
A quantum hardware-induced graph kernel based on Gaussian Boson Sampling

Maria Schuld,1, ∗ Kamil Brádler,1 Robert Israel,1 Daiqin Su,1 and Brajesh Gupt1

1Xanadu, Toronto, Canada
(Dated: May 31, 2019)

A device called a ‘Gaussian Boson Sampler’ has initially been proposed as a near-term demonstration
of classically intractable quantum computation. As recently shown, it can also be used to decide
whether two graphs are isomorphic. Based on these results, we construct a feature map and graph
similarity measure or ‘graph kernel’ using samples from the device. We show that the kernel performs
well compared to standard graph kernels on typical benchmark datasets, and provide a theoretical
motivation for this success, linking the distribution of a Gaussian Boson Sampler to the number
of matchings in subgraphs. Our results contribute to a new way of thinking about kernels as a
(quantum) hardware-efficient feature mapping, and lead to an interesting application for near-term
quantum computing.

I. INTRODUCTION

Machine learning algorithms can be understood as a
way to determine similarity between data points, mapping
inputs to similar classes or clusters if they show matching
patterns. But how can we learn from data where it is even
difficult to determine if two data points are the same?
Graphs are such data structures. A graph G = {V,E} can
be described by a set of nodes V and a set of edges E that
are pairwise connections between nodes. An equivalent
representation is an adjacency matrix A whose element
Aij is one if node i and j are connected by an edge and
zero otherwise. Both representations are not unique, since
different ways of identifying the nodes can give rise to the
same graph.1

There are three major strategies to classify2 graph-
structured data: First, one can construct a so called
graph neural network that mirrors the connectivity of
the graph [4]. Second, one can extract a feature vector
from each graph and run a conventional machine learn-
ing algorithm on the new data set of feature vectors [5].
The feature vector can be an embedding of the graph in
Euclidean space while preserving a property of choice
[6–8], or it can be a higher-level representation of the
graph [9]. Third, one can compute a graph kernel [10], a
similarity measure between graphs which can be used in
kernel methods [11]. Sometimes the third method draws
on the second and extracts feature vectors which are then
used in a standard kernel [12]. In this paper we follow
this strategy, but suggest a new way to map graphs to
feature vectors: by making use of quantum hardware.
Hardware-induced feature maps have been proposed in

∗ maria@xanadu.ai
1 The complexity of deciding whether two graphs are isomor-

phic is unknown; neither a polynomial-time algorithm nor NP-
completeness proof has been discovered yet [1]. Many algorithms
(for example, [2]) perform reasonably well in their average time
complexity, but may take time exponential in the graph size in
some instances.

2 Other machine learning tasks look at how to predict new nodes
and edges in a graph, see for example, [3].

the context of random features [13], and can lead to very
efficient implementations. Kernels computed by quantum
computers have been prominently suggested in [14, 15],
where the question of concrete applications was left wide
open. Here we provide an example of a “quantum ker-
nel” for graph-structured data based on the technique
of Gaussian Boson Sampling (GBS) [16–18]. GBS is a
generalization of Boson Sampling [19, 20], which has orig-
inally been proposed as a classically intractable task that
demonstrates the power of near-term quantum hardware
[21].

As we will explain in more detail in Sec. II, an optical
GBS device processes information using the continuous
degrees of freedom of a quantum system, realized by the
modes of the electromagnetic field. It has been previ-
ously shown that the photon measurement statistics of a
GBS device that encodes a graph in its optical state give
rise to a complete set of graph isomorphism invariants
[22]. Here we demonstrate that these results are highly
relevant for machine learning by interpreting these statis-
tics as a feature vector that can be further processed by
both kernel-based and other machine learning methods.
Sec. III shows that the “GBS feature map” works simi-
larly to a class of graph kernels which count subgraphs
[9, 23]). The probabilities of drawing samples from the
quantum device contain information about the number of
perfect matchings in all subgraphs, as well as in extended
subgraphs created by duplicating nodes and edges. The
features extracted from the graph are therefore related to
so called r-matchings. Another interpretation associates
the features with higher-order moments of a multivariate
Gaussian distribution whose covariance matrix is pro-
portional to the doubled adjacency matrix of the graph.
Numeric experiments presented in Sec. IV reveal that
the GBS kernel yields very competitive results compared
to other graph kernels when used in combination with a
support vector machine on standard benchmark datasets;
it also motivates the importance of low-photon events and
an optical mechanism called displacement.

ar
X

iv
:1

90
5.

12
64

6v
1

 [
qu

an
t-

ph
]

 2
9

M
ay

 2
01

9

mailto:maria@xanadu.ai

2

FIG. 1. Idea of the quantum hardware-induced feature map. A graph’s adjacency matrix is embedded into the interferometer of
a Gaussian Boson Sampler (GBS). The probabilities of measuring certain photon counting events are interpreted as a feature
vector in RD, which gives rise to a kernel.

II. GAUSSIAN BOSON SAMPLING AS A
FEATURE MAP

In this section we describe the mathematical details
of the quantum hardware-induced feature map (see also
Figure 1). The scheme works for simple graphs, i.e. undi-
rected graphs without self-loops or multiple edges. While
edge weights can be treated on the same footing as un-
weighted edges, we leave the inclusion of categorical edge
labels or node labels for future studies. Mindful of poten-
tial readers without a technical background in quantum
mechanics we will only highlight some important aspects
of Gaussian Boson Sampling and refer to Refs. [16, 18, 24]
for more detail. The GBS kernel is summarized in Eq. (6).

A. Encoding graphs into the GBS device

An optical Gaussian Boson Sampler is a device where
a special quantum state (a so-called Gaussian state) is
prepared by the optical squeezing of M displaced light
modes, followed by an interferometer of beamsplitters.
Such a Gaussian state is fully described by a covariance
matrix σ ∈ R2M×2M as well as a displacement vector
d ∈ R2M [25]. Photon number resolving detectors count
the photons in each mode.

