COMBINATORIAL GENERATION VIA PERMUTATION LANGUAGES. I. FUNDAMENTALS

ELIZABETH HARTUNG, HUNG P. HOANG, TORSTEN MÜTZE, AND AARON WILLIAMS

Abstract

In this work we present a general and versatile algorithmic framework for exhaustively generating a large variety of different combinatorial objects, based on encoding them as permutations. This approach provides a unified view on many known results and allows us to prove many new ones. In particular, we obtain the following four classical Gray codes as special cases: the Steinhaus-Johnson-Trotter algorithm to generate all permutations of an n-element set by adjacent transpositions; the binary reflected Gray code to generate all n-bit strings by flipping a single bit in each step; the Gray code for generating all n-vertex binary trees by rotations due to Lucas, van Baronaigien, and Ruskey; the Gray code for generating all partitions of an n-element ground set by element exchanges due to Kaye.

The first main application of our framework are permutation patterns, yielding new Gray codes for different pattern-avoiding permutations, such as vexillary, skew-merged, separable, Baxter and twisted Baxter permutations, 2-stack sortable permutations, geometric grid classes, and many others. We also obtain new Gray codes for many combinatorial objects that are in bijection to these permutations, in particular for five different types of geometric rectangulations, also known as floorplans, which are divisions of a square into n rectangles subject to different restrictions.

The second main application of our framework are lattice congruences of the weak order on the symmetric group S_{n}. Recently, Pilaud and Santos realized all those lattice congruences as ($n-1$)-dimensional polytopes, called quotientopes, which generalize hypercubes, associahedra, permutahedra etc. Our algorithm generates each of those lattice congruences, by producing a Hamilton path on the skeleton of the corresponding quotientope, yielding a constructive proof that each of these highly symmetric graphs is Hamiltonian.

1. Introduction

In computer science we frequently encounter different kinds of combinatorial objects, such as permutations, binary strings, binary trees, set partitions, spanning trees of a graph, and so forth. There are essentially three fundamental algorithmic tasks that we want to perform with such objects: counting, random generation, and exhaustive generation. For the first two tasks, there are powerful general methods available, such as generating functions [FS09] and Markov chains Jer03], solving both problems for a large variety of different objects. For the third task, namely exhaustive generation, however, we are lacking such a powerful and unifying theory, even though some first steps in this direction have been made (see Section 1.2 below). Nonetheless, the literature contains a vast number of algorithms that solve the exhaustive generation problem

[^0]for specific classes of objects, and many of these algorithms are covered in depth in the most recent volume of Knuth's seminal series 'The Art of Computer Programming' Knu11.
1.1. Overview of our results. The main contribution of this paper is a general and versatile algorithmic framework for exhaustively generating a large variety of different combinatorial objects, which provides a unified view on many known results and allows us to prove many new ones. The basic idea is to encode a particular set of objects as a set of permutations $L_{n} \subseteq S_{n}$, where S_{n} denotes all permutations of $[n]:=\{1,2, \ldots, n\}$, and to use a simple greedy algorithm to generate those permutations by cyclic rotations of substrings, an operation we call a jump. This works under very mild assumptions on the set L_{n}, and allows us to generate more than double-exponentially (in n) many distinct sets L_{n}. Moreover, the jump orderings obtained from our algorithm translate into listings of combinatorial objects where consecutive objects differ by small changes, i.e., we obtain Gray codes Sav97, and those changes are smallest possible in a provable sense. The main tools of our framework are Algorithm J and Theorem 1 in Section 2. In particular, we obtain the following four classical Gray codes as special cases: (1) the Steinhaus-Johnson-Trotter algorithm to generate all permutations of $[n]$ by adjacent transpositions, also known as plain change order Tro62, Joh63; (2) the binary reflected Gray code (BRGC) to generate all binary strings of length n by flipping a single bit in each step Gra53; (3) the Gray code for generating all n-vertex binary trees by rotations due to Lucas, van Baronaigien, and Ruskey LvBR93]; (4) the Gray code for generating all set partitions of $[n]$ by exchanging an element in each step due to Kaye Kay76.

The first main application of our framework are permutation patterns, yielding new Gray codes for different pattern-avoiding permutations, such as vexillary [LS85, BP14], skew-merged [Sta94, Atk98, separable ABP06, AM10, Baxter and twisted Baxter permutations [R12, CSS18, 2stack sortable permutations Wes90, Zei92, GW96, DGG98, geometric grid classes Wat07, Eli11, $\mathrm{AAB}^{+} 13$, and many others. We also obtain new Gray codes for many combinatorial objects that are in bijection to these permutations, in particular for five different types of geometric rectangulations Rea12b, ABBM^{+}13, CSS18, also known as floorplans, which are divisions of a square into n rectangles subject to different restrictions (see Figure 5). Our main results in this area are summarized in Theorems 8 and 14 and Table 1 in Section 3, and in Theorem 19 in Section 4
The second main application of our framework are lattice congruences of the weak order on the symmetric group S_{n}, which are equivalence relations on a lattice defined on the set of all permutations. This area has beautiful ramificiations into groups, posets, polytopes, geometry, and combinatorics, and has been developed considerably in recent years, in particular thanks to Nathan Reading's works, summarized in [Rea12a, Rea16a, Rea16b]. There are double-exponentially many distinct such lattice congruences, and they generalize many known lattices such as the Boolean lattice, the Tamari lattice [Tam62, and certain Cambrian lattices Rea06, CP17]. Recently, Pilaud and Santos PS19] realized all those lattice congruences as ($n-1$)-dimensional polytopes, called quotientopes, which generalize hypercubes, associahedra, permutahedra etc. Our algorithm generates each of those lattice congruences, by producing a Hamilton path on the skeleton of the corresponding quotientope, yielding a constructive proof that each of these highly symmetric graphs is Hamiltonian; see Figure 10. Our results in this area are summarized in Theorem 20 and Corollary 21 in Section 5.
1.2. Related work. Avis and Fukuda AF96 introduced reverse-search as a general technique for exhaustive generation. Their idea is to consider the set of objects to be generated as the nodes of a graph, and to connect them by edges that model local modification operations (for
instance, adjacent transpositions for permutations). The resulting fip graph is equipped with an objective function, and the directed tree formed by the movements of a local search algorithm that optimizes this function is traversed backwards from the optimum node, using an adjacency oracle. The authors applied this technique successfully to derive efficient generation algorithms for a number of different objects (for instance, triangulations of a point set, spanning trees of a graph etc.). Reverse-search is complementary to our permutation based approach, as both techniques use fundamentally different encodings of the objects. The permutation encoding seems to allow for more fine-grained control (optimal Gray codes) and even faster generation algorithms.

Another method for combinatorial counting and exhaustive generation is the ECO framework introduced by Barcucci, Del Lungo, Pergola, and Pinzani [BDLPP99]. The main tool is an infinite tree with integer node labels, and a set of production rules for creating the children of a node based on its label. Bacchelli, Barcucci, Grazzini, and Pergola [BBGP04 also used ECO for exhaustive generation, deriving an efficient algorithm for generating the corresponding root-tonode label sequences in the ECO tree in lexicographic order, which was later turned into a Gray code [BGPP07. Dukes, Flanagan, Mansour, and Vajnovszki [DFMV08], Baril [Bar09], and Do, Tran and Vajnovszki [DTV19] used ECO for deriving Gray codes for different classes of patternavoiding permutations, which works under certain regularity assumptions on the production rules. Vajnovszki Vaj10 also applied ECO for efficiently generating other classes of permutations, such as involutions and derangements. The main difference between ECO and our framework is that the change operations on the label sequences of the ECO tree do not necessarily correspond to Gray-code like changes on the corresponding combinatorial objects. Minimal jumps in a permutation, on the other hand, always correspond to minimal changes on the combinatorial objects in a provable sense, even though they may involve several entries of the permutation.

Li and Sawada [LS09] considered another tree-based approach for generating so-called reflectable languages, yielding Gray codes for k-ary strings and trees, restricted growth strings, and open meandric systems (see also [XCU10]). Ruskey, Sawada, and Williams [RSW12, SW12] proposed a generation framework based on binary strings with a fixed numbers of 1s, called bubble languages, which allows to generate e.g. combinations, necklaces, Dyck words, and Lyndon words. In the resulting cool-lex Gray codes, any two consecutive words differ by cyclic rotation of some prefix.

Pattern avoidance in permutations is a central topic in combinatorics, as illustrated by the books [Kit11, Bón12], and by the conference 'Permutation Patterns', held annually since 2003. Given two permutations π and τ, we say that π contains the pattern τ, if π contains a subpermutation formed by (not necessarily consecutive) entries that appear in the same relative order as in τ; otherwise we say that π avoids τ. It is well known that many fundamental classes of combinatorial objects are in bijection with pattern-avoiding permutations (see Table 1 and Ten18). For instance, Knuth Knu98 first proved that all 123 -avoiding and 132-avoiding permutations are counted by the Catalan numbers (see also [CK08]). With regards to counting and exhaustive generation, a few tree-based algorithms for pattern-avoiding permutations have been proposed [Eli07, DFMV08, Bar08, Bar09. Pattern-avoidance has also been studied extensively from an algorithmic point of view. In fact, testing whether a permutation π contains another permutation τ as a pattern is known to be NP-complete in general BBL98. Jelínek and Kynčl JK17 proved that the problem remains hard even if π and τ have no decreasing subsequence of length 4 and 3, respectively, which is best possible. On the other hand, Guillemot and Marx [GM14] showed that the problem can be solved in time $2^{O\left(k^{2} \log k\right)} n$, where n is the length of π and k is the length of τ, a considerable improvement over the obvious $O\left(n^{k}\right)$ algorithm (see also [Koz19]).
1.3. Outline of this paper. This is the first in a series of papers where we develop our theory of combinatorial generation via permutation languages. In this first paper we focus on presenting the fundamental algorithmic ideas (Section 2), and their main applications to pattern-avoiding permutations (Sections 3 and 4) and lattice congruences (Section 5). We present detailed results and proofs for pattern-avoiding permutations, while we only state the main results for lattice congruences. The proofs for our results on lattice congruences and a more detailed analysis of them will be given in part II of this series. In future parts, we will also cover efficient algorithms and rectangulations, important topics that can only be briefly scratched here due to the limited space (see Section 2.7 and Figure 5 below, respectively).

2. GEnerating Permutations By Jumps

In this section we present a simple greedy algorithm, Algorithm J, for exhaustively generating a given set $L_{n} \subseteq S_{n}$ of permutations, and we show that the algorithm works successfully under very mild assumptions on the set L_{n} (Theorem 11).
2.1. Preliminaries. We use S_{n} to denote the set of all permutations of $[n]:=\{1, \ldots, n\}$, and we write $\pi \in S_{n}$ in one-line notation as $\pi=\pi(1) \pi(2) \ldots \pi(n)=a_{1} a_{2} \ldots a_{n}$. We use $\operatorname{id}_{n}=12 \ldots n$ to denote the identity permutation, and $\varepsilon \in S_{0}$ to denote the empty permutation. For any $\pi \in S_{n-1}$ and any $1 \leq i \leq n$, we write $c_{i}(\pi) \in S_{n}$ for the permutation obtained from π by inserting the new largest value n at position i of π, i.e., if $\pi=a_{1} \ldots a_{n-1}$ then $c_{i}(\pi)=a_{1} \ldots a_{i-1} n a_{i} \ldots a_{n-1}$. Moreover, for $\pi \in S_{n}$, we write $p(\pi) \in S_{n-1}$ for the permutation obtained from π by removing the largest entry n. Here, c_{i} and p stand for the child and parent of a node in the tree of permutations discussed shortly.

