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Abstract. In this work we present a general and versatile algorithmic framework for exhaus-
tively generating a large variety of different combinatorial objects, based on encoding them
as permutations. This approach provides a unified view on many known results and allows
us to prove many new ones. In particular, we obtain the following four classical Gray codes
as special cases: the Steinhaus-Johnson-Trotter algorithm to generate all permutations of an
n-element set by adjacent transpositions; the binary reflected Gray code to generate all n-bit
strings by flipping a single bit in each step; the Gray code for generating all n-vertex binary
trees by rotations due to Lucas, van Baronaigien, and Ruskey; the Gray code for generating all
partitions of an n-element ground set by element exchanges due to Kaye.

The first main application of our framework are permutation patterns, yielding new Gray
codes for different pattern-avoiding permutations, such as vexillary, skew-merged, separable,
Baxter and twisted Baxter permutations, 2-stack sortable permutations, geometric grid classes,
and many others. We also obtain new Gray codes for many combinatorial objects that are in
bijection to these permutations, in particular for five different types of geometric rectangulations,
also known as floorplans, which are divisions of a square into n rectangles subject to different
restrictions.

The second main application of our framework are lattice congruences of the weak order on
the symmetric group Sn. Recently, Pilaud and Santos realized all those lattice congruences as
(n− 1)-dimensional polytopes, called quotientopes, which generalize hypercubes, associahedra,
permutahedra etc. Our algorithm generates each of those lattice congruences, by producing a
Hamilton path on the skeleton of the corresponding quotientope, yielding a constructive proof
that each of these highly symmetric graphs is Hamiltonian.

1. Introduction

In computer science we frequently encounter different kinds of combinatorial objects, such
as permutations, binary strings, binary trees, set partitions, spanning trees of a graph, and so
forth. There are essentially three fundamental algorithmic tasks that we want to perform with
such objects: counting, random generation, and exhaustive generation. For the first two tasks,
there are powerful general methods available, such as generating functions [FS09] and Markov
chains [Jer03], solving both problems for a large variety of different objects. For the third task,
namely exhaustive generation, however, we are lacking such a powerful and unifying theory, even
though some first steps in this direction have been made (see Section 1.2 below). Nonetheless,
the literature contains a vast number of algorithms that solve the exhaustive generation problem
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for specific classes of objects, and many of these algorithms are covered in depth in the most
recent volume of Knuth’s seminal series ‘The Art of Computer Programming’ [Knu11].

1.1. Overview of our results. The main contribution of this paper is a general and versatile
algorithmic framework for exhaustively generating a large variety of different combinatorial
objects, which provides a unified view on many known results and allows us to prove many new
ones. The basic idea is to encode a particular set of objects as a set of permutations Ln ⊆ Sn,
where Sn denotes all permutations of [n] := {1, 2, . . . , n}, and to use a simple greedy algorithm
to generate those permutations by cyclic rotations of substrings, an operation we call a jump.
This works under very mild assumptions on the set Ln, and allows us to generate more than
double-exponentially (in n) many distinct sets Ln. Moreover, the jump orderings obtained from
our algorithm translate into listings of combinatorial objects where consecutive objects differ by
small changes, i.e., we obtain Gray codes [Sav97], and those changes are smallest possible in a
provable sense. The main tools of our framework are Algorithm J and Theorem 1 in Section 2. In
particular, we obtain the following four classical Gray codes as special cases: (1) the Steinhaus-
Johnson-Trotter algorithm to generate all permutations of [n] by adjacent transpositions, also
known as plain change order [Tro62, Joh63]; (2) the binary reflected Gray code (BRGC) to
generate all binary strings of length n by flipping a single bit in each step [Gra53]; (3) the Gray
code for generating all n-vertex binary trees by rotations due to Lucas, van Baronaigien, and
Ruskey [LvBR93]; (4) the Gray code for generating all set partitions of [n] by exchanging an
element in each step due to Kaye [Kay76].

The first main application of our framework are permutation patterns, yielding new Gray codes
for different pattern-avoiding permutations, such as vexillary [LS85, BP14], skew-merged [Sta94,
Atk98], separable [ABP06, AM10], Baxter and twisted Baxter permutations [LR12, CSS18], 2-
stack sortable permutations [Wes90, Zei92, GW96, DGG98], geometric grid classes [Wat07, Eli11,
AAB+13], and many others. We also obtain new Gray codes for many combinatorial objects
that are in bijection to these permutations, in particular for five different types of geometric
rectangulations [Rea12b, ABBM+13, CSS18], also known as floorplans, which are divisions of
a square into n rectangles subject to different restrictions (see Figure 5). Our main results in
this area are summarized in Theorems 8 and 14 and Table 1 in Section 3, and in Theorem 19 in
Section 4.

The second main application of our framework are lattice congruences of the weak order on the
symmetric group Sn, which are equivalence relations on a lattice defined on the set of all permu-
tations. This area has beautiful ramificiations into groups, posets, polytopes, geometry, and com-
binatorics, and has been developed considerably in recent years, in particular thanks to Nathan
Reading’s works, summarized in [Rea12a, Rea16a, Rea16b]. There are double-exponentially
many distinct such lattice congruences, and they generalize many known lattices such as the
Boolean lattice, the Tamari lattice [Tam62], and certain Cambrian lattices [Rea06, CP17]. Re-
cently, Pilaud and Santos [PS19] realized all those lattice congruences as (n− 1)-dimensional
polytopes, called quotientopes, which generalize hypercubes, associahedra, permutahedra etc.
Our algorithm generates each of those lattice congruences, by producing a Hamilton path on
the skeleton of the corresponding quotientope, yielding a constructive proof that each of these
highly symmetric graphs is Hamiltonian; see Figure 10. Our results in this area are summarized
in Theorem 20 and Corollary 21 in Section 5.

1.2. Related work. Avis and Fukuda [AF96] introduced reverse-search as a general technique
for exhaustive generation. Their idea is to consider the set of objects to be generated as the
nodes of a graph, and to connect them by edges that model local modification operations (for
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instance, adjacent transpositions for permutations). The resulting flip graph is equipped with an
objective function, and the directed tree formed by the movements of a local search algorithm that
optimizes this function is traversed backwards from the optimum node, using an adjacency oracle.
The authors applied this technique successfully to derive efficient generation algorithms for a
number of different objects (for instance, triangulations of a point set, spanning trees of a graph
etc.). Reverse-search is complementary to our permutation based approach, as both techniques
use fundamentally different encodings of the objects. The permutation encoding seems to allow
for more fine-grained control (optimal Gray codes) and even faster generation algorithms.

Another method for combinatorial counting and exhaustive generation is the ECO framework
introduced by Barcucci, Del Lungo, Pergola, and Pinzani [BDLPP99]. The main tool is an
infinite tree with integer node labels, and a set of production rules for creating the children of a
node based on its label. Bacchelli, Barcucci, Grazzini, and Pergola [BBGP04] also used ECO for
exhaustive generation, deriving an efficient algorithm for generating the corresponding root-to-
node label sequences in the ECO tree in lexicographic order, which was later turned into a Gray
code [BGPP07]. Dukes, Flanagan, Mansour, and Vajnovszki [DFMV08], Baril [Bar09], and Do,
Tran and Vajnovszki [DTV19] used ECO for deriving Gray codes for different classes of pattern-
avoiding permutations, which works under certain regularity assumptions on the production rules.
Vajnovszki [Vaj10] also applied ECO for efficiently generating other classes of permutations,
such as involutions and derangements. The main difference between ECO and our framework is
that the change operations on the label sequences of the ECO tree do not necessarily correspond
to Gray-code like changes on the corresponding combinatorial objects. Minimal jumps in a
permutation, on the other hand, always correspond to minimal changes on the combinatorial
objects in a provable sense, even though they may involve several entries of the permutation.

Li and Sawada [LS09] considered another tree-based approach for generating so-called re-
flectable languages, yielding Gray codes for k-ary strings and trees, restricted growth strings,
and open meandric systems (see also [XCU10]). Ruskey, Sawada, and Williams [RSW12, SW12]
proposed a generation framework based on binary strings with a fixed numbers of 1s, called
bubble languages, which allows to generate e.g. combinations, necklaces, Dyck words, and Lyndon
words. In the resulting cool-lex Gray codes, any two consecutive words differ by cyclic rotation
of some prefix.

