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Abstract. A positive quadratic form is (k, `)-universal if it represents all
natural numbers ≡ ` (mod k), and almost (k, `)-universal if it represents all
but finitely many of them. We prove that for any k, ` such that k - ` there
exists an almost (k, `)-universal diagonal ternary form. We also conjecture
that there are only finitely many primes p for which a (p, `)-universal diagonal
ternary form exists (for any ` < p) and we show the results of computer
experiments that speak in favor of the conjecture.

1. Introduction

The sum of three squares x2 + y2 + z2 does not represent any integer of the
form 8n + 7 and similarly every other positive ternary quadratic form fails to
represent some arithmetic sequence. Conversely, around 1797 Legendre showed
that x2 +y2 +z2 represents all positive integers that are not of the form 4k(8n+7)
(with k, n ≥ 0) and there have been numerous results concerning the integers
represented by ternary quadratic forms. Before discussing some of them, let us
introduce some basic notions.

A positive ternary quadratic form is a form Q(x, y, z) = ax2 + by2 + cz2 +dyz+
exz + fxy, where a, b, c, d, e, f are integers and Q(x, y, z) > 0 for all real numbers
x, y, z, not all of them 0.

For positive integers k, ` consider the arithmetic sequence

Sk,` := { kx+ ` : x ∈ Z, x ≥ 0 }.

We say that a positive quadratic form with Z-coefficients is (k, `)-universal if it
represents all elements of Sk,` over the ring of integers Z. A quadratic form is
almost (k, `)-universal if it represents almost all elements of Sk,`, i.e., if there are
at most finitely many elements of Sk,` that are not represented.

Kaplansky [Kap95] showed that there are at most 23 ternary forms that repre-
sent all odd positive integers (i.e., that are (2, 1)-universal) and proved the (2, 1)-
universality of 19 of them. Jagy [Jag96] dealt with one of the remaining candidates
and, assuming the (2, 1)-universality of the 3 other forms, Rouse [Rou14] proved
the 451-theorem: A positive quadratic form (of any rank) is (2, 1)-universal if and
only if it represents all the integers 1, 3, 5, . . . , 451.
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Oh [Oh11b] then proved that for any (k, `), there are only finitely many equiv-
alence classes of (k, `)-universal ternaries (that are moreover classical, i.e., d, e, f
are all even).

This was followed by investigations of all the (k, `)-universal diagonal ternary
forms for small values of k and 1 ≤ ` < k. Independently, Pehlivan and Wil-
liams [PW18] computed all such possible candidates for k ≤ 11, and Sun [Sun17]
found all such candidates with k ≤ 30. Pehlivan and Williams established the
(k, `)-universality of a number of their candidates and then Wu and Sun [WS18]
proved this for more of these forms.

Notably, when k = p ≥ 11 is a prime, then no (k, `)-universal diagonal ternary
forms appears in these lists!

(k, `)-universal forms are intimately connected to regular forms, i.e., quadratic
forms that represent over Z all the integers that they represent over R and the ring
Zp of p-adic integers for all primes p. Jagy, Kaplansky, and Schiemann [JKS97]
proved that there are at most 913 regular ternary forms and established the reg-
ularity of all but 22 of them. Oh [Oh11a] then proved the regularity of 8 of
these, and then Lemke Oliver [LO14] dealt with the 14 remaining cases under the
assumption of Generalized Riemann Hypothesis, using the method of Ono and
Soundrajaran [OS97].

The problem of precisely determining the set of integers represented by a given
ternary quadratic form is still open, although it has been thoroughly studied. Let
us mention only the results by Kneser [Kne61], Duke and Schulze-Pillot [DSP90],
and by Earnest, Hsia, and Hung [EHH94], and point the interested reader to the
very nice survey by Hanke [Han04].

In this short paper, we study (k, `)-universality of diagonal ternary quadratic
forms. Considering almost (k, `)-universal diagonal ternaries, we show that they
always exist.

Theorem 1. Let k, ` be positive integers such that k - `. Then there is a diagonal
ternary positive quadratic form that is almost (k, `)-universal.

We prove the theorem in § 2 by first dealing with almost (p, `)-universal forms;
in fact, we show that for each prime p, there is a prime q (or q = 1) such that the
form x2 + qy2 + pz2 is anisotropic precisely at p (and ∞) and that this form is
then almost (p, `)-universal. This then quickly implies the theorem for general k.

In § 3 we expand on the observation (based on the results of Pehlivan and Wil-
liams [PW18] and Sun [Sun17]) that when p is a prime satisfying 11 ≤ p ≤ 29,
then there is no (p, `)-universal diagonal ternary form for 1 ≤ ` < p.

