counted by the sequence A137774 from
OEIS. They correspond to the number of ways to place n non-attacking empresses (a chess piece which
moves like a rook and a night) on an n× n chess board.

Theorem 2.7 below deals with the opposite case, i.e., the number of permutations, all the digits
of which are separators. First, we have to include some definitions. A comprehensive survey of these
concepts can be found in [3].

Definition 2.1. Let π = [π1, . . . , πn] ∈ Sn. A block (or interval) of π is a nonempty contiguous sequence
of entries πiπi+1 . . . πi+k whose values also form a contiguous sequence of integers.

Example 2.2. If π = [2647513] then 6475 is a block but 64751 is not.

Each permutation can be decomposed into singleton blocks, and also forms a single block by itself;
these are the trivial blocks of the permutation. All other blocks are called proper.

Definition 2.3. A block decomposition of a permutation is a partition of it into disjoint blocks.

For example, the permutation σ = [67183524] can be decomposed as 67 1 8 3524. In this example, the
relative order between the blocks forms the permutation [3142], i.e., if we take for each block one of its
digits as a representative then the sequence of representatives is order-isomorphic to [3142]. Moreover,
the block 67 is order-isomorphic to [12], and the block 3524 is order-isomorphic to [2413]. These are
instances of the concept of inflation, defined as follows.

Definition 2.4. Let n1, . . . , nk be positive integers with n1+ · · ·+nk = n. The inflation of a permutation
π ∈ Sk by the permutations αi ∈ Sni

(1 ≤ i ≤ k) is the permutation π[α1, . . . , αk] ∈ Sn obtained by
replacing the i-th entry of π by a block which is order-isomorphic to the permutation αi on the numbers
{si + 1, . . . , si + ni} instead of {1, . . . , ni}, where si = n1 + · · ·+ ni−1 (1 ≤ i ≤ k).

Example 2.5. The inflation of [2413] by [213], [21], [132] and [1] is

2413[213, 21, 132, 1] = [546 98 132 7].

We are interested in the structure of all permutations in Sn in which every digit is a separator. In
Theorem 3.18 in [1] we proved that in a permutation σ ∈ Kn each digit of σ is a separator if and only if
σ = π[α1, . . . , αk] where α1, . . . , αk ∈ {[3142], [2413]} and π ∈ Sk.

In the following Theorem, we extend this result and show that this structure holds for each permu-
tation in Sn in which each one of its digits is a separator.

Theorem 2.6. In a permutation σ ∈ Sn, each digit is a separator if and only if n = 4k, k ∈ N and there
are α1, . . . , αk ∈ {[3142], [2413]} and π ∈ Sk such that σ = π[α1, . . . , αk].
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Proof. The ”only if” side is obvious, so we will prove only the ”if” side. Let σ ∈ Sn be a permutation
such that each digit of σ is a separator. If we show that σ has no 2-block, i.e., σ ∈ Kn, then by Theorem
3.18 in [1], we are done. We assume to the contrary that σ contains a block of the form a, a+1 and show
that not all the digits of σ are separators.

We divide in two different cases, according to the type of separation of a+ 1

• a+1 is a vertical separator: In this case, σ contains the sub-sequence · · · a, a+1, a−1 · · · . The digit
a − 1 is also a separator, so we distinguish between two cases according to the type of separation
of a− 1.

1. If a − 1 is a vertical separator then σ = · · · a, a + 1, a − 1, a + 2 · · · . Hence a + 2 must be a
vertical separator so we have σ = · · · a, a + 1, a − 1, a + 2, a − 2 · · · . By the same argument,
a − 2 must be a vertical separator and so σ = · · · a, a + 1, a − 1, a + 2, a − 2, a + 3 · · · . This
process continues until we reach σn which can not be a horizontal separator but also can not
be a vertical separator.

2. If a − 1 is a horizontal separator then σ = · · · a − 2, a, a + 1, a − 1 · · · . Hence a − 2 must be
a horizontal separator so that σ = · · · a − 2, a, a + 1, a − 1, a − 3 · · · . By the same argument,
a− 3 must be a horizontal separator and so σ = · · · a− 4, a− 2, a, a+ 1, a− 1, a− 3 · · · . This
process continues until we reach a − k = 1 which can not be of a vertical separator but also
can not be of a horizontal separator.