Pattern avoidance in permutations is a central topic in combinatorics, as illustrated by the
books [Kit11, Bón12], and by the conference ‘Permutation Patterns’, held annually since 2003.
Given two permutations π and τ , we say that π contains the pattern τ , if π contains a subpermu-
tation formed by (not necessarily consecutive) entries that appear in the same relative order as
in τ ; otherwise we say that π avoids τ . It is well known that many fundamental classes of com-
binatorial objects are in bijection with pattern-avoiding permutations (see Table 1 and [Ten18]).
For instance, Knuth [Knu98] first proved that all 123-avoiding and 132-avoiding permutations
are counted by the Catalan numbers (see also [CK08]). With regards to counting and exhaus-
tive generation, a few tree-based algorithms for pattern-avoiding permutations have been pro-
posed [Eli07, DFMV08, Bar08, Bar09]. Pattern-avoidance has also been studied extensively from
an algorithmic point of view. In fact, testing whether a permutation π contains another permu-
tation τ as a pattern is known to be NP-complete in general [BBL98]. Jelínek and Kynčl [JK17]
proved that the problem remains hard even if π and τ have no decreasing subsequence of length 4
and 3, respectively, which is best possible. On the other hand, Guillemot and Marx [GM14]
showed that the problem can be solved in time 2O(k2 log k)n, where n is the length of π and k is
the length of τ , a considerable improvement over the obvious O(nk) algorithm (see also [Koz19]).
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1.3. Outline of this paper. This is the first in a series of papers where we develop our theory
of combinatorial generation via permutation languages. In this first paper we focus on presenting
the fundamental algorithmic ideas (Section 2), and their main applications to pattern-avoiding
permutations (Sections 3 and 4) and lattice congruences (Section 5). We present detailed results
and proofs for pattern-avoiding permutations, while we only state the main results for lattice
congruences. The proofs for our results on lattice congruences and a more detailed analysis of
them will be given in part II of this series. In future parts, we will also cover efficient algorithms
and rectangulations, important topics that can only be briefly scratched here due to the limited
space (see Section 2.7 and Figure 5 below, respectively).

2. Generating permutations by jumps

In this section we present a simple greedy algorithm, Algorithm J, for exhaustively generating
a given set Ln ⊆ Sn of permutations, and we show that the algorithm works successfully under
very mild assumptions on the set Ln (Theorem 1).

2.1. Preliminaries. We use Sn to denote the set of all permutations of [n] := {1, . . . , n}, and we
write π ∈ Sn in one-line notation as π = π(1)π(2) . . . π(n) = a1a2 . . . an. We use idn = 12 . . . n to
denote the identity permutation, and ε ∈ S0 to denote the empty permutation. For any π ∈ Sn−1
and any 1 ≤ i ≤ n, we write ci(π) ∈ Sn for the permutation obtained from π by inserting the
new largest value n at position i of π, i.e., if π = a1 . . . an−1 then ci(π) = a1 . . . ai−1 nai . . . an−1.
Moreover, for π ∈ Sn, we write p(π) ∈ Sn−1 for the permutation obtained from π by removing
the largest entry n. Here, ci and p stand for the child and parent of a node in the tree of
permutations discussed shortly.

Given a permutation π = a1 . . . an with a substring ai . . . aj with ai > ai+1, . . . , aj , a right
jump of ai by j − i steps is a cyclic left rotation of this substring by one position to ai+1 . . . ajai.
Similarly, given a substring ai . . . aj with aj > ai, . . . , aj−1, a left jump of aj by j − i steps is a
cyclic right rotation of this substring to ajai . . . aj−1.

2.2. The basic algorithm. Our approach starts with the following simple greedy algorithm to
generate a set of permutations Ln ⊆ Sn. We say that a jump is minimal (w.r.t. Ln), if a jump
of the same value in the same direction by fewer steps creates a permutation that is not in Ln.

Algorithm J (Greedy minimal jumps). This algorithm attempts to greedily generate a set
of permutations Ln ⊆ Sn using minimal jumps starting from an initial permutation π0 ∈ Ln.
J1. [Initialize] Visit the initial permutation π0.
J2. [Jump] Generate an unvisited permutation from Ln by performing a minimal jump of the

largest possible value in the most recently visited permutation. If no such jump exists,
or the jump direction is ambiguous, then terminate. Otherwise visit this permutation
and repeat J2.

For example, consider L4 = {1243, 1423, 4123, 4213, 2134}. Starting with π0 = 1243, the
algorithm generates π1 = 1423 (obtained from π0 by a left jump of 4 by 1 step), then π2 = 4123,
then π3 = 4213 (in π2, 4 cannot jump, as π0 and π1 have been visited before; 3 cannot jump
either to create any permutation from L4, so 2 jumps left by 1 step), then π4 = 2134, successfully
generating L4. If instead we initialize with π0 = 4213, then the algorithm generates π1 = 2134,
and then stops, as no further jump is possible. If we choose π0 = 1423, then we may jump 4 to
the left or right (by 1 step), but as the direction is ambiguous, the algorithm stops immediately.
Clearly, the algorithm may stop prematurely only either because no minimal jump leading to a
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123 132 312 213 231 321

Figure 1. Tree of permutations, where the children c1(π) and cn(π) of any node
π ∈ Sn−1 are drawn black, all others white.

new permutation from Ln is possible, or because the direction of jump is ambiguous in some
step. By the definition of step J2, the algorithm will never visit any permutation twice.

The following main result of our paper provides a sufficient condition on the set Ln to guarantee
that Algorithm J is successful. This condition is captured by the following closure property of the
set Ln. A set of permutations Ln ⊆ Sn is called a zigzag language, if either n = 0 and L0 = {ε},
or if n ≥ 1 and Ln−1 := {p(π) | π ∈ Ln} is a zigzag language satisfying the following condition:
(z1) For every π ∈ Ln−1 we have c1(π) ∈ Ln and cn(π) ∈ Ln.

Theorem 1. Given any zigzag language of permutations Ln and initial permutation π0 = idn,
Algorithm J visits every permutation from Ln exactly once.

Remark 2. Note that the number of zigzag languages is at least 2(n−1)!(n−2) = 22Θ(n log n) , i.e.,
it is more than double-exponential in n. We will see that many of these languages do in fact
encode interesting combinatorial objects. Moreover, minimal jumps as performed by Algorithm J
always translate to small changes on those objects in a provable sense, i.e., our algorithm defines
Gray codes for a large variety of combinatorial objects, and Hamilton paths/cycles on the
corresponding flip graphs and polytopes.

Before we present the proof of Theorem 1, we give two equivalent characterizations of zigzag
languages.

2.3. Characterization via the tree of permutations. There is an intuitive characterization
of zigzag languages via the tree of permutations. This is an infinite rooted tree which has as
nodes all permutations from Sn at distance n from the root; see Figure 1. Specifically, the
empty permutation ε is at the root, and the children of any node π ∈ Sn−1 are exactly the
permutations ci(π), 1 ≤ i ≤ n, i.e., the permutations obtained by inserting the new largest value n
in all possible positions. Consequently, the parent of any node π′ ∈ Sn is exactly the permutation
p(π′) obtained by removing the largest value n. In the figure, for any node π ∈ Sn−1, the nodes
representing the children c1(π) and cn(π) are drawn black, whereas the other children are drawn
white. Any zigzag language of permutations can be obtained from this full tree by pruning
subtrees, where by condition (z1) a subtree may be pruned only if its root π′ ∈ Sn is neither
the child c1(π) nor the child cn(π) of its parent π = p(π′) ∈ Sn−1, i.e., only subtrees rooted at
white nodes may be pruned. For any subtree obtained by pruning according to this rule and for
any n ≥ 1, the remaining permutations of length n form a zigzag language Ln; see Figure 2.

Consider all nodes in the tree for which the entire path to the root consists only of black nodes.
Those nodes never get pruned and are therefore contained in any zigzag language. These are
exactly all permutations without peaks. A peak in a permutation a1 . . . an is a triple ai−1aiai+1
with ai−1 < ai > ai+1, and the language of permutations without peaks is generated by the
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Figure 2. Ordered tree representation of two zigzag languages of permutations
L4 (left) and M4 (right) with M4 ⊆ L4 ⊆ S4. Both trees contain the same sets
of permutations in the subtrees rooted at 312 and 321 (highlighted in gray), but
in the corresponding sequences J(L4) and J(M4), those permutations appear in
different relative order due to the node 132, which was pruned from the right tree.

recurrence P0 := {ε} and Pn := {c1(π), cn(π) | π ∈ Pn−1} for n ≥ 1. It follows that we have
|Pn| = 2n−1 and Pn ⊆ Ln ⊆ Sn for any zigzag language Ln, i.e., Ln is sandwiched between the
language of permutations without peaks and between the language of all permutations.

