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HANKEL CONTINUED FRACTIONS AND HANKEL
DETERMINANTS OF THE EULER NUMBERS

GUO-NIU HAN

ABSTRACT. The Euler numbers occur in the Taylor expansion of tan(z) +
sec(x). Since Stieltjes, continued fractions and Hankel determinants of the
even Euler numbers, on the one hand, of the odd Euler numbers, on the other
hand, have been widely studied separately. However, no continued fractions
and Hankel determinants of the (mixed) Euler numbers have been obtained and
explicitly calculated. The reason for that is that some Hankel determinants of
the Euler numbers are null. This implies that the Jacobi continued fraction
of the Euler numbers does not exist. In the present paper, this obstacle is
bypassed by using the Hankel continued fraction, instead of the J-fraction.
Consequently, an explicit formula for the Hankel determinants of the Euler
numbers is being derived, as well as a full list of Hankel continued fractions
and Hankel determinants involving Euler numbers. Finally, a new g-analog
of the Euler numbers FEy(q) based on our continued fraction is proposed. We
obtain an explicit formula for E,(—1) and prove a conjecture by R. J. Mathar
on these numbers.

1. INTRODUCTION
The Euler numbers E,(n > 0) are defined by their generating function

:En

(1.1) tan(z) + sec(z) = Z Enﬁ

The even (resp. odd) Euler numbers Es,, (resp. Ea2,1) are also called secant (resp.
tangent) numbers, and their first values read:

n = 0

123 4 5 6 7 8 9
E, =111

2 5 16 61 272 1385 7936

As already proved back in 1879 by André [2], the Euler numbers count the alter-
nating permutations and satisfy the following recurrence relation

2 k-1

1 — ~1
(1.2) Eo=1 Ei=1 E,=-) (" >Ek1Enk.
k=1

The Euler numbers have been widely studied in Combinatorics (see [2] 8] 28 [39, [55])
and are closely connected with the Bernoulli and Genocchi numbers [55] [].
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Stieltjes derived the continued fractions for the ordinary generating functions of
the tangent and secant numbers (see [54], [9], [56, p. 206, (53.11)], [56l p. 369] )

o 1 1222 | 2%% | 3%
(1.3) > Bz _[T‘_| T e e B Bt

n>0

an+l _ T | 1'2$2|_ 2-3:c2|_ 3-4x2|_“.

n>0

Thanks to the seminal paper by Flajolet [9] on combinatorial aspects of continued
fractions, the above two continued fractions have become very classical, and been
generalized in several directions [45, [T7], 27, 50l 19] 26], including their g-analogs.

Although a lot of continued fractions involving either the tangent numbers
(F2n+1), or secant numbers (Fsa, ) have been studied separately, the continued frac-
tion of the ordinary generating function >, -, Ena™ for the mized Euler numbers
has never been derived. The reason for that is that some Hankel determinants of
the Euler number sequence are null. This implies that the corresponding Jacobi
continued fraction does not exist. In the present paper, this obstacle is bypassed by
using the Hankel continued fraction [21], instead of the J-fraction. Consequently,
we derive an explicit formula for the Hankel determinants of the Euler numbers.
See Section [2] for the basic definition and properties of Hankel continued fractions.
We establish the following two theorems about the Hankel continued fraction and
the Hankel determinants of the Euler numbers. As expected, we see that some of
the Hankel determinants are zero.

Theorem 1.1. We have the following Hankel continued fraction expansion of the
(mized) Euler numbers:

- 1 | 23 | 93 | 4a2
(15) Y Ex T[Tz [1-22-427 [1-5z [1-Tz

n>0
75z° | 1472% | 162 |
[1-6x-3627 [1-11z [1-13x
a1 | a9 | as |

=bg +

B [ s T

the general patterns for the coefficients a; and b; being:

a1 =1,
asp = —(4k — 1)2(2k — 1),
asp1 = —4k*2?,
aspro = —(4k + 1)%(2k + 1)2?;
by = 0,

bsr, = —(6k — Dz + 1,
bsk+1 = —(6k + 1)z + 1,
bakro = —4(2k + 1)%2? — 2(2k + )2 + 1.
Throughout this paper we use the following convention, called “index conven-

tion”, saying that each expression given by cases is only valid for integers which
have not been considered as previous special values. In the above example, the
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expression bsy1 is valid for £ > 0; However, the expression agg1 is valid for k£ > 1,
but not for k£ = 0, since a; is already listed above.

The Hankel determinant of order n of the formal power series f(z) = co + c1z +
c2x? + -+ (or of the sequence (cg,c1, ca,--+) is defined by

Hp(co,c1,c2,...) = det(citj)o<i,j<n—1
for n > 1, and Hy(co,c1,¢2,...) =1ifn=0.
Theorem 1.2. The Hankel determinants H,, of the (mized) Euler numbers
(Eo, Er, Eq, E3, . ..)

are given by the following formulas:

Hy =1,
Hypy1 = (-1 k24k2(];k'21) 2ﬁ1 (25 + 1)
Hypy2 =0,
Hypys = (—1)k+1(224]2(—;—7,62!)2 1 (27 + 4,
j=1
Hapya = (—1)" (2k +212)(!22k(:11]§2+ i ﬁ@j + 11
j=1

The proofs of Theorems [[1] and are given in Section [ by making use of
the Flajolet continued fraction for permutation statistics [9] and some combinato-
rial models for the Euler numbers described in Section Bl We provide a large list
of Hankel continued fractions and Hankel determinants involving Euler numbers.
The formulas involving the ordinary generating functions of Euler numbers, most
of them stated and proved in Section [B], are resumed in Table [l In Section [ we
first obtain a continued fraction of the exponential generating function of a quadru-
ple permutation statistic, see Theorem [6.1l1 Then, we derive the Hankel continued
fractions and Hankel determinants for the exponentlal generating functions involv-
ing the Euler numbers. We resume these formulas in Table There, we write
en = En/n! for short. In the last section, a new g-analog of the Euler numbers
E,(q) based on the continued fraction is proposed. We obtain an explicit formula
for E,(—1) and prove a conjecture by R. J. Mathar on these numbers.

Some further remarks are in order for a better understanding of our motivation,
as well as various methods and notation used in this paper.

Remark 1. Some continued fractions obtained in the paper are of Jacobi type,
as well as others need to be expressed as Hankel continued fractions. These two
situations are indicated by the letters “J” or “H” in the second column in Tables [l
and

Remark 2. Some of these formulas are known or easy to prove. We list them
here for a quick view and comparison. In fact, we can find (H1) in [I], (H2) and
(H3) for the case r = 1 in [I, 46], [29] (3.52-53)] and [37, (4.58-59)]; (H22) and
(H23) in [38], (F9) in [37, (3.120)].
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TABLE 1. Formulas for the ordinary generating functions

Sequence H-Fraction | Hankel det. Exp. g. f.
(Eo, E1,Es,E3,Ey,...) | ThnlLI H | Thil.2] tan(z) + sec(z)
(El, EQ, Eg, E4, .. ) (F?), J (H?) (tan(:z:) + SGC(I))/
(E2,E5,Ey,...) (F10), H (H10) (tan(z) + sec(x))”
(Eo,0, F>,0,E4,0,...) (F1),J (H1) sec(x)
(0, E2,0, Ey4,0,...) (F8),H (H8) sec(z)’
(Eo, E2, E4, Eg, . ..) (F2),J (H2) —
(Es, Ey4, Fg, .. .) (F3),J (H3) —
(0,E1,0,FE3,0,F5,...) (F9),H (H9) tan(x)
(E1,0,E3,0,FEs, . ..) (F4),J (H4) tan(z)’
(0, E3,0,FE5,...) (F11),H (H11) tan(z)"”
(Er,E3,Es5,E7,...) (F5),J (H5) —
(Es,E5,FE7,...) (F6),J (H6) —