Given a permutation $\pi=a_{1} \ldots a_{n}$ with a substring $a_{i} \ldots a_{j}$ with $a_{i}>a_{i+1}, \ldots, a_{j}$, a right jump of a_{i} by $j-i$ steps is a cyclic left rotation of this substring by one position to $a_{i+1} \ldots a_{j} a_{i}$. Similarly, given a substring $a_{i} \ldots a_{j}$ with $a_{j}>a_{i}, \ldots, a_{j-1}$, a left jump of a_{j} by $j-i$ steps is a cyclic right rotation of this substring to $a_{j} a_{i} \ldots a_{j-1}$.
2.2. The basic algorithm. Our approach starts with the following simple greedy algorithm to generate a set of permutations $L_{n} \subseteq S_{n}$. We say that a jump is minimal (w.r.t. L_{n}), if a jump of the same value in the same direction by fewer steps creates a permutation that is not in L_{n}.

Algorithm J (Greedy minimal jumps). This algorithm attempts to greedily generate a set of permutations $L_{n} \subseteq S_{n}$ using minimal jumps starting from an initial permutation $\pi_{0} \in L_{n}$.
J1. [Initialize] Visit the initial permutation π_{0}.
J2. [Jump] Generate an unvisited permutation from L_{n} by performing a minimal jump of the largest possible value in the most recently visited permutation. If no such jump exists, or the jump direction is ambiguous, then terminate. Otherwise visit this permutation and repeat J2.

For example, consider $L_{4}=\{1243,1423,4123,4213,2134\}$. Starting with $\pi_{0}=1243$, the algorithm generates $\pi_{1}=1423$ (obtained from π_{0} by a left jump of 4 by 1 step), then $\pi_{2}=4123$, then $\pi_{3}=4213$ (in $\pi_{2}, 4$ cannot jump, as π_{0} and π_{1} have been visited before; 3 cannot jump either to create any permutation from L_{4}, so 2 jumps left by 1 step), then $\pi_{4}=2134$, successfully generating L_{4}. If instead we initialize with $\pi_{0}=4213$, then the algorithm generates $\pi_{1}=2134$, and then stops, as no further jump is possible. If we choose $\pi_{0}=1423$, then we may jump 4 to the left or right (by 1 step), but as the direction is ambiguous, the algorithm stops immediately. Clearly, the algorithm may stop prematurely only either because no minimal jump leading to a

Figure 1. Tree of permutations, where the children $c_{1}(\pi)$ and $c_{n}(\pi)$ of any node $\pi \in S_{n-1}$ are drawn black, all others white.
new permutation from L_{n} is possible, or because the direction of jump is ambiguous in some step. By the definition of step J2, the algorithm will never visit any permutation twice.

The following main result of our paper provides a sufficient condition on the set L_{n} to guarantee that Algorithm J is successful. This condition is captured by the following closure property of the set L_{n}. A set of permutations $L_{n} \subseteq S_{n}$ is called a zigzag language, if either $n=0$ and $L_{0}=\{\varepsilon\}$, or if $n \geq 1$ and $L_{n-1}:=\left\{p(\pi) \mid \pi \in L_{n}\right\}$ is a zigzag language satisfying the following condition: (z1) For every $\pi \in L_{n-1}$ we have $c_{1}(\pi) \in L_{n}$ and $c_{n}(\pi) \in L_{n}$.

Theorem 1. Given any zigzag language of permutations L_{n} and initial permutation $\pi_{0}=\mathrm{id}_{n}$, Algorithm J visits every permutation from L_{n} exactly once.

Remark 2. Note that the number of zigzag languages is at least $2^{(n-1)!(n-2)}=2^{2^{\Theta(n \log n)}}$, i.e., it is more than double-exponential in n. We will see that many of these languages do in fact encode interesting combinatorial objects. Moreover, minimal jumps as performed by Algorithm J always translate to small changes on those objects in a provable sense, i.e., our algorithm defines Gray codes for a large variety of combinatorial objects, and Hamilton paths/cycles on the corresponding flip graphs and polytopes.

Before we present the proof of Theorem 1, we give two equivalent characterizations of zigzag languages.
2.3. Characterization via the tree of permutations. There is an intuitive characterization of zigzag languages via the tree of permutations. This is an infinite rooted tree which has as nodes all permutations from S_{n} at distance n from the root; see Figure 1. Specifically, the empty permutation ε is at the root, and the children of any node $\pi \in S_{n-1}$ are exactly the permutations $c_{i}(\pi), 1 \leq i \leq n$, i.e., the permutations obtained by inserting the new largest value n in all possible positions. Consequently, the parent of any node $\pi^{\prime} \in S_{n}$ is exactly the permutation $p\left(\pi^{\prime}\right)$ obtained by removing the largest value n. In the figure, for any node $\pi \in S_{n-1}$, the nodes representing the children $c_{1}(\pi)$ and $c_{n}(\pi)$ are drawn black, whereas the other children are drawn white. Any zigzag language of permutations can be obtained from this full tree by pruning subtrees, where by condition (z1) a subtree may be pruned only if its root $\pi^{\prime} \in S_{n}$ is neither the child $c_{1}(\pi)$ nor the child $c_{n}(\pi)$ of its parent $\pi=p\left(\pi^{\prime}\right) \in S_{n-1}$, i.e., only subtrees rooted at white nodes may be pruned. For any subtree obtained by pruning according to this rule and for any $n \geq 1$, the remaining permutations of length n form a zigzag language L_{n}; see Figure 2

Consider all nodes in the tree for which the entire path to the root consists only of black nodes. Those nodes never get pruned and are therefore contained in any zigzag language. These are exactly all permutations without peaks. A peak in a permutation $a_{1} \ldots a_{n}$ is a triple $a_{i-1} a_{i} a_{i+1}$ with $a_{i-1}<a_{i}>a_{i+1}$, and the language of permutations without peaks is generated by the

Figure 2. Ordered tree representation of two zigzag languages of permutations L_{4} (left) and M_{4} (right) with $M_{4} \subseteq L_{4} \subseteq S_{4}$. Both trees contain the same sets of permutations in the subtrees rooted at 312 and 321 (highlighted in gray), but in the corresponding sequences $J\left(L_{4}\right)$ and $J\left(M_{4}\right)$, those permutations appear in different relative order due to the node 132 , which was pruned from the right tree.
recurrence $P_{0}:=\{\varepsilon\}$ and $P_{n}:=\left\{c_{1}(\pi), c_{n}(\pi) \mid \pi \in P_{n-1}\right\}$ for $n \geq 1$. It follows that we have $\left|P_{n}\right|=2^{n-1}$ and $P_{n} \subseteq L_{n} \subseteq S_{n}$ for any zigzag language L_{n}, i.e., L_{n} is sandwiched between the language of permutations without peaks and between the language of all permutations.
2.4. Characterization via nuts. Given a permutation π, we may repeatedly remove the largest value from it as long as it is in the leftmost or rightmost position. The remaining permutation is called the nut of π. For example, given $\pi=965214378$, we can remove $9,8,7,6,5$, yielding 2143 as the nut of π. A left or right jump of some value in a permutation is maximum if there is no left jump or right jump of the same value with more steps. For example, in $\pi=965214378$ a maximum right jump of 6 gives $\pi^{\prime}=952143678$. By unrolling the recursive definition of zig-zag languages from before, we obtain that $L_{n} \subseteq S_{n}$ is a zigzag language if and only if for all $\pi \in L_{n}$ both the maximum left jump and the maximum right jump of the value i yield another permutation in L_{n} for all $k \leq i \leq n$, where k is the largest value in π 's nut (with $k=2$ if the nut is empty).
2.5. Proof of Theorem 1. Given a zigzag language L_{n}, we define a sequence $J\left(L_{n}\right)$ of all permutations from L_{n}, and we prove that Algorithm J generates the permutations of L_{n} exactly in this order. For any $\pi \in L_{n-1}$ we let $\vec{c}(\pi)$ be the sequence of all $c_{i}(\pi) \in L_{n}$ for $i=1,2, \ldots, n$, starting with $c_{1}(\pi)$ and ending with $c_{n}(\pi)$, and we let $\overleftarrow{c}(\pi)$ denote the reverse sequence, i.e., it starts with $c_{n}(\pi)$ and ends with $c_{1}(\pi)$. In words, those sequences are obtained by inserting into π the new largest value n in all possible positions from left to right, or from right to left, respectively. The sequence $J\left(L_{n}\right)$ is defined recursively as follows: If $n=0$ then $J\left(L_{0}\right):=\varepsilon$, and if $n \geq 1$ then we consider the sequence $J\left(L_{n-1}\right)=: \pi_{1}, \pi_{2}, \ldots$ and define

$$
\begin{equation*}
J\left(L_{n}\right):=\overleftarrow{c}\left(\pi_{1}\right), \vec{c}\left(\pi_{2}\right), \overleftarrow{c}\left(\pi_{3}\right), \vec{c}\left(\pi_{4}\right), \ldots \tag{1}
\end{equation*}
$$

i.e., this sequence is obtained from the previous sequence by inserting the new largest value n in all possible positions alternatingly from right to left, or from left to right; see Figure 2 ,

Remark 3. Algorithm J thus defines a left-to-right ordering of the nodes at distance n of the root in the tree representation of the zigzag language L_{n} described before, and this ordering is captured by the sequence $J\left(L_{n}\right)$; see Figure 2. Clearly, the same is true for all the zigzag languages $L_{0}, L_{1}, \ldots, L_{n-1}$ that are induced by L_{n} through the rule $L_{k-1}:=\left\{p(\pi) \mid \pi \in L_{k}\right\}$ for $k=n, n-1, \ldots, 1$. The unordered tree is thus turned into an ordered tree, and it is important to realize that pruning operations change the ordering. Specifically, given two zigzag languages L_{n} and M_{n} with $M_{n} \subseteq L_{n}$, then the tree for M_{n} is obtained from the tree for L_{n} by pruning, but in
general $J\left(M_{n}\right)$ is not a subsequence of $J\left(L_{n}\right)$, as shown by the example in the figure. This shows that our approach is quite different from the one presented by Vajnovszki and Vernay [VV11, which considers only subsequences of the Steinhaus-Johnson-Trotter order $J\left(S_{n}\right)$.

Proof of Theorem 1. For any $\pi \in L_{n}$, we let $J\left(L_{n}\right)_{\pi}$ denote the subsequence of $J\left(L_{n}\right)$ that contains all permutations up to and including π. An immediate consequence of the definition of zigzag language is that L_{n} contains the identity permutation $\mathrm{id}_{n}=c_{n}\left(\mathrm{id}_{n-1}\right)$. Moreover, the definition (1) implies that id_{n} is the very first permutation in the sequence $J\left(L_{n}\right)$.

We now argue by double induction over n and the length of $J\left(L_{n}\right)$ that Algorithm J generates all permutations from L_{n} exactly in the order described by the sequence $J\left(L_{n}\right)$, and that when we perform a minimal jump with the largest possible value to create a previously unvisited permutation, then there is only one direction (left or right) to which it can jump. The induction basis $n=0$ is clear. Now suppose the claim holds for the zigzag language $L_{n-1}:=\left\{p(\pi) \mid \pi \in L_{n}\right\}$. We proceed to show that it also holds for L_{n}.

