
ar
X

iv
:1

90
6.

04
71

9v
1 

 [
m

at
h.

C
O

] 
 1

1 
Ju

n 
20

19

THE h∗-POLYNOMIALS OF LOCALLY ANTI-BLOCKING LATTICE

POLYTOPES AND THEIR γ-POSITIVITY

HIDEFUMI OHSUGI AND AKIYOSHI TSUCHIYA

ABSTRACT. A lattice polytope P ⊂ Rd is called a locally anti-blocking polytope if for

any closed orthant Rd
ε in Rd , P ∩Rd

ε is unimodularly equivalent to an anti-blocking

polytope by reflections of coordinate hyperplanes. In the present paper, we give a formula

of the h∗-polynomials of locally anti-blocking lattice polytopes. In particular, we discuss

the γ-positivity of the h∗-polynomials of locally anti-blocking reflexive polytopes.

INTRODUCTION

A lattice polytope is a convex polytope all of whose vertices have integer coordi-

nates. A lattice polytope P ⊂ Rd
≥0 of dimension d is called anti-blocking if for any

y = (y1, . . . ,yd) ∈ P and x = (x1, . . . ,xd) ∈ Rd with 0 ≤ xi ≤ yi for all i, it holds that

x ∈ P . Anti-blocking polytopes were introduced and studied by Fulkerson [9, 10] in

the context of combinatorial optimization. See, e.g., [32]. For ε ∈ {−1,1}d and x ∈ Rd ,

set εx := (ε1x1, . . . ,εdxd) ∈ Rd . Given an anti-blocking lattice polytope P ⊂ Rd
≥0 of

dimension d, we define

P
± := {εx ∈ Rd : ε ∈ {−1,1}d, x ∈ P}.

Since P is an anti-blocking lattice polytope, P± is convex (and a lattice polytope).

Moreover, for any ε ∈ {−1,1}d and x ∈ P±, we have εx ∈ P±. The polytope P±

is called an unconditional lattice polytope ([21]). In general, P± is symmetric with

respect to all coordinate hyperplanes. In particular, the origin 0 of Rd is in the in-

terior int(P±). Given ε = (ε1, . . . ,εd) ∈ {−1,1}d, let Rd
ε denote the closed orthant

{(x1, . . . ,xd) ∈ Rd : xiεi ≥ 0 for all 1 ≤ i ≤ d}. A lattice polytope P ⊂ Rd of dimen-

sion d is called locally anti-blocking ([21]) if, for each ε ∈ {−1,1}d , there exists an

anti-blocking lattice polytope Pε ⊂ Rd
≥0 of dimension d such that P ∩Rd

ε = P±
ε ∩Rd

ε .

Unconditional polytopes are locally anti-blocking.

In the present paper, we investigate the h∗-polynomials of locally anti-blocking lattice

polytopes. First, we give a formula of the h∗-polynomials of locally anti-blocking lattice

polytopes in terms of that of unconditional lattice polytopes. In fact,

Theorem 0.1. Let P ⊂Rd be a locally anti-blocking lattice polytope of dimension d and

for each ε ∈ {−1,1}d , let Pε be an anti-blocking lattice polytope of dimension d such
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that P ∩Rd
ε = P±

ε ∩Rd
ε . Then the h∗-polynomial of P satisfies

h∗(P,x) =
1

2d ∑
ε∈{−1,1}d

h∗(P±
ε ,x).

In particular, h∗(P,x) is γ-positive if h∗(P±
ε ,x) is γ-positive for all ε ∈ {−1,1}d .

Second, we discuss the γ-positivity of the h∗-polynomials of locally anti-blocking re-

flexive polytopes. A lattice polytope is called reflexive if the dual polytope is also a lattice

polytope. Many authors have studied reflexive polytopes from viewpoints of combina-

torics, commutative algebra and algebraic geometry. In [12], Hibi characterized reflexive

polytopes in terms of their h∗-polynomials. To be more precise, a lattice polytope of

dimension d is (unimodularly equivalent to) a reflexive polytope if and only if the h∗-

polynomial is a palindromic polynomial of degree d. On the other hand, in [21], locally

anti-blocking reflexive polytopes were characterized. In fact, a locally anti-blocking lat-

tice polytope P ⊂ Rd of dimension d is reflexive if and only if for each ε ∈ {−1,1}d ,

there exists a perfect graph Gε on [d] := {1, . . . ,d} such that P ∩Rd
ε = Q

±
Gε

∩Rd
ε , where

QGε is the stable set polytope of Gε . Moreover, every locally anti-blocking reflexive

polytope possesses a regular unimodular triangulation. This fact and the result of Bruns–

Römer [4] imply that its h∗-polynomial is unimodal.

In the present paper, we discuss whether the h∗-polynomial of a locally anti-blocking

reflexive polytope has a stronger property, which is called γ-positivity. In [28], a class of

lattice polytopes BG arising from finite simple graphs G on [d], which are called symmet-

ric edge polytopes of type B, was given. Symmetric edge polytopes of type B are uncondi-

tional, and they are reflexive if and only if the underlying graphs are bipartite. Moreover,

when they are reflexive, the h∗-polynomials are always γ-positive. On the other hand, in

[29], another family of lattice polytopes C
(e)
P arising from finite partially ordered sets P on

[d], which are called enriched chain polytopes, was given. Enriched chain polytopes are

unconditional and reflexive, and their h∗-polynomials are always γ-positive. Combining

these facts and Theorem 0.1, we know that, for a locally anti-blocking reflexive polytope

P , if every P ∩Rd
ε is the intersection of Rd

ε and either an enriched chain polytope or a

symmetric edge reflexive polytope of type B, then the h∗-polynomial of P is γ-positive

(Corollary 3.2). By using this result, we show that the h∗-polynomials of several classes

of reflexive polytopes are γ-positive.

In Section 4, we will discuss the γ-positivity of the h∗-polynomials of symmetric edge

polytopes of type A, which are reflexive polytopes arising from finite simple graphs. In

[19], it was shown that the h∗-polynomials of the symmetric edge polytopes of type A

of complete bipartite graphs are γ-positive. We will show that for a large class of finite

simple graphs, which includes complete bipartite graphs, the h∗-polynomials of the sym-

metric edge polytopes of type A are γ-positive (Subsection 4.1). Moreover, by giving

explicit h∗-polynomials of del Pezzo polytopes and pseudo-del Pezzo polytopes, we will

show that the h∗-polynomial of every pseudo-symmetric simplicial reflexive polytope is

γ-positive (Theorem 4.8).

