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UNCONDITIONAL REFLEXIVE POLYTOPES

FLORIAN KOHL, MCCABE OLSEN, AND RAMAN SANYAL

ABSTRACT. A convex body is unconditional if it is symmetric with respect to reflections in all co-
ordinate hyperplanes. In this paper, we investigate unconditional lattice polytopes with respect to
geometric, combinatorial, and algebraic properties. In particular, we characterize unconditional re-
flexive polytopes in terms of perfect graphs. As a prime example, we study the signed Birkhoff poly-
tope. Moreover, we derive constructions for Gale-dual pairs of polytopes and we explicitly describe
Gröbner bases for unconditional reflexive polytopes coming from partially ordered sets.

1. INTRODUCTION

A d-dimensional convex lattice polytope P ⊂ R
d is called reflexive if its polar dual P ∗ is again a

lattice polytope. Reflexive polytopes were introduced by Batyrev [Bat94] in the context of mirror
symmetry as a reflexive polytope and its dual give rise to a mirror-dual pair of Calabi–Yau man-
ifolds (c.f. [Cox15]). As thus, the results of Batyrev, and the subsequent connection with string
theory, have stimulated interest in the classification of reflexive polytopes both among mathemat-
ical and theoretical physics communities. As a consequence of a well-known result of Lagarias
and Ziegler [LZ91], there are only finitely many reflexive polytopes in each dimension, up to
unimodular equivalence. In two dimensions, it is a straightforward exercise to verify that there
are precisely 16 reflexive polygons, as depicted in Figure 1. While still finite, there are signif-
icantly more reflexive polytopes in higher dimensions. Kreuzer and Skarke [KS98, KS00] have
completely classified reflexive polytopes in dimensions 3 and 4, noting that there are exactly 4319
reflexive polytopes in dimension 3 and 473800776 reflexive polytopes in dimension 4. The number
of reflexive polytopes in dimension 5 is not known.

In recent years, there have been a number of results characterizing reflexive polytopes in known
classes of polytopes coming from combinatorics or optimization; see, for example, [BHS09, Tag10,
Ohs14, HMT15, CFS17]. The purpose of this paper is to study a class of reflexive polytopes moti-
vated by convex geometry and relate it to combinatorics. A convex body K ⊂ R

d is unconditional

if p ∈ K if and only if σp := (σ1p1, σ2p2, . . . , σdpd) ∈ K for all σ ∈ {−1,+1}d. Unconditional con-
vex bodies, for example, arise as unit balls in the theory of Banach spaces with a 1-unconditional
basis. They constitute a restricted yet surprisingly interesting class of convex bodies for which
a number of claims have been verified; cf. [BGVV14]. For example, we mention that the Mahler
conjecture is known to hold for unconditional convex bodies; see Section 3. In this paper, we in-
vestigate unconditional lattice polytopes and their relation to anti-blocking polytopes from combi-
natorial optimization. In particular, we completely characterize unconditional reflexive polytopes.

The structure of this paper is as follows. In Section 2, we briefly review notions and results from
discrete geometry and Ehrhart theory.
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FIGURE 1. All 16 reflexive 2-dimensional polytopes. This is Figure 1.5 in [Hof18].

In Section 3, we introduce and study unconditional and, more generally, locally anti-blocking
polytopes. The main result is Theorem 3.2 that relates regular, unimodular, and flag triangulations
to the associated anti-blocking polytopes.

In Section 4, we associate an unconditional lattice polytope UPG to every finite graph G. We
show in Theorems 4.6 and 4.9 that an unconditional polytope P is reflexive if and only if P = UPG

for some unique perfect graph G. This also implies that unconditional reflexive polytopes have
regular, unimodular triangulations.

Section 5 is devoted to a particular family of unconditional reflexive polytopes and is of inde-
pendent interest: We show that the type-B Birkhoff polytope or signed Birkhoff polytope BB(n),
that is, the convex hull of signed permutation matrices, is an unconditional reflexive polytope. We
compute normalized volumes and h∗-vectors ofBB(n) and its dual C(n) = BB(n)∗ for small values
of n.

The usual Birkhoff polytope and the Gardner polytope of [FHSS] appear as faces of BB(n) and
C(n), respectively. These two polytopes form a Gale-dual pair in the sense of [FHSS]. In Section 6,
we give a general construction for compressed Gale-dual pairs coming from CIS graphs.

In Section 7, we investigate unconditional polytopes associated to comparability graphs of
posets. In particular, we explicitly describe a quadratic square-free Gröbner basis for the corre-
sponding toric ideal.

We close with open questions and future directions in Section 8.

Acknowledgements. The first two authors would like to thank Matthias Beck, Benjamin Braun,
and Jan Hofmann for helpful comments and suggestions for this work. Furthermore, Figure 2
was created by Benjamin Schröter. Additionally, the authors thank Takayuki Hibi and Akiyoshi
Tsuchiya for organizing the 2018 Summer Workshop on Lattice Polytopes at Osaka University
where this work began. The third author thanks Kolja Knauer and Sebastian Manecke for insight-
ful conversations.

2. BACKGROUND

In this section, we provide a brief introduction to polytopes and Ehrhart theory. For additional
background and details, we refer the reader to the excellent books [BR15, Zie95]. A polytope in R

d
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is the inclusion-minimal convex set P = conv(v1, . . . ,vn) containing a given collection of points
v1, . . . ,vn ∈ R

d. If v1, . . . ,vn ∈ Z
d, then P is called a lattice polytope. The unique inclusion-

minimal set V ⊆ P such that P = conv(V ) is called the vertex set and is denoted by V (P ). By the
Minkowski–Weyl theorem, polytopes are precisely the bounded sets of the form

P = {x ∈ R
d : 〈ai,x〉 ≤ bi for i = 1, . . . ,m}

for some a1, . . . ,am ∈ R
d and b1, . . . , bm ∈ R. If 〈ai,x〉 ≤ bi is irredundant, then F = P ∩{〈ai,x〉 =

bi} is a facet and the inequality is facet-defining.
The dimension of a polytopeP is defined to be the dimension of its affine span. A d-dimensional

polytope has at least d + 1 vertices and a d-polytope with exactly d + 1 many vertices is called a
d-simplex. A d-simplex ∆ = conv{v0,v1, . . . ,vd} is called unimodular if v1 − v0, v2 − v0, . . . ,
vd − v0 form a basis for the lattice Z

d, or equivalently if vol(∆) = 1
d! , where vol is the Euclidean

volume. For lattice polytopes P ⊂ R
d, we define the normalized volume Vol(P ) := d! vol(P ).