TABLE 2. Formulas for the exponential generating functions

Sequence H-Fraction | Hankel det. Function
(eo,e1,€2,€3,€e4,65,...) | (F17),J (H17) tan(z) + sec(z)
(e1,e2,€3,€e4,€5,...) (F16),J (H16) (tan(z) + sec(x) — 1)/z
(62,63,64,65,...) (F18),J (H18)
(63,64,65,. ) (Flg),J (ng)
(eq,€5,...) (F20),J (H20)
(0,e1,0,€3,0,¢€5,...) (F15), H (H15) tan(x)
(e1,0,e3,0,€5,...) (F12),J (H12) tan(z)/x
(0,e3,0,€s5,...) (F14), H (H14) (tan(x) — ) /2>
(63,0,65,...) (FQl),J (H21)
(e1,e3,es5,e7,€9,...) (F13),J (H13) tan(v/z)/\/x
(es,es,e7,€9,...) (F22),J (H22) (tan(y/x)/v/x —1)/z
(es,e7,€9,...) (F23),J (H23) -
(67, €9, .. ) (F24), J (H24)

Remark 8. The structure of the continued fractions makes no simple formula for
the addition of two simple continued fractions. In fact, our main result says that
the sum of the two continued fractions (I3]) and (4] is equal to (LH). This is not
easy to prove since no addition formula is available. In the same way, we know the
continued fractions for tan(z) 4 sec(x) and also tan(x), but we do not know the
continued fraction for their difference sec(z).

Remark 4. There are simple continued fractions for (Fy,0, F2,0, Ey,...) and
(Eo, Eo, Ey4,...). However, no simple continued fractions for (eg,0,e2,0,eq4,...)
and (eq, €2, €4, ...) are known. We are convinced that there is no unified method
to derive continued fractions for ordinary generating functions and exponential
generating functions.

Remark 5. For the exponential generating functions, the three families in Table[2]
seem to be naturally extended. However, for the ordinary generating functions, the
five families cannot grow, and all continued fractions of simple form are listed in
Table [
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Remark 6. In view of Remark 5, we may think that the exponential generating
functions are more adequate for the Hankel continued fractions. However, Remark 4
says the converse.

Remark 7. Theorem [[Tland (F10) are very similar. However there is an impor-
tant difference. The super 1-fraction of ) E, 2™ exists. This fact leads us to find
the proof of Theorem [[LTl But there is no simple super 1-fraction of > E,o2™.
Fortunately, now we have the proof of Theorem [T which gives us some indication
for the proof of (F10).

2. DEFINITIONS AND PROPERTIES OF THE CONTINUED FRACTIONS

In this section we recall some basic definitions and properties of the general con-
tinued fractions and the super continued fractions, including the Hankel continued
fractions.

Let K be a field. In most cases, K will be the field Q of rational numbers.
Consider the field of fractional fractions K(z). Let a = (aj,as2,...) and b =
(bo, b1,ba,...) be two sequences of K(x). The generalized continued fraction as-
sociated with the two sequences a and b can be written by using the natural
notation

a
bo +
a2
b1 +
as
by + ———

bs +

or Pringsheim’s notation:
a | a| a3

2.1 bo + + + + e

For the notion about wvalue, partial numerator and denominator, fundamental re-
currence formulas, equivalence transformations of continued fractions, see [56] p.
13-19]. The walue of the above continued fraction is a formal power series in x
with coefficients in K. Throughout the paper we will extensively use the following
contraction formulas. The contractions with for the case b; = 1 are well-known
[56, [42] 54].

Theorem 2.1. The generalized continued fraction defined in (2.1) has the following
contraction formulas.
(1) Even contraction:

arby | aza3by | a4a5b2bg |
(2.2) bo+ - —
| blbg + aso | b2b3b4 + a4b2 + CL3b4 | b4b5b6 + a6b4 + a5b6
! I !
Y, ay | o as ..
=t T e
The general patterns for the new coefficients a;- and b;- are:
ay = a1by,
0/2 = —a2a3b4,

/
a; = —agj—2a2j-1b2j—4baj;
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by = bo,
b} = bibs + as,

b; = byj_oboj_1baj + agjbaj_2 + azj_1ba;.

When by = 0 and by = by = --- =1, the even contraction formula becomes
(2 3) aq | . asas3 | . aqas | .
) |1—|—a2 |1—|—a3—|—a4 |1—|—a5—|—a6

(2) Odd contraction:

(2 4) bobl +CL1 _ alagbg/bl | . a3a4b1b5 |
' by | D1bobs + azby +azbs | bababs + asbs + aabs
The general patterns for the new coefficients a;- and b;- are:
ay = —a1a by
1 1642 bl )
ay = —azasbybs,
aj = —agj_1a2;b2j—3baj11;
p. — obit a1
0 bl )

bll = b1bobs + agby + aqbs,
b = baj_1bojbajr1 + agjy1baj1 + agjbajii
When by = 0 and by = by = --- =1, the odd contraction formula becomes

ar — a1a2 |_ a3ay |
! |1+as+as |[1+as+as

(3) Chop contraction:

(2.5)

bobl + ai alag/bl | a3b1 | (47} | as |
2.6 — e
(26) b [oibataz [ bs  [bs [ bs
(4) Haircut contraction: for each o # a1 /by,
ayp — ab1 | a1as | ag(al — bla) | Qy |
(27) Oé+| b1 +| bQCLl —bleOA—CLQOé +| b3 +| b4

The even and odd contraction formulas are very classical (see [56, p. 21], [42,
p. 12-13], [54, p. J3]). The chop and haircut formulas can be verified directly. For
the most general contraction and extension, see [42] p. 10-16]. i

Let u = (u1,us,...) and v = (vg,v1,v2,...) be two sequences. Recall that the
Jacobi continued fraction attached to (u,v), or J-fraction, for short, is a continued
fraction of the form

Vo | ,le2 | 1)2172 |
2. = — _
(2:8) f(z) |1—|—u1:10 |1+uQx |1+u3x

L There were some errors in the first edition of the book by Perron [41] p. 199], when the
author derives the formula for the general contraction. These errors had been fixed in the second
edition [42] p. 11]
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The basic properties on J-fractions can be found in [29] 30, @, 56] 541 22] [18]. We
emphasize the fact that the Hankel determinants can be calculated from the J-
fraction by means of the following fundamental relation, first stated by Heilermann
in 1846 [22]:

(2.9) Hn(f) = Ugv?_lvg_Q U _gUp 1

The Hankel determinants of a power series f can be calculated by the above
fundamental relation if the J-fraction exists, which is equivalent to the fact that
all Hankel determinants of f are nonzero. If some of the Hankel determinants
are zero, we must use the Hankel continued fraction (H-fraction, for short) whose
existence and uniqueness are guaranteed without any condition for the power series.
The Hankel determinants can also be evaluated by using the Hankel continued
fraction. Let us recall the basic definition and properties of the Hankel continued
fractions [21].

Definition 2.1. For each positive integer §, a super continued fraction associated
with 0, called super d-fraction for short, is defined to be a continued fraction of the
following form

ko |

VT lek“+k1+5 | Vo

ki+ka+4 |
T[Tt w@z  [T4u@z [ 1T+u(@)z

(2.10) F(z)

where v; # 0 are constants, k; are nonnegative integers and u;(z) are polynomials
of degree less than or equal to k;_1 + J — 2. By convention, 0 is of degree —1.

When 6 =1 (resp. 6 = 2) and all k; = 0, the super -fraction (2.10) is the tradi-
tional S-fraction (resp. J-fraction). A super 2-fraction is called Hankel continued
fraction.