As argued before, the identity permutation id_{n} is the first permutation in the sequence $J\left(L_{n}\right)$, and this is indeed the first permutation visited by Algorithm J in step J 1 . Now let $\pi \in L_{n}$ be the permutation currently visited by the algorithm in step J 2 , and let $\pi^{\prime}:=p(\pi) \in L_{n-1}$. If π^{\prime} appears at an odd position in $J\left(L_{n-1}\right)$, then we define $\bar{c}:=\overleftarrow{c}\left(\pi^{\prime}\right)$ and otherwise we define $\bar{c}:=\vec{c}\left(\pi^{\prime}\right)$. By (1), we know that π appears in the subsequence \bar{c} within $J\left(L_{n}\right)$. We first consider the case that π is not the last permutation in \bar{c}. In this case, the permutation ρ succeeding π in $J\left(L_{n}\right)$ is obtained from π by a minimal jump (w.r.t. L_{n}) of the largest value n in some direction d, which is left if $\bar{c}=\overleftarrow{c}\left(\pi^{\prime}\right)$ and right if $\bar{c}=\vec{c}\left(\pi^{\prime}\right)$. Now observe that by the definition of \bar{c}, all permutations in L_{n} obtained from π by jumping n in the direction opposite to d precede π in $J\left(L_{n}\right)$ and have been visited by Algorithm J before by induction. Consequently, to generate a previously unvisited permutation, the value n can only jump in direction d in step J2 of the algorithm. Again by the definition of \bar{c}, the permutation ρ is obtained from π by a minimal jump (w.r.t. L_{n}), so the next permutation generated by the algorithm will indeed be ρ.

It remains to consider the case that π is the last permutation in the subsequence \bar{c} within $J\left(L_{n}\right)$. Let ρ^{\prime} be the permutation suceeding π^{\prime} in $J\left(L_{n-1}\right)$. By induction, we have the following property $\left(^{*}\right): \rho^{\prime}$ is obtained from π^{\prime} by a minimal jump (w.r.t. L_{n-1}) of the largest possible value a by k steps in some direction d (left or right), and a can jump only into one direction. As π is the last permutation in \bar{c}, the largest value n of π is at the boundary, which is the left boundary if $\bar{c}=\overleftarrow{c}\left(\pi^{\prime}\right)$ or the right boundary if $\bar{c}=\vec{c}\left(\pi^{\prime}\right)$. By (11), the permutation ρ succeeding π in $J\left(L_{n}\right)$ also has n at the same boundary, i.e., ρ differs from π by a jump of a by k steps in direction d. Suppose for the sake of contradiction that when transforming the currently visited permutation π in step J2, the algorithm does not perform this jump operation, but another one. This could be a jump of a larger value $b>a$ to transform π into some permutation $\tau \in L_{n}$ that is different from ρ and not in $J\left(L_{n}\right)_{\pi}$, or a jump of a in the direction opposite to d, or a jump of a in direction d by fewer than k steps. But in all those cases the permutation $\tau^{\prime}:=p(\tau) \in L_{n-1}$ is different from ρ^{\prime} and not in $J\left(L_{n-1}\right)_{\pi^{\prime}}$, and it is obtained from π^{\prime} by a jump of $b>a$, or a jump of a in the direction opposite to d, or a jump of a in direction d by fewer than k steps, respectively, a contradiction to property $\left(^{*}\right)$. This completes the proof.
2.6. Further properties of Algorithm J. The next lemma captures when the algorithm generates a cyclic listing of permutations.

Lemma 4. In the ordering of permutations $J\left(L_{n}\right)$ generated by Algorithm J, the first and last permutation are related by a minimal jump if and only if $\left|L_{k}\right|$ is even for all $2 \leq k \leq n-1$.

Proof. Let π_{k} be the last permutation in the ordering $J\left(L_{k}\right)$ for all $k=0,1, \ldots, n$. For $k \geq 1$, we see from (1) that $\pi_{k}=c_{k}\left(\pi_{k-1}\right)$ if $\left|L_{k-1}\right|$ is even and $\pi_{k}=c_{1}\left(\pi_{k-1}\right)$ if $\left|L_{k-1}\right|$ is odd. As $\left|L_{1}\right|=1$ is odd, we know that 1 and 2 are reversed in π_{n}, and so all numbers $\left|L_{k}\right|, 2 \leq k \leq n-1$, must be even for id_{n} and π_{n} to be related by a minimal jump.
Remark 5. It follows from the proof of Theorem 1 that instead of initializing the algorithm with the identity permutation $\pi_{0}=\mathrm{id}_{n}$, we may use any permutation without peaks as a seed π_{0}.
2.7. Efficiency considerations. Let us make it very clear that a priori, Algorithm J is not an efficient algorithm to actually generate a particular zigzag language of permutations. The reason is that it requires storing a (possibly very long) list of previously visited permutations in order to decide which one to generate next. Rather, we view Algorithm J as a tool that defines a jumpordering for any zigzag language of permutations. Analyzing this ordering in more detail, and introducing additional data structures, we can transform Algorithm J into a time- and memoryefficient algorithm for a particular zigzag language. In some cases, we even get loopless algorithms that generate each new object in constant worst-case time. The key insight here is that any jump changes the inversion table of a permutation only in a single entry. By maintaining only the inversion table, jumps can thus be performed efficiently, even if the number of steps is big. This discussion, however, is not the main focus here, and is deferred to a future part of this paper series.
2.8. A general recipe. Here is a step-by-step approach to apply our framework to the generation of a given family X_{n} of combinatorial objects. The first step is to establish a bijection f that encodes the objects from X_{n} as permutations $L_{n} \subseteq S_{n}$. If L_{n} is a zigzag language, which can be checked by verifying the closure property, then we may run Algorithm J with input L_{n}, and interpret the resulting ordering $J\left(L_{n}\right)$ in terms of the combinatorial objects, by applying f^{-1} to each permutations in $J\left(L_{n}\right)$, yielding an ordering on X_{n}. We may also apply f^{-1} to Algorithm J directly, which will yield a simple greedy algorithm for generating X_{n}. The final step is to make these algorithms efficient, by introducing additional data structures that allow the change operations on X_{n} (which are the preimages of minimal jumps under f) as efficiently as possible.

Let us illustrate these steps for the set X_{n} of binary strings of length $n-1$. We map any binary string $x=x_{2} \ldots x_{n}$ to a permutation $f(x) \in S_{n}$ by setting $f(\varepsilon):=1$ and

$$
f\left(x_{2} \ldots x_{n}\right):= \begin{cases}c_{n}\left(f\left(x_{2} \ldots x_{n-1}\right)\right) & \text { if } x_{n}=0 \\ c_{1}\left(f\left(x_{2} \ldots x_{n-1}\right)\right) & \text { if } x_{n}=1\end{cases}
$$

i.e., we build the permutation $f(x)$ by inserting the values $i=2, \ldots, n$ one by one, either at the leftmost or rightmost position, depending on the bit x_{i}. Observe that $f\left(X_{n}\right)$ is exactly the set of permutations without peaks $P_{n} \subseteq S_{n}$ discussed in Section 2.3 before, and a jump of the entry i in the permutation translates to flipping the bit x_{i}. Moreover, $f^{-1}\left(J\left(P_{n}\right)\right)$ is exactly the well-known reflected Gray code BRGC for binary strings of length $n-1$ [Gra53], for which efficient algorithms are known BER76. Applying f^{-1} to Algorithm J yields the following simple greedy algorithm for generating the BRGC (see Wil13): J1. Visit the initial all-zero string. J2. Repeatedly flip the rightmost bit that yields a previously unvisited string.

3. Pattern-avoiding permutations

The first main application of our framework is the generation of pattern-avoiding permutations. Our main results in this section are summarized in Theorem 8, Theorem 14 (and its corollaries Lemmas 913), and in Table 1 . We emphasize that all our results can be generalized to bounding the number of appearances of patterns, where the special case with a bound of 0 appearances is pattern-avoidance; see Section 3.9 below.
3.1. Preliminaries. The following simple but powerful lemma follows immediately from the definition of zigzag languages given in Section 2. For any set $L_{n} \subseteq S_{n}$ we define $p\left(L_{n}\right):=\{p(\pi) \mid$ $\left.\pi \in L_{n}\right\}$.

Lemma 6. Let $L_{n}, M_{n} \subseteq S_{n}, n \geq 1$, be two zigzag languages of permutations. Then $L_{n} \cup M_{n}$ and $L_{n} \cap M_{n}$ are also zigzag languages of permutations, and we have $p\left(L_{n} \cup M_{n}\right)=p\left(L_{n}\right) \cup p\left(M_{n}\right)$ and $p\left(L_{n} \cap M_{n}\right)=p\left(L_{n}\right) \cap p\left(M_{n}\right)$.

We say that two sequences of integers σ and τ are order-isomorphic, if their elements appear in the same relative order in both sequences. For instance, 2576 and 1243 are order-isomorphic. Given two permutations $\pi \in S_{n}$ and $\tau \in S_{k}$, we say that π contains the pattern τ, if and only if $\pi=a_{1} \ldots a_{n}$ contains a subpermutation $a_{i_{1}} \ldots a_{i_{k}}, i_{1}<\cdots<i_{k}$, that is order-isomorphic to τ. We refer to such a subpermutation as a match of τ in π. If π does not contain the pattern τ, then we say that π avoids τ. For example, $\pi=635412$ contains the pattern $\tau=231$, as the highlighted entries form a match of τ in π. On the other hand, $\pi=654123$ avoids $\tau=231$. For any permutation τ, we let $S_{n}(\tau)$ denote all permutations from S_{n} avoiding the pattern τ. For propositional formulas F and G made of logical ANDs \wedge, ORs \vee, and patterns as variables, we define

$$
\begin{align*}
& S_{n}(F \wedge G):=S_{n}(F) \cap S_{n}(G), \\
& S_{n}(F \vee G):=S_{n}(F) \cup S_{n}(G) . \tag{2}
\end{align*}
$$

For instance, $S_{n}\left(\tau_{1} \wedge \cdots \wedge \tau_{\ell}\right)$ is the set of permutations avoiding each of the patterns $\tau_{1}, \ldots, \tau_{\ell}$, and $S_{n}\left(\tau_{1} \vee \cdots \vee \tau_{\ell}\right)$ is the set of permutations avoiding at least one of the patterns $\tau_{1}, \ldots, \tau_{\ell}$.

Remark 7. From the point of view of counting, we clearly have $\left|L_{n} \cup M_{n}\right|=\left|L_{n}\right|+\left|M_{n}\right|-\left|L_{n} \cap M_{n}\right|$, so the problem of counting the union of two zigzag languages can be reduced to counting the individual languages and the intersection. However, from the point of view of exhaustive generation, we clearly do not want to take this approach, namely generate all permutations in L_{n}, all permutations in M_{n}, all permutations in $L_{n} \cap M_{n}$, and then combine and reduce those lists. This shows that the problem of generating languages like $S_{n}\left(\tau_{1} \vee \cdots \vee \tau_{k}\right)$ or $S_{n}(F)$ for more general formulas F is genuinely interesting in our context.
3.2. Tame patterns. We say that an infinite sequence of sets L_{0}, L_{1}, \ldots is hereditary, if $L_{i-1}=p\left(L_{i}\right)$ holds for all $i \geq 1$. We say that a permutation pattern τ is tame, if $S_{n}(\tau)$, $n \geq 0$, is a hereditary sequence of zigzag languages. The hereditary property ensures that for a given set $S_{n}(\tau)=: L_{n}$, we can check membership within the families $L_{i-1}:=p\left(L_{i}\right)$ for $i=n, n-1, \ldots, 1$ simply by checking for matches of the pattern τ. In terms of the aforementioned tree representation of zigzag languages, it means that all sets $S_{n}(\tau), n \geq 0$, arise from pruning the infinite rooted tree of permutations in the same way (in not in different ways for the same pattern and different values of n), by considering the infinite sequence of node sets remaining in each level.

The following theorem is an immediate consequence of Lemma 6 and the definition (2).
Theorem 8. Let F be an arbitrary propositional formula made of logical ANDs \wedge, ORs \vee, and tame patterns as variables, then $S_{n}(F), n \geq 0$, is a hereditary sequence of zigzag languages. Consequently, all of these languages can be generated by Algorithm J.

In the following we provide simple sufficient conditions guaranteeing that a pattern is tame (see also Remark 15 below).

Lemma 9. If a pattern $\tau \in S_{k}, k \geq 3$, does not have the largest value k at the leftmost or rightmost position, then it is tame.

Table 1. Tame permutation patterns and corresponding combinatorial objects and orderings generated by Algorithm J. The patterns in the second part of the table (bottom four rows) are tame after the indicated elementary transformations.