In Section 5, we will discuss the γ-positivity of h∗-polynomials of twinned chain poly-

topes CP,Q ⊂ Rd , which are reflexive polytopes arising from two finite partially ordered

sets P and Q on [d]. In [36], it was shown that twinned chain polytopes CP,Q are locally
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anti-blocking and each CP,Q ∩Rd
ε is the intersection of Rd

ε and an enriched chain poly-

topes. Hence the h∗-polynomials of CP,Q are γ-positive. We will give a formula of the

h∗-polynomials of twinned chain polytopes in terms of the left peak polynomials of finite

partially ordered sets (Theorem 5.3). Moreover, we will define enriched (P,Q)-partitions

of P and Q, and show that the Ehrhart polynomial of the twined chain polytope CP,Q of P

and Q coincides with a counting polynomial of enriched (P,Q)-partitions (Theorem 5.8).

This paper is organized as follows: In Section 1, we will review the theory of Ehrhart

polynomials, h∗-polynomials, and reflexive polytopes. In Section 2, we will introduce

several classes of anti-blocking polytopes and unconditional polytopes. In Section 3, we

will investigate the h∗-polynomials of locally anti-blocking lattice polytopes. In particu-

lar, we will prove Theorem 0.1. We will discuss symmetric edge polytope of type A in

Section 4, and twinned chain polytopes in Section 5.

Acknowledgment. The authors were partially supported by JSPS KAKENHI 18H01134,

19K14505 and 19J00312.

1. EHRHART THEORY AND REFLEXIVE POLYTOPES

In this section, we review the theory of Ehrhart polynomials, h∗-polynomials, and re-

flexive polytopes. Let P ⊂ Rd be a lattice polytope of dimension d. Given a positive

integer m, we define

LP(m) = |mP ∩Zd |.

Ehrhart [8] proved that LP(m) is a polynomial in m of degree d with the constant term

1. We say that LP(m) is the Ehrhart polynomial of P . The generating function of the

lattice point enumerator, i.e., the formal power series

EhrP(x) = 1+
∞

∑
k=1

LP(k)xk

is called the Ehrhart series of P . It is well known that it can be expressed as a rational

function of the form

EhrP(x) =
h∗(P,x)

(1− x)d+1
.

Then h∗(P,x) is a polynomial in x of degree at most d with nonnegative integer coeffi-

cients ([33]) and it is called the h∗-polynomial (or the δ -polynomial) of P . Moreover,

one has Vol(P) = h∗(P,1), where Vol(P) is the normalized volume of P .

A lattice polytope P ⊂ Rd of dimension d is called reflexive if the origin of Rd is a

unique lattice point belonging to the interior of P and its dual polytope

P
∨ := {y ∈ Rd : 〈x,y〉 ≤ 1 for all x ∈ P}

is also a lattice polytope, where 〈x,y〉 is the usual inner product of Rd . It is known that

reflexive polytopes correspond to Gorenstein toric Fano varieties, and they are related

to mirror symmetry (see, e.g., [2, 6]). In each dimension there exist only finitely many

reflexive polytopes up to unimodular equivalence ([23]) and all of them are known up to

dimension 4 ([22]). In [12], Hibi characterized reflexive polytopes in terms of their h∗-

polynomials. We recall that a polynomial f ∈R[x] of degree d is said to be palindromic if
3



f (x) = xd f (x−1). Note that if a lattice polytope of dimension d has interior lattice points,

then the degree of its h∗-polynomial is equal to d.

Proposition 1.1 ([12]). Let P ⊂Rd be a lattice polytope of dimension d with 0 ∈ int(P).
Then P is reflexive if and only if h∗(P,x) is a palindromic polynomial of degree d.

Next, we review properties of polynomials. Let f = ∑d
i=0 aix

i be a polynomial with real

coefficients and ad 6= 0. We now focus on the following properties.

(RR) We say that f is real-rooted if all its roots are real.

(LC) We say that f is log-concave if a2
i ≥ ai−1ai+1 for all i.

(UN) We say that f is unimodal if a0 ≤ a1 ≤ ·· · ≤ ak ≥ ·· · ≥ ad for some k.

If all its coefficients are nonnegative, then these properties satisfy the implications

(RR)⇒ (LC)⇒ (UN).

On the other hand, the polynomial f is γ-positive if f is palindromic and there are

γ0,γ1, . . . ,γ⌊d/2⌋ ≥ 0 such that f (x) = ∑i≥0 γi xi(1+ x)d−2i. The polynomial ∑i≥0 γi xi

is called γ-polynomial of f . We can see that a γ-positive polynomial is real-rooted if and

only if its γ-polynomial is real-rooted. If f is a palindromic and real-rooted, then it is

γ-positive. Moreover, if f is γ-positive, then it is unimodal.

For a given lattice polytope, a fundamental problem within the field of Ehrhart theory is

to determine if its h∗-polynomial is unimodal. One famous instance is given by reflexive

polytopes that possess a regular unimodular triangulation.

Proposition 1.2 ([4]). Let P ⊂ Rd be a reflexive polytope of dimension d. If P possesses

a regular unimodular triangulation, then h∗(P,x) is unimodal.

It is known that if a reflexive polytope possesses a flag regular unimodular triangulation

all of whose maximal simplices contain the origin, then the h∗-polynomial coincides with

the h-polynomial of a flag triangulation of a sphere ([4]). For the h-polynomial of a flag

triangulation of a sphere, Gal ([11]) conjectured the following:

Conjecture 1.3 (Gal Conjecture). The h-polynomial of any flag triangulation of a sphere

is γ-positive.

2. CLASSES OF ANTI-BLOCKING POLYTOPES AND UNCONDITIONAL POLYTOPES

In this section, we introduce several classes of anti-blocking polytopes and uncondi-

tional polytopes. Throughout this section, we associate each subset F ⊂ [d] with a (0,1)-
vector eF = ∑i∈F ei ∈ Rd , where each ei is ith unit coordinate vector in Rd .