Theorem 2.2. (i) Let 0 be a positive integer. Each super §-fraction defines a power
series, and conversely, for each power series F(x), the super d-fraction expansion of
F(z) exists and is unique. (i) Let F(x) be a power series such that its H-fraction

is given by (ZI0) with 6 = 2. Then, all non-vanishing Hankel determinants of F(z)
are given by

(2'11) Hsj (F(ac)) _ (_1)@1}5]‘1);]‘*51”;;'752 . ,Us_j*ijlj

v
where €; = Zz;é ki(k; +1)/2 and s; = ko + k1 + -+ kj—1 + j for every j > 0.
See [211, [47, 5], 23] for the proof of Theorem 221

A short historical remark. The main idea of the determinant formula (2.I1]) may
already be known by Magnus in 1970 [35]. The present form appeared for the first
time in the Ph.D. thesis by Emmanuel Roblet in 1994 [47, p. 44-56] B. It was
independently rediscovered by Buslaev in 2010 [5], by Boltz-Tyaglov in 2012 [23],
and by the author in 2016 [2I]. The name of the continued fraction called by
Roblet and Buslaev is P-fraction. The P-fraction ( “principal part plus” fraction)
was introduced by Magnus in 1962 [33] [34], 35, 25], also independently by Mills-
Robbins in 1986 [36] and by Boltz-Tyaglov in 2012 [23]. Notice that there are
slight differences among the P-fraction used by Roblet [47], the P-fraction used by
Buslaev [5], and the Hankel continued fraction used in [2I]. Roblet’s P-fraction

2 The author is grateful to Xavier Viennot, who gave me the reference to the Roblet’s thesis.
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is faithful to the Magnus’s up to some equivalent transformations, and has the
following form [47, (2.9)]:

)\1(17N1 | B )\2IN1+N2 | B /\3:17N2+N3 |

Because of the presence of the constant term fj in the above fraction, it is necessary
to consider the Hankel determinants of (f1, f2, f3, . ..) under the Magnus P-fraction
notation rather than of (fo, f1, f2,...) 41, (2.14), (2.18)]. On the other hand, Bus-
laev used the P-fraction notion without quoting Magnus’s papers. Moreover, the
condition N; > 1, needed in the original P-fraction notation, had been removed [5].

A special case of ([ZTI1]) for a restricted family of C-fractions was obtained by
Scott-Wall in 1940 [48] and independently by Cigler in 2013 [7]. It is interesting
to notice that almost all these studies were of theoretical nature with no explicit
examples, except some artificial ones in Cigler’s paper. Finally, note that several
real-life expansions and applications are given in [21], together with an analog of
Euler-Lagrange theorem about periodic continued fraction for power series over a
finite field.

F(z) = fo+ fiz + fox® +--- = fo +

3. COMBINATORIAL INTERPRETATIONS OF THE EULER NUMBERS

It is well-known that the Euler numbers count the alternating permutations [2].
The proof of our main Theorem [I.1] leads us to derive further combinatorial inter-
pretations of the Euler numbers.

Given a permutation ¢ = 0109 -0, with the convention o9 = 0,41 = +00.
For each j € {1,2,...,n}, the letter o; is called descent if o; > o;41; ascent if
0 < 0jy1; peak if ;1 < 05 > 04415 valley if 0,1 > 0 < 0j41; double ascent
if Oj—1 < 05 < 0j+1; double descent if Oj—1 > 05 > 041 (See [9, 40, 16l [57) 58]
or [62] Exercise 1.61]). Let des(o),val(o),pk(c),da(c),dd(c) be the numbers of
descents, valleys, peaks, double ascents and double descents of ¢. In 1974, Carlitz
and Scoville obtained the exponential generating function of the quadruple statistic
(val, pk,da, dd) for the permutations [0 [16], 40].

" val(o k(o) da(o) dd(o €
O S A

! g1t — oy e@2’
n>1 ceS,

a2x a1x
2T __ %1

where uz + us = a1 + a9 and ujus = aqas.

Definition 3.1. We define four weight functions Wi (o), Wa (o), W5 (o), Wy (o) for
the permutations o = o105 ...0,.

n

(32) Wi (0—) — H(_l)X(j is a double ascent)j
Jj=2
n j is a peak
(33) Wa (0—) — H X(J is a double ascent) (l) XU peak) ,
=2 2
n 1 x(j is not a peak)
(3.4) Wi(o) = H <§) ,
Jj=2
n—1 . (J is a ascent) .\ Xx(j is a descent)
L+i\* 1—14
(3.5) Wao) = ( ! ) < : ) |

1

<
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where ¢ is the imaginary unit.

Theorem 3.1. For each positive integer n we have

(3.6) > Walo)= > Walo)= > Wailo) = Ey,

ceS, ceG, ceG,
and
E,; ifnis odd
(37) 3 Wio) = un
ol 0. if n is even

For example, with n = 3 and F,, = 2, the 6 permutations with their four weights
are listed below. We check that Theorem B.1]is true for n = 3.

o W, Wy | W3 W,

12 [ (-1)-(-1)]0-05-2 [
132 1-1 o113 | L. L
213 | 1-(=1) |[1-0]%-3 ) L2 1
231 1-1 o113 | L. L
312 | 1-(=1) |[1-0]3- 3|2 1
321 1-1 1.1 (3.4 5.4
sum 2 2 2 2

Notice that although the four results are the same, the four summations them-
selves are quite different:

> Wilo)=1+1-14+1-1+1=2,

1 1
ZW2(0)20+5+0+5+0+1:2,

11 1 1 1 1
= — — — — — - = 2
> Wa(o) 1tstitstiti=2
¢ 1 1 1 1 4
ZW4(U)—§+§+§+§+§—§—2
It is well-known [11, 52 [40] that the exponential generating function of the

Eulerian polynomials

(3.8) Ap(t) = Z #l+des(o)

oeS,
is

z" 1—1t
(3.9) 1+ Anlt)— = T

n>1

Theorem B.I] can be proved by using [3.9) and the Carlitz-Scoville formula without
difficulty. Let P,(t,s) be the ordinary generating function of peaks and double
ascents for the permutations:

(3.10) P, (t,s) = Z Pk(o) gda(a)
oeS,
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From the Carlitz-Scoville ([6], see also [16]), we have
n 24+ 2eu(t,s)z

(3.11) P(xst,5) = > Pult,s) =

where u(t, s) = /(1 + 5)? — 4t.

Proof of Theorem[31l. We have the following specializations.
(1) When t =1 and s = —1, u(1, —1) = 2¢. Identity (BII]) becomes

) + 262;m'

Pt = = o piean

= tan(z).

Thus, relation (37 is true.
(2) When t = 1/2 and s = 0, u(1/2,0) = i. Identity (3I1) becomes

—2 4 v
P@;1/2,0) = Gy =@ —qyem — tan(@) +sec(z) — 1.
Thus
tan(x) + sec(z) = P(x;1/2,0) + 1
or

E, = Py(1/2,0).  (n>1)
(3) When t = 2 and s = 1, u(2,1) = 2i. Identity (BI1) becomes

P:2,1) = f2 + 262”' _ tan(2z) 4 sec(2z) — 1'
(2 4+ 2i) — (2 — 2i)e?@? 2
Thus
tan(z) + sec(z) = 2P(x/2;2,1) + 1
or

E,=2""P,(2,1). (n>1)
(4) When t = 7. Identity ([B39]) becomes

a1 —i  tan((1414)x) +sec((1 +i)x) — i
1+ZA"(’)H_ 1—iet=0z 1—i '
n>1
Thus )
n (2 "
tan(x) —+ SeC(.I) = 1 —+ Z WF
n>1
or
E,=—i(1+)'"™A,(i). (n>1)
So that

144 asc(o) 1—3 des(o)

ce6S,

(1+s+u(t,s)) — (1+s—u(t,s))ewt:s)z’

O

We also provide a combinatorial proof of Theorem Bl by using the (modified)
Foata-Strehl action. First, let x be a letter of a permutation ¢ = 0102 ---0,. The
x-factorization of o is defined to be the sequence (w1, ws, z, wy, ws), where (1) the
juxtaposition product wiwezwaws is equal to o; (2) ws is the longest right factor
of 1@ -+ x;_1, all letters of which are greater than x; (3) wy is the longest left

factor of ;1122 - - Ty, all letters of which are greater than z.
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FIGURE 1. The modified Foata-Strehl bijection ¢!,

Foata and Strehl [I3] introduced the involution ¢, defined by
(3.12) 0z (0) = wywsTWawy.

