
ar
X

iv
:1

90
6.

05
79

8v
2 

 [
m

at
h.

N
T

] 
 2

5 
Ju

n 
20

19

A Study of @-numbers.

Abiodun E. Adeyemi

Department of Mathematics, University of Ibadan,

Ibadan, Oyo state, Nigeria

e-mail: elijahjje@yahoo.com

Abstract

This paper deals more generally with @-numbers defined as follows. Call ‘alpha number

of order k’, (denote its family by @k;N) any positive integer n satisfying fk(n) := (α1/α2)n

with fk(n) := ⌊|σk(n)|⌋, arbitrary pair integers α1, α2 is such that 1 < α1, α2 ≤ τ(n) where

τ(n) is the number of factors of n, and σk(n) is the sum of divisors function of n. We give

some examples and conjecture that there is no odd alpha number of integral order above 1,

which implies that there is no odd perfect, multiperfect or Ore’s harmonic number greater

than 1. In this paper, using Rossen, Schonfield and Sandor’s inequalities, in addition to the

aforementioned definition, we also provide a form for odd @-numbers, and remark that this

form can be improved towards solving the conjectures of this paper. Some areas for future

research are also pointed out as recommendations.

Keywords: perfect numbers, multi-perfect numbers, harmonic divisors number.
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1 Introduction

Throughout, let σx(n), ω(n). Ω(n) and τ(n) represent the sum of positive divisors function

of n, the number of distinct prime factors of n, number of prime divisors of n, and the number of

distinct divisors of n respectively. By definition, for every positive integer n and complex number

x,

σx(n) =
∑

d|n
dx, Ω(n) =

∑

p|n
1 and τ(n) =

∑

d|n
1

Note that traditionally when x = 1, we drop the subscript and simply write σ(n) (called the sigma

function) which now represents the sum of the factors of n, including n itself. For example, the

sum of positive divisors of n = pα is σ(pα) = 1 + p + ... + pα while it has Ω(n) = α prime

factors, ω(n) = 1 distinct prime factor, and τ(n) = α + 1 number of distinct factors. Then, we

call a positive integer n ∈ N, alpha number of order k, and denote its family by @k;N if it satisfies

fk(n) :=
α1

α2

n (1)

where fk(n) := ⌊|σk(n)|⌋ represents the ‘integral sum function of order k’ of positive divisors of

n, α1, α2 are arbitrary positive integers such that 1 < α1, α2 ≤ τ(n), | | is the modulus function

and ⌊ ⌋ represents the floor function. Meaning that n ∈@k;N reads “an integral alpha number n of
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order k”, and for completion sake, concerning those ns which do not satisfy (1), when the choice

of α1 (and α2) is strictly bounded by 1 and τ(n) implies fk(n) < α1

α2
n we say that n is being

‘alpha deficient’ and when the choice of α1 (and even α2) changes but is again bounded in the

same manner implies fk(n) >
α1

α2
n, we say at that point that n is ‘alpha abundant’. Moreover, we

relax the strict condition 1 < α1, α2 ≤ τ(n) attached to alpha numbers and refer to any positive

integer n which satisfy (1) when α1 ∈ N and α2 = 1 as a ‘partial alpha number of order k’ and

denote its set by @
p
k;N. We shall return to this later. The major interest yet in number theory is

the existence of even and odd of such numbers, as the application of special numbers is still a

puzzle, though a golden challenge in Mathematics. Truly, even alpha numbers exist as we shall

soon see various examples in this paper, but no odd alpha number above 1, in particular, of order

1 is known. In what follows, we begin with some examples of @-numbers.

2 Examples of @-numbers

Note that we shall extract some @-numbers from the table of the sum of positive divisors function

given below:

n σ0(n) = τ(n) σ1(n) σ2(n) σ0.5(n) σ√
−1(n) ⌊|σ0.5(n)|⌋ ⌊|σ√

−1(n)|⌋
1 1 1 1 1 1 1 1

2 2 3 5 2.4142 1.7692+ 0.6390i 2 1

3 2 4 10 2.7321 1.4548+ 0.8906i 2 1

4 3 7 21 4.4142 1.9527+ 1.6220i 4 2

5 2 6 26 3.2361 0.9614+ 0.9993i 3 1

6 4 12 50 6.5959 2.0049+ 2.5052i 6 3

7 2 8 50 3.6458 0.6336+ 0.9305i 3 1

8 4 15 85 7.2426 1.466+ 2.4954i 7 2

9 3 13 91 5.7321 0.8686+ 1.7007i 5 1

10 4 18 130 7.8126 1.0624+ 2.3822i 7 2
...