As outlined in [24], a quantum state prepared by a GBS
device can encode a graph G = (V,E) with an adjacency
matrix A of entries Aij that are one if the edge (i, j) exists
in G and zero else. The entries of A can also represent
continuous “edge weights” that denote the strength of a
connection. In the latter case we will speak of a “weighted
adjacency matrix”.

In order to associate A with the symmetric, positive
definite 2M -dimensional covariance matrix of a Gaus-
sian state of M modes, we have to construct a “doubled
adjacency matrix”

Ã = c

(
A 0
0 A

)
= c(A⊕A), (1)

where the rescaling constant c is chosen so that 0 <
c < 1/smax, and smax is the maximum singular value

of A [22, 24].3 For simplicity we will always rescale all

adjacency matrices with a factor 1/(s
{G}
max + 10−8) where

s
{G}
max is the largest singular value among all graphs in the

data set under consideration. As a result we will assume
that c = 1 and Ã = A ⊕ A can be encoded into a GBS
device. We call this the “doubled encoding strategy”.

The matrix Ã can now be associated with a quantum
state’s covariance matrix σ by setting the squeezing as
well as the beamsplitter angles of the interferometer so
that

σ = Q− 1/2, with Q = (1−XÃ)−1, X =

(
0 1

1 0

)
. (2)

B. Photon counting

After embedding A via Ã into the quantum state of the
GBS, each measurement of the photon number resolving
detectors returns a photon event n = [n1, . . . , nM], with
ni ∈ N indicating the number of photons measured in the
i-th mode. Assuming for now that the displacement d is
zero (nonzero displacement is discussed in Appendix A),
the probability of measuring a given photon counting
event is

p(n) =
1√

det(Q) n!
Haf2(An), (3)

where n! = n1!n2! · · ·nM !.
Let us go through this nontrivial equation bit by bit.

The Hafnian Haf() is a matrix operation similar to the
determinant or permanent. For a general symmetric
matrix C ∈ RN × RN it reads

Haf(C) =
∑

π∈P{2}N

∏
(u,v)∈π

Cu,v. (4)

3 As long as it fulfills the above inequality, c can be treated as a
hyperparameter of the feature map, which may also be influenced
by hardware constraints since it relates ultimately to the amount
of squeezing required.

3

On∗ n |n| Gn Haf(An)

O[0,0,0] [0, 0, 0] 0 0

O[1,0,0]

[1, 0, 0]

1

0

[0, 1, 0] 0

[0, 0, 1] 0

O[1,1,0]

[1, 1, 0]

2

1

[1, 0, 1] 1

[0, 1, 1] 1

O[2,0,0]

[2, 0, 0]

2

0

[0, 2, 0] 0

[0, 0, 2] 0

On∗ n |n| Gn Haf(An)

O[1,1,1] [1, 1, 1] 3 0

O[2,1,0]

[2, 1, 0]

3

0

[2, 0, 1] 0

[1, 2, 0] 0

[1, 0, 2] 0

[0, 2, 1] 0

[0, 1, 2] 0

O[3,0,0]

[3, 0, 0]

3

0

[0, 3, 0] 0

[0, 0, 3] 0

TABLE I. Photon events n, total photon number |n|, extended induced subgraph Gn (indicated by red/black nodes and edges)
and Hafnian Haf(An) for the orbits of an original fully connected simple graph of three nodes, and up to |n|max = 3. The
Hafnian corresponds to the number of perfect matchings in the extended induced subgraph. Note that the red nodes are not
mutually connected.

Here, P
{2}
N is the set of all N !/((N/2)!2N/2) ways to

partition the index set {1, 2, . . . , N} into N/2 unordered
pairs of size 2, such that each index only appears in
one pair. The Hafnian is zero for odd N . As an ex-

ample, for the index set {1, 2, 3, 4} we have P
{2}
4 =

{(1, 2), (3, 4)}, {(1, 3), (2, 4)}, {(1, 4), (2, 3)}.
If C is interpreted as an adjacency matrix containing

the edges of a graph, the set P
{2}
N contains edge-sets of

all possible perfect matchings on G. A perfect matching
is a subset of edges such that every node is covered by
exactly one of the edges. The Hafnian therefore sums
the products of the edge weights in all perfect matchings.
If all edge weights are constant, it simply counts the
number of perfect matchings in G. Note that in Eq. (3)

we used the fact that for real and symmetric A, Haf(Ã) =
Haf(A ⊕ A) = Haf2(A). In other words, the doubled
encoding strategy leads to a square factor which will play
a profound role in the quantum feature map we are aiming
to construct.

Eq. (3) does not depend on the Hafnian of the adjacency
matrix A, but on a matrix An. An contains nj duplicates
of the jth row and column in A. If nj = 0, the jth
row/column in A does not appear in An. Effectively,
this constructs a new graph Gn from A according to the
following rules (see also Table I):

1. If all nj , j = 1, . . . ,M are one (i.e., each detector
counted exactly one photon), An = A.

2. If some nj are zero and others one (i.e., these detec-
tors report no photons), An describes an induced
subgraph Gn of G, in which nodes that correspond
to detectors with zero count were deleted together
with any edge that connected them to other nodes.

3. If some nj are larger than one (i.e., these detectors
count more than one photon), An describes what
we call an extended induced subgraph in which the
corresponding nodes and all their connections are
duplicated nj times.

In short, the probability of a photon event to be measured
by the GBS device is proportional to the square of the
(weighted) number of perfect matchings in a -possibly
extended - induced subgraph of the graph encoded into
the interferometer.

Computing the Hafnian of a general matrix is in com-
plexity class #P, and formally reduces to the task of
computing permanents [26]. If no entry in the matrix
is negative, efficient approximation heuristics are known,
although their success is only guaranteed under specific
circumstances [27, 28].