2.1. (0,1)-polytopes arising from simplicial complices. Let ∆ be a simplicial complex

on the vertex set [d]. Then ∆ is a collection of subsets of [d] with {i} ∈ ∆ for all i ∈ [d]
such that if F ∈ ∆ and F ′ ⊂ F , then F ′ ∈ ∆. In particular /0 ∈ ∆ and e /0 = 0. Let P∆ denote

the convex hull of
{

eF ∈ Rd : F ∈ ∆
}

. The following is an important observation.

Proposition 2.1. Let P ⊂ Rd
≥0 be a (0,1)-polytope of dimension d. Then P is anti-

blocking if and only if there exists a simplicial complex ∆ on [d] such that P = P∆.
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2.2. Stable set polytopes. Let G be a finite simple graph on the vertex set [d] and E(G)
the set of edges of G. (A finite graph G is called simple if G possesses no loop and no

multiple edge.) A subset W ⊂ [d] is called stable if, for all i and j belonging to W with

i 6= j, one has {i, j} /∈ E(G). We remark that a stable set is often called an independent

set. Let S(G) denote the set of stable sets of G. One has /0 ∈ S(G) and {i} ∈ S(G) for each

i ∈ [d]. The stable set polytope QG ⊂ Rd of G is the (0,1)-polytope defined by

QG := conv({eW ∈ Rd : W ∈ S(G)}).

Then one has dimQG = d. Since we can regard S(G) as a simplicial complex on [d], QG

is an anti-blocking polytope.

Locally anti-blocking reflexive polytopes are characterized by stable set polytopes. A

clique of G is a subset W ⊂ [d] which is a stable set of the complementary graph G of G.

The chromatic number of G is the smallest integer t ≥ 1 for which there exist stable set

W1, . . . ,Wt of G with [d] =W1 ∪ · · ·∪Wt . A finite simple graph G is said to be perfect if,

for any induced subgraph H of G including G itself, the chromatic number of H is equal

to the maximal cardinality of cliques of H. See, e.g., [7] for details on graph theoretical

terminologies.

Proposition 2.2 ([21]). Let P ⊂ Rd be a locally anti-blocking lattice polytope of dimen-

sion d. Then P ⊂ Rd is reflexive if and only if, for each ε ∈ {−1,1}d, there exists a

perfect graph Gε on [d] such that P ∩Rd
ε = Q

±
Gε

∩Rd
ε .

2.3. Chain polytopes and enriched chain polytopes. Let (P,<P) be a partially ordered

set (poset, for short) on [d]. A subset A of [d] is called an antichain of P if all i and j

belonging to A with i 6= j are incomparable in P. In particular, the empty set /0 and each

1-element subset {i} are antichains of P. Let A (P) denote the set of antichains of P. In

[34], Stanley introduced the chain polytope CP of P defined by

CP := conv({eA ∈ Rd : A ∈ A (P)}).

It is known that chain polytopes are stable set polytopes. Indeed, let GP be the finite

simple graph on [d] such that {i, j} ∈ E(GP) if and only if i <P j or j <P i. We call GP

the comparability graph of P. It then follows that A (P) = S(GP). Hence the chain poly-

tope CP is the stable set polytope of QGP
. Therefore, chain polytopes are anti-blocking

polytopes. We remark that any comparability graph is perfect.

On the other hand, the enriched chain polytope C
(e)
P of P is the unconditional lattice

polytope defined by

C
(e)
P := C

±
P .

In [29], it was shown that the Ehrhart polynomial of C
(e)
P coincides with a counting poly-

nomial of left enriched P-partitions. We assume that P is naturally labeled. Let [m]± :=
{1,−1,2,−2, . . . ,m,−m} and [m]±0 := {0}∪ [m]± for 0 < m ∈ Z. A map f : P → [m]± is

called an enriched P-partition ([35]) if, for all x,y ∈ P with x <P y, f satisfies

(i) | f (x)| ≤ | f (y)|;
(ii) | f (x)|= | f (y)| ⇒ f (y)> 0.

A map f : P → [m]±0 is called a left enriched P-partition ([31]) if, for all x,y ∈ P with

x <P y, f satisfies
5



(i) | f (x)| ≤ | f (y)|;
(ii) | f (x)|= | f (y)| ⇒ f (y)≥ 0.

We denote Ω
(ℓ)
P (m) the number of left enriched P-partitions f : P → [m]±0 , which is called

the left enriched order polynomial of P.

Proposition 2.3 ([29]). Let P be a naturally labeled finite poset on [d]. Then one has

L
C

(e)
P

(m) = Ω
(ℓ)
P (m).

Given a linear extension π = (π1, . . . ,πd) of a finite poset P on [d], a left peak of π is an

index 1 ≤ i ≤ d −1 such that πi−1 < πi > πi+1, where we set π0 = 0. Let pk(ℓ)(π) denote

the number of left peaks of π . Then the left peak polynomial W
(ℓ)
P (x) of P is defined by

W
(ℓ)
P (x) = ∑

π∈L (P)

x pk(ℓ)(π),

where L (P) is the set of linear extensions of P.

Proposition 2.4 ([29]). Let P be a naturally labeled finite poset on [d]. Then the h∗-

polynomial of C
(e)
P is

h∗(C
(e)
P ,x) = (x+1)d W

(ℓ)
P

(
4x

(x+1)2

)
.

In particular, h∗(C
(e)
P ,x) is γ-positive.

Note that if Q is a finite poset which is obtained from P by reordering the label, then

C
(e)
P and C

(e)
Q are unimodularly equivalent. Hence the h∗-polynomials of enriched chain

polytopes are always γ-positive.

2.4. Symmetric edge polytopes of type B. Let G be a finite simple graph on [d]. We set

BG := conv({0,e1, . . . ,ed}∪{ei + e j : {i, j} ∈ E(G)}).

Then BG = P∆ where ∆ is a simplicial complex on [d] obtained by regarding G as a

1-dimensional simplicial complex. The symmetric edge polytope of type B of G is the

unconditional lattice polytope defined by

BG := B±
G.

Proposition 2.5 ([28]). Let G be a finite simple graph on [d]. Then BG is reflexive if and

only if G is bipartite.