2.4. Characterization via nuts. Given a permutation π, we may repeatedly remove the largest
value from it as long as it is in the leftmost or rightmost position. The remaining permutation is
called the nut of π. For example, given π = 965214378, we can remove 9, 8, 7, 6, 5, yielding 2143
as the nut of π. A left or right jump of some value in a permutation is maximum if there is no left
jump or right jump of the same value with more steps. For example, in π = 965214378 a maximum
right jump of 6 gives π′ = 952143678. By unrolling the recursive definition of zig-zag languages
from before, we obtain that Ln ⊆ Sn is a zigzag language if and only if for all π ∈ Ln both
the maximum left jump and the maximum right jump of the value i yield another permutation
in Ln for all k ≤ i ≤ n, where k is the largest value in π’s nut (with k = 2 if the nut is empty).

2.5. Proof of Theorem 1. Given a zigzag language Ln, we define a sequence J(Ln) of all
permutations from Ln, and we prove that Algorithm J generates the permutations of Ln exactly
in this order. For any π ∈ Ln−1 we let #„c (π) be the sequence of all ci(π) ∈ Ln for i = 1, 2, . . . , n,
starting with c1(π) and ending with cn(π), and we let #„c (π) denote the reverse sequence, i.e.,
it starts with cn(π) and ends with c1(π). In words, those sequences are obtained by inserting
into π the new largest value n in all possible positions from left to right, or from right to left,
respectively. The sequence J(Ln) is defined recursively as follows: If n = 0 then J(L0) := ε, and
if n ≥ 1 then we consider the sequence J(Ln−1) =: π1, π2, . . . and define

J(Ln) := #„c (π1), #„c (π2), #„c (π3), #„c (π4), . . . , (1)
i.e., this sequence is obtained from the previous sequence by inserting the new largest value n in
all possible positions alternatingly from right to left, or from left to right; see Figure 2.

Remark 3. Algorithm J thus defines a left-to-right ordering of the nodes at distance n of the
root in the tree representation of the zigzag language Ln described before, and this ordering
is captured by the sequence J(Ln); see Figure 2. Clearly, the same is true for all the zigzag
languages L0, L1, . . . , Ln−1 that are induced by Ln through the rule Lk−1 := {p(π) | π ∈ Lk} for
k = n, n−1, . . . , 1. The unordered tree is thus turned into an ordered tree, and it is important to
realize that pruning operations change the ordering. Specifically, given two zigzag languages Ln
and Mn with Mn ⊆ Ln, then the tree for Mn is obtained from the tree for Ln by pruning, but in
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general J(Mn) is not a subsequence of J(Ln), as shown by the example in the figure. This shows
that our approach is quite different from the one presented by Vajnovszki and Vernay [VV11],
which considers only subsequences of the Steinhaus-Johnson-Trotter order J(Sn).

Proof of Theorem 1. For any π ∈ Ln, we let J(Ln)π denote the subsequence of J(Ln) that
contains all permutations up to and including π. An immediate consequence of the definition of
zigzag language is that Ln contains the identity permutation idn = cn(idn−1). Moreover, the
definition (1) implies that idn is the very first permutation in the sequence J(Ln).

We now argue by double induction over n and the length of J(Ln) that Algorithm J generates
all permutations from Ln exactly in the order described by the sequence J(Ln), and that when
we perform a minimal jump with the largest possible value to create a previously unvisited
permutation, then there is only one direction (left or right) to which it can jump. The induction
basis n = 0 is clear. Now suppose the claim holds for the zigzag language Ln−1 := {p(π) | π ∈ Ln}.
We proceed to show that it also holds for Ln.

As argued before, the identity permutation idn is the first permutation in the sequence J(Ln),
and this is indeed the first permutation visited by Algorithm J in step J1. Now let π ∈ Ln be
the permutation currently visited by the algorithm in step J2, and let π′ := p(π) ∈ Ln−1. If
π′ appears at an odd position in J(Ln−1), then we define c̄ := #„c (π′) and otherwise we define
c̄ := #„c (π′). By (1), we know that π appears in the subsequence c̄ within J(Ln). We first consider
the case that π is not the last permutation in c̄. In this case, the permutation ρ succeeding
π in J(Ln) is obtained from π by a minimal jump (w.r.t. Ln) of the largest value n in some
direction d, which is left if c̄ = #„c (π′) and right if c̄ = #„c (π′). Now observe that by the definition
of c̄, all permutations in Ln obtained from π by jumping n in the direction opposite to d precede π
in J(Ln) and have been visited by Algorithm J before by induction. Consequently, to generate a
previously unvisited permutation, the value n can only jump in direction d in step J2 of the
algorithm. Again by the definition of c̄, the permutation ρ is obtained from π by a minimal
jump (w.r.t. Ln), so the next permutation generated by the algorithm will indeed be ρ.

It remains to consider the case that π is the last permutation in the subsequence c̄ within J(Ln).
Let ρ′ be the permutation suceeding π′ in J(Ln−1). By induction, we have the following
property (*): ρ′ is obtained from π′ by a minimal jump (w.r.t. Ln−1) of the largest possible
value a by k steps in some direction d (left or right), and a can jump only into one direction.
As π is the last permutation in c̄, the largest value n of π is at the boundary, which is the left
boundary if c̄ = #„c (π′) or the right boundary if c̄ = #„c (π′). By (1), the permutation ρ succeeding π
in J(Ln) also has n at the same boundary, i.e., ρ differs from π by a jump of a by k steps in
direction d. Suppose for the sake of contradiction that when transforming the currently visited
permutation π in step J2, the algorithm does not perform this jump operation, but another one.
This could be a jump of a larger value b > a to transform π into some permutation τ ∈ Ln that is
different from ρ and not in J(Ln)π, or a jump of a in the direction opposite to d, or a jump of a
in direction d by fewer than k steps. But in all those cases the permutation τ ′ := p(τ) ∈ Ln−1
is different from ρ′ and not in J(Ln−1)π′ , and it is obtained from π′ by a jump of b > a, or a
jump of a in the direction opposite to d, or a jump of a in direction d by fewer than k steps,
respectively, a contradiction to property (*). This completes the proof. �

2.6. Further properties of Algorithm J. The next lemma captures when the algorithm
generates a cyclic listing of permutations.

Lemma 4. In the ordering of permutations J(Ln) generated by Algorithm J, the first and last
permutation are related by a minimal jump if and only if |Lk| is even for all 2 ≤ k ≤ n− 1.
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Proof. Let πk be the last permutation in the ordering J(Lk) for all k = 0, 1, . . . , n. For k ≥ 1,
we see from (1) that πk = ck(πk−1) if |Lk−1| is even and πk = c1(πk−1) if |Lk−1| is odd. As
|L1| = 1 is odd, we know that 1 and 2 are reversed in πn, and so all numbers |Lk|, 2 ≤ k ≤ n− 1,
must be even for idn and πn to be related by a minimal jump. �

Remark 5. It follows from the proof of Theorem 1 that instead of initializing the algorithm with
the identity permutation π0 = idn, we may use any permutation without peaks as a seed π0.
2.7. Efficiency considerations. Let us make it very clear that a priori, Algorithm J is not an
efficient algorithm to actually generate a particular zigzag language of permutations. The reason
is that it requires storing a (possibly very long) list of previously visited permutations in order to
decide which one to generate next. Rather, we view Algorithm J as a tool that defines a jump-
ordering for any zigzag language of permutations. Analyzing this ordering in more detail, and
introducing additional data structures, we can transform Algorithm J into a time- and memory-
efficient algorithm for a particular zigzag language. In some cases, we even get loopless algorithms
that generate each new object in constant worst-case time. The key insight here is that any jump
changes the inversion table of a permutation only in a single entry. By maintaining only the
inversion table, jumps can thus be performed efficiently, even if the number of steps is big. This
discussion, however, is not the main focus here, and is deferred to a future part of this paper series.

2.8. A general recipe. Here is a step-by-step approach to apply our framework to the generation
of a given family Xn of combinatorial objects. The first step is to establish a bijection f that
encodes the objects from Xn as permutations Ln ⊆ Sn. If Ln is a zigzag language, which can be
checked by verifying the closure property, then we may run Algorithm J with input Ln, and
interpret the resulting ordering J(Ln) in terms of the combinatorial objects, by applying f−1 to
each permutations in J(Ln), yielding an ordering on Xn. We may also apply f−1 to Algorithm J
directly, which will yield a simple greedy algorithm for generating Xn. The final step is to
make these algorithms efficient, by introducing additional data structures that allow the change
operations on Xn (which are the preimages of minimal jumps under f) as efficiently as possible.