C. Post-processing and features

We follow Brádler et al.’s [22] fruitful strategy to
“coarse-grain” the distribution of photon counting events
by summarizing them to sets called orbits (see Table I).
An orbit On∗ = {perm(n∗)} contains permutations of the
detection event n∗. For example, [2, 1, 1, 0] is in the same
orbit as [0, 1, 2, 1], but not [2, 2, 0, 0]. The photon counting
event n∗ is therefore an arbitrary “representative” of the
photon counting events in an orbit. The probability of
detecting a photon counting event of orbit On∗ is given
by the sum of the individual probabilities,

p(On∗) =
∑

n∈On∗

p(n). (5)

4

The number of orbits On containing events of up to k
photons in total is equal to the number of ways that
the integers of 1, ..., k can be partitioned into a sum of
at most M terms. In practice we usually have k � M ,
in which case there are 2, 4, 7, 12, 19, 30, 45, 67 orbits for
k = 1, . . . , 8, respectively4. In a real GBS setup, the
energy is finite and high photon counts therefore become
very unlikely.5 It is only a natural choice to limit the
maximum number of photons |n|max to a constant k and
call Ok,M the set of all orbits where M detectors detect
k photons or less.

In practice, the orbit probabilities are estimated by
drawing a sufficiently large number of samples of photon
counting events from the GBS device. In Ref [9] we find
that we can approximate a probability distribution on
D possible outcomes, with probability at most δ that
the sum of absolute values of the errors in the empirical
probabilities of the outcomes is ε or more, using

S =

⌈
2(log(2)D + log(1

δ))

ε2

⌉
samples. For k = 8, D = 67, ε = 0.05 and δ = 0.05, we
need 39, 550 samples. Since current-day photon number
resolving detectors can accumulate about 105 samples of
photon counting events per second [29], it takes in princi-
ple only a fraction of a second for the orbit probabilities
to be estimated by the physical hardware, irrespective of
the graph size.

While hardware implementations of Gaussian Boson
Samplers are rapidly advancing, in this paper we still
have to resort to simulations. Sampling from photon
event distributions is still a topic of active research, and
to ensure that the results are not influenced by approxi-
mation errors we will use exact calculations here. This
limits the scope of the experiments to graphs of the order
of 25 nodes.

D. Feature map and graph kernel

Summarizing the above, the feature map implemented
by a GBS device maps a graph to a feature vector, G→
f ∈ RD, where the entries fi, i = 1, . . . , D of f are the
probabilities of detecting certain types of photon events
that we called orbits,

fi = p(On∗i), (6)

and the probability of the i’th orbit is fully defined by
Eqs. (5) and (3) (the ordering of the orbits does not

4 See also A000070 in the Online Encyclopedia of Integer Sequences,
https://oeis.org/A000070.

5 The energy of a Gaussian quantum state, and hence the average
photon number, is determined by the squeezing and displacement
operations.

FIG. 2. Example of a perfect matching (left) and a 2-matching
(right). The 2-matching is at the same time a perfect matching
of the subgraph highlighted in grey.

matter). The relation of these features to those of a
Graphlet Sampling kernel are highlighted in Appendix B.

Assuming that k ≤ M for all graphs, D is solely de-
termined by the maximum photon number k, which is a
hyperparameter of the feature map. Two more hyperpa-
rameters are the displacement that can be applied to the
light modes, as well as the amount of squeezing which
is determined by the normalization constant c. We will
assume here that the displacement applied to all modes
is a constant d.

The feature vectors can be used as inputs to common
machine learning models such as neural networks. Here
we are interested in constructing a similarity measure or
kernel that computes the similarity between two graphs G
and G′. In the simplest case of a ‘linear’ and ‘rbf’ kernel
we get (with a hyperparameter δ)

κlin(G,G′) = 〈f , f ′〉,

κrbf(G,G
′) = exp

(
−||f − f ′||2

2δ2

)
,

both of which are well known to be positive semi-definite
so that the results of kernel theory apply to the “GBS
kernel” constructed here.

III. INTERPRETING THE GBS GRAPH
FEATURES

The previous section suggested that the GBS feature
map is related to graph properties such as matchings. In
this section we will analyze the features in more detail.

A. Single-photon features and r-matchings

It turns out that the probabilities of ‘single-photon’
orbits (i.e., each detector counts either zero or one photon)
are related to a graph property called the “matching
polynomial” of G [30–32],

µ(G) =

dM/2e∑
r=0

(−1)rm(G, r)xM−2r. (7)

The coefficients m(G, r) of the matching polynomial count
the number of r-matchings or “independent edge sets”
in G – sets of r edges that have no vertex in com-
mon (see Figure 2). In our language, this could be

https://oeis.org/A000070

5

written as m(G, r) =
∑

n∈O[1,...,1,0,...]
Haf(An) (where

[1, . . . , 1, 0, . . .] has 2r single photon detections). Hence,
if it were not for the square of the Hafnian in Eq. (3),
the probability p(On∗) of a single-photon orbit would be
proportional to an |n|/2-matching m(G, |n|/2) of G. The
square gives rise to a new object

g(G, r) =
∑

n∈O[1,...,1,0,...]

Haf2(An).

Replacing m with g in Eq. (7) leads to a new type of
polynomial γ(G) which one could call a GBS polynomial.

An interesting observation occurs for the feature cor-
responding to orbit O[1,1,0,...] (see for example Table I).
Since there are only two options – the two nodes are con-
nected and have therefore exactly one perfect matching,
or they are not and have none – the square does not have
any effect, and the probability of the orbit is proportional
to the number of 1-matchings of this graph, which is in
turn equal to its number of edges. Hence, we have that
p(O[1,1,0,...]) ∝ |E|, and the hardware natively returns an
“edge counting” feature.