Tame patterns	Combinatorial objects and ordering	References/OEIS oei19]
none	permutations by adjacent transpositions \rightarrow plain change order	[Joh63, Tro62], A000142
$231=2 \underline{31}$	Catalan families - binary trees by rotations \rightarrow Lucas--van Baronaigien-Ruskey order - triangulations by edge flips - Dyck paths by hill flips	$\begin{aligned} & \hline \text { A000108 } \\ & \hline \text { LvBR93] } \end{aligned}$
$\underline{231}$	Bell families - set partitions by element exchanges \rightarrow Kaye's order	$\begin{aligned} & \hline \text { A000110 } \\ & \text { Kay76, Wil13 } \end{aligned}$
$132 \wedge 231=\underline{132} \wedge 2 \underline{31}:$ permutations without peaks	binary strings by bitflips \rightarrow reflected Gray code order (BRGC)	Gra53]
1342	forests of $\beta(0,1)$-trees	Bón97 [AKPV16, A022558
2143: vexillary permutations		[LS85], A005802
conjunction of v_{k} tame patterns with $v_{2}=35, v_{3}=91, v_{4}=2346$ (see Bil13]): k-vexillary permutations $(k \geq 1)$		$\begin{aligned} & {[\mathrm{BP} 14], \mathrm{A} 224318,} \\ & \mathrm{~A} 223034, \mathrm{~A} 223905 \end{aligned}$
$2143 \wedge 3412$: skew-merged permutations		Sta94, Atk98], A029759
$2143 \wedge 2413 \wedge 3142$		[DMR10, SV14], A033321
$2143 \wedge 2413 \wedge 3142 \wedge 3412:$ X-shaped permutations		Wat07, Eli11], A006012
$\begin{aligned} & \hline 2413 \wedge 3142: \\ & \text { separable permutations } \end{aligned}$	Schröder families - slicing floorplans (=guillotine partitions) - topological drawings of $K_{2, n}$	$\begin{aligned} & \text { A006318 } \\ & \text { ABP06, AM10 } \\ & \text { CF18, } \end{aligned}$
$\begin{aligned} & 2 \underline{413} \wedge 3 \underline{142}: \text { Baxter } \\ & 2 \underline{413} \wedge 3 \underline{41} 2: \text { twisted Baxter } \\ & 2 \underline{143} \wedge 3 \underline{14} 2 \end{aligned}$	mosaic floorplans (=diagonal rectangulations $=$ R-equivalent rectangulations)	$\begin{aligned} & \text { YCCG03, ABP06 } \\ & \hline \text { LR12, CSS18 } \\ & \text { A001181 } \end{aligned}$
$\underline{143}$ ^3112	S-equivalent rectangulations	ABBM^{+}13, A214358
$2 \underline{143}$ ^ $3 \underline{412}$ ^ $2413 \wedge 3142$	S-equivalent guillotine rectangulations	$\mathrm{ABBM}^{+} 13$, A078482
$3 \underline{5124} \wedge 3 \underline{5142 \wedge 24 \underline{513} \wedge 42 \underline{13} 3: ~}$ 2-clumped permutations	generic rectangulations (=rectangular drawings)	Rea12b
conjunction of c_{k} tame patterns with $c_{k}=2(k / 2)!(k / 2+1)$! for k even and $c_{k}=2((k+1) / 2)!^{2}$ for k odd: k-clumped permutations		Rea12b
conjunction of 12 tame patterns: perm. with 0-1 Schubert polynomial		[FMSD19]
\ddot{H}	$(\mathbf{2}+\mathbf{2})$-free posets	$\begin{aligned} & \hline \text { Par09, BMCDK10 } \\ & \text { A022493 } \\ & \hline \end{aligned}$
$3 \overline{1} 52 \overline{4}=3 \overline{1} 42 \wedge 241 \overline{3}$		Pud08 BMCDK10, A098569
$\begin{aligned} & 243 \overline{1} \text { (A051295); } 25 \overline{3} 14 \text { (A117106), } 352 \overline{4} 11 \text { (A137534); } 4 \overline{2} 513 \text { (A137535) } \\ & 425 \overline{1} 3 \text { (A110447); } \overline{4} 2153 \text { (A137536); } 253 \overline{1} 4 \text { (A137538); } \overline{4} 1523 \text { (A137539) } \\ & \overline{4} 1253 \text { (A137540); } 3524 \overline{1} \text { (A137542) } \end{aligned}$		Pud10
permutations that characterize Schubert varieties which are Gorenstein		WY06, A097483
rot $(2341 \wedge 3 \overline{5} 241)=1432 \wedge 1352 \overline{4}:$ 2-stack sortable permutations $2413 \wedge 41 \overline{3} 52 ; 2413 \wedge 45 \overline{3} 12 ; 2413 \wedge 21 \overline{3} 54 ; 3241 \wedge \overline{2} 4153 ; 3214 \wedge \overline{2} 4135$ $\operatorname{rev}(2413 \wedge 41 \overline{3} 52)=3142 \wedge 2413$		Wes90, Zei92, GW96 DGG98, A000139 DGW96 CKS09
conjunction of 20 patterns τ_{i} with tame $\operatorname{cpl}\left(\tau_{i}\right)$: permutations generated by a stack of depth two and an infinite stack		[Eld06], A245233
$\operatorname{inv}(132 \wedge 312)=132 \wedge 231:$ Gilbreath permutations		[Vel03, DG12]
perms. that uniquely encode pile configurations in patience sorting		Lan07, BL10, A129698

Figure 3. 231-avoiding permutations of length $n=4$ generated by Algorithm J and resulting Gray codes for Catalan families (binary trees, triangulations, Dyck paths), with jumps indicated by arrows.

We prove Lemma 9 in Section 3.7 below.
Table 1 lists several tame patterns and the combinatorial objects encoded by the corresponding zigzag languages. The bijections between those permutations and the combinatorial objects are well-known and are described in the listed papers (recall also Section 2.8). The resulting ordering for 231-avoiding permutations of length $n=4$, and the corresponding Gray codes for three different Catalan objects are shown in Figure 3. We refer to the permutation patterns discussed so far as classical patterns. In the following we discuss some other important variants of permutation patterns appearing in the literature.
3.3. Vincular patterns. Vincular patterns were introduced by Babson and Steingrímsson BS00]. In a vincular pattern τ, there is exactly one underlined pair of consecutive entries, with the interpretation that a match of τ in π requires that the underlined entries match adjacent positions in π. For instance, the permutation $\pi=3142$ contains the pattern $\tau=231$, but it avoids the vincular pattern $\tau=\underline{231}$.

Lemma 10. If a vincular pattern $\tau \in S_{k}, k \geq 3$, does not have the largest value k at the leftmost or rightmost position, and the largest value k is part of the vincular pair, then it is tame.

We prove Lemma 10 in Section 3.7 below.
Table 1 also lists several tame vincular patterns and the combinatorial objects encoded by the corresponding zigzag languages, namely set partitions and different kinds of rectangulations. The resulting ordering for 231 -avoiding permutations of length $n=4$, and the resulting Gray code

$12 \overleftarrow{34}$	$1\|2\| 3 \mid 4$	$\overleftarrow{3142}$	$13 \mid 24$
$1 \overleftarrow{4} 3$	$1\|2\| 34$	$\underline{43 \overleftarrow{12}}$	$134 \mid 2$
$\overleftarrow{1423}$	$1\|24\| 3$	$\widetilde{4321}$	1234
$4 \overleftarrow{23}$	$14\|2\| 3$	$\overline{3214}$	$123 \mid 4$
$\overrightarrow{4132}$	$14 \mid 23$	$21 \overleftarrow{34}$	$12\|3\| 4$
$\widetilde{432}$	$1 \mid 234$	$\widetilde{2143}$	$12 \mid 34$
$\widetilde{1324}$	$1\|23\| 4$	4213	$124 \mid 3$
$31 \overleftarrow{24}$	$13\|2\| 4$		

Figure 4. $\underline{231}$-avoiding permutations of length $n=4$ generated by Algorithm J and resulting Gray code for set partitions.

Figure 5. Twisted Baxter permutations ($2 \underline{413} \wedge 3 \underline{412}$-avoiding) for $n=4$ generated by Algorithm J and resulting Gray code for diagonal rectangulations. Read the figure column by column, from left to right.
for set partitions, is shown in Figure 4. The resulting ordering for twisted Baxter permutations of length $n=4$, and the resulting Gray code for diagonal rectangulations, is shown in Figure 5 .
3.4. Barred patterns. Barred permutation patterns were first considered by West Wes90. A barred pattern is a pattern τ with a number of overlined entries, e.g., $\tau=25 \overline{3} 41$. Let τ^{\prime} be the permutation obtained by removing the bars in τ, and let τ^{-}be the permutation that is orderisomorphic to the non-barred entries in τ. In our example, we have $\tau^{\prime}=25341$ and $\tau^{-}=2431$. A permutation π contains a barred pattern τ if and only if it contains a match of τ^{-}that cannot be extended to a match of τ^{\prime} by adding entries of π at the positions specified by the barred entries. For instance, $\pi=35241$ contains $\tau=25 \overline{3} 41$, as the highlighted entries form a match of $\tau^{-}=2431$ that cannot be extended to a match of $\tau^{\prime}=25341$. We clearly have $S_{n}\left(\tau^{-}\right) \subseteq S_{n}(\tau)$.

The following lemma gives a sufficient condition for a single-barred pattern to be tame.

Lemma 11. If for a single-barred pattern $\tau \in S_{k}, k \geq 4$, the permutation $\tau^{-} \in S_{k-1}$ does not have the largest value $k-1$ at the leftmost or rightmost position, and the barred entry in τ is smaller than k or at a position next to the entry $k-1$, then τ is tame.

We prove Lemma 11 in Section 3.7 below. As we will show in Section 4.3 below, in many cases patterns with multiple bars can be reduced to single-barred patterns.
3.5. Patterns with Bruhat restrictions. Patterns with Bruhat restrictions were introduced by Woo and Yong WY06] Such a pattern is a pair (τ, B), where $\tau \in S_{k}$ and $B \subseteq[k]^{2}$ is a set of pairs of indices (a, b) with $a<b$ and $\tau(a)<\tau(b)$ such that for all $i \in\{a+1, \ldots, b-1\}$ we either have $\tau(i)<\tau(a)$ or $\tau(i)>\tau(b)$. A permutation π contains this pattern if and only if it contains a match of τ, and for any pair of entries $\pi\left(i_{a}\right)$ and $\pi\left(i_{b}\right)$ that are matched by a corresponding pair of entries $\tau(a)$ and $\tau(b)$ with $(a, b) \in B$, we have that $\pi(i)<\pi\left(i_{a}\right)$ or $\pi(i)>\pi\left(i_{b}\right)$ for all $i \in\left\{i_{a}+1, \ldots, i_{b}-1\right\}$.

Lemma 12. Given a pattern with Bruhat restrictions (τ, B) with $\tau \in S_{k}$ and $k \geq 3$, if τ does not have the largest value k at the leftmost or rightmost position, then it is tame.

Note that Lemma 12 does not impose any additional restrictions on the set B, and that it hence generalizes Lemma 9 (which corresponds to the case $B=\emptyset$).
3.6. Bivincular patterns. Bivincular patterns were introduced by Bousquet-Mélou, Claesson, Dukes, and Kitaev [BMCDK10. Such a pattern is a pair (τ, B), where $\tau \in S_{k}$ is a vincular pattern and $B \subseteq[k-1]$. A permutation π contains this pattern if and only if it contains a match of the vincular pattern τ (respecting the adjacency condition for the vincular pair), and in this match, the entries $\tau^{-1}(i)$ and $\tau^{-1}(i+1)$ are consecutive values in π for all $i \in B$.