Let us illustrate these steps for the set Xn of binary strings of length n − 1. We map any
binary string x = x2 . . . xn to a permutation f(x) ∈ Sn by setting f(ε) := 1 and

f(x2 . . . xn) :=

cn
(
f(x2 . . . xn−1)

)
if xn = 0,

c1
(
f(x2 . . . xn−1)

)
if xn = 1,

i.e., we build the permutation f(x) by inserting the values i = 2, . . . , n one by one, either at
the leftmost or rightmost position, depending on the bit xi. Observe that f(Xn) is exactly the
set of permutations without peaks Pn ⊆ Sn discussed in Section 2.3 before, and a jump of the
entry i in the permutation translates to flipping the bit xi. Moreover, f−1(J(Pn)) is exactly
the well-known reflected Gray code BRGC for binary strings of length n− 1 [Gra53], for which
efficient algorithms are known [BER76]. Applying f−1 to Algorithm J yields the following simple
greedy algorithm for generating the BRGC (see [Wil13]): J1. Visit the initial all-zero string.
J2. Repeatedly flip the rightmost bit that yields a previously unvisited string.

3. Pattern-avoiding permutations

The first main application of our framework is the generation of pattern-avoiding permutations.
Our main results in this section are summarized in Theorem 8, Theorem 14 (and its corollaries
Lemmas 9–13), and in Table 1. We emphasize that all our results can be generalized to bounding
the number of appearances of patterns, where the special case with a bound of 0 appearances is
pattern-avoidance; see Section 3.9 below.
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3.1. Preliminaries. The following simple but powerful lemma follows immediately from the
definition of zigzag languages given in Section 2. For any set Ln ⊆ Sn we define p(Ln) := {p(π) |
π ∈ Ln}.

Lemma 6. Let Ln,Mn ⊆ Sn, n ≥ 1, be two zigzag languages of permutations. Then Ln ∪Mn

and Ln∩Mn are also zigzag languages of permutations, and we have p(Ln∪Mn) = p(Ln)∪p(Mn)
and p(Ln ∩Mn) = p(Ln) ∩ p(Mn).

We say that two sequences of integers σ and τ are order-isomorphic, if their elements appear
in the same relative order in both sequences. For instance, 2576 and 1243 are order-isomorphic.
Given two permutations π ∈ Sn and τ ∈ Sk, we say that π contains the pattern τ , if and only if
π = a1 . . . an contains a subpermutation ai1 . . . aik , i1 < · · · < ik, that is order-isomorphic to τ .
We refer to such a subpermutation as a match of τ in π. If π does not contain the pattern τ ,
then we say that π avoids τ . For example, π = 635412 contains the pattern τ = 231, as the
highlighted entries form a match of τ in π. On the other hand, π = 654123 avoids τ = 231. For
any permutation τ , we let Sn(τ) denote all permutations from Sn avoiding the pattern τ . For
propositional formulas F and G made of logical ANDs ∧, ORs ∨, and patterns as variables, we
define

Sn(F ∧G) := Sn(F ) ∩ Sn(G),
Sn(F ∨G) := Sn(F ) ∪ Sn(G).

(2)

For instance, Sn(τ1 ∧ · · · ∧ τ`) is the set of permutations avoiding each of the patterns τ1, . . . , τ`,
and Sn(τ1 ∨ · · · ∨ τ`) is the set of permutations avoiding at least one of the patterns τ1, . . . , τ`.

Remark 7. From the point of view of counting, we clearly have |Ln∪Mn| = |Ln|+|Mn|−|Ln∩Mn|,
so the problem of counting the union of two zigzag languages can be reduced to counting the
individual languages and the intersection. However, from the point of view of exhaustive
generation, we clearly do not want to take this approach, namely generate all permutations
in Ln, all permutations in Mn, all permutations in Ln ∩Mn, and then combine and reduce those
lists. This shows that the problem of generating languages like Sn(τ1 ∨ · · · ∨ τk) or Sn(F ) for
more general formulas F is genuinely interesting in our context.

3.2. Tame patterns. We say that an infinite sequence of sets L0, L1, . . . is hereditary, if
Li−1 = p(Li) holds for all i ≥ 1. We say that a permutation pattern τ is tame, if Sn(τ),
n ≥ 0, is a hereditary sequence of zigzag languages. The hereditary property ensures that
for a given set Sn(τ) =: Ln, we can check membership within the families Li−1 := p(Li) for
i = n, n−1, . . . , 1 simply by checking for matches of the pattern τ . In terms of the aforementioned
tree representation of zigzag languages, it means that all sets Sn(τ), n ≥ 0, arise from pruning the
infinite rooted tree of permutations in the same way (in not in different ways for the same pattern
and different values of n), by considering the infinite sequence of node sets remaining in each level.

The following theorem is an immediate consequence of Lemma 6 and the definition (2).

Theorem 8. Let F be an arbitrary propositional formula made of logical ANDs ∧, ORs ∨, and
tame patterns as variables, then Sn(F ), n ≥ 0, is a hereditary sequence of zigzag languages.
Consequently, all of these languages can be generated by Algorithm J.

In the following we provide simple sufficient conditions guaranteeing that a pattern is tame
(see also Remark 15 below).

Lemma 9. If a pattern τ ∈ Sk, k ≥ 3, does not have the largest value k at the leftmost or
rightmost position, then it is tame.
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Table 1. Tame permutation patterns and corresponding combinatorial objects
and orderings generated by Algorithm J. The patterns in the second part of the
table (bottom four rows) are tame after the indicated elementary transformations.

Tame patterns Combinatorial objects and ordering References/OEIS [oei19]
none permutations by adjacent [Joh63, Tro62], A000142

transpositions → plain change order
231 = 231 Catalan families A000108

• binary trees by rotations → Lucas- [LvBR93]
-van Baronaigien-Ruskey order

• triangulations by edge flips
• Dyck paths by hill flips

231 Bell families A000110
• set partitions by element [Kay76, Wil13]

exchanges → Kaye’s order
132 ∧ 231 = 132 ∧ 231: binary strings by bitflips [Gra53]
permutations without peaks → reflected Gray code order (BRGC)
1342 forests of β(0, 1)-trees [Bón97, AKPV16], A022558

2143: vexillary permutations [LS85], A005802
conjunction of vk tame patterns with v2 = 35, v3 = 91, v4 = 2346 [BP14], A224318,
(see [Bil13]): k-vexillary permutations (k ≥ 1) A223034, A223905
2143 ∧ 3412: skew-merged permutations [Sta94, Atk98], A029759
2143 ∧ 2413 ∧ 3142 [DMR10, SV14], A033321
2143 ∧ 2413 ∧ 3142 ∧ 3412: X-shaped permutations [Wat07, Eli11], A006012
2413 ∧ 3142: Schröder families A006318
separable permutations • slicing floorplans (=guillotine [ABP06, AM10]

partitions)
• topological drawings of K2,n [CF18]

2413 ∧ 3142: Baxter mosaic floorplans (=diagonal [YCCG03, ABP06]
2413 ∧ 3412: twisted Baxter rectangulations=R-equivalent [LR12, CSS18]
2143 ∧ 3142 rectangulations) A001181
2143 ∧ 3412 S-equivalent rectangulations [ABBM+13], A214358
2143 ∧ 3412 ∧ 2413 ∧ 3142 S-equivalent guillotine rectangulations [ABBM+13], A078482
35124 ∧ 35142 ∧ 24513 ∧ 42513: generic rectangulations [Rea12b]
2-clumped permutations (=rectangular drawings)
conjunction of ck tame patterns with ck = 2(k/2)!(k/2 + 1)! for k even [Rea12b]
and ck = 2((k + 1)/2)!2 for k odd: k-clumped permutations
conjunction of 12 tame patterns: perm. with 0-1 Schubert polynomial [FMSD19]

(2 + 2)-free posets [Par09, BMCDK10]
A022493

31524 = 3142 ∧ 2413 [Pud08, BMCDK10], A098569

2431 (A051295); 25314 (A117106), 35241 (A137534); 42513 (A137535) [Pud10]
42513 (A110447); 42153 (A137536); 25314 (A137538); 41523 (A137539)
41253 (A137540); 35241 (A137542)

∧ : permutations that characterize Schubert varieties
which are Gorenstein

[WY06], A097483

rot(2341∧35241)=1432∧13524: rooted non-separable planar maps [Wes90, Zei92, GW96]
2-stack sortable permutations [DGG98], A000139
2413 ∧ 41352; 2413 ∧ 45312; 2413 ∧ 21354; 3241 ∧ 24153; 3214 ∧ 24135 [DGW96]
rev(2413 ∧ 41352) = 3142 ∧ 2413 [CKS09]
conjunction of 20 patterns τi with tame cpl(τi): [Eld06], A245233
permutations generated by a stack of depth two and an infinite stack
inv(132 ∧ 312) = 132 ∧ 231: Gilbreath permutations [Vel03, DG12]
rot(3142 ∧ 3124) = rot

(
∧

)
= ∧ : [Lan07, BL10], A129698

perms. that uniquely encode pile configurations in patience sorting
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12 # „34 #       „3124

1 # „243 43 # „12

# „1423 #       „4321

41 # „23 #    „3214

# „4132 21 # „34

1 #    „432 #    „2143

# „1324 4213

Figure 3. 231-avoiding permutations of length n = 4 generated by Algorithm J
and resulting Gray codes for Catalan families (binary trees, triangulations, Dyck
paths), with jumps indicated by arrows.