Brandén [4] [32] [49] [58] modified ¢, and defined

' (o) {cpE (o), if z is a double ascent or double descent of o;
Pe\0) =

o, if x is a valley or a peak of o.

It is clear that the ¢/, ’s are involutions and commute. Visually, the bijection ¢/, :
o +— ¢’ consists of moving the letter z horizontally such that (1) if z is a double
ascent (resp. double descent) of o, it so becomes a double descent (resp. ascent) of
0'; (2) The letter x is greater than all letters it already exceeds when moving (see
Figure [IJ).

For each subset S C {1,2,...,n} define the function ¢’ : &, - &,, by

ps(0) = [T ¥ (o).
rzes
Hence, the group Z% acts on &,, via the function ¢’. This action will be called the
Modified Foata-Strehl action.

Combinatorial proof of Theorem[31l (1) Consider the weight function W;. For
each permutation o let X (o) be the set of double ascents and double descents. If
X(o) # 0, let x = min(X(0)). Then, the map o — o' = ¢, (o) is an involution
having the property that da(c) = da(¢’)+1. Hence, Wi (o)+W1(c’) = 0. Therefore,

Z Wi(o) = #{o € &,,X(c) =0} :=p.

oeS,
If n is even, there is at least one double ascent or double descent, so that p = 0. If n
is odd, the permutations without any double ascent or double descent are just the
alternating permutations beginning with an ascent. In this case, we have p = E,
by André’s result [2].

(2) Consider the weight function Ws. The weighted sum of the modified Foata-
Strehl orbits Orb(c) with the weight (1/2)PX(?) is exactly the number of the original
Foata-Strehl orbits, which is equal to the Euler numbers [13] [14].

(3) Consider the weight function Ws. For o € &,, let Orb(o) = {g(0) : g € Z4}
be the orbit of o under the modified Foata-Strehl action. It is clear that (i) there is
a unique permutation in Orb(o) which has no double ascent; (ii) all permutations
in Orb(o) have the same numbers of peaks. By definition of W5 we know that Ws
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is evaluated for all orbits with only one representative per orbit (for example, the
permutation without double ascent). Consequently, for each orbit Orb(c) we can
evaluate all the elements in the orbit, then, divide by the cardinality of the orbit,
which is equal to 27~1=2Pk(?) By (2) we have

7 B (1/2)pk(0) -
By = Z W2 (U) - Z on—1-2pk(c) Z on—1— pk Z W3
cc6, cc6, ceS, ceG,

(4) Recall the following formula [49] [13] 4], which can be proved by using the
modified Foata-Strehl action:

Z tdes(a) _ tpk(a’) (1 + t)n—1—2 pk(a’)'
T€Orb(o)

For the same reason as (3) we have

Z Wa(o) Z (¥)asC(U) (1;i>des(a)

eSS, oceG,
(1+3)'"A,(»0)
,L'pk(a') (1 + ,L')n—l—2 pk(o)

_ N1—n
- (1 + Z) Z 9n—1-2pk(o)
oeS,
1
= Z n—1—pk(o) = Ep. O
oeS,

Remark. The two weight functions W3 and W, are also connected by Stem-
bridge’s formula [53] 58] 4]

4. PROOFS OF THEOREMS [[.1] AND

In his work on combinatorial aspects of continued fractions Flajolet [9, Theorem
3A] obtained the continued fraction for the ordinary generating function of the
quadruple statistic (val, pk, da, dd). § By adding a superfluous variable u;, because
val(o) = pk(o) 4+ 1 for each permutation o, we restate his theorem as follows.

Theorem 4.1. We have

n val(o) pk(o) da(e) dd(o)
Z x Z Uq Uo 'LL3 Uy
n>1 ceS,

ULx | 1 - 2uqugx? 2 - 3ujusx

|1—11L3—|—U4 |1—21L3+U4 |1—3U3—|—U4)

]

At this stage it is interesting to compare the previous continued fraction expres-
sion with the continued fraction derived for the exponential generating function, as
stated in Theorem

3 There is a typo in [9, Theorem 3A], the first numerator in the continued fraction of
P(u,v,w, z) should be z, instead of 1. This typo had not been fixed in the reprint [10] of the
paper.
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From the definitions of Wa(o) and P, (¢, s) given in B3] and BI0), respectively,
we have B, = P,(1/2,0) by Theorem[B.Il Hence, the specialization of identity (£.1])
with w3 = 1,u9 = 1/2,u3 = 0,us = 1 leads the following Theorem.

Theorem 4.2. We have the following continued fraction the Euler numbers

n T | x? | 32 622
(42) ;E"x =Yt 1o [1-sr [1-4

The general pattern for the coefficients ay, and by, are:

k
a = x, ak——<2)x2; bo=1, br=1-—kuz.

Notice that the above continued fraction is neither a super 1-fraction nor a super
2-fraction. Fortunately, we can use it to derive a super 1-fraction by a series of chop
contractions at appropriate positions.

Theorem 4.3. We have the following super 1-fraction expansion:
n_ 1 x x? | 3x2| 3x| 2£C| 2£C|
(43) D Bna _’T/_,T/_|1—2x 1 [T [T [1
_ 5:v|_ 1522 _ 21:62|_ 7:v|_ 4:v|_ 4x|
|1 |1-62 | 1 1 |1 |1

The general patterns for the coefficients a; and b; are:

a; =1, bo =0,
agr = —2kzx, ber = 1,
agk+1 = —2kw, ber+1 =1,
agkt2 = —(4k + 1)z, bekt+2 =1,
agrys = —(4k + 1)(2k + 1)2?, ber+s = 1 —2(2k + 1),
agpra = —(4k + 3)(2k + 1)22, bekia =1,
agr+s5 = —(4k + 3)x; bek+s = 1.

Proof. The theorem will be proved by using the chop contraction defined in (Z.0]) at
specific positions. Chop contraction at the first position of the continued fraction
on the right-hand side of (@3], we get

1 T | z? | 32 | 3x | 2x | 2x | 5% | 1522
M=z [1-2 [1 [1 [1 [1 [1 [i-6x
Then, chop at the 4th position:

1 T | x2 | 32 622 | 2x| 5x| 1522 |
M=z [1-2z [1-38z [1-2¢ [1 [1 [1-6z

and chop at the 5th position:

T | x? | 32 62> 1022 | 1522 |
-2z [1-2¢ [1-3z [1-4a [1-52 [I-6x

1+|

The next chop contraction is to be applied at position 8. In general, we contract
the second numerator that is a monomial in x of degree 1, and repeat. This will
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work since
4k +3)z| (@k+2)az]| (2k+2)a|
_| . _| - _| . R
- [k +3)2k+2)2? | (2k+2a]|
and
_ @k+a|  (@k45e|  (4k+5)@k+3)? |
| 1 | 1 | 1-2(2k+3)x
_ (h+5)@2h+20? | (Wh+5)k+3)? |

Finally, we will get the continued fraction on the right-hand side of (£2]). Hence,
(#3) is true. We verify that the continued fraction is a super 1-fraction, under
the general super continued fraction form (2I0) with 6 = 1 and (ko, k1, k2,...) =
(0,0,1,0,0,0)*, where the star sign means that the sequence is periodic and ob-
tained by repeating the underlying segment. ([

Proof of Theorem [Il. We prove the result by applying the even contraction on the
super 1-fraction (43) given in Theorem 3 Let us detail only the calculations for
the coefficients a’;. From the general formula for the even contraction (2.2) we have

CL/l = CleQ = 1,

aly = —asaszby = —a>,

aly, = —aek—206k—1b6k—aber = —(4k — 1)*(2k — 1)a®,
g1 = —A6k06kt1bop—2berr2 = —4k*a?,
3 yo = —Aekt206k+3b6kberra = —(4k + 1)%(2k + 1)a°.