• a + 1 ia a horizontal separator: In this case, we consider σ−1 in which (σ−1)a+1 is a vertical
separator. Since a, a + 1 is a block in σ, σ−1 contains a block in locations a, a + 1, which means
that (σ−1)a = b, (σ−1)a+1 = b+1 for some b ∈ {1, . . . , n− 1}. Now, by remark 1.8.3, we can apply
the argument of the previous case in order to show that not all of the digits of σ−1 are separators.
This implies that not all the digits of σ are separators and we are done.

We conclude that σ ∈ Kn where Kn is the set of king permutations of order n.

In Figure 1 we can see the structure of such permutations that each one of their digits is a separator,
according to the above theorem.

Figure 1: the plot of [14, 16, 13, 15, 7, 5, 8, 6, 2, 4, 1, 3, 11, 9, 12, 10]

According to Theorem 2.6, we can now enumerate those permutations.

Theorem 2.7. The number of permutations in Sn which have exactly n different separators is:

{

2kk! n = 4k

0 O.W .

3 A generating function for vertical separators

In this section we present a generating function for the number of vertical separators. For each n,m ∈ N

let sn,m be the number of permutations π ∈ Sn with exactly m vertical separators. We want to calculate
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the generating function h(z, u) =
∑

n≥0

n
∑

m=0

sn,mznum. According to remark 1.8.3, this generating function

is the same for horizontal separators.

In order to construct the function h(z, u), we will enlarge the set of elements we work with such that
it will contain marked permutations. We then use the principle of inclusion-exclusion together with a
method of splitting permutations into two parts to achieve the generating function for the number of
vertical separators

3.1 Counting permutation with mark bonds

A marked permutation is a permutation in which each bond can be chosen to be marked or not. The
marked bonds will be denoted by a bar above the corresponding part of the permutation. If several
adjacent bonds are marked, then we put a long bar above the corresponding run. An entry that is not
contained in a marked bond is considered to be a run of length 1.

Example 3.1. Let π = [613452879]. Here are some permutations with marked bonds, made out of π:
[613452879], [613452879], [613452879].

In order to count the marked permutations, we introduce another way to write them.
Recall that for n ∈ N, a composition with m non-zero parts of n is a vector (a1, . . . , am) such that

ai ∈ N and
m
∑

i=1

ai = n. We define an arrowed composition of n to be a composition in which after every

part which is greater than 1 there exists one of the signs ↑ or ↓.
For example, (2 ↑, 1, 7 ↓, 2 ↑) is an arrowed composition of n = 12.
Now, each marked permutation π ∈ Sn can be uniquely presented as an arrowed composition

(a1, . . . , am) of n, together with a permutation σ ∈ Sm. This idea will be best clarified by the fol-
lowing example.

Example 3.2. Let π = [245619873]. We write π as a pair consisting of an arrowed composition of m = 6
parts λ, and a permutation σ ∈ S6. First, write π as a sequence of runs: b1 = 2, b2 = 45, b3 = 6, b4 =
1, b5 = 987, b6 = 3. Each run contributes its length to the composition. Then for each part, we add the
sign ↑ if the corresponding run is increasing, the sign ↓ if the run is decreasing and no arrow if the run
is of length 1. In our case we get λ = (1, 2 ↑, 1, 1, 3 ↓, 1). Now σ ∈ S6 is the permutation induced by
the order of the blocks. In our case we have: σ = [245163]. The marked permutation π is now uniquely
defined by the pair (λ, σ).

In other words, if we replace each j ↑ with the ascending permutation [123 . . . j] and each j ↓ with
the descending permutation [j . . . 321], we can see that this defines an inflation. In the previous example
we can write π = 245163[1, 12, 1, 1, 321, 1]. For convenience, we denote this inflation by σ[λ].

In [6] (during the proof of Theorem 10), the author calculated the generating function, counting the
number of permutations having a specific number of bonds. This was done by calculating the generating
function of marked bonds, and using the inclusion-exclusion principle. If we denote by an,m the number
of permutations of Sn with m marked bonds and put A(z, u) =

∑

n≥1

∑

m≥0

an,mznum, then the identity

permutation contributes z and for each j ≥ 2, a run of order j can be either [123 . . . j] or [j . . . 321], each
of them contributes un−1, so the contribution is 2zjuj−1. It is easy to see from the above that

A(z, u) =
∑

m≥0

m!(z + 2z2u+ 2z3u2 + 2z4u3 + · · · )m =
∑

m≥0

m!(z +
2z2u

1− zu
)m.

(Here m denotes the number of runs).