...
...

...
...

...
...

...

24 8 60 850 19.787 -0.0899+ 4.936i 19 4

25 3 31 651 8.236 -0.0356+ 0.922i 8 0

26 4 42 850 11.118 -0.0623+1.068i 11 1

27 4 40 820 10.928 -0.1200+ 1.547i 10 1

28 6 56 1050 16.03 -0.2719+ 2.845i 16 2

29 2 30 842 6.385 0.0025-0.224i 6 0

30 8 72 1300 21.344 -0.5759+ 4.412i 21 4
...

...
...

...
...

...
...

...

Table 1.
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From the above table we give some practical examples of alpha numbers.

Examples of @-numbers of order 1:

@-numbers order k α1 α2

n = 1 1 1 1

n = 6 1 2 1

n = 24∗ 1 5 2

n = 28 1 2 1

Table 2.

Note that the asterisk on Table 2 refers to the alpha numbers that are neither multiperfect nor Ores harmonic number.

Note that every n in Table 2. is alpha number of order 1 since they all satisfy relationship (1) for

their respective values of α1 and α2 given in the table when k = 1.

Examples of @-numbers of order 2:

@-numbers order k α1 α2

n = 1 2 1 1

Table 3.

Note that in Table 3. only n = 1 is the alpha number of order 2.

Examples of @-numbers of order 0.5:

@-numbers order k α1 α2

n = 1 0.5 1 1

n = 2∗ 0.5 1,2 (in order) 1,2 (in order)

n = 4∗ 0.5 1,2,3 (in order) 1,2,3 (in order)

n = 6 0.5 1,2,3,4 (in order) 1,2,3,4 (in order)

Table 4.

Note that the asterisk on Table 4 refers to the alpha numbers that are neither multiperfect nor Ores harmonic number.

Note that every n in Table 4. is alpha number of order 0.5 since they all satisfy relationship (1)

for their respective values of α1 and α2 when k = 0.5:

Examples of @-numbers of order i =
√
−1:

@-numbers order k α1 α2

n = 1 i 1 1

n = 2∗ i 1 2

n = 4∗ i 1 2

n = 6 i 1 2
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Table 5.

Note that the asterisk on Table 5 refers to the alpha numbers that are neither multiperfect nor Ores harmonic number.

Note that every n in Table 5 above is alpha number of order i since they all satisfy relationship

(1) for their respective values of α1 and α2 when k = i.

Examples of @p-numbers of integral order k = 2:

@-numbers order k α1 α2

n = 1 2 1 1

n = 10∗ 2 13 1

Table 6.

Note that the asterisk on Table 6 refers to the alpha numbers that are neither multiperfect nor Ores harmonic number.

Note that 1 and 10 are the @-numbers of integral order k = 2 as well as the above examples for

which α2 = 1.

Remark 1. From the above examples, one can easily observe that there is no singe odd alpha

number of integral order strictly between 1 and 30, and so, we formally state the following:

Conjecture 1. @1;2N+1 = ∅.

Conjecture 2. @
p
1;2N+1 = ∅

Conjecture 3. @k;2N has infinite cardinality for all k ∈ C

Remark 2. In passing, we mention that not much has been done on the sum of the divisors

function σk(n) defined at the onset of this paper, especially when order k is a non-real com-

plex number. At most, few results found in the literature are akin to the following identities on

Dirichilet’s series due to Hardy and Ramanujan [3]

ζ(s)ζ(s− a) =

∞∑

i=1

σa(n)

ns
, s− a > 1

ζ(s)ζ(s− a)ζ(s− a− b)

ζ(2s− a− b)
=

∞∑

i=1

σa(n)σa(n)

ns
, s− a, s− b, s− a− b > 1

(which are Theorem 291 and Theorem 305 of [3] respectively) and Lambart’s series [6] which

holds that ∞∑

i=1

qnσα(n) =
∞∑

i=1

nαqn

1− qn
, α, q ∈ C, |q| ≤ 1.