We first search for (p, `)-universal diagonal ternaries and obtain that, for 11 ≤
p ≤ 1237, the only case when they can exist is (101, 98), when x2 + 2y2 + 101z2

appears to be (101, 98)-universal.
To obtain more refined understanding of the situation, we then consider the

number of “gaps” of a given form (that satisfies the necessary anisotropy condi-
tions), i.e., of (small) integers that are not represented, see § 3.3. Our computa-
tions suggest that the number of gaps is always larger than p log p, which provides
heuristic argument in favor of the following conjecture (details are discussed in § 3).
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Conjecture 2. There are only finitely many primes p and 1 ≤ ` < p possessing a
diagonal ternary positive (p, `)-universal quadratic form.

In fact, the data suggest even the stronger conjecture that the form x2 + 2y2 +
101z2 was the last missing one and that now the knowledge is exhaustive:
Conjecture 3. The following table gives the complete list of diagonal ternary
positive (p, `)-universal quadratic forms for a prime p and 1 ≤ ` < p (here 〈a, b, c〉
stands for the form ax2 + by2 + cz2):

p ` (p, `)-universal forms

2 1 〈1, 1, 2〉, 〈1, 2, 3〉, 〈1, 2, 4〉
3 1 〈1, 1, 3〉, 〈1, 1, 6〉, 〈1, 3, 3〉, 〈1, 3, 9〉, 〈1, 6, 9〉

2 〈1, 1, 3〉, 〈1, 1, 6〉, 〈2, 3, 3〉
5 1 〈1, 2, 5〉, 〈1, 5, 10〉

2 〈1, 2, 5〉
3 〈1, 2, 5〉
4 〈1, 2, 5〉, 〈1, 5, 10〉

7 1 〈1, 2, 7〉, 〈1, 7, 14〉
2 〈1, 2, 7〉
3 〈1, 2, 7〉

101 98 〈1, 2, 101〉

The universality of the forms for p = 2, 3, 5 has been established (see, e.g.,
[PW18]), whereas for p = 7, 101 it is only conjectural.

Note that the forms 〈1, 2, p〉 appear frequently in the preceding table. This is
not an accident, as it seems that these forms are the most likely candidates for
(p, `)-universality (see § 3.3). In fact, it turns out that the heuristic argument that
we use for dealing with the other forms fails in this case! Hence we have to consider
the forms 〈1, 2, p〉 (together with 〈1, 1, p〉 and 〈1, 3, p〉) separately in detail in § 3.4.

It is of course very interesting to consider the existence of (p, `)-universal ternar-
ies without the restriction that ` < p and without the diagonality assumption. As
we have shown that almost (p, `0)-universal ternaries always exists, it trivially fol-
lows that also (p, `)-universal ternaries exist once ` ≡ `0 (mod p) is sufficiently
large. Nevertheless, if we set a bound ` < cp for a fixed positive integer c, our
heuristics suggest that there again should be only finitely many (p, `)-universal
diagonal ternaries with ` < cp (see Figure 3.4). We have not done almost any com-
putations with non-diagonal forms. Nevertheless, our (mostly unfounded) guess
might be that there are only finitely many (p, `)-universal non-diagonal ternaries
as well.

2. Existence of almost (k, `)-universal forms

In the rest of the article we will consider only diagonal ternary positive forms,
i.e., quadratic forms Q(x, y, z) = ax2 + by2 + cz2 =: 〈a, b, c〉, where a, b, c are
positive integers. We denote ∆Q = abc the discriminant of Q.

Let v be a place of Q. A quadratic form Q(x, y, z) is isotropic at v if it non-
trivially represents 0 over the completion Qv, i.e., if Q(x, y, z) = 0 for some x, y, z ∈
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Qv, not all of them 0. Otherwise Q is anisotropic at v. Note that if v = p is a
finite place corresponding to a prime p, then Q = 〈a, b, c〉 can be anisotropic at p
only if p | 2abc.

A positive ternary form is always anisotropic at ∞ and, by Hilbert reciprocity
law, it is anisotropic at an odd number of finite places v.

Proposition 4. Let p be a prime. Then there is a positive diagonal ternary form
Q = 〈1, q, p〉 that is anisotropic precisely at p and ∞, where q = 1 or a prime
different from p.

Proof. For p = 2 we can take Q = 〈1, 1, 2〉, so let us assume that p is an odd prime.
We will distinguish several cases according to the value p (mod 8).