Lemma 13. Given a bivincular pattern (τ, B) with $\tau \in S_{k}$ and $k \geq 3$, if the vincular pattern τ satisfies the conditions in Lemma 10 and if $k-1 \notin B$, then it is tame.

Note that Lemma 13 generalizes Lemma 10 (which corresponds to the case $B=\emptyset$).
3.7. Mesh patterns. We represent any permutation $\pi \in S_{n}$ by the set of points $(i, \pi(i)), 1 \leq i \leq n$, in the integer grid $[n]^{2}$. This grid representation is a graphical representation of the permutation matrix. For instance, the permutation $\pi=14352$ has the grid representation shown on the right. A cell in this representation is a connected region in $\mathbb{R}^{2} \backslash(\mathbb{R} \times[n] \cup[n] \times \mathbb{R})$, and we number those cells by a pair of integers $(a, b), a, b \in\{0, \ldots, n\}$, from left to
 right and from bottom to top, as shown in the figure on the right.

Mesh patterns were introduced by Brändén and Claesson [BC11] and they generalize all the aforementioned types of patterns.

A mesh pattern is a pair $\sigma=(\tau, C), \tau \in S_{k}$, with $C \subseteq\{0, \ldots, k\}^{2}$. Each pair $(a, b) \in C$ encodes a cell numbered (a, b) in the grid representation of τ, and we draw those cells shaded in the grid representation. For instance, the mesh pattern $(\tau, C)=(14352,\{(0,1),(4,3)\})$ has the grid representation shown on the right. These cells from C are the forbidden regions for values of π when searching for a match of $\sigma=(\tau, C)$ in π. Specifically, a permutation π contains
 the mesh pattern σ, if and only if the grid representation of π contains a subset of points that forms the grid representation of τ such that in this match the cells C do not contain any points from π. For example, the permutation 14352 contains the mesh pattern shown on the right, but the permutation 153642 does avoids it.

Figure 6. Illustration of the four conditions in Theorem 14 (left) and how they are used in the proof of the theorem (right).

The following main theorem of this section implies all the lemmas about classical, vincular, barred patterns, etc. stated in the previous sections.

Theorem 14. Let $\sigma=(\tau, C), \tau \in S_{k}, k \geq 3$, be a mesh pattern, and let i be the position of the largest value k in τ. If the pattern satisfies each of the following four conditions, then it is tame:
(i) i is different from 1 and k.
(ii) For all $a \in\{0, \ldots, k\} \backslash\{i-1, i\}$, we have $(a, k) \notin C$.
(iii) If $(i-1, k) \in C$, then for all $a \in\{0, \ldots, k\} \backslash\{i-1\}$ we have $(a, k-1) \notin C$ and for all $b \in\{0, \ldots, k-2\}$ we have that $(i, b) \in C$ implies $(i-1, b) \in C$.
(iv) If $(i, k) \in C$, then for all $a \in\{0, \ldots, k\} \backslash\{i\}$ we have $(a, k-1) \notin C$ and for all $b \in$ $\{0, \ldots, k-2\}$ we have that $(i-1, b) \in C$ implies $(i, b) \in C$.

The conditions in Theorem 14 can be in the grid representation of (τ, C) as follows; see the left hand side of Figure 6. Condition (i) asserts that the highest point of τ must not be the leftmost or rightmost point (the two crossed out grid points in the figure are forbidden). Condition (ii) asserts that none of the cells in the topmost row (above the points) must be shaded, with the possible exception of the cells next to the highest point (solid crossed out cells in the figure). Condition (iii) asserts that if the cell $(i-1, k)$ to the top left of the highest point is shaded (dark gray cell in the figure), then none of the cells in the row below except possibly ($i-1, k-1$) must be shaded (dotted crossed out cells without arrows in the figure), and if one of the cells strictly below $(i, k-1)$ is shaded, then the cell to the left of it must also be shaded (dotted crossed out cells with arrows). Symmetrically, condition (iv) asserts that if the cell (i, k) to the top right of the highest point is shaded (light gray cell in the figure), then none of the cells in the row below except possibly $(i, k-1)$ must be shaded (dashed crossed out cells without arrows in the figure), and if one of the cells strictly below $(i-1, k-1)$ is shaded, then the cell to the right of it must also be shaded (dashed crossed out cells with arrows).

Proof. We show that if $\sigma=(\tau, C)$ satisfies the four conditions of the theorem, then $S_{n}(\sigma)$, $n \geq 0$, is a hereditary sequence of zigzag languages. We argue by induction on n. Note that $S_{0}(\sigma)=S_{0}=\{\varepsilon\}$ is a zigzag language by definition, so the induction basis is clear. For the induction step let $n \geq 1$. We first show that if $\pi \in S_{n-1}(\sigma)$, then $c_{1}(\pi), c_{n}(\pi) \in S_{n}(\sigma)$. As $c_{1}(\pi)$ and $c_{n}(\pi)$ are obtained from π by inserting the new largest value n at the leftmost or
rightmost position, respectively, the grid representation of these two permutations differs from the grid representation of π by adding a new highest point at the leftmost or rightmost position. However, as π avoids σ by assumption, condition (i) guarantees that both $c_{1}(\pi)$ and $c_{n}(\pi)$ also avoid σ, which is what we wanted to show.

To complete the induction step, we now show that if $\pi \in S_{n}(\sigma)$, then $p(\pi) \in S_{n-1}(\sigma)$. Recall that $p(\pi)$ is obtained from π by removing the largest value n, so in the grid representation, we remove the highest point P. Our assumption is that π avoids the pattern σ, and we need to show that removing the highest point does not create a match of the pattern σ. For the sake of contradiction, suppose that removing P creates a match of the pattern σ in $p(\pi)$. Let Q be the highest point in this match of the pattern σ in $p(\pi)$. This situation is illustrated on the right hand side of Figure 6. By condition (ii), we are in exactly one of the following two cases: (a) the cell $(i-1, k)$ is in C and P lies inside this cell of σ in this match of the pattern; (b) the cell (i, k) is in C and P lies inside this cell of σ in this match of the pattern. We first consider case (a): We claim that we can exchange the point Q for the point P in the match of the pattern σ, and obtain another match of σ in π, which would contradict the assumption that π avoids σ. Indeed, this exchange operation strictly enlarges only the cells $(a, k-1)$ for all $a \in\{0, \ldots, k\} \backslash\{i-1\}$ and the cells (i, b) for all $b \in\{0, \ldots, k-2\}$. The first set of cells are not in C by the first part of condition (iii). The second set of cells are either not in C, or if they are, then the corresponding cells to the left of it are also in C by the second part of condition (iii). Moreover, after the exchange the cell (i, k) contains no point from π, as P is the highest point (this is of course only relevant if $(i, k) \in C)$. Furthermore, after the exchange the cell $(i-1, k-1)$ contains at most those points from π that were in the same cell before the exchange (clearly P is the only point inside the cell $(i-1, k)$). So we indeed obtain a match of σ in π, a contradiction.
In the symmetric case (b), we apply the same exchange argument, using condition (iv) instead of (iii). This completes the proof.
3.8. Proof of Lemmas $9-13$. With Theorem 14 in hand, the proofs of Lemmas 913 are straightforward. As noted before, Lemma 12 generalies Lemma 9 , and Lemma 13 generalizes Lemma 10, so we only need to prove Lemmas 11,12 and 13 .

Proof of Lemma 11. Note that a barred pattern $\tau \in S_{k}$ with a single barred entry b at position a corresponds to the mesh pattern $\sigma=\left(\tau^{-},\{(a-1, b-1)\}\right)$, i.e., in the grid representation of σ a single cell is shaded. It follows that conditions (iii) and (iv) of Theorem 14 are trivially satisfied, and conditions (i) and (ii) translate into the conditions in the lemma.

Proof of Lemma 12. A pattern with Bruhat restrictions (τ, B) corresponds to the mesh pattern $\sigma=(\tau, C)$ where C is the union of all the sets $R(a, b):=\{(i, j) \mid a \leq i<b \wedge \tau(a) \leq j<\tau(b)\}$ for $(a, b) \in B$, i.e., in the grid representation of σ, certain rectangles of cells inside the bounding box of the points from τ are shaded. It follows that conditions (ii)-(iv) of Theorem 14 are trivially satisfied, and condition (i) corresponds exactly to the condition in the lemma.

Proof of Lemma 13. A vincular pattern $\tau \in S_{k}$ where the entries at positions a and $a+1$ are underlined corresponds to the mesh pattern $\sigma=(\tau, C)$ with $C:=\{a\} \times\{0, \ldots, k\}$, i.e., in the grid representation of σ, an entire column of cells is shaded. For the bivincular pattern (τ, B) we also have to add the sets $\{0, \ldots, k\} \times\{b\}$ for all $b \in B$ to the set of cells C, i.e., in the grid representation we also have to shade the corresponding rows of cells. By the conditions stated in Lemma 10, conditions (i) and (ii) of Theorem 14 are satisfied. By the condition $k-1 \notin B$, conditions (iii) and (iv) of the theorem are also satisfied, proving that the bivincular pattern σ is tame.

Remark 15. One can argue that if condition (i) in Theorem 14 is violated, then $S_{k}(\sigma)$ is not a zigzag language. Similarly, if condition (ii) is violated, then $S_{k}(\sigma) \neq p\left(S_{k+1}(\sigma)\right)$, i.e., the hereditary property is violated. It follows from the proofs of Lemmas 913 before that the conditions stated in those lemmas are not only sufficient, but also necessary for tameness.
3.9. Patterns with multiplicities. All the aforementioned notions and results in this section generalize straightforwardly to bounding the number of appearances of a pattern. Formally, a counted pattern is a pair $\sigma=(\tau, c)$, where τ is a mesh pattern, and c is a non-negative integer. Moreover, $S_{n}(\sigma)$ denotes the set of all permutations from S_{n} that contain at most c matches of the pattern τ, where the special case $c=0$ is pattern-avoidance (cf. [NZ96]).

By Theorem 8, we can now form propositional formulas F made of logical ANDs \wedge, ORs \vee, and tame counted patterns $\left(\tau_{i}, c_{i}\right)$ as variables, with possibly different counts c_{i} for each variable. The tameness of each $\left(\tau_{i}, c_{i}\right)$ can be checked by verifying whether the patterns τ_{i} satisfy the conditions stated in Theorem 14 or its corollaries Lemmas $9-13$. We then obtain a hereditary zigzag language $S_{n}(F)$ that can be generated by Algorithm J.

A somewhat contrived example for such a language would be $F=((231,3) \wedge(2143,5)) \vee$ $(3 \underline{142} 2)$), the language of permutations that contain at most 3 matches of the pattern 231 AND at most 5 matches of the pattern 2143, OR at most 2 matches of the vincular pattern $3 \underline{142}$.

4. Algebra with patterns

In this section we significantly extend the methods described in the previous section, by applying geometric transformations to permutation patterns, and by describing some other types of patterns as conjunctions and disjunctions of suitable mesh patterns (recall Theorem 8). One particularly relevant additional type of permutations covered in this section are geometric grid classes; see Theorem 19 below.
4.1. Elementary transformations. We now consider three important elementary transformations of permutations that are important in the context of pattern-avoidance, as they preserve the cardinality of the set $S_{n}(F)$. Each of them corresponds to a geometric transformation of the grid representation of each of the patterns $\tau=a_{1} \ldots a_{k}$ in the formula F, and together these transformations form the dihedral group D_{4} of symmetries of a regular 4 -gon:

- Reversal, defined as $\operatorname{rev}(\tau):=a_{k} \ldots a_{1}$. This corresponds to a vertical reflection of the grid representation.
- Complementation, defined as $\operatorname{cpl}(\tau)_{i}=k-1-a_{i}$ for all $i=1, \ldots, k$. This corresponds to a horizontal reflection of the grid representation.
- Inversion, defined by $\operatorname{inv}(\tau)_{\tau(i)}=i$ for all $i=1, \ldots, k$. This corresponds to a diagonal reflection of the grid representation along the south-west to north-east diagonal.
Note that a clockwise 90-degree rotation is obtained as $\operatorname{rot}(\tau):=\operatorname{inv}(\operatorname{rev}(\tau))=\operatorname{cpl}(\operatorname{inv}(\tau))$. Clearly, all these operations generalize to mesh patterns (τ, C), by applying the aforementioned geometric transformations to the cells in C. These operations and their relations are illustrated in Figure 7 for $(\tau, C)=(14352,\{(1,0),(1,1),(3,3),(4,3)\})$.