Now that the function σk(n) is connected to function fk(n) the function for the integral sum of

divisors function defined in this paper, it is therefore imperative to further study the sum of positive

divisors function.
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Remark 3. We also note that the function fk(n) defined for @-numbers shares attributes with

σk(n) when n is a positive integer, thus the identities obtained for σk(n) in Remark 2 also hold

for fk(n) when n is a positive integer; moreover, fk(n) is multiplicative when k ∈ N since σk(n)

is also multiplicative, so in essence

fk(

ω(n)∏

i=1

pni

i ) =

ω(n)∏

i=1

fk(p
ni

i )

Remarkably, the study of integers with special properties defined above is of antiquity, as

it dates back to the time of Euclid (≈300BC), Nicomachus (≈100 AD), Descartes (≈1600AD)

and Sylvester (≈1800AD), according to Dickson [2] and Sándor [12]. The case k = 1, α1 =

2, α2 = 1 in (1) corresponds to perfect numbers; the case k = 1, α1 ≥ 2, α2 = 1 in (1) refers

to multiply perfect numbers ([12]) and also; the case k = 1, α1 = τ(n), and α2 is the harmonic

mean of divisors of n in (1) clearly defines the (Ore’s) harmonic numbers, since Ore’s definition

of harmonic mean k of positive integer n is given by

k =
τ(n)

∑
qi|n

1

qi

⇒ σ(n)

n
=

τ(n)

k

(see [8] & [12]). Thus, by the definition, every perfect number, every k- multi perfect number for

which k ≤ τ(n) and every Ore’s number are @-numbers.

By implication, the even perfect numbers (OEIS A000396), even multiply perfect numbers

(OEIS A007539, A005820, A027687) and even Ore’s harmonic numbers (OEIS A001599) are

special cases of even @-numbers. However, odd perfect number conjecture suggests that there is

no odd perfect number; likewise, it is not known whether odd multiply perfect number exist or

not; and in 1948, Ore conjectured that no odd harmonic divisor number exists except 1 (see [7],

[8] & [12]).

Towards solving these problems, Euler formally presented a form for such odd perfect num-

bers which holds that every perfect odd n should have the representation

n = pα
r∏

i=1

q2βi

i

where p ≡ α ≡ 1(mod4), p and qi are distinct prime numbers, see [12]. This restriction for

perfect numbers enabled Steurwald to establish that n cannot be perfect if β1 = ... = βr = 1.

This result was later improved by Brauer, Kanold, Hagis, McDaniel, Iannuci, Kanold, McCarthy,

Robbins, Pomerance, Chen, and Condict via the number, the size, the bounds and the density of

the factors of n and n itself (as recorded in [12]).

Moreover, the computer verification by mathematicians like Ochem, Rao, te Riele and others

has established that up to 101500 no such odd number([5]) and by building on the computational

evidence that any perfect number ≥ 10300, Pomerance (OddPerfect.org), has presented a heuristic

argument supporting this assertion. In the next session, we shall investigate the square-free, and

prime-power form of odd integers with respect to the conditions of alpha number.
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3 Odd @-numbers:

Recall that

σ(n) =
∑

d|n
d, and τ(n) =

∑

d|n
1

Obviously, σ(.) is a multiplicative function and the implication of this arithmetic property is the

following result in [1], [3], [7] and [13]: For every n =
∏ω(n)

i=1 pni

i , ni ∈ N and pi is prime, σ(n) =

σ(pn1
1 )σ(pn2

2 ) · · ·σ(pnω(n)

ω(n) ) and τ(n) = σ0(n) =
∏ω(n)

i=1 (ni+1). Thus, τ(p1 ·p2 · · · ·pω(n)) = 2ω(n).