We prove Lemma 9 in Section 3.7 below.
Table 1 lists several tame patterns and the combinatorial objects encoded by the corresponding

zigzag languages. The bijections between those permutations and the combinatorial objects
are well-known and are described in the listed papers (recall also Section 2.8). The resulting
ordering for 231-avoiding permutations of length n = 4, and the corresponding Gray codes for
three different Catalan objects are shown in Figure 3. We refer to the permutation patterns
discussed so far as classical patterns. In the following we discuss some other important variants
of permutation patterns appearing in the literature.

3.3. Vincular patterns. Vincular patterns were introduced by Babson and Steingrímsson [BS00].
In a vincular pattern τ , there is exactly one underlined pair of consecutive entries, with the in-
terpretation that a match of τ in π requires that the underlined entries match adjacent positions
in π. For instance, the permutation π = 314 2 contains the pattern τ = 231, but it avoids the
vincular pattern τ = 231.

Lemma 10. If a vincular pattern τ ∈ Sk, k ≥ 3, does not have the largest value k at the leftmost
or rightmost position, and the largest value k is part of the vincular pair, then it is tame.

We prove Lemma 10 in Section 3.7 below.
Table 1 also lists several tame vincular patterns and the combinatorial objects encoded by the

corresponding zigzag languages, namely set partitions and different kinds of rectangulations. The
resulting ordering for 231-avoiding permutations of length n = 4, and the resulting Gray code
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12 # „34 1|2|3|4 #    „3142 13|24
1 # „243 1|2|34 43 # „12 134|2

# „1423 1|24|3 #       „4321 1234
41 # „23 14|2|3 #    „3214 123|4
# „4132 14|23 21 # „34 12|3|4
1 #    „432 1|234 #    „2143 12|34

# „1324 1|23|4 4213 124|3
31 # „24 13|2|4

Figure 4. 231-avoiding permutations of length n = 4 generated by Algorithm J
and resulting Gray code for set partitions.

12 # „34 13 # „42 3 # „421 42 # „31

1 # „243 # „1324 32 # „41 #    „4213

# „1423 31 # „24 # „3214 21 # „43

41 # „23 #    „3142 23 # „14 2134

# „4132 43 # „12 2 # „341

1 # „432 # „4321 # „2431

Figure 5. Twisted Baxter permutations (2413 ∧ 3412-avoiding) for n = 4 gener-
ated by Algorithm J and resulting Gray code for diagonal rectangulations. Read
the figure column by column, from left to right.

for set partitions, is shown in Figure 4. The resulting ordering for twisted Baxter permutations
of length n = 4, and the resulting Gray code for diagonal rectangulations, is shown in Figure 5.

3.4. Barred patterns. Barred permutation patterns were first considered by West [Wes90]. A
barred pattern is a pattern τ with a number of overlined entries, e.g., τ = 25341. Let τ ′ be the
permutation obtained by removing the bars in τ , and let τ− be the permutation that is order-
isomorphic to the non-barred entries in τ . In our example, we have τ ′ = 25341 and τ− = 2431.
A permutation π contains a barred pattern τ if and only if it contains a match of τ− that cannot
be extended to a match of τ ′ by adding entries of π at the positions specified by the barred
entries. For instance, π = 35241 contains τ = 25341, as the highlighted entries form a match of
τ− = 2431 that cannot be extended to a match of τ ′ = 25341. We clearly have Sn(τ−) ⊆ Sn(τ).

The following lemma gives a sufficient condition for a single-barred pattern to be tame.



COMBINATORIAL GENERATION VIA PERMUTATION LANGUAGES. I. FUNDAMENTALS 13

Lemma 11. If for a single-barred pattern τ ∈ Sk, k ≥ 4, the permutation τ− ∈ Sk−1 does not
have the largest value k − 1 at the leftmost or rightmost position, and the barred entry in τ is
smaller than k or at a position next to the entry k − 1, then τ is tame.

We prove Lemma 11 in Section 3.7 below. As we will show in Section 4.3 below, in many
cases patterns with multiple bars can be reduced to single-barred patterns.

3.5. Patterns with Bruhat restrictions. Patterns with Bruhat restrictions were introduced
by Woo and Yong [WY06] Such a pattern is a pair (τ,B), where τ ∈ Sk and B ⊆ [k]2 is a set of
pairs of indices (a, b) with a < b and τ(a) < τ(b) such that for all i ∈ {a+ 1, . . . , b− 1} we either
have τ(i) < τ(a) or τ(i) > τ(b). A permutation π contains this pattern if and only if it contains
a match of τ , and for any pair of entries π(ia) and π(ib) that are matched by a corresponding
pair of entries τ(a) and τ(b) with (a, b) ∈ B, we have that π(i) < π(ia) or π(i) > π(ib) for all
i ∈ {ia + 1, . . . , ib − 1}.

Lemma 12. Given a pattern with Bruhat restrictions (τ,B) with τ ∈ Sk and k ≥ 3, if τ does
not have the largest value k at the leftmost or rightmost position, then it is tame.

Note that Lemma 12 does not impose any additional restrictions on the set B, and that it
hence generalizes Lemma 9 (which corresponds to the case B = ∅).

3.6. Bivincular patterns. Bivincular patterns were introduced by Bousquet-Mélou, Claesson,
Dukes, and Kitaev [BMCDK10]. Such a pattern is a pair (τ,B), where τ ∈ Sk is a vincular
pattern and B ⊆ [k − 1]. A permutation π contains this pattern if and only if it contains a
match of the vincular pattern τ (respecting the adjacency condition for the vincular pair), and
in this match, the entries τ−1(i) and τ−1(i+ 1) are consecutive values in π for all i ∈ B.

Lemma 13. Given a bivincular pattern (τ,B) with τ ∈ Sk and k ≥ 3, if the vincular pattern τ
satisfies the conditions in Lemma 10 and if k − 1 /∈ B, then it is tame.

Note that Lemma 13 generalizes Lemma 10 (which corresponds to the case B = ∅).

(0, 0) (5, 0)

(0, 5) (5, 5)

3.7. Mesh patterns. We represent any permutation π ∈ Sn by the set of
points (i, π(i)), 1 ≤ i ≤ n, in the integer grid [n]2. This grid representation
is a graphical representation of the permutation matrix. For instance, the
permutation π = 14352 has the grid representation shown on the right. A cell
in this representation is a connected region in R2 \

(
R× [n] ∪ [n]× R

)
, and we

number those cells by a pair of integers (a, b), a, b ∈ {0, . . . , n}, from left to
right and from bottom to top, as shown in the figure on the right.

Mesh patterns were introduced by Brändén and Claesson [BC11], and they generalize all the
aforementioned types of patterns.

A mesh pattern is a pair σ = (τ, C), τ ∈ Sk, with C ⊆ {0, . . . , k}2. Each
pair (a, b) ∈ C encodes a cell numbered (a, b) in the grid representation of τ ,
and we draw those cells shaded in the grid representation. For instance, the
mesh pattern (τ, C) = (14352, {(0, 1), (4, 3)}) has the grid representation shown
on the right. These cells from C are the forbidden regions for values of π when
searching for a match of σ = (τ, C) in π. Specifically, a permutation π contains
the mesh pattern σ, if and only if the grid representation of π contains a subset
of points that forms the grid representation of τ such that in this match the cells C do not
contain any points from π. For example, the permutation 14352 contains the mesh pattern
shown on the right, but the permutation 153642 does avoids it.
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1 ki
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, k
)

(i−
1, k)
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−
1,
k
−
1)

(i, k −
1)

P

Q

Figure 6. Illustration of the four conditions in Theorem 14 (left) and how they
are used in the proof of the theorem (right).