So unimodular simplices are the lattice polytopes with normalized volume 1. We say that two
lattice polytopes P,P ′ ⊂ R

d are unimodularly equivalent if P ′ = T (P ) for some transformation
T (x) = Wx + v with W ∈ SLd(Z) and and v ∈ Z

d. In particular, any two unimodular simplices
are unimodularly equivalent.

Given a lattice d-polytope P and t ∈ Z≥1, let tP := {t · x : x ∈ P} be the tth dilate of P . The
lattice-point enumeration function

ehrP (t) := |tP ∩ Z
d|.

is called the Ehrhart polynomial. By a famous result of Ehrhart [Ehr62, Thm. 1], this function
agrees with a polynomial in the variable t of degree d with leading coefficient vol(P ).

This also implies that the formal generating function

1 +
∑

t≥1

ehrP (t)z
t =

h∗0 + h∗1z + · · ·+ h∗dz
d

(1− z)d+1

is a rational function with denominator (1− z)d+1 and that the degree of the numerator is at most
d (see, e.g., [BR15, Lem 3.9]). We call the numerator the h∗-polynomial of P . The coefficient
vector h∗P = (h∗0, h

∗
1, . . . , h

∗
d) ∈ Z

d+1 is called the h∗-vector of P . One should note that the Ehrhart
polynomial is invariant under unimodular transformations.

Theorem 2.1 ([Sta80, Sta93]). Let P ⊆ Q be a lattice polytopes. Then

0 ≤ h∗i (P ) ≤ h∗i (Q)

for all i = 0, . . . , d.

The h∗-vector encodes a lot of information about the underlying polytope. This is nicely illus-
trated in the case of reflexive polytopes. For a d-polytope P ⊂ R

d with 0 in the interior, we define
the (polar) dual polytope

P ∗ := {y ∈ R
d : 〈y,x〉 ≤ 1 for all x ∈ P} .

Definition 2.2. Let P ⊂ R
d be a d-dimensional lattice polytope that contains the origin in its

interior. We say that P is reflexive if P ∗ is also a lattice polytope. Equivalently, P is reflexive if it
has a description of the form

P = {x ∈ R
d : Ax ≤ 1},

where A is an integral matrix.

Quite surprisingly, reflexivity can be completely characterized by enumerative data of the h∗-
vector.
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Theorem 2.3 ([Hib92, Thm. 2.1]). Let P ⊂ R
d be a d-dimensional lattice polytope with h∗(P ) =

(h∗0, . . . , h
∗
d). Then P is unimodularly equivalent to a reflexive polytope if and only if h∗k = h∗d−k for

all 0 ≤ k ≤
⌊

d
2

⌋

.

The reflexivity property is also deeply related to commutative algebra. A polytopeP is reflexive
if the canonical module of the associated graded algebra k[P ] is (up to a shift in grading) isomor-
phic to k[P ] and its minimal generator has degree 1. If one allows the unique minimal generator to
have arbitrary degree, one arrives at the notion of Gorenstein rings, for details we refer to [BG09,
Sec 6.C]. We say that P is Gorenstein if there exists a c ∈ Z≥1 such that cP is unimodularly equiv-
alent to a reflexive polytope. This is equivalent to saying that k[P ] is Gorenstein. The dilation
factor c is often called the codegree. In particular, reflexive polytopes are Gorenstein of codegree
1. By combining results of Stanley [Sta78] and De Negri–Hibi [DNH97], we have a characteriza-
tion of the Gorenstein property in terms of the h∗-vector. Namely, P is Gorenstein if and only if
h∗i = h∗d−c+1−i for all i.

Aside from examining algebraic properties of lattice polytopes, one can also investigate discrete
geometric properties. Every lattice polytope admits a subdivision into lattice simplices. Even
more, one can guarantee that every lattice point contained in a polytope corresponds to a vertex
of such a subdivision. However, one cannot guarantee the existence of a subdivision where all
simplices are unimodular when the dimension is greater than 2. This leads us to our next defini-
tion:

Definition 2.4. A triangulation T of a lattice d-dimensional polytope P with vertices in V is a
collection of lattice d-dimensional simplices with vertices in V covering P and such that any two
simplices meet in a common face. We call T unimodular if all simplices are unimodular.

A triangulation T is regular if there is a convex, piecewise-linear function ω : P → R whose
domains of linearity are exactly the simplices in T . Such a function is completely described by
assigning values ω(v) for v ∈ V .

A triangulation is flag if the inclusion-minimal sets of vertices not forming a face in T are all of
cardinality 2.

Given a lattice polytope P , a pulling triangulation is a triangulation obtained by a sequence of
pulling refinements. Given v ∈ P ∩ Z

d and a lattice subdivision S , pull
v
P is the refined lattice

subdivision induced by replacing every face F ∈ S such that v ∈ F with the pyramids conv(v, F ′),
for each face F ′ of F that does not contain v. Such refinements preserve regularity and thus a
triangulation constructed by a sequence of pulling refinements is a regular triangulation. The
reader should consult [DLRS10, HPPS14] for more details.

A special class of polytopes which possess regular, unimodular triangulations are compressed
polytopes. A polytopeP is compressed if every pulling triangulation is unimodular [Sta80]. In the
interest of providing a useful characterization of compressed polytopes, we must define the notion
of width of a facet. Let P ⊂ R

d be a d-dimensional lattice polytope and Fi = P ∩ {x : 〈ai,x〉 = bi}
a facet. We assume that ai is primitive, that is, its coordinates are coprime. The width of Fi is

max
p∈P

〈ai,p〉 −min
p∈P

〈ai,p〉 .

Theorem 2.5 ([OH01, Thm. 1.1] [Sul06, Thm. 2.4]). Let P ⊂ R
d be a full-dimensional lattice polytope.

The following are equivalent:

(1) P is compressed;
(2) P has width one with respect to all its facets;
(3) P is unimodularly equivalent to the intersection of a unit cube with an affine space.

Definition 2.6. A lattice polytope P has the integer decomposition property (IDP) if for any pos-
itive integer t and for all x ∈ tP ∩ Z

d, there exists v1, . . . ,vt ∈ P ∩ Z
d such that x = v1 + · · ·+ vd.



UNCONDITIONAL REFLEXIVE POLYTOPES 5

One should note that if P has a unimodular triangulation, then P has the IDP. However, there
are examples of polytopes which have the IDP, yet do not even admit a unimodular cover, that
is, a covering of P by unimodular simplices, see [BG99, Sec. 3]. A more complete hierarchy of
covering properties can be found in [HPPS14].