3.2 Comb decomposition and marked separators

Coming back to our counting of permutations with respect to the number of vertical separators, we show
now how to make a reduction of this problem to the problem of counting marked permutations with
respect to the number of bonds. We start with the definition of what we call here comb permutations as
follows:
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Definition 3.3. Let σ = (σ1, . . . , σk), τ = (τ1, . . . , τk) be two sequences such that {σ1, . . . , σk, τ1, . . . , τk} =
{1, 2, . . . , 2k}. Define the comb permutation π = σ ⊙ τ by

π = [σ1, τ1, σ2, τ2, . . . , σk, τk] ∈ S2k.

Similarly, let σ = (σ1, . . . , σk+1), τ = (τ1, . . . , τk) be two sequences such that {σ1, . . . , σk+1, τ1, . . . , τk} =
{1, 2, . . . , 2k + 1}. We define the comb permutation π = σ ⊙ τ by

π = [σ1, τ1, σ2, τ2, . . . , σk, τk, σk+1] ∈ S2k+1.

When π = σ ⊙ τ , we denote σ as πodd and τ as πeven.

Now, let π = πodd ⊙ πeven where πodd and πeven are sequences with marked bonds. Note that if
(πodd

i πodd
i+1) is a marked bond of πodd then the element of πeven which lies between πodd

i and πodd
i+1 in π is

a vertical separator, we call it a marked separator and denote it by putting a hat over it. For example,
if πodd = (124) and πeven = (53) then 12 is a marked bond in πodd and thus 5 is a marked separator
in πodd ⊙ πeven = 15̂234. Similarly, define marked separators for marked bonds in πeven. Therefore, we
have the following:

Observation 3.4. Let πodd, πeven be defined as in Definition 3.3 and let π = πodd ⊙ πeven. Then the
number of (marked) vertical separators in π is equal to the total number of (marked) bonds in πodd and
in πeven.

Let n = 2k. Given two arrowed compositions of k: λo of size mo and λe of size me, and given a
permutation σ ∈ Smo+me

, we take the inflation α = σ[λo, λe] (it is a permutation with marked bonds).
We construct a permutation π as follows: denote the first k elements of α by πodd and the last k elements
of α by πeven. Now π = πodd ⊙ πeven. The case n = 2k + 1 is similar.

Example 3.5. For k = 4, let λo = (1, 3 ↓), λe = (1, 1, 2 ↑) and let σ = [34215]. Then
α = 34215[1, 321, 1, 1, 12] = [36542178]. Thus πodd = (3654) and πeven = (2178) and therefore π =
(3654)⊙ (2178) = [3261̂57̂4̂8].

On the other side, given a permutation π ∈ Sn with marked separators, let πodd be the sequence of
the odd entries of π and πeven be the sequence of the even entries of π, and mark the relevant bonds, i.e.
if πi is a marked separator in π, then (πi−1πi+1) is a marked bond in πodd or in πeven. Denote by α the
permutation with marked bonds obtained by πodd followed by πeven. We know that α can be uniquely
presented as an arrowed composition of n together with a permutation of the number of parts, m.

Example 3.6. π = [271̂863̂549]. We use the sequences πodd = (21659) and πeven = (7834) to produce
α = [21659 7834]. This permutation can be presented as λ = (1, 1, 2 ↓, 1, 2 ↑, 1, 1) with σ = [2157634].

3.3 Calculating the generating function for vertical separators

Recall that our goal is to find the function h(z, u), which is the generating function for the number of
vertical separators. In order to do that, we first calculate the generating function for the number of
marked vertical separators. Denote by bn,m the number of permutations of Sn with m marked vertical
separators, and let g(z, u) =

∑

n≥1

∑

m≥0

bn,mznum.

As we saw below, there is a correspondence between the number of marked bonds and the number of
marked vertical separators, thus we construct the generating function g(z, u) by calculating separately
the generating functions for the marked bonds of the odd and the even parts of each permutation. The
requirement that the odd part and the even part of a permutation must have (almost) the same size will
be met by using the well known Hadamard product (element-wise) of polynomials and series.

Definition 3.7. Let R be a ring and let f(x) =
∑

n∈N

anx
n, g(x) =

∑

n∈N

bnx
n ∈ R[[x]] be two power series

in x. The Hadamard product of f(x), g(x) is f(x) ∗ g(x) =
∞
∑

n=0

anbnx
n.

Example 3.8. (2 + 3x− 4x2) ∗ (5 + x+ 7x2) = 10 + 3x− 28x2.