Also, note that some important consequences of arithmetic functions such φ(n) and σ(n) which

are germain in this paper are the following:

Lemma 3.1. (J.B. Rosser and L. Schenfield Theorem [9])

If n ≥ 3, then n
φ(n)

< eγ log logn + 0.6483
log logn

where γ is the Euler constant.

Lemma 3.2. (J. sándor [10])

There is a constant C > 0 such that n
φ(n)

< C · log log φ(n) ∀ n > 3.

In this session we keep to the standard notations of the set of numbers such as N for the set of

natural numbers, Z>0 for the set of integers above zero, C for the set of complex numbers. Then,

we proceed to the main results of this paper.

Theorem 3.3. Let @1;2N+1 6= ∅ such that n ∈@1;2N+1, then n =
∏ω(n)

i=1 pni

i and n satisfies (1)

where

(i) distinct prime pi ≥ 3 ∀ i and ni ≥ 2 for some or all i ∈ {1, 2, ..., ω(n),

(ii) ω(n) ≥ 2,

(iii) the arbitrary α1, α2 ∈ Z>0, 1 < α2 < α1 ≤ τ(n) and implies 1 ≤ α′
2 < α′

1 ≤ τ(n) with

gcd(α′
2, α

′
1) = 1, α′

1 | α1 and α′
2 | α2,

(iv) at least a point in {σ(pn1
1 ), σ(pn2

2 ), ..., σ(p
nω(n)

ω(n) )} is not prime whenever Ω(n) − ω(n) ≥
ω(n), and

(v) lin α1−lin α2

ω(n)
< lin 2 and it implies that α1 < 2ω(n)α2 ≤ τ(n) or α1 ≤ τ(n) ≤ 2ω(n)α2,

furthermore, α1 < α2(e
γ log log n+ 0.6483

log logn
), γ is the Euler constant,

and

(vi) n ≤ C log log φ(n), C > 0 is a constant.
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To establish the above Theorem, we shall investigate each of the cases independently as fol-

lows:

Proof. For Case (i): The condition pi ≥ 3 ∀ i is a direct consequence of the definition of odd

integers and the unique prime factorization theorem. Now, consider an odd square-free n =∏ω(n)
i=1 pi which satisfies equation (1), where pi is a distinct odd prime number for every i and pair

α1, α2 ∈ Z+ such that α1 ≤ τ(n). From (1), we obtain

α1 =
α2

∏ω(n)
i=1 σ(pi)∏ω(n)
i=1 pi

(2)

which implies that
∏ω(n)

i=1 pi | α2

∏ω(n)
i=1 σ(pi), and also implies that pi | α2

∏ω(n)
i=1 σ(pi) ∀ i, since

α1 ∈ Z+. Then, observe that σ(pi) ∈ 2Z+ with gcd(pi, σ(pi)) = 1 ∀ i and set pi < pi+1 ∀ i ∈
{1, 2, ..., ω(n)− 1}, thus follows that pω(n) ∤ σ(pi) ∀ i ∈ {1, 2, ...ω(n)}.

Consequently, α1 > 2ω(n), since pω(n) must now divide α2 (an implication of Euclid’s Lemma

which asserts that if an integral prime p | ab where a, b ∈ Z+, then p | a or p | b). Now that our

initial claim is α1 ≤ τ(n) = 2ω(n), a contradiction is thus obtained. Hence, Case (i) follows.

Proof. Case (ii): The proof is direct, since if such odd number n = pα with
σ(n)

n
=

α1

α2
and

α1 ≤ τ(n) exists, it would inevitably lead to a contradiction. Bluntly, σ(pα) = 1 + p + ... + pα

is co-prime to p, so to pα, therefore the fraction σ(n)/n is reduced. Should this equal α1/α2,

then σ(n) divides α1. In turn, this leads to σ(n) ≤ α1 ≤ τ(n), so 1 + p + ... + pα ≤ α + 1, a

contradiction.

Proof. Case (iii) follows from the definition of alpha numbers (since σ(n) > n ∀ n > 1 such that

integral n satisfies (1)).

To establish case (iv), we quickly recall that the total number of prime factors of n =
∏ω(n)

i=1 pni

i

is given as Ω(n) =
∑ω(n)

i=1 ni (see the notations in [11]).