The following lemma is immediate.
Lemma 16. Given any composition h of the elementary transformations reversal, complementation and inversion, and any propositional formula F made of logical ANDs \wedge, ORs \vee, and mesh patterns $\tau_{1}, \ldots, \tau_{k}$ as variables, then the sets of pattern-avoiding permutations $S_{n}(F)$ and $S_{n}(h(F))$ are in bijection under h for all $n \geq 1$, where the formula $h(F)$ is obtained from F by replacing every pattern τ_{i} by $h\left(\tau_{i}\right)$ for all $i=1, \ldots, k$.

Figure 7. Elementary transformations between permutations.
Lemma 16 is very useful for the purpose of exhaustive generation, because even if τ_{i} is not tame, then maybe $h\left(\tau_{i}\right)$ is. So even if we cannot apply Algorithm J to generate $S_{n}(\tau)$ directly, we may be able to generate $S_{n}\left(h\left(\tau_{i}\right)\right)$, and then apply h^{-1} to the resulting permutations. For instance, $\tau=213$ is not tame, as the largest entry appears at the leftmost position. However, $\operatorname{cpl}(\tau)=231$ is tame by Lemma 9, and so we can use Algorithm J to generate $S_{n}(\operatorname{cpl}(\tau))$.

As another example, consider so-called 2-stack sortable permutations introduced by West Wes90 and later counted in [Zei92, GW96, DGG98]. These permutations are characterized by the pattern-avoidance formula $F=\tau_{1} \wedge \tau_{2}$ with $\tau_{1}:=2341$ and $\tau_{2}:=35241$ (τ_{2} is a barred pattern). Unfortunately, τ_{2} is not tame (the barred entry $\overline{5}$ is not at a position next to the entry 4 ; recall Lemma 11), so Algorithm J cannot be used directly for generating $S_{n}(F)$. However, applying rotation, $h(\tau):=\operatorname{rot}(\tau)=\operatorname{inv}(\operatorname{rev}(\tau))$, yields two tame patterns $h\left(\tau_{1}\right)=1432$ and $h\left(\tau_{2}\right)=1352 \overline{4}$ and the formula $h(F)=h\left(\tau_{1}\right) \wedge h\left(\tau_{2}\right)$, which can be used for generating $S_{n}(h(F))$ via Algorithm J:

The bottom part of Table 1 lists further pattern-avoiding permutations that have been studied in the literature and that can be turned into tame patterns by elementary transformations.
4.2. Partially ordered patterns. Partially ordered patterns were introduced by Kitaev Kit05. A partially ordered pattern $(P O P)$ is a partially ordered set $P=([k], \prec)$, and we say that a
permutation π contains this pattern if and only if it contains a subpermutation $a_{i_{1}} \ldots a_{i_{k}}$, $i_{1}<\cdots<i_{k}$, such that $k \prec l$ in the partial order implies that $a_{i_{k}}<a_{i_{l}}$. In particular, if \prec is a linear order, then this is equivalent to classical pattern avoidance. However, some other constraints can be expressed much more conveniently using POPs. For instance, avoiding the POP

$$
P_{1}=\pi_{1}^{2}
$$

is equivalent to avoiding peaks in the permutation, so $S_{n}\left(P_{1}\right)$ is the set of permutations without peaks discussed before, which satisfies $\left|S_{n}\left(P_{1}\right)\right|=2^{n-1}$.

More generally, the POP

$$
P_{k}=\overbrace{1}^{2} \sqrt[2]{4}
$$

realizes the language $S_{n}\left(P_{k}\right)$ of permutations with at most $k-1$ peaks.
We let $L(P)$ denote the set of all linear extensions of the poset P, and for any linear extension $x \in L(P)$, we consider the inverse permutation of x, as the i th entry of $\operatorname{inv}(x)$ denotes the position of i in x. Moreover, $\operatorname{inv}(x) \in S_{k}$, so $\operatorname{inv}(x)$ is a classical pattern.

Lemma 17. For any partially ordered pattern $P=([k], \prec)$, we have

$$
\begin{equation*}
S_{n}(P)=\bigcap_{x \in L(P)} S_{n}(\operatorname{inv}(x))=S_{n}\left(\bigwedge_{x \in L(P)} \operatorname{inv}(x)\right) \tag{3}
\end{equation*}
$$

In particular, if the poset P does not have 1 or k as a maximal element, then P is tame.
Proof. The first part of the lemma follows immediately from the definition of POPs and from (2). To prove the second part, suppose that P does not have 1 or k as a maximal element. Then in any linear extension $x \in L(P), 1$ and k will not appear at the last position, and so in the inverse permutation $\operatorname{inv}(x)$, the largest entry k will neither be at position 1 nor at position k. We can hence apply Lemma 9 , and using Theorem 8 we obtain that P is tame.

For instance, for the POP P_{1} from before we have $L\left(P_{1}\right)=\{132,312\}$, and so $P_{1}=132 \wedge 231$, and for the POP P_{2} we have $L\left(P_{2}\right)=\{13254,13524,13542,15324,15342,31254, \ldots\}$, a set of 16 linear extensions in total, so $P_{2}=13254 \wedge 14253 \wedge 15243 \wedge 14352 \wedge 15342 \wedge 23145 \wedge \cdots$.

Moreover, we can create counted POPs with multiplicity c (recall Section 3.9), by taking the OR of conjunctions of counted classical patterns as described by Lemma 17 , over all number partitions of c into the corresponding number of parts. For instance, the counted POP $\sigma=\left(P_{1}, c\right)$, which realizes the zigzag language $S_{n}(\sigma)$ of permutations with at most c triples of values forming a peak, is obtained by considering the partitions $c=c+0=(c-1)+1=\cdots=1+(c-1)=0+c$, resulting in the formula

$$
\left(P_{1}, c\right)=((132, c) \wedge(231,0)) \vee((132, c-1) \wedge(231,1)) \vee \cdots \vee((132,0) \wedge(231, c))
$$

with counted classical patterns on the right-hand side.
4.3. Barred patterns with multiple bars. Patterns with multiple bars can be reduced to single-barred patterns (to which Lemma 11 applies) as shown by the following lemma.

Lemma 18 (cf. [Úlf11). Let $\tau \in S_{k}, k \geq 5$, be a pattern with $b \geq 2$ bars, such that no two barred entries are at neighboring positions or have adjacent values. Let $\widetilde{\tau}_{1}, \ldots, \widetilde{\tau}_{b} \in S_{k-b+1}$ be
the permutations with a single barred entry that are order-isomorphic to the sequences obtained from τ by removing all but except one barred entry. Then we have

$$
S_{n}(\tau)=\bigcap_{1 \leq i \leq b} S_{n}\left(\widetilde{\tau}_{i}\right)=S_{n}\left(\bigwedge_{1 \leq i \leq b} \widetilde{\tau}_{i}\right)
$$

Consequently, if $\tau^{-} \in S_{k-b}$ does not have the largest value $k-b$ at the leftmost or rightmost position, and the largest barred entry in τ is smaller than k or at a position next to the entry $k-1$, than τ is tame.
Proof. To prove the first part, observe that when no two barred entries are at neighboring positions or have adjacent values, then the definition of barred pattern avoidance is equivalent to avoiding each of the single-barred patterns $\widetilde{\tau}_{1}, \ldots, \widetilde{\tau}_{b}$, so the claim follows using (2).

To prove the second part we show that each of the single-barred patterns $\widetilde{\tau}_{1}, \ldots, \widetilde{\tau}_{b}$ satisfies the conditions of Lemma 11 . Indeed, we know that $\tau^{-}=\left(\widetilde{\tau}_{i}\right)^{-} \in S_{k-b}, 1 \leq i \leq b$, does not have the largest value $k-b$ at the leftmost or rightmost position. Moreover, if $\widetilde{\tau}_{i}$ is obtained from τ by removing all but the largest barred entry, then the barred entry in $\widetilde{\tau}_{i} \in S_{k-b+1}$ is either smaller than $k-b+1$ or at a position next to the entry $k-b$. To see this note that if the largest entry k in τ is barred, then the second largest entry $k-1$ is not barred by the assumption that no two barred entries have adjacent values. For the same reason, if $\widetilde{\tau}_{i}$ is obtained from τ by removing barred entries including the largest one, then the barred entry in $\widetilde{\tau}_{i} \in S_{k-b+1}$ is smaller than $k-b+1$. Consequently, we can apply Lemma 11 to each of the patterns $\widetilde{\tau}_{1}, \ldots, \widetilde{\tau}_{b}$, and complete the proof by applying Theorem 8 .

Lemma 18 applies for instance to the tame pattern $3 \overline{1} 52 \overline{4}=3 \overline{1} 42 \wedge 241 \overline{3}$ listed in Table 1.
4.4. Geometric grid classes. Geometric grid classes of permutations were introduced by Albert, Atkinson, Bouvel, Ruškuc, and Vatter $\left[\mathrm{AAB}^{+} 13\right.$. To define them, we consider a matrix M with entries from $\{0,+1,-1\}$, indexed first by columns from left to right, and then by rows from bottom to top. The standard figure $F(M)$ is the following set of points in \mathbb{R}^{2}; see Figure 4.4 For every entry $M_{x, y}=+1$, it contains an increasing straight line connecting the points $(x-1, y-1)$ and (x, y). Moreover, for every entry $M_{x, y}=-1$, it contains a decreasing straight line connecting the points $(x-1, y)$ and $(x, y-1)$. The geometric grid class of M, denoted $\operatorname{Geo}(M)$, is the set of all permutations (of any length $n \geq 0$) that can be drawn in the following way: Choose n points on the standard figure $F(M)$, no two on a common horizontal or vertical line. Then label the points from 1 to n from bottom to top and record the labels by reading them from left to right.

Based on this, we define $\operatorname{Geo}_{n}(M):=\operatorname{Geo}(M) \cap S_{n}$. The authors of $\left[\mathrm{AAB}^{+} 13\right.$] proved that any geometric grid class $\operatorname{Geo}(M)$ is characterized by finitely many forbidden patterns, i.e.,

$$
\operatorname{Geo}_{n}(M)=S_{n}\left(\tau_{1} \wedge \cdots \wedge \tau_{k}\right)
$$

for a suitable set of patterns $\tau_{1}, \ldots, \tau_{k}$ and for all $n \geq 0$. For instance, X-shaped permutations studied in Wat07, Eli11 are exactly the permutations in $S_{n}(2143 \wedge 2413 \wedge 3142 \wedge 3412)$. As a consequence of this, all our previous results on generating pattern-avoiding permutations translate straightforwardly to generating geometric grid classes of permutations. However, deciding whether $\operatorname{Geo}_{n}(M)$ is a zigzag language is much easier by looking at M directly, rather than by looking at the patterns $\tau_{1}, \ldots, \tau_{k}$, which are often not explicitly given or complicated to derive. To this end, the following theorem provides an easily verifiable sufficient condition.
Theorem 19. If the top-left entry of M equals -1 , and the top-right entry of M equals +1 , then $\operatorname{Geo}_{n}(M), n \geq 0$, is a hereditary sequence of zigzag languages. Consequently, all of these languages can be generated by Algorithm J.

$$
\begin{aligned}
M & =\left(\begin{array}{ll}
-1 & +1 \\
+1 & -1
\end{array}\right) \\
\pi & =623451
\end{aligned}
$$

$$
M=\left(\begin{array}{ll}
+1 & -1 \\
-1 & +1
\end{array}\right)
$$

$$
\pi=324516
$$

Figure 8. Illustration of geometric grid classes. X-shaped permutations are shown on the left, and circle-shaped permutations on the right.