B. Higher-order moments

The probability of measuring a given photon counting
event n = [n1, . . . , nM] can also be interpreted from a
slightly different, more physically motivated viewpoint.
The M nodes of a graph can be associated with M random
variables drawn from a multivariate normal distribution
N(ξ,Σ), where the covariance matrix Σ corresponds to

the doubled adjacency matrix Ã, and ξ is the mean vector
related to displacement via ξ = Q−1d†. The higher-order

moments E[X
(1)
1 . . . X

(n1)
1 . . . X

(1)
M . . . X

(nM)
M] of this dis-

tribution are proportional to Haf(An), which in turn is
related to the probability of a photon event via Eq. (3).
This result follows from Isserlis’ theorem [33], which de-
composes the higher order moments into sums of products
of covariances E[XaXb]. In short, the GBS device turns a
graph into a multivariate normal distribution and samples
from its moments.

Using this picture, the first-order moments of the ‘graph-
induced distribution’ correspond to photon events of the
form [1, 0, . . .] and their probability is indeed proportional
to the mode means as apparent from Appendix A. The
second-order moments correspond to photon events of the
form [1, 1, 0, . . .] and their probability is proportional to
the entries of the adjacency matrix – the edge weights.
Consistent with this observation, we stated before that
orbits with 2 non-zero detectors “measure” the edge count
of a graph.

While the doubled encoding strategy as well as the
presence of multi-photon events somewhat obscure inter-
pretations of features in terms of r-matchings and higher-
order moments, we motivate in Appendix C that they
can be a blessing in disguise, making very similar graphs
distinguishable by smaller maximum photon numbers k.

IV. EXPERIMENTS

Finally, we provide some numerical results to investigate
the GBS graph kernel in practice. Benchmarks suggest
that it is well competitive to standard “classical” graph
kernels. We furthermore show that displacement may
improve classification accuracy by shifting weight into the
higher-order orbits, and that orbits with photon numbers
smaller or equal to 2 contribute most to the result.

A. Benchmarking

To benchmark the GBS feature map, we use a setup
that has become a standard in testing graph kernels: A
C-Support Vector Machine (SVM) with a precomputed
kernel. The test accuracies in Table II are obtained by
running 10 repeats of a double 10-fold cross-validation.
The inner fold extracts the best model by adjusting the
C-parameter of the SVM – which controls the penalty
on misclassifications – via grid search between values
[10−4, 103], and the best model is then used to get the
accuracy of the test set in the outer cross-validation loop.
The GBS feature vectors were used in conjunction with a
‘rbf’ kernel κrbf .

For the GBS graph kernel, we chose a gentle displace-
ment of d = 0.25 on every mode and k = 6, leading to
30-dimensional feature vectors. We used exact simulations
based on the hafnian library [34]. These are computation-
ally very expensive, which is why we only consider small
datasets. Three classical graph kernels are benchmarked
for comparison: The Graphlet Sampling kernel [9] (GS)
with maximum graphlet size of k = 5 and 5174 samples
drawn, the Random Walk kernel [35] (RW) with fast com-
putation and a geometric kernel type, and the Subgraph
Matching kernel (SM) [23]. The three classical kernels
were simulated using Python’s grakel library [36].6

The datasets are taken from the repository of the Tech-
nical University of Dortmund [37] (see Figure 3). Data
preprocessing for all experiments consists of a) excluding
graphs which have less than 6 or more than 25 nodes, b)
extracting binary adjacency matrices and c) rescaling by
a constant c as explained in Section II A. More details
regarding preprocessing can be found in Appendix D.

As Table II shows, the GBS kernel performs well and
outperforms the other methods visibly for MUTAG and
NCI1, while still leading for AIDS, BZR MD, ER MD,
FINGERPRINT and PROTEINS. Displacement increases
the performance of the GBS kernel significantly for
COX2 MD, ENZYMES and IMDB-BIN, but not for other
data sets. The GBS kernel does well on datasets where

6 Experiments were run on IBM’s cloud platform using four 2.8GHz
Intel Xeon-IvyBridge Ex (E7-4890-V2-PentadecaCore) processors
with 15 CPU cores each, as well as on Oak Ridge’s Titan super-
computer.

6

Dataset GBS (d = 0.0) GBS (d = 0.25) GS RW SM

AIDS 99.60± 0.05 99.62± 0.03 98.44± 0.09 56.95± 7.99 79.20± 0.68

BZR MD 62.73± 0.71 62.13± 1.44 60.60± 1.77 49.88± 3.74 61.90± 1.21

COX2 MD 44.98± 1.80 50.11± 0.97 55.04± 3.33 57.72± 3.26 66.94± 1.22

ENZYMES 22.29± 1.60 28.01± 1.83 35.87± 2.19 21.13± 1.91 36.70± 2.83

ER MD 70.36± 0.78 70.41± 0.47 65.65± 1.06 68.75± 0.53 68.21± 0.99

FINGERPRINT 65.42± 0.49 65.85± 0.36 64.10± 1.52 47.69± 0.21 47.14± 0.62

IMDB-BIN 64.09± 0.34 68.71± 0.59 68.37± 0.62 66.38± 0.21 out of time∗

MUTAG 86.41± 0.33 85.58± 0.59 81.08± 0.93 83.02± 1.08 83.14± 0.24

NCI1 63.61± 0.00 62.79± 0.00 49.96± 3.27 52.36± 2.63 51.36± 1.88

PROTEINS 66.88± 0.22 66.14± 0.48 65.91± 1.29 56.27± 1.23 63.03± 0.84

PTC FM 53.84± 0.96 52.45± 1.78 59.48± 1.95 51.97± 2.68 54.92± 2.94

TABLE II. Mean test accuracy of the Support Vector Machine with different datasets and different graph kernels, with the
standard deviation between 10 repetitions of the double cross-validation. GS, RW, and SM are three standard classical graph
kernels described in the text.∗Runtime > 20 days.

number of
graph nodes

number of
graph edges

1728 [86%] 257 [84%] 118 [39%] 204 [34%] 357 [80%]

284 [81%]515 [46%]1836 [45%]179 [96%]806 [81%]1080 [38%*]

FIG. 3. Histograms of node and edge numbers of graphs in the benchmark datasets. The number of graphs as well as its
percentage with respect to the original data are shown below each plot.