The calculations for the coefficients b;- are similar. We verify that the continued

fraction (LA is a super 2-fraction, under the general super continued fraction form
(IEIII)With6=2and (ko,kl,kz,...)z(o,l,O)*. O

Proof of Theorem [[.4. The Hankel determinants are evaluated by using the fun-
damental theorem For the Hankel continued fraction given in (L3, we have
(ko, kl, kQ, .. ) = (0, 1, 0)* So that

(so, 81,82,...) =(0,1,3,4,5,7,8,9,11,12,13,15.. )
and
(€0, €1,€2,...) =(0,0,1,1,1,2,2,2,3,3,3,4,...).
Comparing (H) and ZI0), we have
vo =1,
U3k = 4k2,
Vg1 = (4k +1)%(2k + 1),
vspro = (4k + 3)*(2k + 1).

Put all these (vj), (s;), (¢;) into ([2.11]), we obtain the explicit Hankel determinant
formulas given in Theorem after simplification. d
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5. THE ORDINARY GENERATING FUNCTIONS OF THE EULER NUMBERS

In this section we consider the ordinary generating functions of the Euler num-
bers, and derive some Hankel continued fractions and some Hankel determinants
involving these numbers. Some formulas are known or easy to prove. We list them

here for a quick view and comparison. Let (sec(z))” =", <, Egl) é:;!.

Theorem 5.1. We have the following Hankel continued fraction expansions.

(r) on 1 1ra? 2(r +1)z? 3(r + 2)2?
(Fl) ZE2n$2 _,T/_| |— |— |_

[ 1 1
n>0
) m 1 | B 2r(r + 1)a? | B —12(r + 2)(r + 3)a? | B
(F2) ZEQ"I 12 [1—(5r+8)x | 1—(9r+32)z

n>0
The general patterns for the coefficients a; and b; are:
ar =1, ap=—2k+7r—3)(2k+r—4)(2k — 3)(2k — 2)2*%;
bo=0, by=1— (8k*+4kr — 16k — 3r + 8)z.

) n1_ r | 6(r+2)(r+1)a* |
(F3) Z;Eznw “[T-@+30z [ I-(s+mmz

The general patterns for the coefficients a; and b; are:
ay =rx, ap=—22k+7r—2)2k+r —3)(2k —1)(k — 1)a?;
bo=1, b=1—(8k*44kr — 8k —r + 2)z.

on 1 1-2:102| 2-3x2| 3-4x2|
(F4) ZE%H-Lr —,T/_| 1 _| 1 _| 1 —

n>0
n_ 1 | —1222 | —240z2 |
(F5) Z%EQ”“I T[2et1 [+l [0+l T

The general patterns for the coefficients a; and b; are:
a1 =1, ap=—4(2k —1)(2k — 3)(k — 1)%2%
bo=0, b =-2(2k—1)%2+1.
- 2 | 722 | 6002 |
n—1 __ _ _
(F6) > Bz “[1-8¢ [1-32¢ [1-72z

n>1

The general patterns for the coefficients a; and b; are:

a1 =2, ap=—42k—1)*(k — 1)ka? bo=0, by=1-8kx.

w_o L@ | 3% | 6a? |
(F7) ;)Enﬂx “[1-z [1-2¢ [1-3z [1-4z

The general patterns for the coefficients ar, and by, are given by

k
a; =1, ak——<2>:172; bo=0, br=1-kz.
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Eé;,) 2n—1 _ o
(F8) > e “[1-0Br+2)2°

2-30r+2)(r+1az' | 4-5(r+4)(r+3)z' |

| 1—(7r+18)2° | 1—(11r+50)2?
The general patterns for the coefficients a; and b; are:
a1 =z, ap=—2k—1)(2k —2)(2k — 34+ 7)(2k — 2 + r)z*;
bo=0, bp=1—(8k*—8k+4rk+2—r)z’

ontl x |_ 1-22. 324 |_ 3-42. 524 |_
(F9) §E2n+1$ T[1-2-1%2 [1-2-3%% [1-2-5%7

The general patterns for the coefficients a; and b; are:
ay =z, ap=—(2k —1)(2k — 2)%(2k — 3)z*;
bo =0, bp=1-2(2k—1)%2
1 | z? | 1823 | 5023 |

(F10) ;)En+ﬂ":|1—2x [T-dr [T-4e—167 [1-8z

922 | 19623 | 3242 |
[1-10z  [1-8zx—642? [1-14z

The general patterns for the coefficients a; and b; are:

a; = 1, bo = O,
askro = —2(4k — 1)%ka?, barro = —16k%2® — 4k + 1,
azkr1 = —2(4k + 1)%ka?, bakt1 = —2(3k + 1)z + 1,
azpi2 = —(2k + 1)%2?; bakro = —2(3k + 2)z + 1.
on—1 2z | 722% | 6002
D B R B e e s w7

n>1
The general patterns for the coefficients a; and b; are:
a1 =2z, ap=—4(2k —1)%(k — 1)ka*;
bo=0, by=1-—8k>2>
Proof. (F1) This is a well-known formula (see [56] p. 206], [9]).
(F2) First, replace 22 by z in (F1) we get

Mon_ L] Iz 200+1)z| 3(r+2z|
(5.1) > E)z _[T/ M o !

n>0

Even contraction on (5] yields (F2).
(F3) Odd contraction on (&.I)). Then, subtract by 1 and divide by x.
(F4) Divide z in (T4).
(F5) First, replace 22 by z in (F4), we get

n_ 1 1~2z| 2-3z| 3~4z|
(5.2) ZE271+IZ —,T/ —| 1 —| 1 —| 1 -

n>0
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Even contraction on (5.2) yields (F5).
(F6) Odd contraction on (5.2]). Then, subtract by 1 and divide by x.
(F7) Subtract by 1 and divide by x in ({#2).
(F8) Chop contraction on (F1) yields

Z Eé;)x% 1y ra? | 2(r + 1)a? | 3(r +2)a? | 4(r + 3)a? |

[1T—ra? | 1 Bl 1 Bl 1 a
n>0

Then, subtract by 1 and divide by rz in the above identity. We get

5 By sn_ @ | 2040|3042 |  4@r+3)2%]
T _| 1—ra? | 1 | 1 | 1

n>1
with the general patterns
ar =z, ap=—(k+r—1ka%
bp=0, bl=1—rz? b=1.

Notice that the previous continued fraction is not a super 1-fraction. Even contrac-
tion on the above fraction yields (F8), which is a H-fraction.
(F9) Take w =0 in (F8). We get (F9), by using the fact that

Eé;) 22n—1
r (2n—1)!