A hypergraph is a pair H = (V,E), where E = {e1, . . . ,en} is a finite multiset of non-

empty subsets of V = {v1, . . . ,vm}. Elements of V are called vertices and the elements

of E are the hyperedges. Then we can associate H to a bipartite graph BipH with a

bipartition V ∪E such that {vi,e j} is an edge of BipH if vi ∈ e j. Assume that BipH

is connected. A hypertree in H is a function f : E → {0,1, . . .} such that there exists a

spanning tree Γ of BipH whose vertices have degree f(e)+ 1 at each e ∈ E. Then we

say that Γ induce f. Let BH denote the set of all hypertrees in H . A hyperedge e j ∈ E is

said to be internally active with respect to the hypertree f if it is not possible to decrease
6



f(e j) by 1 and increase f(e j′) ( j′ < j) by 1 so that another hypertree results. We call a

hyperedge internally inactive with respect to a hypertree if it is not internally active and

denote the number of such hyperedges of f by ι(f). Then the interior polynomial of H

is the generating function IH (x) = ∑f∈BH
xι(f). It is known [20, Proposition 6.1] that

deg IH (x)≤ min{|V |, |E|}−1. If G = BipH , then we set IG(x) = IH (x).

Assume that G is a bipartite graph with a bipartition V1 ∪V2 = [d]. Then let G̃ be a

connected bipartite graph on [d +2] whose edge set is

E(G̃) = E(G)∪{{i,d+1} : i ∈V1}∪{{ j,d+2} : j ∈V2 ∪{d +1}}.

Proposition 2.6 ([28]). Let G be a bipartite graph on [d]. Then h∗-polynomial of the

reflexive polytope BG is

h∗(BG,x) = (x+1)dI
G̃

(
4x

(x+1)2

)
.

In particular, h∗(BG,x) is γ-positive.

3. h∗-POLYNOMIALS OF LOCALLY ANTI-BLOCKING LATTICE POLYTOPES

In the present section, we prove Theorem 0.1, that is, a formula of the h∗-polynomials of

locally anti-blocking lattice polytopes in terms of that of unconditional lattice polytopes.

Given a subset J = { j1, . . . , jr} of [d], let πJ : Rd → Rr, πJ((x1, . . . ,xd)) = (x j1, . . . ,x jr)
denote the projection map. (Here π /0 is the zero map.)

Proposition 3.1. Let P ⊂ Rd
≥0 be an anti-blocking lattice polytope. Then we have

h∗(P±,x) =
d

∑
j=0

2 j(x−1)d− j ∑
J⊂[d], |J|= j

h∗(πJ(P),x).

Proof. The proof is similar to the discussion in [28, Proof of Proposition 3.1]. The in-

tersection of P± ∩Rd
ε and P± ∩Rd

ε ′ is of dimension d − 1 if and only if ε − ε ′ ∈
{±2e1, . . . ,±2ed}. Moreover, if ε − ε ′ = 2ek, then

(P±∩Rd
ε )∩ (P±∩Rd

ε ′) = P
±∩Rd

ε ∩Rd
ε ′ ≃ π[d]\{k}(P

±)∩Rd−1
π[d]\{k}(ε)

≃ π[d]\{k}(P).

Hence the Ehrhart polynomial LP±(m) satisfies the following:

LP±(m) =
d

∑
j=0

2 j(−1)d− j ∑
J⊂[d], |J|= j

LπJ(P)(m).

Thus the Ehrhart series satisfies

h∗(P±,x)

(1− x)d+1
=

d

∑
j=0

2 j(−1)d− j ∑
J⊂[d], |J|= j

h∗(πJ(P),x)

(1− x) j+1
,

as desired. �

We now prove Theorem 0.1.
7



Proof of Theorem 0.1. Given J = { j1, . . . , jr} ⊂ [d] and ε ∈ {−1,1}r, let

Rd
J,ε = {x = (x1, . . . ,xd) ∈ Rd : πJ(x) ∈ Rr

ε and x j = 0 for all j /∈ J}.

It then follows that P ∩Rd
J,ε is equal to πJ(Pε ′)

± ∩Rr
ε , where πJ(ε

′) = ε . Note that,

given J = { j1, . . . , jr} ⊂ [d] and ε ∈ {−1,1}r, we have |{ε ′ ∈ {−1,1}d : πJ(ε
′) = ε}| =

2d−r. Thus

h∗(P,x) =
d

∑
j=0

(x−1)d− j ∑
J⊂[d], |J|= j

∑
ε∈{−1,1} j

h∗(P ∩Rd
J,ε ,x)

=
d

∑
j=0

(x−1)d− j ∑
ε∈{−1,1}d

∑
J⊂[d], |J|= j

1

2d− j
h∗(πJ(Pε),x)

=
1

2d ∑
ε∈{−1,1}d

d

∑
j=0

2 j(x−1)d− j ∑
J⊂[d], |J|= j

h∗(πJ(Pε),x)

=
1

2d ∑
ε∈{−1,1}d

h∗(P±
ε ,x)

by Proposition 0.1. �

Combining Theorem 0.1 and Propositions 2.4 and 2.6, we have the following.

Corollary 3.2. Let P ⊂ Rd be a locally anti-blocking reflexive polytope. If every P ∩
Rd

ε is the intersection of Rd
ε and either an enriched chain polytope or a symmetric edge

reflexive polytope of type B, then the h∗-polynomial of P is γ-positive.

Finally, we conjecture the following:

Conjecture 3.3. The h∗-polynomial of any locally anti-blocking reflexive polytope is γ-

positive.

Thanks to Theorem 0.1 and Proposition 2.2, in order to prove Conjecture 3.3, it is

enough to study unconditional lattice polytopes Q
±
G where QG is the stable set polytope

of a perfect graph G.

4. SYMMETRIC EDGE POLYTOPES OF TYPE A

Let G be a finite simple graph on the vertex set [d] and the edge set E(G). The symmet-

ric edge polytope AG ⊂ Rd of type A is the convex hull of the set

A(G) = {±(ei − e j) ∈ Rd : {i, j} ∈ E(G)}.

The polytope AG is introduced in [24, 26] and called a “symmetric edge polytope of G.”

Example 4.1. Let G be a tree on [d]. Then AG is unimodularly equivalent to a (d −1)-
dimensional cross polytope. Hence we have h∗(AG,x) = (x+1)d−1.