From the two grid classes shown in Figure 4.4, only the left one (X-shaped permutations) satisfies the conditions of the theorem.

Proof. We argue by induction on n. Note that $\operatorname{Geo}_{0}(M)=S_{0}=\{\varepsilon\}$ is a zigzag language by definition, so the induction basis is clear. For the induction step let $n \geq 1$. We first show that if $\pi \in \operatorname{Geo}_{n-1}(M)$, then $c_{1}(\pi), c_{n}(\pi) \in \mathrm{Geo}_{n}(M)$. For this argument we use the assumption that the top-left entry of M is -1 , and the top-right entry of M is +1 , i.e., the standard figure $F(M)$ has a decreasing line L in the top-left corner, and an increasing line R in the top-right corner. It follows that we can draw $c_{1}(\pi)$ on $F(M)$, by extending the drawing of π on $F(M)$ so that the new point n is mapped to the line L to the left and top of all other points. Similarly, we can draw $c_{n}(\pi)$ on $F(M)$, by extending the drawing of π on $F(M)$ so that the new point n is mapped to the line R to the right and top of all other points.

To complete the induction step, we now show that if $\pi \in \operatorname{Geo}_{n}(M)$, then $p(\pi) \in \operatorname{Geo}_{n-1}(M)$. As $\pi \in \operatorname{Geo}_{n}(M)$, we can draw π on $F(M)$. Clearly, removing the largest entry from π maintains this property, i.e., we can draw $p(\pi)$ on $F(M)$, showing that $p(\pi) \in \mathrm{Geo}_{n-1}(M)$. This completes the proof.

5. Lattice congruences of the weak order

The second main application of our framework are lattice congruences of the weak order on the symmetric group S_{n}. The main results in this section are summarized in Theorems 20 and Corollary 21. Proofs of these results will be presented in part II of this paper series.
5.1. Preliminaries. We begin recalling a few basic notion from poset theory. A partially ordered set, or poset for short, is a pair $(P,<)$, where P is a set and $<$ is a reflexive, antisymmetric and transitive binary relation on P. A cover relation is a pair $x, y \in P$ with $x<y$ for which there is no $z \in P$ with $x<z<y$. In this case we say that y covers x and we write $x \lessdot y$. Clearly, the cover relations form an acyclic directed graph with vertex set P, and this graph is referred to as the cover graph of P. A poset $(P,<)$ is called a lattice, if for any two $x, y \in P$ there is a unique smallest element z, called the join $x \vee y$ of x and y, such that $z>x$ and $z>y$, and if there is unique largest element z, called the meet $x \wedge y$ of x and y, satisfying $z<x$ and $z<y$. A lattice congruence is an equivalence relation \equiv on P such that $x \equiv x^{\prime}$ and $y \equiv y^{\prime}$ implies that $x \vee y \equiv x^{\prime} \vee y^{\prime}$ and $x \wedge y \equiv x^{\prime} \wedge y^{\prime}$. Given any lattice congruence \equiv, we obtain the lattice quotient P / \equiv (which

Figure 9. The weak order on S_{4} (left), with the lattice congruence for 231avoiding permutations (bold edges), and the resulting lattice quotient S_{n} / \equiv (right), which is the well-known Tamari lattice (with corresponding binary trees).
is itself a lattice) by taking the equivalence classes as elements, and ordering them by $X<Y$ if and only if there is an $x \in X$ and a $y \in Y$ such that $x<y$ in P. Observe that the cover graph of P / \equiv is obtained from the cover graph of P by contracting all cover edges $x \lessdot y$ with $x \equiv y$.
The weak order on the symmetric group S_{n} is obtained by considering the inversion set of a permutation, defined as

$$
\operatorname{inv}(\pi):=\{(\pi(i), \pi(j)) \mid 1 \leq i<j \leq n \text { and } \pi(i)>\pi(j)\},
$$

and by defining $\pi<\rho$ if and only if $\operatorname{inv}(\pi) \subseteq \operatorname{inv}(\rho)$; see the left hand side of Figure 9, The cover relations $\pi \lessdot \rho$ in this poset are exactly adjacent transpositions. It is easy to see that the weak order on S_{n} forms a lattice. The weak order forms a lattice, where the inversion set of the join $\pi \vee \rho$ of two permutations π and ρ is given by the transitive closure of $\operatorname{inv}(\pi) \cup \operatorname{inv}(\rho)$, and the inversion set of the meet can be computed similarly by considering the reverse permutations (which have the complementary inversion set).

It turns out that there are double-exponentially many distinct lattice congruences of the weak order on S_{n}, and they generalize many known lattices, such as the Boolean lattice, the Tamari lattice [Tam62] (shown on the right hand side of Figure 9), and certain Cambrian lattices Rea06, CP17. This area of study has beautiful ramificiations into groups, posets, polytopes, geometry, and combinatorics, and has been developed considerably in recent years, in particular thanks to Nathan Reading's works, summarized in Rea12a, Rea16a, Rea16b.
5.2. Jumping through lattice congruences. For any lattice congruence \equiv of the weak order on S_{n}, a set of representatives for the equivalence classes S_{n} / \equiv is a subset $R_{n} \subseteq S_{n}$ such that for every equivalence class $X \in S_{n} / \equiv$, exactly one permutation is contained in R_{n}, i.e., $\left|X \cap R_{n}\right|=1$. We let $X(\pi), \pi \in S_{n}$, denote the equivalence class from S_{n} / \equiv containing π. A meaningful definition of 'generating the lattice congruence' is to generate a set of representatives for its equivalence classes. We also require that any two successive representatives form a cover relation in the lattice quotient S_{n} / \equiv. This is what we achieve with the help of Algorithm J.

Figure 10. Lattice congruences of the weak order on S_{4}, ordered by refinement and realized as polytopes, where only the full-dimensional polytopes are shown. The figure shows the Hamilton path on each quotientope generated by Algorithm J, with the start and end vertex indicated by a triangle and diamond, respectively. Permutahedron, associahedron and hypercube are highlighted.

Theorem 20. For every lattice congruence \equiv of the weak order on S_{n}, there is a set of representatives $R_{n} \subseteq S_{n}$, such that Algorithm J generates a sequence $J\left(R_{n}\right)=\pi_{1}, \pi_{2}, \ldots$ of all permutations from R_{n} for which the equivalence classes $X\left(\pi_{1}\right), X\left(\pi_{2}\right), \ldots$ form a Hamilton path in the cover graph of the lattice quotient S_{n} / \equiv.

For every lattice congruence \equiv, Pilaud and Santos [PS19] defined a polytope, called the quotientope for \equiv, whose skeleton is exactly the cover graph of the lattice quotient S_{n} / \equiv. These
polytopes generalize many known polytopes, such as hypercubes, associahedra, permutahedra etc. The following result is an immediate corollary of Theorem 20, and it is illustrated in Figure 10

Corollary 21. For every lattice congruence \equiv of the weak order on S_{n}, Algorithm J generates a Hamilton path on the skeleton of the corresponding quotientope.

6. Acknowledgments

We thank Michael Albert, Mathilde Bouvel, Sergi Elizalde, Vít Jelínek, Sergey Kitaev and Vincent Vajnovszki for very insightful feedback on this work, for pointing out relevant references, and for sharing their knowledge about pattern-avoiding permutations. We also thank Jean Cardinal and Vincent Pilaud for several stimulating discussions about lattice congruences of the weak order on the symmetric group. Figure 10 in this paper was obtained by modifying and augmenting Figure 9 from PS19, and the original source code for this figure was provided to us by Vincent Pilaud.