= l(sec(x)r)’ = tan(z) sec(x)".
n>1 r
(F10) This continued fraction is very similar to that given in Theorem [Tl How-
ever, unlike (CH)), which has a super 1-fraction (see Theorem F3]), (F10) does not
have a super 1-fraction. Thanks to the similarity of (F10) and (3], this proof is
suggested by the proof of Theorem [T.1]
Apply the haircut contraction as defined in [27) to (F7) with a = 1. We get

n x | x | 322 6> |
> Enpa Mt 1o [Tos [1-4@
n>0
Hence
. 1 | x | 322 | 622 |
(5.3) > Eniox “[1-z [1-2 [1-8z [1-4z _

n>0

This is neither a super 1-fraction, nor a super 2-fraction. Now, we claim that

n_ 1 x x 3£C| 622 |
(54) Z;E"””” —ﬁ—ﬁ _[T/_| T [1-@

1Ox2|_ 5z | 3:v|_ 3x|_m

[ 1 (1 [1 |1
with the general patterns
ap =1, bp=0, by=1—=x,
agrro = —2(4k + 1)ka?, berro = 1,
agrt1 = —(4k + 1)z, berr1 =1,
agr+2 = —(2k + 1)z, beryo = 1,

agpt+3 = —(2k + 1)z, berys =1,
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agr+a = —(4k + 3)z, bekta =1,
aghrs = —2(4k + 3)(k + 1)a?; berys = 1 — 4(k + 1)z

Notice that (4]) is neither a super 1-fraction nor a super 2-fraction.
By using the chop contractions at appropriate positions in the right-hand side
of (B4)), we successively get

1 x x 3z | 622 | 1022 | T | 3z |
-2z [1 [1 [1 [1-4 [ 1 [1 [1
B 1 | x | 3z | 622 | 1022 | T | 3z |
“[1-2 J1-2 [1-3z [1-4o [ 1 [1 [1
1 | T | 32 | 622 | 1022 | 1522

T[Tz [1-z [1-3z [I-4z [1-5z [1-3z
By using the general patterns we can obtain the right-hand side of (53]), so that
(E4) is true. Finally, an even contraction on (54) yields (F10). We verify that

(F10) is a H-fraction.
(F11) Replace z by x? and multiply by z in (F6). O

By using Theorem [Z2] the Hankel continued fractions (F1-F11) listed in The-
orem [0.1] implies the Hankel determinants formulas (H1-H11) in the next theorem
respectively.

Theorem 5.2. We have the following formulas for the Hankel determinants.
(H1) The Hankel determinants of (E(()T), 0, EéT), 0, Ey), ...) are

n—1
H, = Hk!r(r+1)(r+2)---(r+k—1).
k=1
In particular, when r =1, the Hankel determinants of (Ey,0, E2,0,Ey,...) are

n—1
H, =[] k"
k=1
(H2) The Hankel determinants of (Eér), Eér), Ey), ...) are

n—1
H, = [J@k)Ww(r+1)-(r+2k—1).
k=1
In particular, when r = 1, the Hankel determinants of (Eo, E2, E4,...) are

n—1
H, = [ @k
k=1
(H3) The Hankel determinants of (Eér), ir), ...) are
n—1
Hy, = [[@k+Dir(r+1)--- (r+ 2k).
k=0
In particular, when r = 1, the Hankel determinants of (Eq, Ey,...) are

n—1

H, =[] @k+1)P
k=1
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(H4) The Hankel determinants of (E1,0, E3,0,E5,...) are

n—1
H, =n![] k.
k=1

(H5) The Hankel determinant of (E1, Fs, Es,...) are

2n—1

H, =[] *"
k=1
(H6) The Hankel determinant of (Es, Fs,...) are
2n
H, =[] *"
k=1

(H7) The Hankel determinants of (E1, Ea, E3, Ey,...) are

' n—1

mn.
=" 12
. = g 11

H8) The Hankel determinants of (0, E. ") 7,0, E\" r,...) are
2 4

Hopi1 =0, Hapy=(— H ((2k+D)!(r +1)(r+2)--- (r +2k))*.

Or equivalently, the Hankel determinants of (0, EQT), 0, Ey), ...) are

n—1

Honi1 =0, Hy=(-1)"" [ (@k+Dir(r+1)(r +2)--- (r+2k))°.

k=1

In particular, when r = 1, the Hankel determinants of (0, F2,0, Ey,...) are
Hypi1 =0, Hyp=(— H (2k 4+ 1)1
(H9) The Hankel determinants of (0, E1,0, E5,0, Es,...) are
2n—1

Hypi1 =0, Hy=(-1)" J] &

(H10) The Hankel determinants of (Fa, Es, Ey4, E5,...) are

Hy =1,
2k—1
(—1)FE2(2k — 1)!12 .
Hay = O8k2—4k—2 H (25 + D
j=1
Hakerr = 28k2 4k+1 12 H 27 +1)
—1)F(2k + 1 !2 oo
Hypyo = ()28(k2—+4k) H(2J + 1
j=1

Hyp3=0

19
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(H11) The Hankel determinant of (0, Es,0, Es,...) are
2n
H, = (-1)" [ &
k=1

6. THE EXPONENTIAL GENERATING FUNCTIONS OF THE EULER NUMBERS

In this section we consider the exponential generating functions of the Euler
numbers. They are tan(z),sec(x),tan(zr) + sec(x) and their variants. Although
most continued fractions and Hankel determinants involving the Euler numbers are
for the ordinary generating functions (see Section [H), a few of them are about the
exponential generating functions. In 1761, Lambert [31] proved that r is irrational

by first deriving the following continued fraction expansion of tan(z) (see [56l p.
349 (91.7)])

5] 2] 2] a2
(6.1) tan(:v)—,T/—|3 5 7 .
or [56, p. 349 (91.6)] A

), 2], 2], 2
(6.2) tanh(x)—,T/+|3 +|5 +|7 4.

Also, Hankel determinants of the Euler numbers divided by the factorial numbers
E,/n! are studied in [38].

We have seen the Flajolet continued fraction ([I]) for the ordinary generating
function of the quadruple statistic (val, pk,da,dd) [9], and the Carlitz-Scoville ex-
ponential generating function [B1) for the same statistic [6]. The next continued
fraction for their exponential generating function seems to be new.

Theorem 6.1. We have the following continued fraction of the exponential gener-
ating function for the quadruple statistic (val, pk, da,dd):

" val(o k(o) da(o) dd(o
63) 3T utegHe e, i)

n>1 ’ oeS,

w | (c? — uyug)z? | (c? —uyug)z? | (c? — uyug)z? |
_| 1—cx +| 3

where ¢ = (ug + u4)/2.

Proof. Let F(x) be the left-hand side of ([6.3). By using Carlitz-Scoville formula
BID), with ug + us = a1 + a9, urus = a1ag, and 7 = (a1 — ag)/2, we have

Q2T Q1T
Uy e —e
F(.I) = ajx asx’
Tr et — pe*?
uy eTT _ o TE
T T(e‘rx + ef‘rx) _ C(eTCE _ 6771)’
Ui

- T .

tanh(7z) cr

M)

;?)'
)

ol

4 There are two typos in the equalities (91.6). The middle side Z;’((f"j))z should be Z;((
2'4

wlw
I

A
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By using Lambert’s continued fraction (G.II), we obtain

T2(E

5

U1

_ 72x2|
| 1—cx

3

2|+72x2|
| 7

(6.4) F(z) | + +) +o-

Replace 72 by (a1 — a2)?/2% = ¢® — ujus, we obtain (6.3)). O

Comparing ([@3]) and (@I]), we can roughly say that the formal Laplace trans-
formation converts the continued fraction on the right-hand side of (E3]) to the
continued fraction on the right-hand side of ({&I]).