FIG. 4. GBS kernel for all size-3 graphs and displacements
d = 0, 1.

the distribution of node and edge numbers differs strongly
between classes. However, we confirmed that excluding
the ‘edge counting features’ [1, 1, 0..], [2, 2, 0..], . . . does
not influence classification performance. While the graph
size is considered by the GBS kernel, it seems to be only
one of many properties that enters the notion of similarity.

B. Displacement and feature importance

The hyperparameters of the GBS graph kernel are the
constant displacement d which adiministered to each node,
as well as the normalization constant c and the maximum
photon number k. Since simulations restrict the value
of k at this stage and we keep c fixed as a preprocessing

constant, we focus on the effect of displacement. Displace-
ment can change the similarity measure significantly. For
example, comparing graphs of size |V | = 3 in Figure 4,
one finds that the fully disconnected graph is closer to
the fully connected graph than a graph with two edges
for d = 1, but vice versa for d = 0.

Figure 5 uses the example of IMDB-BIN and MU-
TAG to investigate the GBS features for d = 0, d = 0.25
and d = 1. The feature averages show that the gen-
eral distribution of the feature vector is similar for both
classes, but still visually distinguishable.7 Consistent
with the theory, increasing displacement shifts the fea-
tures towards higher-order orbits, and populates features
that are zero when d = 0. Features associated with or-
bits [1, 1, 0, ...], [1, 1, 1, 1, 0...] and [1, 1, 1, 1, 1, 1], as well
as [2, 1, 0, ...] and [2, 1, 1, 1, 0, ...] seem to be particularly
important in the support of principal components, and
get high weights when training a perceptron on the GBS
features. Where displacement renders them nonzero, un-
even orbits such as [1, 1, 1, 0, ...], [1, 1, 1, 1, 1, 0...] follow
suit. During our investigations we confirmed that drop-

7 Standarization of the feature vectors to emphasize their mutual
differences improved classification accuracy in some cases, but
deteriorated it in others.

7

FIG. 5. Three measures for feature importance for IMDB-BINARY (top row) and MUTAG (bottom row) using k = 6 and for
d = 0, d = 0.25 and d = 1. The 3 + 3 heatmaps consist of three columns each. The leftmost column (gray color map) shows the
average of each feature for the two different classes, here labeled A and B. The center column shows the coefficients with which
each feature contributes to the four first principal components in the PCA analysis. The third column shows the weights which
a perceptron attributes to each feature when trained to classify the target labels.

ping features with high single-detector photon numbers
did not have a huge influence on classification. Consistent
with the results from Table II, MUTAG has ‘richer’ fea-
tures for d = 0 than IMDB-BIN for classification with a
perceptron, an advantage that IMDB-BIN equalizes with
growing displacement.

The feature analysis suggests that features related to
subgraphs of all sizes (here 1 to 6) are important for
the classification results, and that duplication of a single
node in the subgraphs may be beneficial – a feature that
Graphlet Sampling kernels do not explore. The effect
of displacement varies with the dataset, and d should
therefore be kept as a hyperparameter for model selection.

V. CONCLUSION

We proposed a new type of feature extraction strategy
for graph-structured data based on the quantum technique
of Gaussian Boson Sampling. We suggested that the
success of the method is related to the fact that such
a system samples from distributions that are related to
useful graph properties. For classical machine learning,

this method presents a potentially powerful extension to
the gallery of graph kernels, each of which has strengths
on certain data sets. For quantum machine learning, this
proposes the first application of a “quantum kernel”.

A lot of questions are still open for further investigation,
for example regarding the role and interpretation of dis-
placement, how GBS performs with weighted adjacency
matrices, how node and edge labels can be considered, as
well as whether the feature vectors are useful in combi-
nation with other methods such as neural networks. We
expect that the rapid current development of numeric
GBS samplers as well as quantum hardware will help
answering these questions in the near future.

ACKNOWLEDGEMENTS

We thank Christopher Morris and Nicolas Quesada
for valuable advice, as well as the authors of Python’s
GraKel library. This research used resources of the Oak
Ridge Leadership Computing Facility, which is a DOE
Office of Science User Facility supported under Contract
DE-AC05-00OR22725.

[1] Johannes Kobler, Uwe Schöning, and Jacobo Torán,
The graph isomorphism problem: its structural complexity

(Springer Science & Business Media, 2012).

8

[2] Brendan D McKay et al., Practical graph isomorphism
(Department of Computer Science, Vanderbilt University
Tennessee, USA, 1981).

[3] Maximilian Nickel, Kevin Murphy, Volker Tresp, and
Evgeniy Gabrilovich, “A review of relational machine
learning for knowledge graphs,” Proceedings of the IEEE
104, 11–33 (2016).

[4] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong
Long, Chengqi Zhang, and Philip S Yu, “A compre-
hensive survey on graph neural networks,” arXiv preprint
arXiv:1901.00596 (2019).

[5] Mathias Niepert, Mohamed Ahmed, and Konstantin
Kutzkov, “Learning convolutional neural networks for
graphs,” in International conference on machine learning
(2016) pp. 2014–2023.

[6] Daokun Zhang, Jie Yin, Xingquan Zhu, and Chengqi
Zhang, “Network representation learning: A survey,”
IEEE transactions on Big Data (2018).

[7] Palash Goyal and Emilio Ferrara, “Graph embedding
techniques, applications, and performance: A survey,”
Knowledge-Based Systems 151, 78–94 (2018).

[8] Aditya Grover and Jure Leskovec, “node2vec: Scalable
feature learning for networks,” in Proceedings of the 22nd
ACM SIGKDD international conference on Knowledge
discovery and data mining (ACM, 2016) pp. 855–864.

[9] Nino Shervashidze, SVN Vishwanathan, Tobias Petri,
Kurt Mehlhorn, and Karsten Borgwardt, “Efficient
graphlet kernels for large graph comparison,” in Arti-
ficial Intelligence and Statistics (2009) pp. 488–495.