The following main theorem of this section implies all the lemmas about classical, vincular,
barred patterns, etc. stated in the previous sections.

Theorem 14. Let σ = (τ, C), τ ∈ Sk, k ≥ 3, be a mesh pattern, and let i be the position of the
largest value k in τ . If the pattern satisfies each of the following four conditions, then it is tame:
(i) i is different from 1 and k.
(ii) For all a ∈ {0, . . . , k} \ {i− 1, i}, we have (a, k) /∈ C.
(iii) If (i − 1, k) ∈ C, then for all a ∈ {0, . . . , k} \ {i − 1} we have (a, k − 1) /∈ C and for all

b ∈ {0, . . . , k − 2} we have that (i, b) ∈ C implies (i− 1, b) ∈ C.
(iv) If (i, k) ∈ C, then for all a ∈ {0, . . . , k} \ {i} we have (a, k − 1) /∈ C and for all b ∈

{0, . . . , k − 2} we have that (i− 1, b) ∈ C implies (i, b) ∈ C.

The conditions in Theorem 14 can be in the grid representation of (τ, C) as follows; see the left
hand side of Figure 6: Condition (i) asserts that the highest point of τ must not be the leftmost
or rightmost point (the two crossed out grid points in the figure are forbidden). Condition (ii)
asserts that none of the cells in the topmost row (above the points) must be shaded, with the
possible exception of the cells next to the highest point (solid crossed out cells in the figure).
Condition (iii) asserts that if the cell (i− 1, k) to the top left of the highest point is shaded (dark
gray cell in the figure), then none of the cells in the row below except possibly (i− 1, k− 1) must
be shaded (dotted crossed out cells without arrows in the figure), and if one of the cells strictly
below (i, k − 1) is shaded, then the cell to the left of it must also be shaded (dotted crossed out
cells with arrows). Symmetrically, condition (iv) asserts that if the cell (i, k) to the top right of
the highest point is shaded (light gray cell in the figure), then none of the cells in the row below
except possibly (i, k− 1) must be shaded (dashed crossed out cells without arrows in the figure),
and if one of the cells strictly below (i− 1, k − 1) is shaded, then the cell to the right of it must
also be shaded (dashed crossed out cells with arrows).

Proof. We show that if σ = (τ, C) satisfies the four conditions of the theorem, then Sn(σ),
n ≥ 0, is a hereditary sequence of zigzag languages. We argue by induction on n. Note that
S0(σ) = S0 = {ε} is a zigzag language by definition, so the induction basis is clear. For the
induction step let n ≥ 1. We first show that if π ∈ Sn−1(σ), then c1(π), cn(π) ∈ Sn(σ). As
c1(π) and cn(π) are obtained from π by inserting the new largest value n at the leftmost or
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rightmost position, respectively, the grid representation of these two permutations differs from
the grid representation of π by adding a new highest point at the leftmost or rightmost position.
However, as π avoids σ by assumption, condition (i) guarantees that both c1(π) and cn(π) also
avoid σ, which is what we wanted to show.

To complete the induction step, we now show that if π ∈ Sn(σ), then p(π) ∈ Sn−1(σ). Recall
that p(π) is obtained from π by removing the largest value n, so in the grid representation, we
remove the highest point P . Our assumption is that π avoids the pattern σ, and we need to
show that removing the highest point does not create a match of the pattern σ. For the sake of
contradiction, suppose that removing P creates a match of the pattern σ in p(π). Let Q be the
highest point in this match of the pattern σ in p(π). This situation is illustrated on the right
hand side of Figure 6. By condition (ii), we are in exactly one of the following two cases: (a) the
cell (i− 1, k) is in C and P lies inside this cell of σ in this match of the pattern; (b) the cell (i, k)
is in C and P lies inside this cell of σ in this match of the pattern. We first consider case (a):
We claim that we can exchange the point Q for the point P in the match of the pattern σ, and
obtain another match of σ in π, which would contradict the assumption that π avoids σ. Indeed,
this exchange operation strictly enlarges only the cells (a, k − 1) for all a ∈ {0, . . . , k} \ {i− 1}
and the cells (i, b) for all b ∈ {0, . . . , k− 2}. The first set of cells are not in C by the first part of
condition (iii). The second set of cells are either not in C, or if they are, then the corresponding
cells to the left of it are also in C by the second part of condition (iii). Moreover, after the
exchange the cell (i, k) contains no point from π, as P is the highest point (this is of course only
relevant if (i, k) ∈ C). Furthermore, after the exchange the cell (i− 1, k − 1) contains at most
those points from π that were in the same cell before the exchange (clearly P is the only point
inside the cell (i− 1, k)). So we indeed obtain a match of σ in π, a contradiction.

In the symmetric case (b), we apply the same exchange argument, using condition (iv) instead
of (iii). This completes the proof. �

3.8. Proof of Lemmas 9–13. With Theorem 14 in hand, the proofs of Lemmas 9–13 are
straightforward. As noted before, Lemma 12 generalies Lemma 9, and Lemma 13 generalizes
Lemma 10, so we only need to prove Lemmas 11, 12 and 13.

Proof of Lemma 11. Note that a barred pattern τ ∈ Sk with a single barred entry b at position a
corresponds to the mesh pattern σ = (τ−, {(a− 1, b− 1)}), i.e., in the grid representation of σ a
single cell is shaded. It follows that conditions (iii) and (iv) of Theorem 14 are trivially satisfied,
and conditions (i) and (ii) translate into the conditions in the lemma. �

Proof of Lemma 12. A pattern with Bruhat restrictions (τ,B) corresponds to the mesh pattern
σ = (τ, C) where C is the union of all the sets R(a, b) := {(i, j) | a ≤ i < b∧ τ(a) ≤ j < τ(b)} for
(a, b) ∈ B, i.e., in the grid representation of σ, certain rectangles of cells inside the bounding box
of the points from τ are shaded. It follows that conditions (ii)–(iv) of Theorem 14 are trivially
satisfied, and condition (i) corresponds exactly to the condition in the lemma. �

Proof of Lemma 13. A vincular pattern τ ∈ Sk where the entries at positions a and a+ 1 are
underlined corresponds to the mesh pattern σ = (τ, C) with C := {a} × {0, . . . , k}, i.e., in the
grid representation of σ, an entire column of cells is shaded. For the bivincular pattern (τ,B)
we also have to add the sets {0, . . . , k} × {b} for all b ∈ B to the set of cells C, i.e., in the grid
representation we also have to shade the corresponding rows of cells. By the conditions stated
in Lemma 10, conditions (i) and (ii) of Theorem 14 are satisfied. By the condition k − 1 /∈ B,
conditions (iii) and (iv) of the theorem are also satisfied, proving that the bivincular pattern σ
is tame. �



16 COMBINATORIAL GENERATION VIA PERMUTATION LANGUAGES. I. FUNDAMENTALS

Remark 15. One can argue that if condition (i) in Theorem 14 is violated, then Sk(σ) is not
a zigzag language. Similarly, if condition (ii) is violated, then Sk(σ) 6= p(Sk+1(σ)), i.e., the
hereditary property is violated. It follows from the proofs of Lemmas 9–13 before that the
conditions stated in those lemmas are not only sufficient, but also necessary for tameness.

3.9. Patterns with multiplicities. All the aforementioned notions and results in this section
generalize straightforwardly to bounding the number of appearances of a pattern. Formally, a
counted pattern is a pair σ = (τ, c), where τ is a mesh pattern, and c is a non-negative integer.
Moreover, Sn(σ) denotes the set of all permutations from Sn that contain at most c matches of
the pattern τ , where the special case c = 0 is pattern-avoidance (cf. [NZ96]).

By Theorem 8, we can now form propositional formulas F made of logical ANDs ∧, ORs ∨,
and tame counted patterns (τi, ci) as variables, with possibly different counts ci for each variable.
The tameness of each (τi, ci) can be checked by verifying whether the patterns τi satisfy the
conditions stated in Theorem 14 or its corollaries Lemmas 9–13. We then obtain a hereditary
zigzag language Sn(F ) that can be generated by Algorithm J.

A somewhat contrived example for such a language would be F =
(
(231, 3) ∧ (2143, 5)

)
∨

(3142, 2), the language of permutations that contain at most 3 matches of the pattern 231 AND
at most 5 matches of the pattern 2143, OR at most 2 matches of the vincular pattern 3142.

4. Algebra with patterns

In this section we significantly extend the methods described in the previous section, by
applying geometric transformations to permutation patterns, and by describing some other types
of patterns as conjunctions and disjunctions of suitable mesh patterns (recall Theorem 8). One
particularly relevant additional type of permutations covered in this section are geometric grid
classes; see Theorem 19 below.