In order to form the generating function of the marked separators, g(z, u), let us have a look at
the permutations π ∈ Sn for a fixed n. We would like to find the monomial contributed by each
π = πodd ⊙ πeven ∈ Sn using the monomial corresponding to the marked bonds of πodd and πeven.
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Let n = 2k, in this case, πodd, πeven are sequences of order k, and therefore we use the Hadamard
product to combine the two monomials. Each π ∈ S2k contributes to g(z, u) a monomial of the form
umz2k where the monomials corresponding to the marked bonds of πodd and πeven are fo(z, u) = um1zk

and fe(z, u) = um2zk, respectively, where m = m1 +m2. If we look at those monomials as functions of
the variable z, then we can easily see that the coefficient of z2k in g(z, u) should be the product of the
coefficients of zk of the odd and even parts. So we have to set z2 instead of z in the monomoials of πodd

and πeven and get:
fo(z

2
, u) ∗ fe(z

2
, u) = u

m1(z2)k ∗ um2(z2)k = u
m
z
2k
.

Example 3.9. Return to example 3.5. The monomial corresponding to the marked bonds of πodd =
(3654) is fo(z, u) = z4u2. In the same way, the monomial corresponding to the marked bonds of πeven =
(2178) is fe(z, u) = z4u. Thus fo(z, u) ∗ fe(z, u) = z4u3. However, the monomial corresponding to the
marked separators of π = (3654) ⊙ (2178) = [3261̂57̂4̂8] is supposed to be z8u3. Note that if we take
fo(z

2, u) ∗ fe(z
2, u) we get exactly what we need.

Similarly, if n = 2k+1, then each π = πodd⊙πeven ∈ Sn contributes a monomial of the form umz2k+1

where the monomial of πodd is fo(z, u) = um1zk+1 and the monomial of πeven is fe(z, u) = um2zk,
m = m1 +m2. Now,

[1

z
fo(z

2
, u)

]

∗
[

z fe(z
2
, u)

]

=
[1

z
u
m1 (z2)k+1] ∗

[

z u
m2(z2)k

]

= u
m
z
2k+1

.

Example 3.10. Let π = [25̂3̂4176]. Then πodd = (2316) and πeven = (547). Then fo(z, u) = uz4 and
fe(z, u) = uz3. So

[1

z
fo(z

2
, u)

]

∗
[

zfe(z
2
, u)

]

= [
1

z
u(z2)4] ∗ [zu(z2)3] = u

2
z
7

as required.

Using the above explanations, and the generating functions version to the inclusion-exclusion princi-
ple, we get the following calculation of the generating function of vertical separators, h(z, u).

Theorem 3.11.

h(z, u) =
∑

mo,me≥0

(mo +me)!
[

(z2 +
2z4(u− 1)

1− z2(u− 1)
)mo

]

∗
[

(z2 +
2z4(u− 1)

1− z2(u− 1)
)me

]

+
∑

mo,me≥0

(mo +me)!
[

(z2 +
2z4(u− 1)

1− z2(u− 1)
)mo

1

z

]

∗
[

(z2 +
2z4(u− 1)

1− z2(u− 1)
)mez

]

where ∗ is the Hadamard product in Q[[u]][[z]].

Proof. Let us denote for each m ∈ N:

pm(z, v) = (z + 2z2v + 2z3v2 + · · · )m = (z +
2z2v

1− zv
)m

Then pm(z, v) counts the number of ways to construct an arrowed composition λ of size m. We relate to
n even and n odd separately. In order to construct a permutation of S2k with marked separators, we have
to choose two arrowed compositions of k: λo of size mo, and λe of size me, we also choose a permutation
σ ∈ Smo+me

. It is easy to see that this contributes to our function (mo + me)!pmo
(z2, v) ∗ pme

(z2, v).
For S2k+1 we have (mo +me)!

[

1
z
pmo

(z2, v))
]

∗
[

z pme
(z2, v)

]

. We go over all the values for mo and me

for both n even and n odd and we obtain the generating function of the marked vertical separators:

g(z, v) =
∑

mo,me≥0

(mo +me)!
[

(z2 +
2z4v

1− z2v
)mo

]

∗
[

(z2 +
2z4v

1− z2v
)me

]

+
∑

mo,me≥0

(mo +me)!
[

(z2 +
2z4v

1− z2v
)mo

1

z

]

∗
[

(z2 +
2z4v

1− z2v
)mez

]

Now, we can use this generating function to obtain h(z, u). The variable v represents the marked

vertical separators, while u is responsible for vertical separators. Since every vertical separator can either
be marked or unmarked, it follows that by replacing v + 1 by u we obtain that the generating function
of the vertical separators is

h(z, u) = g(z, u− 1).
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4 The expectation of the number of separators

In this section we calculate the expectation of the number of separators in a randomly chosen permutation.
In order to do that, let us first calculate the expectation of the number of vertical separators. Consider
the sample space of all n! permutations, with the uniform probability. For each 1 ≤ i ≤ n, let Xi be the
Bernuli random variable such that for each π ∈ Sn, Xi = 1 if the digit i is a vertical separator in π and

Xi = 0 otherwise. Then the sum X =
n
∑

i=1

Xi counts the number of vertical separators for each π ∈ Sn.