We say that h∗P is unimodal if there exists a k such that h∗0 ≤ h∗1 ≤ · · · ≤ h∗k ≥ · · · ≥ h∗d−1 ≥ h∗d.
Unimodality appears frequently in combinatorial settings and it often hints at a deeper underly-
ing algebraic structure, see [AHK18, Bre94, Sta89]. One famous instance is given by Gorenstein
polytopes that admit a regular, unimodular triangulation.

Theorem 2.7 ([BR07, Thm. 1]). If P is Gorenstein and has a regular, unimodular triangulation, then h∗P
is unimodal.

The following conjecture is commonly attributed to Ohsugi and Hibi [OH06]:

Conjecture 2.8. If P is Gorenstein and has the IDP, then h∗P is unimodal.

3. UNCONDITIONAL AND ANTI-BLOCKING POLYTOPES

For σ ∈ {−1,+1}d and p ∈ R
d, let us write σp = (σ1p1, σ2p2, . . . , σdpd). A convex polytope

P ⊆ R
d is called 1-unconditional or simply unconditional if p ∈ P implies σp ∈ P for all σ ∈

{−1,+1}d. So, P is a polytope that is symmetric with respect to all coordinate hyperplanes. It
is apparent that P can be recovered from its restriction to the first orthant, which we denote by
P+ = P∩Rd

+. The polytopeP+ has the property that for any q ∈ P+ and p ∈ R
d with 0 ≤ pi ≤ qi for

all i, it holds that p ∈ P+. Polytopes in R
d
+ with this property are called anti-blocking polytopes.

Anti-blocking polytopes were studied and named by Fulkerson [Ful71, Ful72] in the context of
combinatorial optimization, but they are also known as convex corners or down-closed polytopes;
see, for example, [BB00].

Let us also write p = (|p1|, |p2|, . . . , |pd|). Given an anti-blocking polytope Q ⊂ R
d
+ it is straight-

forward to verify that

UQ := {p ∈ R
d : p ∈ Q}

is an unconditional convex body. Every full-dimensional anti-blocking polytope has an irredun-
dant inequality description of the form

(1) Q = {x ∈ R
d
+ : 〈ai,x〉 ≤ 1 for i = 1, . . . ,m}

for some a1, . . . ,am ∈ R
d
+. Following [Sch86, Sec. 9.3], we define

{c1, . . . , cr}
↓ := R

d
+ ∩ (conv(c1, . . . , cr)− R

d
+)

as the smallest anti-blocking polytope containing c1, . . . , cr ∈ R
d
+. Conversely, if we let V ↓(Q) =

{v1, . . . ,vm} be the vertices of Q that are maximal with respect to the componentwise order, then
Q = {v1, . . . ,vr}

↓. We record the consequences for the unconditional polytopes.

Proposition 3.1. Let P ⊂ R
d
+ be an anti-blocking polytope given by (1). Then an irredundant inequality

description of UP is given by the distinct
〈σai,x〉 ≤ 1

for i = 1, . . . ,m and σ ∈ {−1,+1}d. Likewise, the vertices of UP are V (UP ) = {σv : v ∈ V ↓(P ), σ ∈
{−1,+1}d}.

Our first result relates properties of subdivisions of anti-blocking polytopes to that of the associ-
ated unconditional polytopes. The 2d orthants in R

d are denoted by R
d
σ := σRd

+ for σ ∈ {−1,+1}d.

Theorem 3.2. Let P ⊂ R
d
+ be an anti-blocking polytope with triangulation T . Then

UT := {σS : S ∈ T , σ ∈ {−1,+1}d}

is a triangulation of UP . Furthermore
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(i) If T is unimodular, then so is UT .
(ii) If T is regular, then so is UT .

(iii) If T is flag, then so is UT .

Proof. It is clear that UT is a triangulation of UP and statement (i) is obvious. If U is a collection
of vertices of T not contained in R

d
σ for any σ, then there are u+, u− ∈ U that are not contained in

the same orthant. Hence if T is flag, then UT is flag, which proves (iii).
To show (ii), assume that T is regular. Let ω : V (P ) → R the corresponding heights. We extend

ω to V :=
⋃

σ σV (P ) by setting ω′(v) := ‖v‖1 + ǫ ω(v), where ‖v‖1 =
∑

i |vi|. For ǫ = 0 it is easy
to see that the heights induce a subdivision of P into σP for σ ∈ {−1,+1}d. For ǫ > 0 sufficiently
small, the heights ω′ then induce the triangulation σT on σP . �

Let us call a polytope P ⊂ Rd locally anti-blocking if (σP ) ∩ Rd
+ is an anti-blocking polytope

for every σ ∈ {−1,+1}d. Unconditional polytopes are clearly locally anti-blocking. It follows
from [CFS17, Lemma 3.12] that for any two anti-blocking polytopes P1, P2 ⊆ R

d
+, the polytopes

P1 + (−P2) and P1 ∨ (−P2) = conv(P1 ∪ −P2)

are locally anti-blocking. Locally anti-blocking polytopes are studied in depth in [AASS19]. The
following is a simple but important observation.

Lemma 3.3. Let P ⊂ R
d be a locally anti-blocking lattice polytope. Then P is reflexive if and only if

Pσ = P ∩R
d
σ is compressed for all σ ∈ {−1,+1}d.

Proof. Let Q ⊂ R
d
+ be a compressed d-dimensional anti-blocking polytope given by irredundant

inequalities x ≥ 0 and
〈ai,x〉 ≤ bi

for i = 1, . . . ,m and ai ∈ Z
d primitive. Since 0 ∈ Q is a lattice point, it follows that for any

z ∈ Q ∩ Z
d we have 〈ai,z〉 ∈ {0, bi}. Since Q is full-dimensional, we have that the standard basis

vectors ei = (0, . . . , 0, 1, 0, . . . , 0) are contained in Q and thus (ai)j ∈ {0, bi}. Since we assume ai

primitive, it follows that bi = 1.
Hence, from the definition of reflexive polytopes and Proposition 3.1 we infer that P is reflexive

if and only if Pσ is of the form {x : Aσx ≤ 1} for some integer matrix Aσ for every σ ∈ {−1,+1}d.
�

Theorem 3.4. If P is a reflexive and locally anti-blocking polytope, then P has a regular and unimodular
triangulation. In particular, h∗(P ) is unimodal.