4.1. Elementary transformations. We now consider three important elementary transforma-
tions of permutations that are important in the context of pattern-avoidance, as they preserve
the cardinality of the set Sn(F ). Each of them corresponds to a geometric transformation of the
grid representation of each of the patterns τ = a1 . . . ak in the formula F , and together these
transformations form the dihedral group D4 of symmetries of a regular 4-gon:
• Reversal, defined as rev(τ) := ak . . . a1. This corresponds to a vertical reflection of the grid
representation.
• Complementation, defined as cpl(τ)i = k − 1− ai for all i = 1, . . . , k. This corresponds to a
horizontal reflection of the grid representation.
• Inversion, defined by inv(τ)τ(i) = i for all i = 1, . . . , k. This corresponds to a diagonal
reflection of the grid representation along the south-west to north-east diagonal.

Note that a clockwise 90-degree rotation is obtained as rot(τ) := inv(rev(τ)) = cpl(inv(τ)).
Clearly, all these operations generalize to mesh patterns (τ, C), by applying the aforementioned
geometric transformations to the cells in C. These operations and their relations are illustrated
in Figure 7 for (τ, C) = (14352, {(1, 0), (1, 1), (3, 3), (4, 3)}).

The following lemma is immediate.

Lemma 16. Given any composition h of the elementary transformations reversal, comple-
mentation and inversion, and any propositional formula F made of logical ANDs ∧, ORs ∨,
and mesh patterns τ1, . . . , τk as variables, then the sets of pattern-avoiding permutations Sn(F )
and Sn(h(F )) are in bijection under h for all n ≥ 1, where the formula h(F ) is obtained from F

by replacing every pattern τi by h(τi) for all i = 1, . . . , k.
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rev

cpl

inv

14352 25341

15324 51342

24315

52314 41325

42351

Figure 7. Elementary transformations between permutations.

Lemma 16 is very useful for the purpose of exhaustive generation, because even if τi is not
tame, then maybe h(τi) is. So even if we cannot apply Algorithm J to generate Sn(τ) directly,
we may be able to generate Sn(h(τi)), and then apply h−1 to the resulting permutations. For
instance, τ = 213 is not tame, as the largest entry appears at the leftmost position. However,
cpl(τ) = 231 is tame by Lemma 9, and so we can use Algorithm J to generate Sn(cpl(τ)).

As another example, consider so-called 2-stack sortable permutations introduced byWest [Wes90]
and later counted in [Zei92, GW96, DGG98]. These permutations are characterized by the
pattern-avoidance formula F = τ1 ∧ τ2 with τ1 := 2341 and τ2 := 35241 (τ2 is a barred pattern).
Unfortunately, τ2 is not tame (the barred entry 5 is not at a position next to the entry 4; recall
Lemma 11), so Algorithm J cannot be used directly for generating Sn(F ). However, applying rota-
tion, h(τ) := rot(τ) = inv(rev(τ)), yields two tame patterns h(τ1) = 1432 and h(τ2) = 13524 and
the formula h(F ) = h(τ1) ∧ h(τ2), which can be used for generating Sn(h(F )) via Algorithm J:

τ1 = 2341 τ2 = 35241

∧ ∧h = rot

rot(τ1) = 1432 rot(τ2) = 13524

The bottom part of Table 1 lists further pattern-avoiding permutations that have been studied
in the literature and that can be turned into tame patterns by elementary transformations.

4.2. Partially ordered patterns. Partially ordered patterns were introduced by Kitaev [Kit05].
A partially ordered pattern (POP) is a partially ordered set P = ([k],≺), and we say that a
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permutation π contains this pattern if and only if it contains a subpermutation ai1 . . . aik ,
i1 < · · · < ik, such that k ≺ l in the partial order implies that aik < ail . In particular, if ≺
is a linear order, then this is equivalent to classical pattern avoidance. However, some other
constraints can be expressed much more conveniently using POPs. For instance, avoiding the POP

P1 =
2

1 3

is equivalent to avoiding peaks in the permutation, so Sn(P1) is the set of permutations without
peaks discussed before, which satisfies |Sn(P1)| = 2n−1.

More generally, the POP

Pk =
2 4

1 3 5 . . .

2k

2k − 1 2k + 1

realizes the language Sn(Pk) of permutations with at most k − 1 peaks.
We let L(P ) denote the set of all linear extensions of the poset P , and for any linear

extension x ∈ L(P ), we consider the inverse permutation of x, as the ith entry of inv(x) denotes
the position of i in x. Moreover, inv(x) ∈ Sk, so inv(x) is a classical pattern.

Lemma 17. For any partially ordered pattern P = ([k],≺), we have

Sn(P ) =
⋂

x∈L(P )
Sn(inv(x)) = Sn

(∧
x∈L(P )

inv(x)
)
. (3)

In particular, if the poset P does not have 1 or k as a maximal element, then P is tame.

Proof. The first part of the lemma follows immediately from the definition of POPs and from (2).
To prove the second part, suppose that P does not have 1 or k as a maximal element. Then in
any linear extension x ∈ L(P ), 1 and k will not appear at the last position, and so in the inverse
permutation inv(x), the largest entry k will neither be at position 1 nor at position k. We can
hence apply Lemma 9, and using Theorem 8 we obtain that P is tame. �

For instance, for the POP P1 from before we have L(P1) = {132, 312}, and so P1 = 132 ∧ 231,
and for the POP P2 we have L(P2) = {13254, 13524, 13542, 15324, 15342, 31254, . . .}, a set of 16
linear extensions in total, so P2 = 13254 ∧ 14253 ∧ 15243 ∧ 14352 ∧ 15342 ∧ 23145 ∧ · · · .

Moreover, we can create counted POPs with multiplicity c (recall Section 3.9), by taking the
OR of conjunctions of counted classical patterns as described by Lemma 17, over all number
partitions of c into the corresponding number of parts. For instance, the counted POP σ = (P1, c),
which realizes the zigzag language Sn(σ) of permutations with at most c triples of values forming
a peak, is obtained by considering the partitions c = c+0 = (c−1)+1 = · · · = 1+(c−1) = 0+c,
resulting in the formula

(P1, c) =
(
(132, c) ∧ (231, 0)

)
∨
(
(132, c− 1) ∧ (231, 1)

)
∨ · · · ∨

(
(132, 0) ∧ (231, c)

)
with counted classical patterns on the right-hand side.

4.3. Barred patterns with multiple bars. Patterns with multiple bars can be reduced to
single-barred patterns (to which Lemma 11 applies) as shown by the following lemma.

Lemma 18 (cf. [Úlf11]). Let τ ∈ Sk, k ≥ 5, be a pattern with b ≥ 2 bars, such that no two
barred entries are at neighboring positions or have adjacent values. Let τ̃1, . . . , τ̃b ∈ Sk−b+1 be
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the permutations with a single barred entry that are order-isomorphic to the sequences obtained
from τ by removing all but except one barred entry. Then we have

Sn(τ) =
⋂

1≤i≤b
Sn(τ̃i) = Sn

(∧
1≤i≤b

τ̃i
)
.

Consequently, if τ− ∈ Sk−b does not have the largest value k − b at the leftmost or rightmost
position, and the largest barred entry in τ is smaller than k or at a position next to the entry k−1,
than τ is tame.

Proof. To prove the first part, observe that when no two barred entries are at neighboring
positions or have adjacent values, then the definition of barred pattern avoidance is equivalent
to avoiding each of the single-barred patterns τ̃1, . . . , τ̃b, so the claim follows using (2).

To prove the second part we show that each of the single-barred patterns τ̃1, . . . , τ̃b satisfies
the conditions of Lemma 11. Indeed, we know that τ− = (τ̃i)− ∈ Sk−b, 1 ≤ i ≤ b, does not have
the largest value k − b at the leftmost or rightmost position. Moreover, if τ̃i is obtained from
τ by removing all but the largest barred entry, then the barred entry in τ̃i ∈ Sk−b+1 is either
smaller than k− b+ 1 or at a position next to the entry k− b. To see this note that if the largest
entry k in τ is barred, then the second largest entry k − 1 is not barred by the assumption that
no two barred entries have adjacent values. For the same reason, if τ̃i is obtained from τ by
removing barred entries including the largest one, then the barred entry in τ̃i ∈ Sk−b+1 is smaller
than k − b+ 1. Consequently, we can apply Lemma 11 to each of the patterns τ̃1, . . . , τ̃b, and
complete the proof by applying Theorem 8. �

Lemma 18 applies for instance to the tame pattern 31524 = 3142 ∧ 2413 listed in Table 1.