It is known [24, Proposition 4.1] that the dimension of AG is d − 1 if and only if G

is connected. Higashitani [18] proved that AG is simple if and only if AG is smooth

if and only if G contains no even cycles. It is known [24, 26] that AG is unimodularly
8



equivalent to a reflexive polytope having a regular unimodular triangulation. In particular,

h∗-polynomial of AG is palindromic and unimodal. For a complete bipartite graph Kℓ,m,

it is known [19] that the h∗-polynomial of AKℓ,m is real-rooted and hence γ-positive.

4.1. Recursive formulas for h∗-polynomials. In this section, we give several recursive

formulas of h∗-polynomials of AG when G belongs to certain classes of graphs. By the

following fact, we may assume that G is 2-connected if needed.

Proposition 4.2. Let G be a graph and let G1, . . . ,Gs be 2-connected components of G.

Then the h∗-polynomial of AG satisfies

h∗(AG,x) = h∗(AG1
,x) · · ·h∗(AGs

,x).

Proof. Since AG is the free sum of reflexive polytopes AG1
, . . . ,AGs

, a desired conclusion

follows from [3, Theorem 1]. �

The suspension Ĝ of a graph G is the graph on the vertex set [d+1] and the edge set

E(G)∪{{i,d+1} : i ∈ [d]}.

We now study the h∗-polynomial of A
Ĝ

. Given a subset S ⊂ [d],

ES := {e ∈ E(G) : |e∩S|= 1}

is called a cut of G. For example, we have E /0 = E[d] = /0. In general, it follows that

ES = E[d]\S. We identify ES with the subgraph of G on the vertex set [d] and the edge set

ES. By definition, ES is a bipartite graph. Let Cut(G) be the set of all cuts of G. Note that

|Cut(G)|= 2d−1. From Theorem 0.1 and Proposition 2.6, we have the following.

Theorem 4.3. Let G be a finite graph on [d]. Then A
Ĝ

is unimodularly equivalent to a

locally anti-blocking reflexive polytope whose h∗-polynomial is

h∗(A
Ĝ
,x) =

1

2d−1 ∑
H∈Cut(G)

h∗(BH ,x) = (x+1)d fG

(
4x

(x+1)2

)
,

where

fG(x) =
1

2d−1 ∑
H∈Cut(G)

I
H̃
(x).

In particular, h∗(A
Ĝ
,x) is γ-positive. Moreover, h∗(A

Ĝ
,x) is real-rooted if and only if

fG(x) is real-rooted.

Proof. Let P ⊂ Rd be the convex hull of

{±e1, . . . ,±ed}∪{±(ei − e j) : {i, j} ∈ E(G)}.

Then A
Ĝ

is lattice isomorphic to P . Given ε = (ε1, . . . ,εd)∈ {−1,1}d, let Sε = {i ∈ [d] :

εi = 1}. Then P ∩Rd
ε is the convex hull of

{0}∪{εiei : i ∈ [d]}∪{ei − e j : {i, j} ∈ ESε , i ∈ Sε}.

Hence P ∩Rd
ε = BESε

∩Rd
ε . Thus P is a locally anti-blocking polytope and

h∗(A
Ĝ
,x) =

1

2d−1 ∑
H∈Cut(G)

h∗(BH ,x)

9



by Theorem 0.1. �

Let G be a graph and let e = {i, j} be an edge of G. Then the graph G/e obtained by

the procedure

(i) Delete e and identify the vertices i and j;

(ii) Delete the multiple edges that may be created while (i)

is called the graph obtained from G by contracting the edge e. Next, we will show that, for

any bipartite graph G and e∈ E(G), h∗(AG,x) is γ-positive if and only if so is h∗(AG/e,x).
In order to show this fact, we need the theory of Gröbner bases of toric ideals. Given a

graph G on the vertex set [d] and the edge set E(G) = {e1, . . . ,en}, let

R = K[t1, t
−1
1 , . . . , td, t

−1
d ,s]

be the Laurent polynomial ring over a field K and let

S = K[x1, . . . ,xn,y1, . . . ,yn,z]

be the polynomial ring over K. We define the ring homomorphism π : S → R by setting

π(z) = s, π(xk) = tit
−1
j s and π(yk) = t−1

i t js if ek = {i, j} ∈ E(G) and i < j. The toric

ideal IAG
of AG is the kernel of π . (See, e.g., [13] for details on toric ideals and Gröbner

bases.) We now define the notation given in [19]. For any oriented edge ei, let pi denote

the corresponding variable, i.e. pi = xi or pi = yi depending on the orientation and let

{pi,qi}= {xi,yi}. Let G (G) be the set of all binomials f satisfying one of the following:

(1) f = ∏
ei∈I

pi − ∏
ei∈C\I

qi,

where C is an even cycle in G of length 2k with a fixed orientation, and I is a k-subset of

C such that eℓ /∈ I for ℓ= min{i : ei ∈C};

(2) f = ∏
ei∈I

pi − z ∏
ei∈C\I

qi,

where C is an odd cycle in G of length 2k+1 and I is a (k+1)-subset of C;

(3) f = xiyi − z2,

where 1 ≤ i ≤ n. Then G (G) is a Gröbner basis of IAG
with respect to a reverse lexi-

cographic order < induced by the ordering z < x1 < y1 < · · · < xn < yn ([19, Proposi-

tion 3.8]). Here the initial monomial of each binomial is the first monomial. Using this

Gröbner basis, we have the following.

Proposition 4.4. Let G be a bipartite graph on [d] and let e ∈ E(G). Then we have

h∗(AG,x) = (x+1)h∗(AG/e,x).

Proof. Let E(G) = {e1, . . . ,en} with e = e1 = {i, j}. Since G is a bipartite graph, the

Gröbner basis G (G) above consists of the binomials of the form (1) and (3).

Since G has no triangles, the procedure (ii) does not occur when we contract e of G.