Proof. By Lemma 3.3, every pulling triangulation of Pσ = P ∩ R
d
σ for σ ∈ {0, 1}d is a unimodular

triangulation. Let U = P ∩ Z
d and choose an ordering of the points in U such that u comes before

v if the support of u is contained in the support of v. This gives a consistent pulling order of the
vertices of each Pσ . The same argument as in the proof of Theorem 3.2, then shows that the regular
subdivision of P into the polytopes Pσ can be refined to a regular and unimodular triangulation
T . The unimodality of h∗(P ) now follows from Theorem 2.7. �

Remark 3.5. The techniques of this section can be extended to the following class of polytopes. We
say that a polytopeP ⊂ R

d has the orthant-lattice property (OLP) if the restriction Pσ := P∩Rd
σ is a

(possibly empty) lattice polytope. If P is reflexive, then Pσ is full-dimensional for every σ. Now, if
every Pσ has a unimodular cover, then so does P and hence is IDP. Let Pσ = {x ∈ R

d
σ : Aσx ≤ bσ}.

Then some conditions that imply the existence of a unimodular cover include:

(1) Pσ is compressed;
(2) Aσ is a totally unimodular matrix;
(3) Aσ consists of of rows which are Bd roots;
(4) Pσ is the product of unimodular simplices;
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(5) There exists a projection π : Rd → R
d−1 such that π(Pσ) has a regular, unimodular triangu-

lation T such that the pullback subdivision π∗(T ) is lattice.

We refer to [HPPS14] for background and details.
An example of such a polytope is

P = conv





1 0 0 1 0 1 −1 0 0
0 1 0 1 1 1 0 −1 0
0 0 1 0 1 1 0 0 −1



 ⊂ R
3.

This is a reflexive OLP polytope. The restriction to R
3
+ is

P+ = conv





1 0 0 1 0 1 0
0 1 0 1 1 1 0
0 0 1 0 1 1 0



 ⊂ R
3

which is not an anti-blocking polytope.

The Mahler conjecture in convex geometry states that every centrally-symmetric convex body
K ⊂ R

d satisfies
vol(K) · vol(K∗) ≥ vol(Cd) · vol(C

∗
d) ,

where Cd = [−1, 1]d is the d-cube. The Mahler conjecture has been verified only in small dimen-
sions and for special classes of convex bodies. In particular, Saint-Raymond [SR80] proved the
following beautiful inequality. The characterization of the equality case is independently due to
Meyer [Mey86] and Reisner [Rei87].

Theorem 3.6 (Saint-Raymond). Let P ⊂ R
d
+ be an anti-blocking polytope. Then

vol(P ) · vol(A(P )) ≥
1

d!

with equality if and only if P or A(P ) is the cube [0, 1]d.

This inequality directly implies the Mahler conjecture for unconditional convex polytopes, that
we record for the normalized volume.

Corollary 3.7. Let P ⊂ R
d be an unconditional reflexive polytope. Then

Vol(P ) · Vol(P ∗) ≥ 4dd!

with equality if and only if P or P ∗ is the cube [−1, 1]d.

4. UNCONDITIONAL REFLEXIVE POLYTOPES AND PERFECT GRAPHS

For A ⊆ [d], let 1A ∈ {0, 1}d be its characteristic vector. If Γ ⊆ 2[d] is a simplicial complex, i.e., a
nonempty set system closed under taking subsets, then

P = conv(1σ : σ ∈ Γ)

is an anti-blocking 0/1-polytope and every anti-blocking polytope with vertices in {0, 1}d arises
that way. A prominent class of anti-blocking 0/1-polytopes arises from graphs.

Given a graph G = ([d], E) with E ⊆
(

[d]
2

)

, we say that S ⊆ [d] is a stable set (or independent
set) of G if uv 6∈ E for any u, v ∈ S. The stable set polytope of G is

PG := conv{1S : S ⊆ [d] stable} .

Stable set polytopes played an important role in the proof of the weak perfect graph conjecture [Lov72].
A clique is a set C ⊆ [d] such that every two vertices in C are joined by an edge. The clique num-
ber ω(G) is the largest size of a clique in G. A graph is perfect if ω(H) = χ(H) for all induced
subgraphs H ⊆ G, where χ(H) is the chromatic number of H .
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Lovász gave the following geometric characterization of perfect graphs. For a set C ⊆ [d] and
x ∈ R

d, we write x(C) =
∑

i∈C xi.

Theorem 4.1. A graph G = ([d], E) is perfect if and only if

PG = {x ∈ R
d
+ : x(C) ≤ 1 for all cliques C ⊆ [d]}.

For an anti-blocking polytope P ⊂ R
d
+ define the anti-blocking dual

A(P ) := {y ∈ R
d
+ : 〈y,x〉 ≤ 1 for all x ∈ P} .

The polar (UP )∗ is again unconditional and it follows that

(UP )∗ = UA(P ) .

Theorem 4.2 ([Sch86, Thm. 9.4]). Let P ⊂ R
d
+ be a full-dimensional anti-blocking polytope with

P = {c1, . . . , cr}
↓ = {x ∈ R

n
+ : 〈di,x〉 ≤ 1 for all i = 1, . . . , s}

for some c1, . . . , cr,d1, . . . ,ds ∈ R
d
+. Then

A(P ) = {d1, . . . ,ds}
↓ = {x ∈ R

d
+ : 〈ci,x〉 ≤ 1 for all i = 1, . . . , r}.

In particular, A(A(P )) = P .

From Theorem 4.1 one then deduces for a perfect graph G that

(2) A(PG) = PG ,

where G = ([d],
([d]
2

)

\ E) is the complement graph.

Corollary 4.3 (Weak perfect graph theorem). A graph G is perfect if and only if G is perfect.

We note that in particular if G is perfect, then PG is compressed.

Proposition 4.4 ([CFS17, Prop. 3.10]). Let P ⊂ R
d
+ be an anti-blocking polytope. Then P is compressed

if and only if P = PG for some perfect graph G.

Let us remark that Theorem 4.1 also allows us to characterize the Gorenstein stable set poly-
topes. For comparability graphs of posets (see Section 7) this was noted by Hibi [Hib87]. A graph
G is called well-covered if every inclusion-maximal stable set has the same size. It is called co-

well-covered if G is well-covered.

Proposition 4.5. Let PG be the stable set polytope of a perfect graph G = ([d], E). Then PG is Gorenstein
if and only if G is co-well-covered.

Proof. It follows from Theorem 4.1 that the facet-defining inequalities are of the form xi ≥ 0 and
x(C) ≤ 1 for every maximal clique C ⊆ [d]. The former set of inequalities implies that if PG is
Gorenstein, then 1 = 1[d] is the unique interior lattice point in rPG for some r ≥ 1. The second set
of inequalities then yields that this is the case if and only if |C| = 1(C) = r for all maximal cliques
C . �

Combining Theorem 3.3 with Proposition 4.4 yields the following characterization of reflexive
locally anti-blocking polytopes.