Proof. For Case (iv): On the contrary, let σ(pni

i ) be prime for all i ∈ {1, 2, ..., ω(n)} when

Ω(n)− ω(n) ≥ ω(n) and (1), (i), and (ii) also hold. Then, its consequence which is

α2 =
α1

∏ω(n)
i=1 pni

i∏ω(n)
i=1 σ(pni

i )
≥ 3

Ω(n)
2 ≥

ω(n)∏

i=1

(ni + 1) = τ(n) (3)

clearly contradicts assertion (iii) above, and thus concludes case (iv).

Proof. For Case (v), it is sufficient to claim and show that α1

α2
< 2ω(n), and then applying Lemma

3.1. So, to achieve this goal, we first recall that if n =
∏ω(n)

i=1 pni

i , then σ(n) =
∏ω(n)

i=1
pni+1−1

p−1
,

thus from (1)

α1

α2
=

1

n

ω(n)∏

i=1

pni+1
i − 1

pi − 1
<

ω(n)∏

i=1

pi
pi − 1

< 2ω(n) (4)

as claimed.
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Proof. For Case (vi): From the proof of Case (v), it is obvious that
σ(n)
n

< n
φ(n)

since Euler

product formular holds that φ(n) = n
∏

p|n(1 − 1
p
). Thus Case (vi) follows by applying Lemma

3.2. Hence, Theorem 3.3 completely holds.

Remark 4. Alternatively, Case (i) can be established thus: Since pi are all odd, the product∏ω(n)
i pi must be odd. Moreover, no integral prime, say p⋆, dividing p1+1 can divide the product∏ω(n)
i pi, provided p1 < p2 < ... < pω(n). Thus, recalling that n is square-free, α1 must be

divisible by p⋆ · 2ω(n) > 2ω(n) = τ(n), contrary to α1 ≤ τ(n). Therefore, Case (ii) follows.

Remark 5. Note that Theorem 3.3 implies that there is no square-free alpha number and prime-

power alpha number via its assertions (i) and (ii) respectively.

In what follows, we extend the above results to odd partial @-numbers of natural order k,

examples of which are multiperfect numbers given in Flammenkamp’ s record of multiperfect

numbers in OEIS A007691 (see [8] and [9]). In the light of Theorem 3.3 above, we establish the

following result:

Theorem 3.4. Every partial @-number n > 1 of order k ∈ N satisfies (1) when α2 = 1,

2 ≤ α1 < nk−1τ(n) and α1 ∈ N; and hence, there is neither odd prime-power partial @-number

of order k ∈ N nor square-free partial @-number of order k = 1.

Proof. The first part of Theorem 3.4 is a consequence of the definition of partial @-numbers,

since σk(n) < nkτ(n) for every partial @-number n > 1 of order k ∈ N that satisfies (1). Now,

note that for any prime-power partial @-number pα satisfying (1), gcd(pα, σk(p
α)) = 1 ∀ k ∈ N

and it implies that α1 6∈ N, and also setting p1 < p2 < ... < pω(n) for such odd square-free

n = p1 · p2 · · · pω(n) in (1) where α2 = 1 implies pω(n) ∤ σ(pi) ∀ i ∈ {1, 2, ..., ω(n)} and further

implies α1 = σ(n)/n 6∈ N, both contradicting our initial condition for partial @- numbers.

Hence, such numbers exist with a contradiction.

Remark 6. Note that we can as well easily see that there is no square free multiperfect number,

since if n =
∏ω(n)

i=1 pi is multiperfect, by the definition of multiperfect numbers, it must divide∏ω(n)
i=1

pi+1
2

< n, a contradiction.

Remark 7. Note also that the upper bound for α1 in Theorem 3.4 is very weak, and so, it can be

improved towards attacking Conjecture 2 of this paper.