References

$\left[\mathrm{AAB}^{+} 13\right] \quad$ M. H. Albert, M. D. Atkinson, M. Bouvel, N. Ruškuc, and V. Vatter. Geometric grid classes of permutations. Trans. Amer. Math. Soc., 365(11):5859-5881, 2013.
$\left[\mathrm{ABBM}^{+} 13\right]$ A. Asinowski, G. Barequet, M. Bousquet-Mélou, T. Mansour, and R. Y. Pinter. Orders induced by segments in floorplans and (2-14-3, 3-41-2)-avoiding permutations. Electron. J. Combin., 20(2):Paper 35, 43, 2013.
[ABP06] E. Ackerman, G. Barequet, and R. Y. Pinter. A bijection between permutations and floorplans, and its applications. Discrete Appl. Math., 154(12):1674-1684, 2006.
[AF96] D. Avis and K. Fukuda. Reverse search for enumeration. Discrete Appl. Math., 65(1-3):21-46, 1996. First International Colloquium on Graphs and Optimization (GOI), 1992 (Grimentz).
[AKPV16] S. Avgustinovich, S. Kitaev, V. N. Potapov, and V. Vajnovszki. Gray coding cubic planar maps. Theoret. Comput. Sci., 616:59-69, 2016.
[AM10] A. Asinowski and T. Mansour. Separable d-permutations and guillotine partitions. Ann. Comb., 14(1):17-43, 2010.
[Atk98] M. D. Atkinson. Permutations which are the union of an increasing and a decreasing subsequence. Electron. J. Combin., 5:Research paper 6, 13, 1998.
[Bar08] J.-L. Baril. Efficient generating algorithm for permutations with a fixed number of excedances. Pure Math. Appl. (PU.M.A.), 19(2-3):61-69, 2008.
[Bar09] J.-L. Baril. More restrictive Gray codes for some classes of pattern avoiding permutations. Inform. Process. Lett., 109(14):799-804, 2009.
[BBGP04] S. Bacchelli, E. Barcucci, E. Grazzini, and E. Pergola. Exhaustive generation of combinatorial objects by ECO. Acta Inform., 40(8):585-602, 2004.
[BBL98] P. Bose, J. F. Buss, and A. Lubiw. Pattern matching for permutations. Inform. Process. Lett., 65(5):277-283, 1998.
[BC11] P. Brändén and A. Claesson. Mesh patterns and the expansion of permutation statistics as sums of permutation patterns. Electron. J. Combin., 18(2):Paper 5, 14, 2011.
[BDLPP99] E. Barcucci, A. Del Lungo, E. Pergola, and R. Pinzani. ECO: a methodology for the enumeration of combinatorial objects. J. Differ. Equations Appl., 5(4-5):435-490, 1999.
[BER76] J. R. Bitner, G. Ehrlich, and E. M. Reingold. Efficient generation of the binary reflected Gray code and its applications. Comm. ACM, 19(9):517-521, 1976.
[BGPP07] A. Bernini, E. Grazzini, E. Pergola, and R. Pinzani. A general exhaustive generation algorithm for Gray structures. Acta Inform., 44(5):361-376, 2007.
[Bil13] S. Billey. Permutation patterns for k-vexillary permutations, 2013. https://sites.math.washington edu/~billey/papers/k.vex.html.
[BL10] A. Burstein and I. Lankham. Restricted patience sorting and barred pattern avoidance. In Permutation patterns, volume 376 of London Math. Soc. Lecture Note Ser., pages 233-257. Cambridge Univ. Press, Cambridge, 2010.
[BMCDK10] M. Bousquet-Mélou, A. Claesson, M. Dukes, and S. Kitaev. ($2+2$)-free posets, ascent sequences and pattern avoiding permutations. J. Combin. Theory Ser. A, 117(7):884-909, 2010.
[Bón97] M. Bóna. Exact enumeration of 1342-avoiding permutations: a close link with labeled trees and planar maps. J. Combin. Theory Ser. A, 80(2):257-272, 1997.
[Bón12] M. Bóna. Combinatorics of permutations. Discrete Mathematics and its Applications (Boca Raton). CRC Press, Boca Raton, FL, second edition, 2012. With a foreword by Richard Stanley.
[BP14] S. Billey and B. Pawlowski. Permutation patterns, Stanley symmetric functions, and generalized Specht modules. J. Combin. Theory Ser. A, 127:85-120, 2014.
[BS00] E. Babson and E. Steingrímsson. Generalized permutation patterns and a classification of the Mahonian statistics. Sém. Lothar. Combin., 44:Art. B44b, 18, 2000.
[CF18] J. Cardinal and S. Felsner. Topological drawings of complete bipartite graphs. J. Comput. Geom., 9(1):213-246, 2018.
[CK08] A. Claesson and S. Kitaev. Classification of bijections between 321- and 132-avoiding permutations. In 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008), Discrete Math. Theor. Comput. Sci. Proc., AJ, pages 495-506. Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2008.
[CKS09] A. Claesson, S. Kitaev, and E. Steingrímsson. Decompositions and statistics for $\beta(1,0)$-trees and nonseparable permutations. Adv. in Appl. Math., 42(3):313-328, 2009.
[CP17] G. Chatel and V. Pilaud. Cambrian Hopf algebras. Adv. Math., 311:598-633, 2017.
[CSS18] J. Cardinal, V. Sacristán, and R. I. Silveira. A note on flips in diagonal rectangulations. Discrete Math. Theor. Comput. Sci., 20(2):Paper No. 14, 22, 2018.
[DFMV08] W. M. B. Dukes, M. F. Flanagan, T. Mansour, and V. Vajnovszki. Combinatorial Gray codes for classes of pattern avoiding permutations. Theoret. Comput. Sci., 396(1-3):35-49, 2008.
[DG12] P. Diaconis and R. Graham. Magical mathematics. Princeton University Press, Princeton, NJ, 2012. The mathematical ideas that animate great magic tricks, With a foreword by Martin Gardner.
[DGG98] S. Dulucq, S. Gire, and O. Guibert. A combinatorial proof of J. West's conjecture. Discrete Math., 187(1-3):71-96, 1998.
[DGW96] S. Dulucq, S. Gire, and J. West. Permutations with forbidden subsequences and nonseparable planar maps. In Proceedings of the 5th Conference on Formal Power Series and Algebraic Combinatorics (Florence, 1993), volume 153, pages 85-103, 1996.
[DMR10] E. Deutsch, E. Munarini, and S. Rinaldi. Skew Dyck paths. J. Statist. Plann. Inference, 140(8):21912203, 2010.
[DTV19] P. T. Do, T. T. H. Tran, and V. Vajnovszki. Exhaustive generation for permutations avoiding (colored) regular sets of patterns. Discrete Applied Mathematics, 2019.
[Eld06] M. Elder. Permutations generated by a stack of depth 2 and an infinite stack in series. Electron. J. Combin., 13(1):Research Paper 68, 12, 2006.
[Eli07] S. Elizalde. Generating trees for permutations avoiding generalized patterns. Ann. Comb., 11(3-4):435-458, 2007.
[Eli11] S. Elizalde. The X-class and almost-increasing permutations. Ann. Comb., 15(1):51-68, 2011.
[FMSD19] A. Fink, K. Mészáros, and A. St. Dizier. Zero-one Schubert polynomials. https://arxiv.org/abs/ $1903.10332,2019$.
[FS09] P. Flajolet and R. Sedgewick. Analytic combinatorics. Cambridge University Press, Cambridge, 2009.
[GM14] S. Guillemot and D. Marx. Finding small patterns in permutations in linear time. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 82-101. ACM, New York, 2014.
[Gra53] F. Gray. Pulse code communication, 1953. March 17, 1953 (filed Nov. 1947). U.S. Patent 2,632,058.
[GW96] I. P. Goulden and J. West. Raney paths and a combinatorial relationship between rooted nonseparable planar maps and two-stack-sortable permutations. J. Combin. Theory Ser. A, 75(2):220-242, 1996.
[Jer03] M. Jerrum. Counting, sampling and integrating: algorithms and complexity. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2003.
[JK17] V. Jelínek and J. Kynčl. Hardness of permutation pattern matching. In Proceedings of the TwentyEighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 378-396. SIAM, Philadelphia, PA, 2017.
[Joh63] S. Johnson. Generation of permutations by adjacent transposition. Math. Comp., 17:282-285, 1963.
[Kay76] R. Kaye. A Gray code for set partitions. Information Processing Lett., 5(6):171-173, 1976.
[Kit05] S. Kitaev. Partially ordered generalized patterns. Discrete Math., 298(1-3):212-229, 2005.
[Kit11] S. Kitaev. Patterns in permutations and words. Monographs in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg, 2011. With a foreword by Jeffrey B. Remmel.
[Knu98] D. E. Knuth. The art of computer programming. Vol. 3. Addison-Wesley, Reading, MA, 1998. Sorting and searching, Second edition [of MR0445948].
[Knu11] D. E. Knuth. The art of computer programming. Vol. 4A. Combinatorial algorithms. Part 1. AddisonWesley, Upper Saddle River, NJ, 2011.
[Koz19] L. Kozma. Faster and simpler algorithms for finding large patterns in permutations. https://arxiv org/abs/1902.08809 2019.
[Lan07] I. P. Lankham. Patience sorting and its generalizations. ProQuest LLC, Ann Arbor, MI, 2007. Thesis (Ph.D.)-University of California, Davis.
[LR12] S. Law and N. Reading. The Hopf algebra of diagonal rectangulations. J. Combin. Theory Ser. A, 119(3):788-824, 2012.
[LS85] A. Lascoux and M.-P. Schützenberger. Schubert polynomials and the Littlewood-Richardson rule. Lett. Math. Phys., 10(2-3):111-124, 1985.
[LS09] Y. Li and J. Sawada. Gray codes for reflectable languages. Inform. Process. Lett., 109(5):296-300, 2009.
[LvBR93] J. M. Lucas, D. R. van Baronaigien, and F. Ruskey. On rotations and the generation of binary trees. J. Algorithms, 15(3):343-366, 1993.
[NZ96] J. Noonan and D. Zeilberger. The enumeration of permutations with a prescribed number of "forbidden" patterns. Adv. in Appl. Math., 17(4):381-407, 1996.
[oei19] OEIS Foundation Inc. The on-line encyclopedia of integer sequences, 2019. http://oeis.org
[Par09] R. Parviainen. Wilf classification of bi-vincular permutation patterns. https://arxiv.org/abs/ $0910.5103,2009$.
[PS19] V. Pilaud and F. Santos. Quotientopes. Bull. Lond. Math. Soc., 51:406-420, 2019.
[Pud08] L. K. Pudwell. Enumeration schemes for pattern-avoiding words and permutations. ProQuest LLC, Ann Arbor, MI, 2008. Thesis (Ph.D.)-Rutgers The State University of New Jersey - New Brunswick.
[Pud10] L. K. Pudwell. Enumeration schemes for permutations avoiding barred patterns. Electron. J. Combin., 17(1):Research Paper 29, 27, 2010.
[Rea06] N. Reading. Cambrian lattices. Adv. Math., 205(2):313-353, 2006.
[Rea12a] N. Reading. From the Tamari lattice to Cambrian lattices and beyond. In Associahedra, Tamari lattices and related structures, volume 299 of Prog. Math. Phys., pages 293-322. Birkhäuser/Springer, Basel, 2012.
[Rea12b] N. Reading. Generic rectangulations. European J. Combin., 33(4):610-623, 2012.
[Rea16a] N. Reading. Finite Coxeter groups and the weak order. In Lattice theory: special topics and applications. Vol. 2, pages 489-561. Birkhäuser/Springer, Cham, 2016.
[Rea16b] N. Reading. Lattice theory of the poset of regions. In Lattice theory: special topics and applications. Vol. 2, pages 399-487. Birkhäuser/Springer, Cham, 2016.
[RSW12] F. Ruskey, J. Sawada, and A. Williams. Binary bubble languages and cool-lex order. J. Combin. Theory Ser. A, 119(1):155-169, 2012.
[Sav97] C. Savage. A survey of combinatorial Gray codes. SIAM Rev., 39(4):605-629, 1997.
[Sta94] Z. E. Stankova. Forbidden subsequences. Discrete Math., 132(1-3):291-316, 1994.
[SV14] R. Smith and V. Vatter. A stack and a pop stack in series. Australas. J. Combin., 58:157-171, 2014.
[SW12] J. Sawada and A. Williams. Efficient oracles for generating binary bubble languages. Electron. J. Combin., 19(1):Paper 42, 20, 2012.
[Tam62] D. Tamari. The algebra of bracketings and their enumeration. Nieuw Arch. Wisk. (3), 10:131-146, 1962.
[Ten18] B. Tenner. Database of permutation pattern avoidance, 2018. https://math.depaul.edu/bridget/ patterns.html.
[Tro62] H. F. Trotter. Algorithm 115: Perm. Commun. ACM, 5(8):434-435, 1962.
[Úlf11] H. Úlfarsson. A unification of permutation patterns related to Schubert varieties. Pure Math. Appl. (PU.M.A.), 22(2):273-296, 2011.
[Vaj10] V. Vajnovszki. Generating involutions, derangements, and relatives by ECO. Discrete Math. Theor. Comput. Sci., 12(1):109-122, 2010.
[Vel03] A. Vella. Pattern avoidance in permutations: linear and cyclic orders. Electron. J. Combin., 9(2):Research paper 18, 43, 2002/03. Permutation patterns (Otago, 2003).
[VV11] V. Vajnovszki and R. Vernay. Restricted compositions and permutations: from old to new Gray codes. Inform. Process. Lett., 111(13):650-655, 2011.
[Wat07] S. D. Waton. On permutation classes defined by token passing networks, gridding matrices and pictures: three flavours of involvement. PhD thesis, University of St Andrews, 2007.
[Wes90] J. West. Permutations with forbidden subsequences and stack-sortable permutations. ProQuest LLC, Ann Arbor, MI, 1990. Thesis (Ph.D.)-Massachusetts Institute of Technology.
[Wil13] A. Williams. The greedy Gray code algorithm. In Algorithms and Data Structures - 13th International Symposium, WADS 2013, London, ON, Canada, August 12-14, 2013. Proceedings, pages 525-536, 2013.
[WY06] A. Woo and A. Yong. When is a Schubert variety Gorenstein? Adv. Math., 207(1):205-220, 2006.
[XCU10] L. Xiang, K. Cheng, and K. Ushijima. Efficient generation of Gray codes for reflectable languages. In Computational Science and Its Applications - ICCSA 2010, International Conference, Fukuoka, Japan, March 23-26, 2010, Proceedings, Part IV, pages 418-426, 2010.
[YCCG03] B. Yao, H. Chen, C.-K. Cheng, and R. L. Graham. Floorplan representations: Complexity and connections. ACM Trans. Design Autom. Electr. Syst., 8(1):55-80, 2003.
[Zei92] D. Zeilberger. A proof of Julian West's conjecture that the number of two-stack-sortable permutations of length n is $2(3 n)!/((n+1)!(2 n+1)!)$. Discrete Math., 102(1):85-93, 1992.

[^0]: (Elizabeth Hartung) Massachusetts College of Liberal Arts, United States
 (Hung P. Hoang) Department of Computer Science, ETH Zürich, Switzerland
 (Torsten Mütze) Institut für Mathematik, Technische Universität Berlin, Germany
 (Aaron Williams) Bard College at Simon's Rock, United States
 E-mail addresses: e.hartung@mcla.edu, hung.hoang@inf.ethz.ch, muetze@math.tu-berlin.de, awilliams@simons-rock.edu.

 Key words and phrases. Exhaustive generation algorithm, Gray code, pattern-avoiding permutation, weak order, lattice congruence, quotientope, Hamilton path, rectangulation.