Theorem 4.6. Let P ⊂ R
d be a locally anti-blocking lattice polytope. Then P is reflexive if and only if for

every σ ∈ {−1,+1}d there is a perfect graph Gσ such that Pσ = PGσ
.

In particular, P is an unconditional reflexive polytope if and only if P = UPG for some perfect graph G.

Corollary 4.7 ([CFS17, Thm. 3.4]). If G1, G2 are perfect graphs on the vertex set [d], then PG1 + (−PG2)
and PG1 ∨ (−PG2) are reflexive polytopes.
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For G1 = G2 = Kd the complete graph on d vertices, the polytope PG1 +(−PG2) is the Legendre
polytope studied by Hetyei et al. [Het09, EHR18].

Using NORMALIZ [BIR+] and the Kreuzer–Skarke database for reflexive polytopes [KS98, KS00],
we were able to verify that 72 of the 3-dimensional reflexive polytopes and at least 407 of the 4-
dimensional reflexive polytopes with at most 12 vertices are locally anti-blocking. Unfortunately,
our computational resources were too limited to test most of the 4-dimensional polytopes. How-
ever, there are only 11 4-dimensional unconditional reflexive polytopes (by virtue of Theorem 4.9).

If G,G′ are perfect graphs, then G ⊎G′ as well as its bipartite sum G ⊲⊳ G′ = G ⊎G′ are perfect.
On the level of unconditional polytopes we note that

UPG⊎G′ = UPG × UPG′ and UPG⊲⊳G′ = UPG ⊕ UPG′ .

These observations give us the class of Hanner polytopes which are important in relation to the
3d-conjecture; see [SWZ09]. A centrally symmetric polytope H ⊂ R

d is called a Hanner polytope
if and only if H = [−1, 1]d or H is of the form H1 × H2 or H1 ⊕ H2 = (H∗

1 × H∗
2 )

∗ for lower
dimensional Hanner polytopes H1,H2. Thus, every Hanner polytope is of the form UPG for some
perfect graph G. Hanner polytopes were obtained from split graphs in [FHSZ13] using a different
geometric construction.

Let us briefly note that Theorem 4.6 also yields bounds on the entries of the h∗-vector. Re-
call that h∗i (Cd) for the cube Cd = [−1,+1]d is given by the type-B Eulerian number B(n, i) =
∑i

j=1(−1)k−i
(

n
j−i

) (

2j−1
)n−1

that counts signed permutations with i descents (see also Section 5).

Corollary 4.8. Let P ⊂ R
d be an unconditional reflexive polytope. Then

(

d

i

)

≤ h∗i (P ) ≤ B(n, i) .

Proof. It follows from Theorem 4.6 that every reflexive and unconditional P satisfies C∗
d ⊆ P ⊆ Cd,

where Cd = [−1, 1]d. By Theorem 2.1, the entries of the h∗-vector are monotone with respect to
inclusion. �

We close the section by showing that distinct perfect graphs yield distinct unconditional reflex-
ive polytopes.

Theorem 4.9. Let G,H be perfect graphs on vertices [d]. Then UPG is unimodular equivalent to UPH if
and only if G ∼= H .

Proof. Assume that T (UPG) = UPH for some T (x) = Wx + t with t ∈ Z
d and W ∈ SLd(Z).

Since the origin is the only interior lattice point of both polytopes, we infer that t = 0. Let W =
(w1, . . . ,wd). Thus, z ∈ Z

d is a lattice point in UPH if and only if there is a stable set S and
σ ∈ {−1,+1}S such that

(3) z =
∑

i∈S

σiwi

On the one hand, this implies that wi and wj have disjoint supports whenever i, j ∈ S and
i 6= j. Indeed, if the supports of wi and wj are not disjoint, then σiwi + σjwj has a coordinate > 1

for some choice of σi, σj ∈ {−1,+1}, which contradicts the fact that UPH ⊆ [−1, 1]d.
On the other hand, for any h ∈ [d], the point eh is contained in UPH . Hence, there is a stable set

S and σ ∈ {−1,+1}S such that (3) holds for z = eh. Since the supports of the vectors indexed by S
are disjoint, this means that S = {i} and eh = σiwi. We conclude that W is a signed permutation
matrix and G ∼= H . �

We can conclude that number of unconditional reflexive polytopes in R
d up to unimodular

equivalence is precisely the number of unlabelled perfect graphs on d vertices. This number has
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n 3 4 5 6 7 8 9 10 11 12 13
p(n) 4 11 33 148 906 8887 136756 3269264 115811998 5855499195 410580177259

TABLE 1. Number p(n) of unlabelled perfect graphs; OEIS sequence A052431.

FIGURE 2. Schlegel diagram for BB(2).

been computed up to d = 13 (see [Hou06, Sec.5] and A052431 of [Slo19]). We show the sequence
in Table 1.

5. THE TYPE-B BIRKHOFF POLYTOPE

Recall that the Birkhoff polytope B(n) is defined as the convex hull of all n × n permutation
matrices or equivalently as the set of all doubly stochastic matrices, that is, nonnegative matrices
M with row and column sums equal to 1, by work of Birkhoff [Bir46] and, independently, von
Neumann [vN53]. This polytope has been studied quite extensively and is known to have many
properties of interest (see, e.g., [Ath05, BR97, BP03, CM09, Dav15, DLLY09, Paf15]). Of particu-
lar interest to our purposes, it is known to be Gorenstein, to be compressed [Sta80], and to be
h∗-unimodal [Ath05]. In this section, we will introduce a type-B analogue of this polytope corre-
sponding to signed permutation matrices and verify many similar properties already known for
B(n).

The hyperoctahedral group is defined to by Bn := Z/2Z≀Sn, which is the Coxeter group of type-
B (or type-C). Elements of this group can be thought of as permutations from Sn expressed in
one-line notation σ = σ1σ2 · · · σn, where we also associate a sign sgn(σi) to each σi. To each signed
permutation σ ∈ Bn, we associate a matrix Mσ defined as (Mσ)i,σi

= sgn(σi) and (Mσ)i,j = 0

otherwise. If every entry of σ is positive, then Mσ is simply a permutation matrix. This leads to
the following definition:

Definition 5.1. The type-B Birkhoff polytope (or signed Birkhoff polytope) is

BB(n) := conv {Mσ : σ ∈ Bn} ⊂ R
n×n.

That is, BB(n) is the convex hull of all n× n signed permutation matrices.

This polytope was previously studied in [MOSZ02], though the emphasis was not on Ehrhart-
theoretic questions. Since all points in the definition of BB(n) lie on a sphere, it follows that they
are all vertices.