Hence E(G/e) = {e′2, . . . ,e
′
n} where e′k is obtained from ek by identifying i with j. Let G′

10



be a graph obtained by adding an edge e′1 = {d+1,d+2} to the graph G/e. Then G (G′)
consists of all binomials f satisfying one of the following:

(4) f = ∏
ei∈I

pi − ∏
ei∈C\I

qi,

where C is an even cycle in G of length 2k with a fixed orientation and e1 /∈C, and I is a

k-subset of C such that eℓ /∈ I for ℓ= min{i : ei ∈C};

(5) f = ∏
ei∈I

pi − z ∏
ei∈C\I

qi,

where C∪{e1} is an even cycle in G of length 2k+2 and I is a (k+1)-subset of C;

(6) f = xiyi − z2,

where 1 ≤ i ≤ n. Hence {in<( f ) : f ∈ G (G)} = {in<( f ) : f ∈ G (G′)}. By a similar

argument as in the proof of [17, Theorem 3.1], it follows that

h∗(AG,x) = h∗(AG′,x) = h∗(A{e′1}
,x)h∗(AG/e,x) = (x+1)h∗(AG/e,x),

as desired. �

From Theorem 4.3, Propositions 4.2 and 4.4 we have the following immediately.

Corollary 4.5. Let G be a bipartite graph on [d]. Then we have the following:

(a) The h∗-polynomial h∗(A
G̃
,x) = (x+1)h∗(A

Ĝ
,x) is γ-positive.

(b) If G is obtained by gluing bipartite graphs G1 and G2 along with an edge e, then

h∗(AG,x) = (x+1)h∗(AG/e,x)

= (x+1)h∗(AG1/e,x)h
∗(AG2/e,x)

= h∗(AG1
,x)h∗(AG2

,x)/(x+1).

4.2. Pseudo-symmetric simplicial reflexive polytopes. A lattice polytope P ⊂ Rd is

called pseudo-symmetric if there exists a facet F of P such that −F is also a facet of

P . Nill [25] proved that any pseudo-symmetric simplicial reflexive polytope P is a free

sum of P1, . . . ,Ps, where each Pi is one of the following:

• cross polytope;

• del Pezzo polytope V2m = conv(±e1, . . . ,±e2m,±(e1 + · · ·+ e2m));

• pseudo-del Pezzo polytope Ṽ2m = conv(±e1, . . . ,±e2m,−e1 −·· ·− e2m).

Note that a del Pezzo polytope is unimodularly equivalent to AC2m+1
where C2m+1 is an

odd cycle of length 2m+1 (see [18]). The h∗-polynomial of ACd
was essentially studied

in the following papers (see also the OEIS sequence A204621):

• Conway–Sloane [5, p.2379] computed h∗(ACd
,x) for small d by using results of

O’Keeffe [30] and gave a conjecture on the γ-polynomial of h∗(ACd
,x) (coincides

with the γ-polynomial in Proposition 4.7 below).

• General formulas for the coefficients of h∗(ACd
,x) were given by Ohsugi–Shibata

[27] and Wang–Yu [37].

In order to give the h∗-polynomial of Ṽ2m, we need the following lemma.
11



Lemma 4.6. Let G be a connected graph. Suppose that an edge e = {i, j} of G is not a

bridge. Let Pe be the convex hull of A(G)\{ei − e j}. Then we have

h∗(Pe,x) =
1

2
(h∗(AG,x)+h∗(AG\e,x)),

where G\ e is the graph obtained by deleting e from G.

Proof. Note that AG\e ⊂ Pe ⊂ AG. Since G is connected and e is not a bridge of G, the

dimension of each of AG and AG\e is d − 1. Let P ′
e denote the convex hull of A(G) \

{−ei + e j}, which is unimodularly equivalent to Pe. Then AG and Pe are decomposed

into the following disjoint union:

AG = AG\e ∪ (Pe \AG\e)∪ (P ′
e \AG\e),

Pe = AG\e ∪ (Pe \AG\e).

Since Pe \AG\e is unimodularly equivalent to P ′
e \AG\e, we have a desired conclusion.

�

The h∗-polynomials of V2m and Ṽ2m are as follows:

Proposition 4.7. Let Cd denote a cycle of length d ≥ 3 and let 1 ≤ m ∈ Z. Then we have

h∗(ACd
,x) =

⌊ d−1
2 ⌋

∑
i=0

(
2i

i

)
xi(x+1)d−2i−1,

h∗(V2m,x) =
m

∑
i=0

(
2i

i

)
xi(x+1)2m−2i,

h∗(Ṽ2m,x) = (x+1)2m +
m

∑
i=1

(
2i−1

i−1

)
xi(x+1)2m−2i.

In particular, the h∗-polynomials of ACd
, V2m and Ṽ2m are γ-positive.

Proof. The proof for Cd is induction on d. First, we have h∗(AC3
,x) = x2 + 4x + 1 =

(x+1)2 +
(

2
1

)
x. If d ≥ 4 is even, then

h∗(ACd
,x) = (x+1)h∗(ACd−1

,x) =

d−2
2

∑
i=0

(
2i

i

)
xi(x+1)d−2i−1 =

⌊ d−1
2 ⌋

∑
i=0

(
2i

i

)
xi(x+1)d−2i−1.

Moreover, if d = 2m+1 (2 ≤ m ∈ Z), then the coefficient of xm in

d−1
2

∑
i=0

(
2i

i

)
xi(x+1)d−2i−1 = (x+1)h∗(ACd−1

,x)+

(
2m

m

)
xm

is ∑m
i=0

(
2i
i

)(
2m−2i
m−i

)
= 4m = 2d−1 and other coefficient is arising from (x+1)h∗(ACd−1

,x).
By a recursive formula in [27, Theorem 2.3], we have

h∗(ACd
,x) =

d−1
2

∑
i=0

(
2i

i

)
xi(x+1)d−2i−1.
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Since V2m is unimodularly equivalent to AC2m+1
, we have h∗(V2m,x) = h∗(AC2m+1

,x). By

Lemma 4.6, it follows that

h∗(Ṽ2m,x) =
1

2
(h∗(AC2m+1

,x)+h∗(AP2m+1
,x))

=
1

2

(
m

∑
i=0

(
2i

i

)
xi(x+1)2m−2i +(x+1)2m

)

= (x+1)2m +
m

∑
i=1

(
2i−1

i−1

)
xi(x+1)2m−2i.

�

Thus it turns out that any pseudo-symmetric simplicial reflexive polytope is a free sum

of reflexive polytopes whose h∗-polynomial are γ-positive. By [3, Theorem 1], we have

the following.

Theorem 4.8. The h∗-polynomial of any pseudo-symmetric simplicial reflexive polytope

is γ-positive.