Theorem 6.2. We have the following Hankel fraction expansions.

x2n 1 %x2 | %x2 | %x2 |
(F12) ZE2"“W_[T/_|”1 _|%51 _|571 .

n>0
(F13) g%EQ”“ (2nx: o [1 —1§x | 7 fi;ziiii | 7 15'_%'%1 g
(F14) §E2n+3 (;;T;)! -1 —%%ﬁ | - 1#2%95; | g 17-_9%%22 |
(F15) tan(@) = =12 | 7| 1@17:2 | 7| 15_'71;1?}2 | e -
(F16) %%E”“ (nj—nl)! | 1—1%;5 | 7 2%‘1562 | 7 6'_11(fx2 | | ﬁflxz |
(F17) tan(a) + sec(z) = L | + 1ix§x|+| 1%2 |+| 11+12:ij|+“
(F18) ;Z;E"”(nfm! B 1—%%x |JF| 1%?5:0 |‘L| 1?51; |‘L| 1%;::0 o
(FF19) ;E"”(nf?))! | 1—%§x | B 1%;; | B 12—%%55 s

The general patterns of the coefficients a; and b; are:

1 (J—1)2(+1)%* (252425 + 1)z

==, a4 =— bo=0, bj =1+ (—1)
A Y TR o7 M A T s 1
" 5 | 11 2 | 475 .2
F20 E, - 24 3750
(F20) D B gy “[T= e T[Te % T *

n>0
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The general patterns for the coefficients a; and b; are:

SR T € k¥ Bt )] Vit B 1€ Bk [ B R
I WP+ - @I+ DG+
N S 2(-1) (+2)(+ 1%«

A (PH3i+ D2+ - DEj+3)2j+1)

22 1 2x2| Lx2| ix2|
(F21) ZE%H T3 ﬁJ_|51 _|21(i _|12? .

n>0
The general patterns for the coefficients a; are:
—2k+1)(k+1)
(4k — 1)(4k + 1)(2k — 1)k’
1 1 —k(2k —1)
al==; a = .
3 M T Uk D)4k +3)(2k + 1)(k+ 1)

a2k =

z" l | 3 512 7952 | 7~9%-11302 |
(F22) HZZOE271+3(2 +3 |1__:17 —|1__ _|1—%x — ..
o l | 12 | 56 .2 |
F23 E 5 _ 5202 1061775 _
( : rg) e (2n +5)! | 1- _x | L= 2130110 | I- 46;0

The general patterns for the coefficients a; and b; are:

2 2+ D)2j-3)G+ D~ Da?

ay = -, a; = )
15 7 (4145 - 1)° (45— 3)(2) — 1)°5?
b0, b1 (874 +8734+2252+105 +3)z
T T T i3 )2+ D2 -G+ D)
> " i | o |
(F24) E2'n,+7 315, _ 1287 95U ...
"0 +7)! | 1-352 [ 1- g0

The general patterns for the coefficients a; and b; are:

—(452+105+3) (452 -6 —-1)(25+3)(25 —3)(j +2)(j — 1)2°

aj = ;
T A2 +25 =345+ 3) (4 + 12 (45 - )25+ )25 — )G+ 1)j
17 =0 b =1 2 (16 74 + 48 5% + 164 j% + 192 j + 45)x

a1 = -3 =U, b, =1— . ; ; . ; ; .

7315 0 J (472 +10j+3)(42+25—3)4j+5)(4j+ 1)

Proof. (F12) Apply the equivalence transformations [56, p. 19] on the Lambert
continued fraction (G.I) and divide by z.
(F13) Replace 22 by x in (F12) we get

o _ ] ggr] ger| g
(f13) ZEQ”HW_[T/TIT _|3i3 _|5I ...

Then, even contraction on (f13) yields (F13).
(F14) Odd contraction on (F12); subtract by 1; divide by x.
(F15) Replace = by 22 in (F13), and multiply by x. We get the H-fraction (F15).
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(F16) By Theorem B with the weight Wa, we have E,, = P,(1/2,0). Hence,
with the specialization us = 1/2,u3 = 0,u3 = ug = 1 in Theorem [6.I] we have
c=1/2,c* —ujug = 1/4 —1/2 = —1/4. Identity (63]) becomes.

1 1 1
ZE I Bl N Tl D ol
[1-3z | 3 e | 7

n>1

Divide the above continued fraction by x, and normalize to J-fraction by equivalence
transformations [56] p. 19], we get (F16).
(F17) We claim that

1 1
(f17)  tan(x) + sec(x ,—/ ,—/ 1$|_|51x|_|—?1:1:|+'”

The general patterns for the coefficients a; are:

b

a1 =1, ags=—z,

x x x x
Bk—2 T TRE o T TRy MM TRy
0Odd contraction on (f17), subtract by 1, divide by z, we get (F16). Hence, (f17) is
true. Even contraction on (f17) implies (F17).

(F18) Let F(z) = tan(z) + sec(x) and G(z) = ((F(z) — 1)/z — 1)/z. By (F17),
it suffices to verify that

A4k =

1

F=a) = 14z +22G(x)’

This is true, since F(z)F(—z) = 1.
(F19) We have

1 2. lx|  2g
(f18) ZE”+2 ﬁlJ _| 31 |+| 2zi |+| 4(1 |_

n>0

The general patterns for the coefficients a; are:
(=10 + D)% (1))
y  A2j = . )
22(2j + 1) TG+ 1225+ 1)
since, even contraction on (f18) implies (F18). Now, odd contraction on (f18),
subtract by 1/2, divide by z, we get (F19).
(F20) We have

1 5 3 44
(flg) ZEn+3 ) riJ_|81x|_|20{)x|+|2215$|+

n>0

a1:1/2, az; =

The general patterns for the coefficients a; are:

v = VG2 43+ 1)z
RARPTPE +J—1)(2J+1)(j+1)2’
ap = s 2541 =

2(52 + 3j +1)(27+3)( + 1)
since, even contraction on (f19) implies (F19). Now odd contraction on (f19),
subtract by 1/3, divide by z, we get (F20).

(F21) Even contraction on (F21) is the same as (F14) divided by z.

(F22) From (F14), divide by z, replace 2% by z.
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(F23) Replace 22 by x in (F21), we get the S-fraction:

n 1 5

x 1 2z | z | z |
_ x] o 1267 | _ ...
(f22) ;E%H-S on 3) 1 B 1 1

For the general patterns see (F21). Odd contraction on (f22), subtract by 1/3,
divide by z. We get (F23).
(F24) We claim the S-fraction:

" L R 364 .
— 15 42 _ _ _
(£23) HZN)E%H,(Z A e ﬁz_/ rwljJ

The general patterns for the coefficients a; are:
—(45 + 6) (45 + 8)(45% + 105 + 3)x
(47 +1)(47 +2)(45 + 3)(45 + 4) (452 + 25 — 3)’
2 (4] () (Uf2 +2) ~ B)a
15’ ST 45 +2) (47 + 3)(45 + 4) (45 + 5) (452 + 105 + 3)
Even contraction on (£23), we get (F23). So that (£23) is true. Now, odd contraction
n (23), subtract by 2/15, divide by . We get (F24). O

By using Theorem 22 the Hankel continued fractions (F12-F24) listed in The-
orem [6.2] imply the Hankel determinants formulas (H12-H24) in the next theorem
respectively.

a2 =

ap =

Theorem 6.3. We have the following formulas for the Hankel determinants.
(H12) The Hankel determinants of (E1/1!,0, E3/3' 0, E5/51,0,...) are

2
Hy=1, H, =200 ot
’ (2n—1' 2k — 1)

(H13) The Hankel determinants of (E1/1!, E3/3!7 E5/5!7 ...) are
2n—2
k!