Proposition 5.2. For every σ ∈ Bn, Mσ is a vertex of BB(n).

It is clear that BB(n) is an unconditional lattice polytope in R
d×d and we study it by restriction

to the positive orthant.

Definition 5.3. For n ≥ 1, we define the positive type-B Birkhoff polytope, BB+(n), to be the
polytope

BB+(n) := BB(n) ∩ R
n×n
+ .

https://oeis.org/A052431
https://oeis.org/A052431
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A simple way to view this as an anti-blocking polytope is via matching polytopes. Given a
graph G = ([d], E), a matching is a set M ⊆ E such that e ∩ e′ = ∅ for any two distinct e, e′ ∈ M .
The corresponding matching polytope is

Mat(G) := conv{1M : M ⊆ E matching} ⊂ R
E .

If G is a bipartite graph, then the matching polytope is easy to describe. For v ∈ [d] let δ(v) ⊆ E
denote the edges incident to v.

Theorem 5.4 ([Sch86, Sec. 8.11]). For bipartite graphs G the matching polytope is given by

Mat(G) = {x ∈ R
E
+ : x(δ(v)) ≤ 1 for all v ∈ [d]} .

As a simple consequence, we get

Corollary 5.5. BB+(n) is the matching polytope of the complete bipartite graph Kn,n on 2n vertices.

It follows from the description given in Theorem 5.4 that matching polytopes of bipartite graphs
are compressed. Hence, by Proposition 4.4 Mat(G) is the stable set polytope of a perfect graph.
The graph in question is the line graph L(G) on the vertex set E and edge ee′ whenever e∩e′ 6= ∅.
It is clear that M is a matching in G if and only if M is a stable set in L(G). If L(G) is perfect, then
G is called a line perfect graph. From Lovász Theorem 4.1 one can then infer Mat(G) = PL(G) and
hence bipartite graphs are line perfect; cf. [Maf92, Thm. 2].

The polytope BB+(n) is the stable set polytope of L(Kn,n) = Kn�Kn, the Cartesian product of
complete graphs, which for obvious reasons is called a rook graph.

Since all vertices in Kn,n have the same degree, it follows that all maximal cliques in Kn�Kn

have size n and from Proposition 4.5 we conclude the following.

Corollary 5.6. The polytope BB+(n) is Gorenstein.

Furthermore, we can deduce that BB(n) is an unconditional reflexive polytope by Theorem 4.6.
For two matrices A,B ∈ R

d×d we denote by 〈A,B〉 = tr(AtB) the Frobenius inner product. Also,
for vectors u,v ∈ R

d let us write u⊗ v ∈ R
d×d for the matrix with (u⊗ v)ij = uivj .

Corollary 5.7. The polytope BB(n) is an unconditional reflexive polytope. Its facet-defining inequalities
are given by

〈A, σ ⊗ ei〉 ≤ 1 and 〈A,ei ⊗ σ〉 ≤ 1

for all i = 1, . . . , n and σ ∈ {−1,+1}n.

The inequality description of this polytope was previously obtained in [MOSZ02] using the
notion of Birkhoff tensors. However, we ascertain this result by applying Proposition 3.1 and The-
orem 5.4.

The dual C(n) := BB(n)∗ is the unconditional reflexive polytope associated with the graph
Kn�Kn. The corresponding anti-blocking polytope C+(n) = PKn�Kn

also has the nice property
that all cliques have the same size n and hence Proposition 4.5 applies.

Corollary 5.8. The polytope C+(n) is Gorenstein.

By Theorem 3.4 and Proposition 4.4, we have the following unimodality results.

Corollary 5.9. For any n ∈ Z≥1, we have that h∗
BB(n), h

∗
BB+(n), h

∗
C(n), and h∗

C+(n) are unimodal.

Let us conclude this section with some enumerative data. The polytope BB(n) has 2nn! vertices
and n2n+1 facets. In contrast, the vertices of BB+(n) are in bijection to partial permutations of [n].
HenceBB+(n) has n!

∑n
i=0

1
i! many vertices but only n2+2n facets. The polytope C+(n) has n2n+1−

(n+ 1)2 many vertices and n2 + n! facets. We used NORMALIZ [BIR+] to compute the normalized
volume and h∗-vectors of these polytopes; see Tables 2, 3, 4, and 5. Given the dimension and
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n Vol(BB+(n)) h∗
BB+(n)

1 1 1
2 4 (1, 2, 1)
3 642 (1, 24, 156, 280, 156, 24, 1)
4 12065248 (1, 192, 9534, 151856, 975793, 2860752, 4069012,

2860752, 975793, 151856, 9534, 192, 1)

TABLE 2. BB+(n).

n Vol(BB(n)) h∗
BB(n)

1 2 (1, 1)
2 64 (1, 12, 38, 12, 1)
3 328704 (1, 129, 4482, 40844, 118950, 118950, 40844, 4482, 129, 1)
4 790708092928 ?

TABLE 3. BB(n).

n Vol(C+(n)) h∗
C+(n)

1 1 1
2 6 (1, 4, 1)
3 642 (1, 24, 156, 280, 156, 24, 1)
4 2389248 (1, 88, 2656, 34568, 201215, 562112, 787968

562112, 201215, 34568, 2656, 88, 1)
5 506289991680 ?

TABLE 4. C+(n).

volumes of these polytopes, our computational resources were quite quickly exhausted. Note that
BB(3) and C(3) have precisely the same Ehrhart data and normalized volume and in fact it is
straightforward to verify that BB(3) and C(3) are unimodularly equivalent.

Using Theorem 3.6 and Corollary 3.7, we get a lower bound on the volume of BB+(5) and
BB(5), respectively. We get that

Vol(BB+(5)) > 30.637.007.047.800
Vol(BB(5)) > 1.028.007.369.668.940.603.880

are bounds on the number of simplices in an unimodular triangulation.

6. CIS GRAPHS AND COMPRESSED GALE-DUAL PAIRS OF POLYTOPES

The notion of Gale-dual pairs was introduced in [FHSS]. Given two polytopes P,Q ⊂ R
d, we

say that these polytopes are a Gale-dual pair if

P = {x ∈ R
d
+ : 〈x,y〉 = 1 for y ∈ V (Q)} and

Q = {x ∈ R
d
+ : 〈x,y〉 = 1 for y ∈ V (P )} .
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n Vol(C(n)) h∗
C(n)

1 2 (1, 1)
2 96 (1, 20, 54, 20, 1)
3 328704 (1, 129, 4428, 40844, 118950, 118950, 40844, 4428, 129, 1)
4 156581756928 (1, 592, 110136, 8093168, 222332060, 2558902352,

13699272072, 36553260912, 50497814342, 36553260912,
136992720722558902352, 222332060, 8093168, 110136, 592, 1)

5 16988273098107125760 ?