4.3. Classes of graphs such that h∗(AG,x) is γ-positive. Using results in the present

section, for example, h∗(AG,x) is γ-positive if one of the following holds:

• G = Ĥ for some graph H (e.g., G is a complete graph, a wheel graph);

• G = H̃ for some bipartite graph H (e.g., G is a complete bipartite graph);

• G is a cycle;

• G is an outer planar bipartite graph.

Moreover, we can compute h∗(AG,x) explicitly in some cases. We give examples of

such calculations for known formulas (for complete graphs [1], and for complete bipartite

graphs [19]).

Example 4.9 ([1]). For a complete graph Kd , we have

h∗(AKd
,x) = h∗(A

K̂d−1
,x)

=
1

2d−1

d−1

∑
k=0

(
d −1

k

) ⌊ d−1
2 ⌋

∑
i=0

4i

(
k

i

)(
d − k−1

i

)
xi(x+1)d−1−2i

=
1

2d−1

⌊ d−1
2 ⌋

∑
i=0

4ixi(x+1)d−1−2i
d−i−1

∑
k=i

(
d −1

k

)(
k

i

)(
d − k−1

i

)
.

Since

d−i−1

∑
k=i

(
d −1

k

)(
k

i

)(
d − k−1

i

)
=

d−i−1

∑
k=i

(
d −1

2i

)(
2i

i

)(
d−1−2i

k− i

)
= 2d−1−2i

(
d −1

2i

)(
2i

i

)
,

we have

h∗(AKd
,x) =

⌊ d−1
2 ⌋

∑
i=0

(
d −1

2i

)(
2i

i

)
xi(x+1)d−1−2i.
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Example 4.10 ([19]). Let G = Km,n. Then G̃ = Km+1,n+1 and

h∗(AKm+1,n+1
,x) = (x+1)h∗(A

K̂m,n
,x) =

=
x+1

2m+n

m

∑
k=0

n

∑
ℓ=0

(
m

k

)(
n

ℓ

)(min(k,ℓ)

∑
i=0

4i

(
k

i

)(
ℓ

i

)
xi(x+1)k+ℓ−2i

)

(
min(m−k,n−ℓ)

∑
j=0

4 j

(
m− k

j

)(
n− ℓ

j

)
x j(x+1)m+n−k−ℓ−2 j

)

=
1

2m+n ∑
i, j≥0

4i+ jxi+ j(x+1)n+m−2(i+ j)+1
m− j

∑
k=i

(
m

k

)(
k

i

)(
m− k

j

)n− j

∑
ℓ=i

(
n

ℓ

)(
ℓ

i

)(
n− ℓ

j

)
.

Since

m− j

∑
k=i

(
m

k

)(
k

i

)(
m− k

j

)
=

m− j

∑
k=i

(
m

i+ j

)(
i+ j

i

)(
m− (i+ j)

k− i

)
= 2m−(i+ j)

(
m

i+ j

)(
i+ j

i

)
,

we have

h∗(AKm+1,n+1
,x) = ∑

i≥0
∑
j≥0

(
i+ j

i

)2(
m

i+ j

)(
n

i+ j

)
xi+ j(x+1)m+n−2(i+ j)+1

=
min(m,n)

∑
α=0

α

∑
i=0

(
α

i

)2(
m

α

)(
n

α

)
xα(x+1)m+n−2α+1

=
min(m,n)

∑
α=0

(
2α

α

)(
m

α

)(
n

α

)
xα(x+1)m+n−2α+1.

Finally, we conjecture the following:

Conjecture 4.11. The h∗-polynomial of any symmetric edge polytope of type A is γ-

positive.

5. TWINNED CHAIN POLYTOPES

In this section, we will apply Theorem 0.1 to twinned chain polytopes. For two lattice

polytopes P,Q ⊂ Rd , we set

Γ(P,Q) := conv(P ∪ (−Q))⊂ Rd.

Let P and Q be two finite posets on [d]. The twinned chain polytope of P and Q is the

lattice polytope defined by

CP,Q := Γ(CP,CQ).

Then CP,Q is reflexive. Moreover, CP,Q has a flag, regular unimodular triangulation all of

whose maximal simplices contain the origin ([14, Proposition 1.2]). Hence we obtain the

following:

Corollary 5.1. Let P and Q be two finite posets. Then the h∗-polynomial of CP,Q coincides

with the h-polynomial of a flag triangulation of a sphere.
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In [36, Proposition 2.2] it was shown that CP,Q is locally anti-blocking. In general, for

two finite posets (P,<P) and (Q,<Q) with P∩Q = /0, the ordinal sum of P and Q is the

poset (P⊕Q,<P⊕Q) on P⊕Q = P∪Q such that i <P⊕Q j if and only if (a) i, j ∈ P and

i <P j, or (b) i, j ∈ Q and i <Q j, or (c) i ∈ P and j ∈ Q. Given a subset I of [d], we define

the induced subposet of P on I to be the finite poset (PI,<PI
) on W such that i <PI

j if and

only if i <P j. For I ⊂ [d], let I := [d]\ I.

Proposition 5.2 ([36, Proposition 2.2]). Let P and Q be two finite posets on [d]. Then for

each ε ∈ {−1,1}d , it follows that

CP,Q ∩Rd
ε = C

±
PIε⊕QIε

∩Rd
ε ,

where Iε = {i ∈ [d] : εi = 1}.

From this result, Theorem 0.1 and Proposition 2.4 we obtain the following:

Theorem 5.3. Let P and Q be two finite posets on [d]. Then one has

h∗(CP,Q,x) =
1

2d ∑
ε∈{−1,1}d

h∗(C
(e)
Rε

,x) = (x+1)d fP,Q

(
4x

(x+1)2

)
,

where Iε = {i ∈ [d] : εi = 1} and Rε is a naturally labeled poset which is obtained from

PIε ⊕QIε
by reordering the label and

fP,Q(x) =
1

2d ∑
ε∈{−1,1}d

W
(ℓ)
Rε

(x)

In particular, h∗(CP,Q,x) is γ-positive. Moreover, h∗(CP,Q,x) is real-rooted if and only if

fP,Q(x) is real-rooted.

On the other hand, it is known that, from h∗(CP,Q,x), we obtain the h∗-polynomials of

several non-locally anti-blocking lattice polytopes arising from the posets P and Q. The

order polytope OP ([34]) of P is the (0,1)-polytope defined by

OP := {x ∈ [0,1]d : xi ≤ x j if i <P j}.