Case p ≡ 3 (mod 4). Then we claim that Q = 〈1, 1, p〉 works. The only
candidates for primes at which Q can be anisotropic are 2 and p. By Hilbert
reciprocity, it suffices to show that Q is anisotropic at p. Assume that x2 + y2 +
pz2 = 0 with x, y, z ∈ Zp. Then x2 + y2 ≡ 0 (mod p), and so x ≡ y ≡ 0 (mod p),
because −1 is a quadratic non-residue mod p in this case. But then also z ≡
0 (mod p) and we have (x/p)2 + (y/p)2 + p(z/p)2 = 0. Continuing in this way, we
get that x = y = z = 0, i.e., that Q is anisotropic at p.

Case p ≡ 5, 7 (mod 8). In this case the form Q = 〈1, 2, p〉 works, which can be
proved by the same argument as in the previous paragraph.

Case p ≡ 1 (mod 8). We will show that the form Q = 〈1, q, p〉 works if q
is a prime such that q ≡ 3 (mod 4) and the Legendre symbol

(
q
p

)
= −1 (such

primes q clearly exist). For this form Q, the anisotropic candidates are 2, p, and q.
Distinguishing the two possibilities for q (mod 8), it is easy to verify that the form
Q is always isotropic at 2. Hence it suffices to show that Q is anisotropic at p.
As p ≡ 1 (mod 8), −1 is a quadratic residue mod p, and so

(−q
p

)
= −1. Hence

x2 + qy2 ≡ 0 (mod p) implies that x ≡ y ≡ 0 (mod p) and we see as before that Q
is indeed anisotropic at p. �

Proposition 5. Let p be an odd prime and Q = 〈1, q, p〉 a positive diagonal ternary
form that is anisotropic precisely at p and ∞, where q = 1 or a prime different
from p. Then Q is almost (p, `)-universal for every positive integer ` such that
p - `.

Proof. We will use a theorem of Duke and Schulze-Pillot [DSP90], cf. [Han04,
Theorem on p. 11]. For any undefined notions in the proof, see, e.g., [Han04].

We are interested in almost (p, `)-universality and we have p - `, so we need
to show that Q locally represents all elements of the corresponding arithmetic
progression and that there are no spinor exceptions.

The local representation is no problem at R and at the isotropic places, so
we need to check it only at the anisotropic place p. It suffices to show that the
binary form x2 + qy2 with p - q represents all non-zero classes modulo p. If q is
a quadratic non-residue mod p, then qy2 represents all the non-residues and x2

represents all the residues. If q is a quadratic residue, then x2 + qy2 represents the
same elements mod p as x2 + y2. But the latter form represents (over Z) all the
primes ≡ 1 (mod 4), which cover all the classes mod p.

Let us now consider the spinor exceptions, i.e., integers a such that Q does not
represent the values of the quadratic sequence ax2 for integers x; there are always
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only finitely many spinor exceptions (for an overview of their properties, see [SP00,
pp. 351–352]). In particular, a spinor exception can exist only if the genus of Q
breaks into an even number of spinor genera. However, a necessary condition
for this to happen is that the determinant of Q is not squarefree [Cas78, Ch. 11,
Theorem 1.3], whereas in our case, the determinant pq is squarefree. Alternatively,
one can deduce the non-existence of spinor exceptions from the explicit results of
Earnest, Hsia, and Hung [EHH94]. �

We are now ready to prove Theorem 1.

Proof of Theorem 1. When k = p = 2, then 〈1, 1, 2〉 is (2, 1)-universal. When
k = p is an odd prime, the theorem was proved in Proposition 5.

If k and ` are coprime, then there exists a prime p such that p | k and p - `. Then
Sk,` ⊂ Sp,`, and so every almost (p, `)-universal form is also almost (k, `)-universal.

Finally, if d = gcd(k, `), then let Q be an almost (k/d, `/d)-universal ternary
form (which exists by the previous paragraph). Then dQ is almost (k, `)-universal.

�

3. Non-existence of (p, `)-universal forms

The reasoning behind Conjectures 2 and 3 is based on several observations from
numerical experiments. Prior to stating the observations, let us denote XQ,p the
set of non-represented numbers (we call them gaps) for a ternary form Q that is
anisotropic precisely at p (and ∞):

XQ,p := {n ∈ N : n 6≡ 0 (mod p), n not represented by Q }.
Note that when the discriminant ∆Q is squarefree, XQ,p is finite ([Cas78], we
discuss this in the proof of Proposition 5 above).