TABLE 5. C(n).

The prime example of a Gale-dual pair of polytopes is the Birkhoff polytope Bn, the convex hull
of permutation matrices Mτ , and the Gardner polytope Gn, which is the polytope of all nonneg-
ative matrices A ∈ R

n×n
+ such that 〈Mτ , A〉 = 1 for all permutation matrices Mτ . Both polytopes

are compressed Gorenstein lattice polytopes of codegree n. The question raised in [FHSS] was if
there other Gale-dual pairs with (a subset of) these properties. In this section we briefly outline a
construction for compressed Gale-dual pairs of polytopes.

Following [ABG18], we call G = ([d], E) a CIS graph if C ∩ S 6= ∅ for every inclusion-maximal
clique C and inclusion-maximal stable set S. For brevity, we refer to those as maximal cliques
and stable sets, respectively. For example, if B is a bipartite graph with perfect matching, then
the line graph L(G) is CIS. Another class of examples is given by a theorem of Grillet [Gri69].
Let Π = ([d],�) be a partially ordered set. The comparability graph of Π is the simple graph
G≺ = ([d], E) with ij ∈ E if i ≺ j or j ≺ i. Comparability graphs are known to be perfect. The
bull graph is the graph vertices a, b, c, d, e and edges ab, bc, cd, de, bd.

Theorem 6.1 ([Gri69]). Let (Π,�) be a poset with comparability graph G. Then G is CIS if every induced
4-path is contained in an induced bull graph.

The wording in graph-theoretic terms is due to Berge; see [Zan95] for extensions.

Proposition 6.2. Let G be a perfect CIS graph. Then

P = conv(1S : S maximal stable set of G)

Q = conv(1C : C maximal clique of G)

is a Gale-dual pair of compressed polytopes.

Proof. Note that every stable set meeting every maximal clique is necessarily a maximal stable set.
Hence, it follows from Theorem 4.1 that

P = {x ∈ R
n
+ : x(C) = 1 for C maximal clique} .

Since G is also a perfect CIS graph, the same holds for Q. �

Note that both of the examples above are perfect and CIS graphs. This shows that compressed
(lattice) Gale-dual pairs are not rare. Recall that a graph G is well-covered if every maximal stable
set has the same size and G is co-well-covered if G is well-covered. Theorem 6.1 and its gener-
alization in [Zan95] allow for the construction of perfect CIS graphs which are well-covered and
co-well-covered (for example, by taking ordinal sums of antichains). Moreover, the recent pa-
per [DHMV15] gives classes of examples of well-covered and co-well-covered CIS graphs. This is
a potential source of compressed Gorenstein Gale-dual pairs but we were not able to identify the
perfect graphs in these families.

Theorem 4.6 implies that if (F,G) is a Gale-dual pair of Proposition 6.2, then there is a (uncon-
ditional) reflexive polytope such that F ⊂ P and G ⊂ P ∗ are dual faces.
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Question 6.3. Is it true that every Gale-dual pair (F,G) appears as dual faces of some reflexive
polytope P ?

7. CHAIN POLYTOPES AND GRÖBNER BASES

Given a lattice polytope P ⊂ R
d, the existence of regular triangulations, particularly those

which are unimodular and flag, has direct applications to the associated toric ideal of P . In this
section, we will discuss how the Gröbner basis of the toric ideal of anti-blocking polytope can be
extended to the associated unconditional polytope. In particular, we provide an explicit descrip-
tion of the Gröbner bases of the unconditional polytopes arising from the special class of anti-
blocking polytopes called chain polytopes. We refer the reader to the wonderful books [CLO15]
and [Stu96] for background on Gröbner bases and toric ideals.

Let Z := P ∩ Z
d. The toric ideal associated to P is the ideal IP ⊂ C[xp : p ∈ Z] with generators

xr1xr2 · · · xrk − xs1xs2 · · · xsk ,

where r1, . . . , rk, s1, . . . , sk ∈ Z such that r1 + · · · + rk = s1 + · · · + sk. If we denote the two
multisets of points by R and S, we simply write xR − xS . A celebrated result of Sturmfels [Stu96,
Thm. 8.3] states that the regular triangulations T of P (with vertices in Z) are in correspondence
with (reduced) Gröbner bases of IP . As customary we write xR − xS to emphasize that xR is the
leading term. In particular, if T is unimodular, then the leading terms of the associated Gröbner
basis are square-free [Stu96, Cor. 8.9]. That is, R is an actual set.

Given any lattice point p ∈ 2P there are unique p(1),p(2) ∈ Z such that 2p = p(1) + p(2) and

{p(1),p(2)} is an edge in T . Let us call two points p, q ∈ R
d separable if for some pi and qi

have different signs for some i = 1, . . . , d. Together with Theorem 3.2, this yields the following
description of a Gröbner basis for unconditional reflexive polytope.

Theorem 7.1. Let P ⊂ R
d be an anti-blocking polytope with a regular, unimodular, flag triangulation and

let UP be the associated unconditional polytope. Let xRi − xSi for i = 1, . . . ,m be the Gröbner basis for
IP . Then the following binomials give a Gröbner basis for IUP :

xσRi − xσSi

for i = 1, . . . ,m and σ ∈ {−1,+1}d. Moreover, for any p, q ∈ UP ∩ Z
d separable, let σ such that

σ(p+ q) = e ∈ 2P and let

xp xq − xσe
(1)

xσe
(2)

.

A prominent class of perfect graphs G for which regular, unimodular triangulations PG, as
well as Gröbner bases for IPG

, are well understood are comparability graphs of finite posets. Let
Π = ([d],�) be a partially ordered set. with comparability graph G≺. The stable set polytopes
associated to comparability graphs were studied by Stanley [Sta86] under the name chain poly-
topes and denoted by C(Π). The vertices of PG≺ are precisely points eA, where A is an antichain
which is a collections of incomparable elements in Π. Let A(Π) denote the collection of antichains.
The pulling triangulation of PG�

can be explicitly described (see Section 4.1 in [CFS17] for expo-
sition and details). The corresponding (reverse lexicographic) Gröbner basis was described by
Hibi [Hib87]. Following [CFS17], we define

A ⊔A′ := min(A ∪A′) and A ⊓A′ := (A ∩A′) ∪ (max(A ∪A′) \min(A ∪A′)) ,

where min and max are taken with respect to the partial order �. We call two antichains A,A′

incomparable if there are a ∈ A and a′ ∈ A′ such that A ∪ {a′}, A′ ∪ {a} ∈ A(Π). Equivalently, if
max(A ∪ A′) is a subset of neither A nor A′. To ease notation, we identify variables xA in C[xA :
A ∈ A(Π)] with [A].
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Theorem 7.2. A Gröbner basis for IC(Π) is given by the binomials

[B] · [B′]− [B ⊔B′] · [B ⊓B′] ,

for all incomparable antichains B,B′ ∈ A(Π).