Hy=1, H, =2r"DEn-1) I I S
’ n '
- (2k+1)!

e Hankel determinants o 3/3! /0!, ...) are
(H14) The Hankel d f (0, E5/3!,0,E5/5!,...)
2n—1 k'2
Ho, =0; Hyp = (-1 n22n(2n71) M
2t1 =00 Han = (=1) ]};[1(2k+1)!2
(H15) The Hankel determinants of (0, E1/1!,0, E3/3!,0, E5/5!,...) are
2n—2 k|2
Hopni1=0; Hy=1, Hy,=(—1)"22r-Dn-1) A —
2n—+1 3 0 5 2 ( ) kl;[l (2]€+1)'2

(H16) The Hankel determinant of (E1/1!, E2/2' E3/3' E4/4' ..) are

(n—1)!
2"12n—1' 2k+1

Hy=1, H,=

(H17) The Hankel determinants of (EO/O!,El/l!,E2/2!,E3/3!, ...) are

n—1
_ 1 (k—1)1?
_ _ n(n—1)/2
Hy=1, Hy= (-1 on-1 kH (2k —1)12°
=2
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(H18) The Hankel determinant of (FE2/2!, E3/3!,E4/4!,...) are

el o (B—1)12

— (_1\nn=1)/2 )

Hy = (-1) on H (2k—1)!2'
k=2

(H19) The Hankel determinants of (E3/3!, E4/4!, E5/5!,...) are

g, — (D D) ’ﬁl ( 12

22n+ 1! 2L (2k+1)R
(H20) The Hankel determinants of (E4/4!, E5/5!, Eg/6!,...) are

H, = (1 )n(n 1)/2(n+1)(n+2)(n +3n4+1) 1~ k12
" on+1 s 2k + 1)1
(H21) The Hankel determinants of (E3/3!,0, E5/5!, ...) are
o g1 (204 2) e
o (dn+1)! ) 2k+1'2’
2n+1)(2n+2)! k12
H. " _ 24n(n+1) ( )
et (4n + 3)! 1;[1 (2k +1)12
(H22) The Hankel determinants of (Es/3!, E5/5!, E7/7!,...) are

2n—1 K
H, = 2n(2n—1) : )
kl;[l 2k 1 1)

(H23) The Hankel determinants of (Es/5!, E7/7!,...) are

2n
k!
H, =2"""(n+1)2n+1) [[ 50—
|
@2k +1)!

(H24) The Hankel determinants of (E7/7!,Eq/9!,...) are

+)n+2)2n+3) 3 K
H, = 2°Cn9) (2 4+ 1)(4n? + 107 + 3) .
(2n +1)(4n° 4+ 10n + 3) 3 kl;[l 1)

7. NEW ¢-ANALOG OF THE EULER NUMBERS

There exist three kinds of ¢g-analogs of the tangent and secant numbers, defined
via (i) the g¢-sine and g-cosine functions introduced by Jackson [24] [12] [3], [45];
(ii) Lambert’s continued fraction (6.1I) of tan(x) (see |17, [44]); (iii) The continued
fractions (L3) and (L4) of the ordinary generating functions of these numbers
[27, 50, 19, 26].

Let [nlq=1+q+¢*+---+¢" 1, [n]l

(&), =

Version (iii) of the g-secant and g-tangent numbers are defined by

3 on _ 1 1]22° 2] 3)2a?
ERTRD o W T LT~ =T

n>0

[
=
_Q
S
_Q

- [n]q and
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(72) ZE2n+1(q)x2n+l :,%/ _| [1](1 -:{2]q£[]2 | _| [2]q -1[3]11,(62 | B

n>0

In the same manner, we now use our theorem .2 to define a new g-analog of the
Euler numbers as follows

W@ G | G ] ()
(7.3) > Eulg)a™ = 1+,ﬁ/ T[T— (2 ‘ [T | [Tz -

n>0

The general pattern for the coefficients ay and by are:

k
a; =z, ak——<):172; bo=1, bry=1-[k]qz
q

2
The first values of E,,(q) are listed below:
Eo(q) = Ex(q) = E2(q) = Es(q) =2,
Ei(g) = q+4,
Es(q) = 2¢° + 5¢ + 9,
Es(q) = ¢* + 5¢° + 14¢* + 20q + 21.

The specializations for ¢ = 1,0, —1 are

n =012 3 4 5 6 7 8 9
E, (1) =111 2 5 16 61 272 1385 7936
E, 00 =111 2 4 9 21 51 127 323

E,(-1) =111 2 3 6 11 24 51 122

Of course (E,(1)),>0 are just the Euler numbers. Also, it is easy to see that
(En(0)),>1 are the Motzkin numbers (see [9, Proposition 5], [5I, p. 238]) . The
most interesting case is ¢ = —1. We have a non-trivial explicit formula for E,,(—1),
as stated next.

Theorem 7.1. We have Ey(—1) =1 and

(7.4) En(—l)::Z_: ("_Z_l)k!

or equivalently,

" (n—k n_ 1 | :v2| x? | 2x2| 2x2|
(7.5) ZZ( k )k!x [Tz [1 [i-z [1 [1-2 7

n>0 k=0

The general patterns for the new coefficients a; and b; are:

a1 =1, asp = —ka?, aspp1 = —ka®; bo =0, bopy =1, bopy1 =1 — .
Proof. To prove identity (.0]), we need to guess a unified property for the following
continued fraction with one more parameter w:

Fu(z) = 1| (w+De®| (w2 (w42)2® |  (u+2)2®]
B N | | 1-= |1 | 1-2

It is clear that Fy(x) is the continued fraction in (Z.H). We claim that F,,(x) satisfies

the following differential equation

(x—1)2F(2) — (z —1)(z — 2)z*uFy (z)? + (2 — 1) (22 + 2 — 2) Fy(z) + (z — 2) = 0.
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Since we do not have efficient tools for guessing the above equation with the param-
eter u, our method consists of two steps: first guessing formulas for specific values
uw = 0,1,2,3,..., then finding a unified pattern. This method was fully detailed
with another example in [20].

To prove the above differential equation we let Sy (x) be its left-hand side. By
using the following relation between Fy,(x) and Fy41(z)

1
Fulz) = (u+1)a? ’

1= (u+ 1)a2Fupy ()

1—2

we can express Sy (z) in function of Fy,1(x) and F},_ (). After simplification we
obtain

(u+ 12245, (2) |
(u+ D)@ — De?Frpa(0) + (1 — 2 — (u+ 1)a?))?

(7.6) Su(x) =

Since the constant term in x of the denominator in the above fraction is equal to 1,
applying relation (6] iteratively yields that S,(z) = 0. Notice that we cannot
prove that S,(z) = 0 by induction, since the base case for induction would be
Soo(x) = 0. This is impossible to prove because Fu.(x) does not exist. Now take
u = 0. We have Sy(z) =0, or

(z — D)2’ Fj(z) + (z — 1)(22° + 2 — 2)Fy(2) + (v — 2) = 0.

Write «, := E,4+1(—1) for short. Comparing the coefficient of =™ in the above
equation, we know that the a,’s satisfy the recurrence relation

(7.7) 20, = 3ap—1+ (n — Dap_2 — (n — Va3,
with initial values ap = @3 = 1 and aps = 2. Finally we can prove (Il) by
Zeilberger’s algorithm [43]. O

Remark. Under the sequence A122852 in the OEIS [15], formula (T4) is given
by Paul Barry without proof and reference; as well as recurrence (7)) is stated by
R. J. Mathar as a conjecture. The above proofs of (7)) and (7)) are unexpectedly
non-trivial.

Applying Heilermann’s formula (Z9)) to the J-fraction (T.5]) we obtain

det (i (’ - k)k') =Tk e

k=0 i,7=0 k=1

1+7 . .
det (Z (Z + gﬂ_ k) k!)
k=0

The continued fractions (1) and (Z.2]) lead to several combinatorial interpre-
tations of the polynomials Fs,(q) and Fa,41(q), see [27, B0, 19, 26]. It would be
interesting to find a combinatorial model for the new g-Euler numbers E,(n).

and
2n

=[]k - 1)k
0 k=1

ij=
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