We carried out the following computations.

3.1. Full search for (p, `)-universal forms. For a specific odd prime p, there is
an easy algorithm that searches for (p, `)-universal diagonal ternary forms. Sup-
pose that such a form exists. Then there certainly exists a form Q = 〈a, b, c〉 such
that:

• all three coefficients are squarefree (for instance, if a′ = ad2, then 〈a, b, c〉
is also (p, `)-universal);

• a ≤ b ≤ c;
• a ≤ ` (one of the coefficients must be less than ` as the form represents `);
• 〈a, b〉 represents ` (suppose it does not; then c ≤ ` < p and this is a

contradiction with p | abc);
• if ` is not squarefree, then a ≤ `/2 (either ` = ax2 and as ` is not squarefree
and a is, a < `, x ≥ 2, whence a ≤ `/4; or ` = by2 and a ≤ b ≤ `/4; or
` = ax2 + by2, whence 2a ≤ a+ b ≤ `);

• p | b or p | c (the prime divides the discriminant abc and as a ≤ ` < p,
p - a).

Moreover, we know that no unary or binary (p, `)-universal forms exist. So if we
denote eQ the smallest number ≡ ` (mod p) not represented by Q, we know that
b ≤ e〈a〉 and c ≤ e〈a,b〉.
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Based on these conditions, we searched through all the possible triples (a, b, c)
and obtained:
Proposition 6. For all primes 11 ≤ p ≤ 1237 and 1 ≤ ` ≤ p − 1 such that
(p, `) 6= (101, 98), there are no diagonal ternary positive (p, `)-universal quadratic
forms.

We carried out this computation in Python 2.7.12 on Intel Xeon machines with
Ubuntu 16.04, kernel version 4.13.0. This computation took 670 CPU days to
complete. We precomputed a list of primes and a list of squarefree numbers in
SageMath 6.4 [Sage] as Python natively does not support these.

3.2. (101, 98)-universality of 〈1, 2, 101〉. We did not manage to prove that the
form Q = 〈1, 2, 101〉 represents all elements of S101,98, as the form is not regular
(the size of the genus is 9 as computed by Magma [Magma]). We assert the
following:
Proposition 7. The form 〈1, 2, 101〉 represents S101,98 ∩ [0, 1012].

We carried out this computation in C++ with GCC 4.8.3 on an Intel i5 PC.
To verify the result, we iterated through triples x, y, z such that x2 + 2y2 ≤ 1012,
x2+2y2 ≡ 98 (mod 101) and x2+2y2+101z2 ≤ 1012. However, there are simply too
many such triples, so we first restricted to small x, and then interactively increased
the x’s considered until we got representations of the whole S101,98 ∩ [0, 1012].

3.3. Number of gaps. When a form has a squarefree discriminant, we know
that there are only finitely many numbers not represented by the form (as always
excluding the zero class modulo p), i.e., the set of gaps XQ,p is finite. We investi-
gated the cardinality #XQ,p for forms of small discriminant and we observe that
it behaves very roughly as p log p. The ratio α := #XQ,p/p log p for forms with
p < 300 and ∆Q < 30p is shown in Figure 1. (Note that XQ,p may be finite also
for non-squarefree discriminants, but then always α > 100 in these cases. Any-
way, without loss of generality as in 3.1 we consider only forms with squarefree
a ≤ b ≤ c.)

This computation was performed in C++ with GCC 5.4.0 on a cluster with
Intel Xeon CPU cores @ 2.00–2.40GHz. It took less than 1 CPU day to complete.
We precomputed the list of Q anisotropic precisely at p < 300 and with ∆Q < 30p
using SageMath [Sage].

If we assume that the elements of XQ,p are equidistributed modulo p, we can use
the comparison of #XQ,p with p log p in the following heuristic argument: For a
specific form Q, denote α > 0 such constant that #XQ,p = αp log p (see Figure 1).
For Q to be (p, `)-universal for a specific `, we need that none of the gaps lies in
the set Sp,`. The probability of this is(

1− 1
p− 1

)#XQ,p

=
(

1− 1
p− 1

)αp log p
≈ e−α

p
p−1 log p ≈ p−α.

Then the expected number of `’s such that Q is (p, `)-universal is (p−1)pα ≈ p1−α.
This shows that the larger the value of α, the smaller the chance that a form is
(p, `)-universal for some `.