4.4. Geometric grid classes. Geometric grid classes of permutations were introduced by
Albert, Atkinson, Bouvel, Ruškuc, and Vatter [AAB+13]. To define them, we consider a matrixM
with entries from {0,+1,−1}, indexed first by columns from left to right, and then by rows from
bottom to top. The standard figure F (M) is the following set of points in R2; see Figure 4.4: For
every entry Mx,y = +1, it contains an increasing straight line connecting the points (x− 1, y− 1)
and (x, y). Moreover, for every entry Mx,y = −1, it contains a decreasing straight line connecting
the points (x−1, y) and (x, y−1). The geometric grid class of M , denoted Geo(M), is the set of
all permutations (of any length n ≥ 0) that can be drawn in the following way: Choose n points
on the standard figure F (M), no two on a common horizontal or vertical line. Then label the
points from 1 to n from bottom to top and record the labels by reading them from left to right.

Based on this, we define Geon(M) := Geo(M) ∩ Sn. The authors of [AAB+13] proved that
any geometric grid class Geo(M) is characterized by finitely many forbidden patterns, i.e.,

Geon(M) = Sn(τ1 ∧ · · · ∧ τk)

for a suitable set of patterns τ1, . . . , τk and for all n ≥ 0. For instance, X-shaped permutations
studied in [Wat07, Eli11] are exactly the permutations in Sn(2143 ∧ 2413 ∧ 3142 ∧ 3412). As
a consequence of this, all our previous results on generating pattern-avoiding permutations
translate straightforwardly to generating geometric grid classes of permutations. However,
deciding whether Geon(M) is a zigzag language is much easier by looking at M directly, rather
than by looking at the patterns τ1, . . . , τk, which are often not explicitly given or complicated to
derive. To this end, the following theorem provides an easily verifiable sufficient condition.

Theorem 19. If the top-left entry of M equals −1, and the top-right entry of M equals +1,
then Geon(M), n ≥ 0, is a hereditary sequence of zigzag languages. Consequently, all of these
languages can be generated by Algorithm J.
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1
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6

M =
(
−1 +1
+1 −1

)
π = 623451

1

2

3
4

5
6

M =
(

+1 −1
−1 +1

)
π = 324516

Figure 8. Illustration of geometric grid classes. X-shaped permutations are
shown on the left, and circle-shaped permutations on the right.

From the two grid classes shown in Figure 4.4, only the left one (X-shaped permutations)
satisfies the conditions of the theorem.

Proof. We argue by induction on n. Note that Geo0(M) = S0 = {ε} is a zigzag language by
definition, so the induction basis is clear. For the induction step let n ≥ 1. We first show that if
π ∈ Geon−1(M), then c1(π), cn(π) ∈ Geon(M). For this argument we use the assumption that
the top-left entry of M is −1, and the top-right entry of M is +1, i.e., the standard figure F (M)
has a decreasing line L in the top-left corner, and an increasing line R in the top-right corner.
It follows that we can draw c1(π) on F (M), by extending the drawing of π on F (M) so that
the new point n is mapped to the line L to the left and top of all other points. Similarly, we
can draw cn(π) on F (M), by extending the drawing of π on F (M) so that the new point n is
mapped to the line R to the right and top of all other points.

To complete the induction step, we now show that if π ∈ Geon(M), then p(π) ∈ Geon−1(M).
As π ∈ Geon(M), we can draw π on F (M). Clearly, removing the largest entry from π maintains
this property, i.e., we can draw p(π) on F (M), showing that p(π) ∈ Geon−1(M). This completes
the proof. �

5. Lattice congruences of the weak order

The second main application of our framework are lattice congruences of the weak order on
the symmetric group Sn. The main results in this section are summarized in Theorems 20 and
Corollary 21. Proofs of these results will be presented in part II of this paper series.

5.1. Preliminaries. We begin recalling a few basic notion from poset theory. A partially ordered
set, or poset for short, is a pair (P,<), where P is a set and < is a reflexive, antisymmetric and
transitive binary relation on P . A cover relation is a pair x, y ∈ P with x < y for which there is
no z ∈ P with x < z < y. In this case we say that y covers x and we write xl y. Clearly, the
cover relations form an acyclic directed graph with vertex set P , and this graph is referred to as
the cover graph of P . A poset (P,<) is called a lattice, if for any two x, y ∈ P there is a unique
smallest element z, called the join x ∨ y of x and y, such that z > x and z > y, and if there is
unique largest element z, called the meet x ∧ y of x and y, satisfying z < x and z < y. A lattice
congruence is an equivalence relation≡ on P such that x ≡ x′ and y ≡ y′ implies that x∨y ≡ x′∨y′
and x ∧ y ≡ x′ ∧ y′. Given any lattice congruence ≡, we obtain the lattice quotient P/ ≡ (which
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1234

4312

4321

4231 3421

41324213

4123

2431 3412 3241

2413 1432 3142 3214

1423 2143 1342 2314 3124

1243 2134 1324

2341

Figure 9. The weak order on S4 (left), with the lattice congruence for 231-
avoiding permutations (bold edges), and the resulting lattice quotient Sn/ ≡
(right), which is the well-known Tamari lattice (with corresponding binary trees).

is itself a lattice) by taking the equivalence classes as elements, and ordering them by X < Y if
and only if there is an x ∈ X and a y ∈ Y such that x < y in P . Observe that the cover graph
of P/ ≡ is obtained from the cover graph of P by contracting all cover edges xl y with x ≡ y.

The weak order on the symmetric group Sn is obtained by considering the inversion set of a
permutation, defined as

inv(π) := {(π(i), π(j)) | 1 ≤ i < j ≤ n and π(i) > π(j)},

and by defining π < ρ if and only if inv(π) ⊆ inv(ρ); see the left hand side of Figure 9. The
cover relations π l ρ in this poset are exactly adjacent transpositions. It is easy to see that the
weak order on Sn forms a lattice. The weak order forms a lattice, where the inversion set of the
join π ∨ ρ of two permutations π and ρ is given by the transitive closure of inv(π) ∪ inv(ρ), and
the inversion set of the meet can be computed similarly by considering the reverse permutations
(which have the complementary inversion set).

It turns out that there are double-exponentially many distinct lattice congruences of the
weak order on Sn, and they generalize many known lattices, such as the Boolean lattice, the
Tamari lattice [Tam62] (shown on the right hand side of Figure 9), and certain Cambrian
lattices [Rea06, CP17]. This area of study has beautiful ramificiations into groups, posets,
polytopes, geometry, and combinatorics, and has been developed considerably in recent years, in
particular thanks to Nathan Reading’s works, summarized in [Rea12a, Rea16a, Rea16b].

5.2. Jumping through lattice congruences. For any lattice congruence ≡ of the weak order
on Sn, a set of representatives for the equivalence classes Sn/ ≡ is a subset Rn ⊆ Sn such
that for every equivalence class X ∈ Sn/ ≡, exactly one permutation is contained in Rn, i.e.,
|X ∩Rn| = 1. We let X(π), π ∈ Sn, denote the equivalence class from Sn/ ≡ containing π. A
meaningful definition of ‘generating the lattice congruence’ is to generate a set of representatives
for its equivalence classes. We also require that any two successive representatives form a cover
relation in the lattice quotient Sn/ ≡. This is what we achieve with the help of Algorithm J.
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Figure 10. Lattice congruences of the weak order on S4, ordered by refinement
and realized as polytopes, where only the full-dimensional polytopes are shown.
The figure shows the Hamilton path on each quotientope generated by Algorithm J,
with the start and end vertex indicated by a triangle and diamond, respectively.
Permutahedron, associahedron and hypercube are highlighted.

Theorem 20. For every lattice congruence ≡ of the weak order on Sn, there is a set of
representatives Rn ⊆ Sn, such that Algorithm J generates a sequence J(Rn) = π1, π2, . . . of all
permutations from Rn for which the equivalence classes X(π1), X(π2), . . . form a Hamilton path
in the cover graph of the lattice quotient Sn/ ≡.

For every lattice congruence ≡, Pilaud and Santos [PS19] defined a polytope, called the
quotientope for ≡, whose skeleton is exactly the cover graph of the lattice quotient Sn/ ≡. These
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polytopes generalize many known polytopes, such as hypercubes, associahedra, permutahedra etc.
The following result is an immediate corollary of Theorem 20, and it is illustrated in Figure 10.

Corollary 21. For every lattice congruence ≡ of the weak order on Sn, Algorithm J generates
a Hamilton path on the skeleton of the corresponding quotientope.
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