In order to calculate E[X] =
n
∑

i=1

E[Xi], let us first calculate E[Xi] for each 1 ≤ i ≤ n. The digit i is

a vertical separator in a permutation π ∈ Sn if π contains a consecutive sequence of the form a, i, a + 1
or its reverse. If i ∈ {1, n}, the digit a can be chosen in n− 2 ways. After choosing a we have (n− 2)!

ways to arrange the rest of the permutation, so that E[X1] = E[Xn] =
2(n−2)(n−2)!

n!
. Now, for each

1 < i < n, the same consideration applies, but now we have only (n− 3) ways to choose a. This gives us

E[Xi] =
2(n−3)(n−2)!

n!
. We have now:

E[X] =
n
∑

i=1

E[Xi] = 2E[X1] + (n− 2)E[X2]

A simple calculation now yields the following:

Theorem 4.1. The expectation of the number of vertical separators in a randomly chosen n-permutation
is 2(n−2)

n
. The asymptotic value of the expectation is 2.

We turn now to the calculation of the expectation of the number of separators that are both vertical
and horizontal. Let Y be the random variable counting the number of digits of a permutation π which
are separators of both types. Define, for each 1 < i < n, Yi to be the Bernuli random variable which for
each π ∈ Sn is equal to 1 if the digit i is both a vertical and a horizontal separator in π and is equal to 0
otherwise. Note that the digits 1 and n can not be separators of both types. Let us calculate E[Yi] for
1 < i < n:

We have one of the following cases, depending on the structure of π. Either the digits of π which
make i a separator of both types appear as one single part (like in π = [624351], where 3 is a separator
of both types due to the sequence 2435), or they appear in two different places (like in π = [241536],
where 24 makes 3 a horizontal separator and 5 and 6 make it a vertical one).

1. The first case occurs when i = 2 and i is a part of the consecutive sub-sequence 1324 or its reverse.
Similarly, when i = n − 1 and i is a part of the consecutive sub-sequence n − 3,n− 1, n − 2, n or
its reverse. Also, for 2 < i < n − 1, i might be a part of one of the consecutive sub-sequences
i− 2, i, i− 1, i+ 1 or i− 1, i+ 1, i, i+ 2 or their reverses.

For each one of those sub-cases, there are exactly (n − 3)! ways to arrange the rest of the per-
mutation.

2. The permutation π contains the sub-sequences of the form a, i, a+1 and i−1, i+1 or their reverses.
Again, we have to divide into two cases: i ∈ {2, n− 1} and 2 < i < n− 1.

If i ∈ {2, n− 1} then there are n− 4 ways to choose a, while if 2 < i < n− 1 then there are n− 5
ways to choose a. Each choice of such two sub-sequences leaves (n− 3)! ways to arrange the rest of
the permutation.

Hence, we have

E[Yi] =































0 i = 1, n

2·(n−3)!+2·2·(n−3)!(n−4)
n!

i = 2, n− 1

4·(n−3)!+2·2·(n−3)!(n−5)
n!

3 ≤ i ≤ n− 2

We have now:

E[Y ] =

n
∑

i=1

E[Yi] = 2E[Y2] + (n− 4)E[Y3].

A simple calculation now yields the following:
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Theorem 4.2. The expectation of the number of separators of both types: vertical and horizontal, in a
randomly chosen n-permutation is

4(n− 3)2

n(n− 1)(n− 2)

The asymptotic value of the expectation is 0.

Now, let Z be the random variable which counts the total number of separators (regardless of the
type). By remark 1.8.3, the number of vertical separators has the same distribution as the number of
horizontal separators, so E(Z) = 2E(X) −E(Y ). So, we have the following:

Theorem 4.3. The expectation of the number of separators, in a randomly chosen n-permutation is

4(n3 − 6n2 + 14n− 13)

n(n− 1)(n− 2)
.

The asymptotic value of the expectation is 4.
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