In continuation, we emphasize that among other arithmetic properties of σ(n) that is important

and that has been investigated is abundancy index, at least, according to the following conclusion

by Laatch in [4]:

“The abundancy index as a hierarchical classification of numbers is an interesting

concept in its own right-at least in parts of its recreational value when used to in-

vestigate the general topic of abundant and deficient numbers. In addition, it has

growth and density properties to intrigue both the serious and the recreational stu-

dents of number theory. Its analysis provides a vehicle for unifying several parts of

the theory; in so doing it suggests new unsolved problems and illuminates old ones”.
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By definition, abundancy index I(n) := σ(n)/n. A number n is perfect if and only if its

abundancy index is 2. Numbers for which this ratio is greater than (less than) 2 are called abun-

dant (deficient) numbers. It was observed that the abundancy index is a multiplicative number-

theoretic function because σ-function is multiplicative and it could take on arbitrarily large value

as well as value so close to 1 as possible. For instance, Laatch showed in [4] that the set of

abundancy indices I(n) for n > 1 is dense in the interval gcd(1,∞) and Weiner established in

[14] that there are infinite outlaws in the distribution i.e not all rationals in the interval (1,∞) are

abundancy ratios. It is remarkable that all of this approach though has not yet settled the problem

of odd perfect number conjecture, but can surely be extended to study alpha numbers as follows:

Theorem 3.5. Let the classified abundancy index be Iα(n) :=
α fk(n)

n
, fk(n) := ⌊|σk(n)|⌋ with

class index α ∈ N and its collections Iα(n) := {I1(n), I2(n), I3(n), ..., Iα(n) : Iα(n) = ασ(n)
n

},

then n ∈@1;2N+1 6= ∅ if and only if there exist at least a λ ∈ {1, 2, 3, ..., τ(n)} such that Iλ(n) ∈
Iτ(n)(n) ∩ N with Iλ(n) < max{I1(n), I2(n), I3(n), ..., Iτ(n)}.

Proof. To establish Theorem 3.5, it suffices to show that Iτ(n)(n) ∩ N 6= ∅ for every supposed

@-number, and this is a direct implication of the definition of @-numbers.

Remark 8. Note that among several properties of function Iα(n) that can be established is the

simple assertion: Iα(kN) > kIα(N) ∀ k > 1 (see [4]), but by Theorem 3.6 and Remark 4, the

condition Iα(n) 6∈ N ∀ α ≤ τ(n) is suffices for Conjecture 1 of this paper to be solved. We

also realised that the sequence Iα(n) forms an arithmetic progression of α terms, with first term

and common difference of I1(n), thereby given rise to a sequence of rational numbers in an AP

(Arithmetic Progression) which can be studied further.

Theorem 3.6. Let the classified abundancy index Iα(n) be as defined in Theorem 3.3, then

n ∈@
p
1;2N+1 6= ∅ if and only if I1(n) ∩ N 6= ∅ such that I1(n) ≤ nk−1τ(n).

Proof. By Theorem 3.5, note that every @p-number n of natural order k satisfies (1) when α1 ≤
nk−1τ(n) and α2 = 1, so in order to establish Theorem 3.6, it suffices to show that I1(n)∩N 6= ∅
for every supposed odd @p-number n of natural order k = 1, and this is a direct implication of

the definition of @p-numbers.

Remark 9. Note that Conjecture 2 of this paper is solved the moment it is shown that I1(n) 6∈ N

for every non-square-free, non-prime-power odd n.

4 Conclusion and Recommendation:

The results of this paper, particularly, Theorem 3.3 posits a form for odd @-numbers of order

1, if at all exist. So, in order to fully establish Conjectures (1) and (2) of this paper, by Remark

5 and Theorem 3.4, it suffices to establish the case of non-square-free, non-prime-power odd n

i.e there is no non-square-free, non-prime-power odd n which satisfies equation (1) when pair

integers 1 < α1, α2 ≤ τ(n) (for every full @-number) and when α1 ≤ nk−1τ(n), α2 = 1 (for

every partial @-number). This is recommended for further study (see [11] & [12] for motivation).

Also note that an in-depth study of alpha numbers can be pursued further as follows:

9



(1) Are alpha numbers infinitely many and are they applicable, in particular, in RSA encrypting

and decrypting, taking a clue from the definition of alpha number which implies that each

key α1 take on a unique key α2 for every public alpha number n, and secret order k ∈ C?

(2) Is there a general form for even alpha numbers analogous to Euclid-Euler form for even

perfect numbers?