Given two lattice polytopes P,Q ⊂ Rd , we define

P ∗Q := conv((P×{0})∪ (Q×{1}))⊂ Rd+1,

which are called the Cayley sum of P and Q, and define

Ω(P,Q) := conv((P ×{1})∪ (−Q×{−1}))⊂ Rd+1.

Proposition 5.4 ([14, Theorem 1.1]). Let P and Q be two finite posets on [d]. Then one

has

h∗(CP,Q,x) = h∗(Γ(OP,CQ),x).

Furthermore, if P and Q has a common linear extension, then we obtain

h∗(CP,Q,x) = h∗(Γ(OP,OQ),x).
15



Proposition 5.5 ([16, Theorem 1.4]). Let P and Q be two finite posets on [d]. Then one

has

(1+ x)h∗(CP,Q,x) = h∗(Ω(OP,CQ),x).

Furthermore, if P and Q has a common linear extension, then we obtain

(1+ x)h∗(CP,Q,x) = h∗(Ω(OP,OQ),x).

Proposition 5.6 ([15, Theorem 4.1]). Let P and Q be two finite posets on [d]. Then one

has

h∗(CP,Q,x) = h∗(OP ∗CQ,x).

From these propositions and Theorem 5.3, we obtain the following:

Corollary 5.7. Let P and Q be two finite posets on [d]. Then the h∗-polynomials of

Γ(OP,CQ), Ω(OP,CQ), OP ∗CQ and Ω(CP,CQ) are γ-positive. Furthermore, if P and Q

has a common linear extension, then the h∗-polynomials of Γ(OP,OQ) and Ω(OP,OQ)
are also γ-positive.

In the rest of section, we introduce enriched (P,Q)-partitions and we show that the

Ehrhart polynomial of CP,Q coincides with a counting polynomial of enriched (P,Q)-
partitions. Assume that P and Q are naturally labeled. We say that a map f : [d]→ Z is

an enriched (P,Q)-partition if, for all x,y ∈ [d], f satisfies

• x <P y, f (x)≥ 0 and f (y)≥ 0 ⇒ f (x)≤ f (y);
• x <Q y, f (x)≤ 0 and f (y)≤ 0 ⇒ f (x)≥ f (y).

For each 0< m ∈Z, let Ω
(e)
P,Q(m) denote the number of enriched (P,Q)-partitions f : [d]→

[a,b]Z, where a and b are integers with a ≤ 0 ≤ b and b−a = m, and [a,b]Z := [a,b]∩Z.

Theorem 5.8. Let P and Q be two finite posets on [d]. Then one has

LCP,Q
(m) = Ω

(e)
P,Q(m).

Proof. Let a and b be integers with a ≤ 0 ≤ b and b− a = m, and denote F(m) the set

of enriched (P,Q)-partitions f : [d]→ [a,b]Z. We show that there exists a bijection from

mCP,Q ∩Zd to F(m).
Let f : [d] → [a,b]Z be an enriched (P,Q)-partition, where a and b are integers with

a ≤ 0 ≤ b and b−a = m. We set

I = {i ∈ [d] : f (i)≥ 0}.

Let

xi =





f (i) if i ∈ I is minimal in PI,

min{ f (i)− f ( j) : i covers j in PI} if i ∈ I is not minimal in PI,

−| f (i)| if i ∈ I is minimal in QI,

−min{| f (i)|− | f ( j)| : i covers j in QI} if i ∈ I is not minimal in QI.

Assume that I = {1, . . . ,k} and I = {k + 1, . . . ,d}. Then we have (x1, . . . ,xk) ∈ bCPI

and (xk+1, . . . ,xd) ∈ aCQI
by a result of Stanley [34, Theorem 3.2]. Hence one obtains
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(x1, . . . ,xd) ∈ bCPI
⊕aCQI

⊂ mCP,Q, where bCPI
⊕aCQI

is the free sum of bCPI
and aCQI

.

Similarly, in general, it follows that (x1, . . . ,xd) ∈ mCP,Q. Therefore, the map ϕ : F(m)→

mCP,Q ∩Zd defined by ϕ( f ) = (x1, . . . ,xd) for each f ∈ F(m) is well-defined.

Take (x1, . . . ,xd) ∈ mCP,Q ∩Zd . We set

I = {i ∈ [d] : xi ≥ 0}.

We define a map f : [d]→ Z by

f (i) =





max{x j1 + · · ·+ x jk : j1 <PI
· · ·<PI

jk = i} if i ∈ I,

−max{|x j1|+ · · ·+ |x jk | : j1 <QI
· · ·<QI

jk = i} if i ∈ I.

Assume that I = {1, . . . ,k} and I = {k+ 1, . . . ,d}. Then one has (x1, . . . ,xd) ∈ m(CPI
⊕

(−CQI
))∩Zd . Moreover, for some integers a and b with a ≤ 0 ≤ b and b− a = m, it

follows that (x1, . . . ,xk) ∈ bCPI
and (xk+1, . . . ,xd) ∈ aCQI

. We define f1 : I → [b]0 by

f1(i) = f (i), and f2 : I → [−a]0 by f2(i) = − f (i). From [34, Proof of Theorem 3.2], it

follows that f1(x)≤ f1(y) if x<PI
y, and f2(x)≤ f2(y) if x<Q

I
y. Therefore, f : [d]→ [a,b]Z

is an enriched (P,Q)-partition, namely, f ∈ F(m). Similarly, in general, it follows that

f ∈ F(m). Thus, the map ψ : mCP,Q ∩Zd → F(m) defined by ψ(x)(i) = f (i) for each

x = (x1, . . . ,xd) ∈ mCP,Q ∩Zd is well-defined.

Finally, we show that ϕ is a bijection. However, this immediately follows by the above

and the argument in [34, Proof of Theorem 3.2]. �

Since CP,Q is reflexive, we obtain the following:

Corollary 5.9. Let P and Q be two finite naturally labeled posets on [d]. Then Ω
(e)
P,Q(m)

is a polynomial in m of degree d and one has

Ω
(e)
P,Q(m) = (−1)dΩ

(e)
P,Q(−m−1).

REFERENCES
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