[10] Swarnendu Ghosh, Nibaran Das, Teresa Gonçalves, Paulo
Quaresma, and Mahantapas Kundu, “The journey of
graph kernels through two decades,” Computer Science
Review 27, 88–111 (2018).

[11] Bernhard Scholkopf and Alexander J Smola, Learning
with kernels: support vector machines, regularization, op-
timization, and beyond (MIT press, 2001).

[12] Nils Kriege, Marion Neumann, Kristian Kersting, and Pe-
tra Mutzel, “Explicit versus implicit graph feature maps:
A computational phase transition for walk kernels,” in
Data Mining (ICDM), 2014 IEEE International Confer-
ence on (IEEE, 2014) pp. 881–886.

[13] Alaa Saade, Francesco Caltagirone, Igor Carron, Laurent
Daudet, Angélique Drémeau, Sylvain Gigan, and Florent
Krzakala, “Random projections through multiple opti-
cal scattering: Approximating kernels at the speed of
light,” in 2016 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP) (IEEE, 2016)
pp. 6215–6219.

[14] Maria Schuld and Nathan Killoran, “Quantum machine
learning in feature Hilbert spaces,” Physical review letters
122, 040504 (2019).

[15] Vojtěch Havĺıček, Antonio D Córcoles, Kristan Temme,
Aram W Harrow, Abhinav Kandala, Jerry M Chow, and
Jay M Gambetta, “Supervised learning with quantum-
enhanced feature spaces,” Nature 567, 209 (2019).

[16] Craig S Hamilton, Regina Kruse, Linda Sansoni, Sonja
Barkhofen, Christine Silberhorn, and Igor Jex, “Gaussian
boson sampling,” Physical review letters 119, 170501
(2017).

[17] AP Lund, A Laing, S Rahimi-Keshari, T Rudolph,
Jeremy L OBrien, and TC Ralph, “Boson sampling from
a gaussian state,” Physical review letters 113, 100502
(2014).

[18] Regina Kruse, Craig S Hamilton, Linda Sansoni, Sonja
Barkhofen, Christine Silberhorn, and Igor Jex, “A de-
tailed study of Gaussian Boson Sampling,” arXiv preprint
arXiv:1801.07488 (2018).

[19] Max Tillmann, Borivoje Dakić, René Heilmann, Stefan
Nolte, Alexander Szameit, and Philip Walther, “Experi-
mental boson sampling,” Nature Photonics 7, 540 (2013).

[20] Matthew A Broome, Alessandro Fedrizzi, Saleh Rahimi-
Keshari, Justin Dove, Scott Aaronson, Timothy C Ralph,
and Andrew G White, “Photonic boson sampling in a
tunable circuit,” Science 339, 794–798 (2013).

[21] Scott Aaronson and Alex Arkhipov, “The computational
complexity of linear optics,” in Proceedings of the forty-
third annual ACM symposium on Theory of computing
(ACM, 2011) pp. 333–342.

[22] Kamil Brádler, Shmuel Friedland, Josh Izaac, Nathan
Killoran, and Daiqin Su, “Graph isomorphism and Gaus-
sian boson sampling,” arXiv preprint arXiv:1810.10644
(2018).

[23] Nils Kriege and Petra Mutzel, “Subgraph match-
ing kernels for attributed graphs,” arXiv preprint
arXiv:1206.6483 (2012).

[24] Kamil Brádler, Pierre-Luc Dallaire-Demers, Patrick
Rebentrost, Daiqin Su, and Christian Weedbrook, “Gaus-
sian boson sampling for perfect matchings of arbitrary
graphs,” Physical Review A 98, 032310 (2018).

[25] Christian Weedbrook, Stefano Pirandola, Raúl Garćıa-
Patrón, Nicolas J Cerf, Timothy C Ralph, Jeffrey H
Shapiro, and Seth Lloyd, “Gaussian quantum informa-
tion,” Reviews of Modern Physics 84, 621 (2012).

[26] Leslie G Valiant, “The complexity of computing the per-
manent,” Theoretical computer science 8, 189–201 (1979).

[27] Alexander Barvinok, “Approximating permanents and
hafnians,” arXiv preprint arXiv:1601.07518 (2016).

[28] Mark Rudelson, Alex Samorodnitsky, Ofer Zeitouni, et al.,
“Hafnians, perfect matchings and gaussian matrices,” The
Annals of Probability 44, 2858–2888 (2016).

[29] VD Vaidya, B Morrison, LG Helt, R Shahrokhshahi,
DH Mahler, MJ Collins, K Tan, J Lavoie, A Repingon,
M Menotti, et al., “Broadband quadrature-squeezed vac-
uum and nonclassical photon number correlations from a
nanophotonic device,” arXiv preprint arXiv:1904.07833
(2019).

[30] E.J Farrell, “An introduction to matching polynomials,”
Journal of Combinatorial Theory, Series B 27, 75–86
(1979).

[31] Chris D. Godsil and Ivan Gutman, “On the theory of
the matching polynomial,” Journal of Graph Theory 5,
137–144 (1981).

[32] Ole J Heilmann and Elliott H Lieb, “Theory of monomer-
dimer systems,” in Statistical Mechanics (Springer, 1972)
pp. 45–87.

[33] Leon Isserlis, “On a formula for the product-moment
coefficient of any order of a normal frequency distribution
in any number of variables,” Biometrika 12, 134–139
(1918).

[34] Andreas Björklund, Brajesh Gupt, and Nicolás Que-
sada, “A faster hafnian formula for complex matrices and
its benchmarking on the titan supercomputer,” arXiv
preprint arXiv:1805.12498 (2018).