(3) What is the congruent form (properties) of odd alpha numbers analogous to Euler form for

odd perfect numbers?

(4) Is every alpha number a practical number?

(5) What are the properties of odd alpha number n and its factors in terms of size, the bounds

(lower and upper), abundancy and etc.

(6) Is there any applicable relationship between function fk(n) and the Riemann zeta function

ζ(.)?

(7) Is there any efficient and effective algorithm to generate alpha numbers?

(8) Can there be a counting function, say C(x) generating the number of alpha number up to a

desired bound x such that the number of alpha numbers in regular intervals, say 100 − 103,

103 − 2 · 103, 2 · 103 − 3 · 103 and etc can be determined?

(9) What other hidden properties (results) of alpha numbers can be obtained from Table 1,

especially of those alpha numbers with non-rational complex order?

(10) Are the zeros of fk(n) of complex order k significant in any way?

(11) What other hidden identities of sum of the positive divisors function can be derived to solve

the problem of existence of alpha numbers?

(12) What formidable results can come forth from the following certain generalizations of alpha

numbers (see [11] & [12] for definitions, notations and motivation)?

(I) Let any positive integer n satisfying f mk (n) := (α1/α2)n be called m-super @-number,

where fk(n) := ⌊|σk(n)|⌋ is the integral sum of positive divisor function, f mk denotes the

mth iterate of f -function and integral α1, α2 is such that 1 < α1, α2 ≤ τ(n), with a com-

plementing classified abundancy index Iα(n) :=
αf m

k
(n)

n
.

(II) Let any positive integer n satisfying f mk (n) := (α1/α2)n
s be called m-supra @-number,

where fk(n) := ⌊|σk(n)|⌋ is the integral sum of positive divisor function, f mk denotes the

mth iterate of f -function and integral α1, α2 is such that 1 < α1, α2 ≤ τ(n), with a com-

plementing classified abundancy index Iα(n) :=
αf m

k
(n)

ns .
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(III) Let any positive integer n satisfying f
m(⋆)
k (n) := (α1/α2)n be called m-unitary @-number,

where f ⋆k (n) := ⌊|σ⋆
k(n)|⌋ is the unitary integral divisor function such that unitary divisors

of n are used instead of positive divisors of n in the computation of σk(n), f
m
k denotes

the mth iterate of f -function and integral α1, α2 is such that 1 < α1, α2 ≤ the number of

unitary factors of n, with a complementing classified abundancy index Iα(n) :=
αf

m(⋆)
k

(n)

n
.

(IV) Let any positive integer n satisfying f mk,∞(n) := (α1/α2)n be called m-infinitary @-number,

where fk,∞(n) := ⌊|σk,∞(n)|⌋ is infinitary integral divisor function such that infinitary divi-

sors of n are used instead of positive divisors of n in the computation of σk(n), f
m
k denotes

the mth iterate of f -function and integral α1, α2 is such that 1 < α1, α2 ≤ the number of

infinitary factors of n, with a complementing classified abundancy index Iα(n) :=
αfm

k,∞
(n)

n
.

(V) Let any positive integer n satisfying f mk,e(n) := (α1/α2)n be called m-exponential @-

number, where fk,e(n) := ⌊|σk,e(n)|⌋ is the integral exponential divisor function such that

exponential divisors of n are used instead of positive divisors of n in the computation of

σk(n), f
m
k denotes the mth iterate of f -function and integralα1, α2 is such that 1 < α1, α2 ≤

the number of exponential factors of n, with a complementing classified abundancy index

Iα(n) :=
αfm

k,e
(n)

n
.

(VI) Consider a positive integer n m-prime-@-number of order k if and only if n and f mk (n) :=

⌊|σk(n)|⌋ share the same set of distinct prime divisors.

(VII) Consider any complex number n m-complex @-number if and only if f mk (n) := (α1/α2)⌊|n|⌋
where fk(n) := ⌊|σk(n)|⌋, f mk denotes the mth iterate of f -function and integral α1, α2 is

such that 1 < α1, α2 ≤ τ(n), with a complementing classified abundancy index Iα(n) :=
αfm

k
(n)

⌊|n|⌋ .
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