We can even use this to estimate the total expected number of (p, `)-universal
forms: Oh [Oh11b, Theorem 2.3] proved an upper bound for the discriminant of
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Figure 1. Comparison of a lower estimate of #XQ,p to p log p
for 30 < p < 300 and ∆Q < 30p. Note that only forms with
#XQ,p < 100p log p are shown.

a (p, `)-universal ternary, which implies ∆Q < Cp6 for a constant C. As p | ∆Q,
there are at most Cp5 possible discriminants. Thus asymptotically, for each p
there are at most p5+ε candidates for (p, `)-universal forms, as the number of ways
of factoring ∆Q = abc is below ∆ε

Q for any ε. Therefore, for a fixed p the expected
number of `’s and Q’s such that Q is (p, `)-universal is asymptotically smaller than
p6+ε−minα.

Let us exclude the forms 〈1, 1, p〉, 〈1, 2, p〉, and 〈1, 3, p〉 for now. The data behind
Figure 1 suggest that we eventually have α > 7 for each of the remaining forms.
Thus for given sufficiently large p, the expected number of (non-excluded) (p, `)-
universal forms is less than C ′p1−ε′ for some ε′ > 0 and a constant C ′. The total
expected number over all large primes p is then C ′

∑
p p

1−ε′ , which converges!
Thus besides from the excluded forms 〈1, 1, p〉, 〈1, 2, p〉, and 〈1, 3, p〉, we expect to
have only finitely many (p, `)-universal ones.

Unfortunately, it turns out that XQ,p is not equidistributed modulo p. The
distribution appears to be not too far from normal (and in fact, seems to be skewed
in favor of even fewer universal forms), and so the preceding heuristic computation
still provides non-trivial information, especially since most of the values α are much
larger than α > 7 that we needed.

Further, the above consideration shows an important aspect: the form 〈1, 2, p〉 is
by orders more likely to be (p, `)-universal than any other form. Thus we performed
yet another experiment.
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Figure 2. Number of (p, `)’s such thatXQ,p∩[0, 120000p]∩Sp,` =
m for m = 0, 1, . . . , 9. For details, see § 3.4.

3.4. (p, `)-universality of 〈1, 2, p〉. In order for 〈1, 2, p〉 to be (p, `)-universal,
it has to be anisotropic precisely at p (and ∞), which happens if and only if
p ≡ 5, 7 (mod 8). For these primes, we calculated XQ,p (or rather a subset of
it, namely XQ,p ∩ [0, 120000p]) using the same software as in § 3.3 and checked
whether it contains elements from all classes 6≡ 0 (mod p). The computation took
290 CPU days to complete. It turns out that is 〈1, 2, p〉 is not (p, `)-universal for
any 103 ≤ p < 30000. And not only that; we even observe that classes containing
small number of elements are extremely rare, as can be seen in Figure 2.

In Figure 2, primes 300 < p < 30000 with p ≡ 5, 7 (mod 8) are shown, with
each bar corresponding to a group of 100 primes. For each group and m < 10,
we show (in shades of blue) the number of (p, `) such that our (lower) estimate of
XQ,p ∩ Sp,` equals m. For comparison, we show (in gray) the total number of `’s.
Because there are very few (p, `) for which m ≤ 5, we highlight these (in red and
green) in the bottom chart. Note that m ≤ 1 never appears for p ≥ 103 and that
m = 2 appears only for p ≤ 1181 and p = 6607.

Of course, similar computations can be done for other forms with small α, such
as 〈1, 1, p〉 or 〈1, 3, p〉. We tested 〈1, 1, p〉 and 〈1, 3, p〉 for primes p < 15000 getting
no candidates for (p, `)-universal forms (other than p = 2, 3). This computation
took 210 CPU days to complete.
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3.5. Conclusion of the experiments. We can summarize our observations from
the computations as follows:

(1) there is strong evidence that only finitely many diagonal ternary forms
Q 6= 〈1, 2, p〉, 〈1, 1, p〉, 〈1, 3, p〉 are (p, `)-universal (see § 3.3);

(2) Q = 〈1, 2, p〉 is not (p, `)-universal for any 103 < p < 30000, and also
the cases such that the set of gaps XQ,p ∩ Sp,` is small rapidly cease to
exist as p increases (see § 3.4). Likewise for 〈1, 1, p〉, 〈1, 3, p〉 (that are not
(p, `)-universal for 3 < p < 15000).

This convinces us that only finitely many (p, `)-universal diagonal ternary forms
exist; and this is the claim of Conjecture 2. Conjecture 3 is then motivated by
the absence of (p, `)-universal forms for 103 ≤ p < 1257 (see § 3.1) and the non-
universality of 〈1, 2, p〉 up to 30000.
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