[35] Thomas Gärtner, Peter Flach, and Stefan Wrobel, “On
graph kernels: Hardness results and efficient alternatives,”
in Learning theory and kernel machines (Springer, 2003)
pp. 129–143.

http://arxiv.org/abs/1901.00596
http://arxiv.org/abs/1801.07488
http://arxiv.org/abs/1810.10644
http://arxiv.org/abs/1206.6483
http://arxiv.org/abs/1601.07518
http://arxiv.org/abs/1904.07833
http://arxiv.org/abs/1805.12498

9

[36] Giannis Siglidis, Giannis Nikolentzos, Stratis Limnios,
Christos Giatsidis, Konstantinos Skianis, and Michalis
Vazirgiannis, “Grakel: A graph kernel library in python,”
arXiv preprint arXiv:1806.02193 (2018).

[37] Kristian Kersting, Nils M. Kriege, Christopher Morris,
Petra Mutzel, and Marion Neumann, “Benchmark data

sets for graph kernels,” (2016).
[38] Nicolás Quesada, “Franck-condon factors by counting

perfect matchings of graphs with loops,” The Journal of
chemical physics 150, 164113 (2019).

[39] E Spence, “Regular graphs with four different eigenvalues,”
Http://www.maths.gla.ac.uk/ es/I.24.gz.

Appendix A: Adding displacement

The Gaussian Boson Sampling setup underlying Eq. (3) consists of squeezing and interferometers. But a Gaussian
quantum state can also be manipulated by a third operation: displacement. Displacement changes the mean of
the M -mode Gaussian state while leaving the covariance matrix (and therefore the encoding strategy) as before. A
non-zero mean changes Eq. (3) in an interesting, but non-trivial manner.

Without going into the details [18], if considering nonzero displacement, instead of summing over P
{2}
N in Eq. (4),

we have to sum over P
{1,2}
N , or the set of partitions of the index set {1, . . . , N} into subsets of size up to 2. For the

index set {1, 2, 3, 4}, we had

P
{2}
4 = {(1, 2), (3, 4)}, {(1, 3), (2, 4)}, {(1, 4), (2, 3)},

which now becomes

P
{1,2}
4 = {{(1, 2), (3), (4)}, {(1, 3), (2), (4)}, {(1, 4), (2), (3)},

{(2, 3), (1), (4)}, {(2, 4), (1), (3)}, {(3, 4), (1), (2)},
{(1, 2), (3, 4)}, {(1, 3), (2, 4)}, {(1, 4), (2, 3)},
{(1), (2), (3), (4)}

Instead of the Hafnian in Eq. (3), we therefore get a mixture of Hafnians of An’s submatrices (stemming from the
pairs) and other factors (stemming from the size-1 sets).

Assume that displacement is applied to both the x̂ and p̂ quadratures of each mode, described by a 2M -dimensional
displacement vector d = (d1, . . . , dM , d

∗
1, . . . , d

∗
M)T . The effect on Eq. (3) is as follows. Let Q the 2M × 2M matrix

from Eq. (2), b = d†Q−1, and

Ãn = c

(
An 0
0 An

)
similar to Eq. (1). We get

p(n) =
e−

1
2d
†Q−1d√

det(Q) n!

Haf(Ãn) +

2M∑
i 6=j

bibjHaf(Ãn−{i,j}) + · · ·+
2M∏
j

bj

 ,
=

e−
1
2d
†Q−1d√

det(Q) n!

M∑
n=0

∑
{i1..i2n}⊆I2M

bi1 · · · · · bi2nHaf(Ãn−{i1,...,i2n}), (A1)

where I2M is the index set {1, . . . 2M}. In this notation we assume {i1, . . . , i0} = {} and bi1 · · · · ·bi0 = 1. The “reduced”
Hafnians of the form An−{i,j}, An−{i,j,k,l} . . . are constructed by “deleting” rows and columns {i, j}, {i, j, k, l}, ... in

Ãn. The expression in the brackets of Eq. (S1) is also known as a “loop Hafnian” of a matrix Ãn that carries b1, ..., b2M
on its diagonal [38].

Equivalently to the square rule Haf(Ã) = Haf(A)2 in the regime of zero displacement, Eq. (A1) simplifies to

p(n) =
e−

1
2d

TQ−1d√
det(Q) n!

Haf(An) +

M∑
i

biHaf(An−{i}) + · · ·+
M∏
j

bj

2

=
e−

1
2d
†Q−1d√

det(Q) n!

 M∑
n=0

∑
{i1..in}⊆IM

bi1 · · · · · binHaf(An−{i1,...,in})

2

. (A2)

http://arxiv.org/abs/1806.02193
http://graphkernels.cs.tu-dortmund.de
http://graphkernels.cs.tu-dortmund.de

10

To show that (A1) = (A2), one uses the fact that for Ã being a direct sum A⊕A, the index set i1, . . . , i2n ∈ I2M that
Eq. (A1) sums over can be divided into two index sets: j1, . . . , js which contains all s indices from the ‘first subspace’

(i.e., the first M dimensions) of Ã, and k1, . . . , ks′ containing the s′ indices from the ‘second subspace’, and s+ s′ = 2n.

The fact that Haf(A⊕B) = Haf(A)Haf(B), allows us to express the Hafnian of reduced versions of Ãn as a product

of reduced versions of matrix Ãn,

Haf(Ãn−{i1,...,i2n}) = Haf(An−{j1,...,js})Haf(An−{k1,...,ks′}).

Altogether, we can therefore write:

p(n) ∝
M∑
n=0

∑
{i1..i2n}⊆I2M

bi1 . . . bi2nHaf(Ãn−{i1..i2n})

=

M∑
s,s′=0

∑
{j1..js}⊆IM

(
bj1 . . . bjsHaf(An−{j1..js})

)
×

∑
{k1..ks′}⊆IM

(
bk1 . . . bks′Haf(An−{k1..ks′})

)

=

 M∑
n=0

∑
{i1..in}⊆IM

bi1 . . . binHaf(An−{i1..in})

2

In the main paper we always consider d = (d, . . . , d, d, . . . , d)T for a constant value d.
One can see that displacement explores substructures of doubled extended subgraphs (doubled, since we consider

Ãn and not An). An important effect of displacement is that p(n) for odd total photon numbers |n| is not necessarily
zero any more, since the sum in Eq. (A2) contains Hafnians of even-sized subgraphs.