We define the unconditional chain polytope UC(Π) as the unconditional reflexive polytope
associated to G≺. The lattice points in UC(Π) are uniquely described by

eB−A := eB − 2eA

where A ⊆ B are antichains. We also write B −A for the pair A ⊂ B. The vertices of UC(Π) then
correspond to the pairs B−∅ and B−B for inclusion-maximal antichains B. Note that eB−A and
eB′−A′ are separable if and only if (B \A′) ∪ (B′ \ A) 6= ∅.

Theorem 7.3. Let Π = ([d],�) be a finite poset and IUC(Π) the toric ideal associated to the unconditional
chain polytope UC(Π). Then a reduced Gröbner basis is given by the binomials

[B − C] · [B′ − C] − [(B ⊔B′)− C] · [(B ⊓B′)− C] ,

for all incomparable B,B′ ∈ A(Π) and C ⊆ B ∪B′. Additionally, for every separable B −A and B′ −A′

[B −A] · [B′ −A′] − [D − (D ∩ (A ∪A′))] · [D′ − (D′ ∩ (A ∪A′))] ,

where D = (B \ A′) ⊓ (B′ \ A) and D′ = (B \A′) ⊔ (B′ \ A).

Proof. In light of Theorems 7.1 and 7.2 , we only need to argue the second collection of binomials.
It follows from Theorem 7.2 that the edges of the unimodular (pulling) triangulation of C(Π)

are of the form {D,D′} where D,D′ are comparable antichains. That is, for every b ∈ D there is
b′ ∈ D′ with b � b′. For p ∈ 2C(Π), there are unique comparable D,D′ ∈ A(Π) with 2p = eD+eD′ .
Set S := {i : pi ≥ 1} and T := {i : pi = 2}. Then it follows from the fact that every element
in D ∪ D′ is either a minimum or maximum that D = min(S) and D′ = max(S) ∪ T . Hence if
p = eC + eC′ for arbitrary antichains C,C ′, then D = C ⊓ C ′ and D′ = C ⊔ C ′. �

8. CONCLUDING REMARKS

8.1. Birkhoff polytopes of other types. It is only natural to look at Birkhoff-type polytopes of
other finite irreducible Coxeter groups. Since the type-B and the type-C Coxeter groups are equal,
we get the same polytope. Recall that the type-D Coxeter group Dn is the subgroup of Bn with
permutations with an even number of negatives. We can construct the type-D Birkhoff polytope,
BD(n), to be the convex hull of signed permutation matrices with an even number of negative
entries. As one may suspect from this construction, the omission of all lattice points in various
orthants which occurs in BD(n) ensures that it cannot be an OLP polytope and is thus not subject
to any of our general theorems. When n = 2 and n = 3, BD(n) is a reflexive polytope, but BD(3)
does not have the IDP. Moreover, BD(4) fails to be reflexive.

Additionally, one could consider Birkhoff constructions for Coxeter groups of exceptional type,
in particular E6, E7 and E8 (see, e.g., [BB05]). While we did not consider these polytopes in our
investigation, we do raise the following question:

Question 8.1. Do the Birkhoff polytope constructions for E6, E7, and E8 have the IDP? Are these
polytopes reflexive? Do they have other interesting properties?

8.2. Future directions. In addition to considering Birkhoff polytopes of other types and connec-
tions to Gale duality as discussed above, there are several immediate avenues for further research.
Coxeter groups of great interest in the broader community of algebraic and geometric combina-
torics (see, e.g., [BB05]). Subsequently, it is natural to consider how the Ehrhart-theoretic study of
the type-B Birkhoff polytope informs research area. This leads to the following question:
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Question 8.2. Does the convex structure of BB(n) encode combinatorial or group theoretic struc-
ture of interest in Coxeter combinatorics?

An additional future direction is to consider applications of the orthant-lattice property, par-
ticularly those of Theorem 3.2 and Remark 3.5. One potentially fruitful avenue is an application
to reflexive smooth polytopes. Recall that a lattice polytope P ⊂ R

d is simple if every vertex of
P is contained in exactly d edges (see, e.g., [Zie95]). A simple polytope P is called smooth if the
primitive edge direction generate Z

d at every vertex of P . Smooth polytopes are particularly of
interest due to a conjecture commonly attributed to Oda [Oda]:

Conjecture 8.3 (Oda). If P is a smooth polytope, then P has the IDP.

This conjecture is not only of interest in the context of Ehrhart theory, but also in toric geometry.
One potential strategy is to consider similar constructions to OLP polytopes for smooth reflexive
polytopes to make progress towards this problem. As a first step, we pose the following question:

Question 8.4. Are all smooth reflexive polytopes OLP polytopes?

Furthermore, regarding reflexive OLP polytopes one can ask the question:

Question 8.5. Given a reflexive OLP polytope P , under what conditions can we guarantee that
P ∗ is a reflexive OLP polytope?

By (2), this has a positive answer when P is an unconditional reflexive polytope. However,
there are multiple examples of failure in general even in dimension 2 (see Figure 1).

REFERENCES

[AASS19] Shiri Artstein-Avidan, Shay Sadovsky, and Raman Sanyal, Volume and mixed volume inequalities for locally
anti-blocking bodies, in preparation (2019+).

[ABG18] Diogo V. Andrade, Endre Boros, and Vladimir Gurvich, On graphs whose maximal cliques and stable sets
intersect, Optimization problems in graph theory, Springer Optim. Appl., vol. 139, Springer, Cham, 2018,
pp. 3–63. MR 3838925

[AHK18] Karim Adiprasito, June Huh, and Eric Katz, Hodge theory for combinatorial geometries, Ann. of Math. (2) 188
(2018), no. 2, 381–452.

[Ath05] Christos A. Athanasiadis, Ehrhart polynomials, simplicial polytopes, magic squares and a conjecture of Stanley, J.
Reine Angew. Math. 583 (2005), 163–174.

[Bat94] Victor V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties, J. Algebraic
Geom. 3 (1994), no. 3, 493–535.
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