Appendix B: Comparison to Graphlet Sampling kernel

Counting subgraphs in a larger graph is a concept used in various classical graph kernels. Graphlet Sampling
kernels [9] bear the most striking similarity to GBS feature maps, since the features count how often graphlets of size
|V | = 3, 4, 5, . . . appear in a graph G. In the language developed here we can express the feature fg which counts
graphlet g via

fg ∝
∑

n∈O[1,..,1,0,...]

1g∼=Gn , (B1)

using an indicator function 1g∼=Gn that is one if graphlet g is isomorphic to the subgraph Gn and zero else, as well as
the orbit represented by [1, .., 1, 0, . . .] counting |V | single photons. In comparison, rewriting Eq. (6) in a similar way,
the GBS features are

fi = fn∗i ∝
∑

n∈On∗

 ∑
g∈P|n|

1g∼=Gn

2

, (S4)

where P |n| is the set of all perfect matchings of size |n|.
As a result, instead of counting graphlets, the GBS feature map sums squares of perfect matching counts in graphlets.

Figure 6 shows the number of perfect matchings in all graphs up to size |V | = 6.

Appendix C: Benefits of multi-photon events and GBS polynomial

We remarked in the paper that both multi-photon events and the strategy of encoding a direct sum of an adjacency
matrix into a GBS device somewhat obscures simple interpretations of the GBS feature map, but that this could be a
blessing in disguise. Here we want to illustrate this with an example (leaving rigorous analysis for future work).

11

FIG. 6. All non-isomorphic graphs up to size |V | = 6 and the number of perfect matchings they contain (grey shading scale).

10

1

2

3

4

5

6

7

8
9

1

2
3

4

5

67

8

9

10

1

2
3

4

5

67

8

9

FIG. 7. This pair of regular isospectral non-isomorphic graphs on ten vertices is easier to distinguish with the double encoding
strategy than if we only consider their matching polynomials.

Consider the isospectral pair of graphs shown in Figure 7 and r ≤ 10. Their matching polynomials from Eq. (7) up
to order r = 10 coincide:

µ(G(1)) = µ(G(2)) = x10 − 20x8 + 130x6 − 312x4 + 229x2 − 24. (C1)

However, extending G(1) and G(2) by copying all nodes and their edges once, we find that the matching polynomial of
the extended graphs differ:

µ(G
(1)
[2,2,...,2])− µ(G

(2)
[2,2,...,2]) = −1536x4 + 3840x2 − 768. (C2)

In other words, studying the structure of extended graphs can increase distinguishability in the context of graph
isomorphism.

As laid out in detail in Section 3.1 of the main paper, GBS does not compute the coefficients of matching polynomials,
but a slightly different quantity which we termed the ‘GBS polynomial’ γ(G). It turns out that the GBS polynomials

γ(G
(1,2)
[2,2,...,2]) differ in orders of 4 ≤ r ≤ 10 (meaning that the difference between the two graphs can already be detected

by a GBS device with maximum 8 photons), while the matching polynomials µ(G
(1,2)
[2,2,...,2]) from Eq (C2) differ only for

orders 8 ≤ r ≤ 10.
Our numeric examinations of families of regular and strongly regular graphs suggest that the situation in (3), where

the whole matching polynomials coincide, is not typical. For example, taking the family of 87 isospectral regular
graphs on 24 vertices from [39] with the spectrum {[9]1, [3]4, [1]9, [−3]10}, none of their matching polynomials up to
r = 10 is identical. Again, by investigating the GBS polynomial we find that they become different ’sooner’, that is for
a lower total photon number, or a lower order r. The same conclusion holds the family of four strongly regular graphs
on 28 vertices.

We conclude that the GBS polynomial may have interesting properties to characterize graphs, which reflect onto
but extend applications of graph kernels.

Appendix D: Data and data preprocessing

Preprocessing of the benchmarking datasets includes these three steps:

12

1. Graph selection: Graphs which have less than 6 or more than 25 nodes are excluded to keep the feature vectors
constant and to limit the time of simulations. The share of excluded graphs is displayed in Figure (3) in the
main paper, and ranges from 5% to 55%.

2. Labels and attributes : Potential node labels, node attributes and edge attributes are ignored. The edge labels in
BZR MD, COX2 MD, ER MD, MUTAG and PTC FM were translated to the following weights: 0 - no chemical
bond, 1 - single bond/double bond/triple bond/aromatic bond. The edge labels in AIDS where translated into
the weights: 0 - no edge 1 - valence of zero, one or two. In FINGERPRINT, only graphs of the three dominant
classes 0, 4, 5 were considered, since the other classes did not contain a sufficient number of samples after graph
selection.

3. Rescaling : The final (weighed or unweighed) adjacency matrix is divided by a normalization constant c =

1/(λ
{G}
max + 10−8) that is slightly larger than the largest singular value s

{G}
max of any adjacency matrix in the dataset,

as explained in Section 2.1 of the main paper.

All datasets were chosen before the first experiments were run, to avoid a post-selection bias in favour of the GBS
kernel.

	A quantum hardware-induced graph kernel based on Gaussian Boson Sampling
	Abstract
	I Introduction
	II Gaussian Boson Sampling as a feature map
	A Encoding graphs into the GBS device
	B Photon counting
	C Post-processing and features
	D Feature map and graph kernel

	III Interpreting the GBS graph features
	A Single-photon features and r-matchings
	B Higher-order moments

	IV Experiments
	A Benchmarking
	B Displacement and feature importance

	V Conclusion
	 Acknowledgements
	 References
	A Adding displacement
	B Comparison to Graphlet Sampling kernel
	C Benefits of multi-photon events and GBS polynomial
	D Data and data preprocessing

