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Abstract

Every Riordan array has what we call a horizontal half and a vertical half. These
halves of a Riordan array have been studied separately before. Here, we place them in
a common context, showing that one may be obtained from the other. Using them, we
provide a canonical factorization of elements of the associated or Lagrange subgroup of
the Riordan group. The vertical half matrix is shown to be an element of the hitting-
time group. We also ask and answer the question: given a Riordan array, when is it
the half (either horizontal of vertical) of a Riordan array?

1 Preliminaries on Riordan arrays

We recall some facts about Riordan arrays in this introductory section. Readers familiar
with Riordan arrays may wish to move on to the next section. A Riordan array is defined
by a pair of power series

g(x) = g0 + g1x+ g2x
2 + · · · =

∞
∑

n=0

gnx
n,

and

f(x) = f1x+ f2x
2 + f3x

3 + · · · =
∞
∑

n=1

fnx
n.

We require that g0 6= 0 (and hence g(x) be invertible, with inverse 1
g(x)

), while we also demand

that f0 = 0 and f1 6= 0 (hence f(x) has a compositional inverse f̄(x) = Rev(f)(x) defined
by f(f̄(x)) = x). The set of such pairs (g(x), f(x)) forms a group (called the Riordan group
[4]) with multiplication

(g(x), f(x)) · (u(x), v(x)) = (g(x)u(f(x)), v(f(x)),

and with inverses given by

(g(x), f(x))−1 =

(

1

g(f̄(x))
, f̄(x)

)

.
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The coefficients of the power series may be drawn from any ring (for example, the integers Z)
where these operations make sense. To each such ring there exists a corresponding Riordan
group.

There is a matrix representation of this group, where to the element (g(x), f(x)) we
associate the matrix (an,k)0≤n,k≤∞ with general element

an,k = [xn]g(x)f(x)k.

Here, [xn] is the functional that extracts the coefficient of xn in a power series. In this
representation, the group law corresponds to ordinary matrix multiplication, and the inverse
of (g(x), f(x)) is represented by the inverse of (an,k)0≤n,k≤∞.

The Fundamental Theorem of Riordan arrays is the rule

(g(x), f(x)) · h(x) = g(x)h(f(x)),

detailing how an array (g(x), f(x)) can act on a power series. This corresponds to the matrix
(an,k) multiplying the vector (h0, h1, h2, . . .)

T .

Example 1. Pascal’s triangle, also known as the binomial matrix, is defined by the Riordan
group element

(

1

1− x
,

x

1− x

)

.

This means that we have
(

n

k

)

= [xn]
1

1− x

(

x

1− x

)k

.

To see that this is so, we need to be familiar with the rules of operation of the functional
[xn] [3]. We have

[xn]
1

1− x

(

x

1− x

)k

= [xn]
xk

(1− x)k+1

= [xn−k](1− x)−(k+1)

= [xn−k]
∞
∑

j=0

(

−(k + 1)

j

)

(−1)jxj

= [xn−k]

∞
∑

j=0

(

k + 1 + j − 1

j

)

xj

= [xn−k]
∞
∑

j=0

(

k + j

j

)

xj

=

(

k + n− k

n− k

)

=

(

n

n− k

)

=

(

n

k

)

.

The binomial matrix is an element of the Bell subgroup of the Riordan group, consisting
of arrays of the form (g(x), xg(x)). It is also an element of the hitting time subgroup, which
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consists of arrays of the form
(

xf ′(x)
f(x)

, f(x)
)

. Arrays of the form (1, f(x)) belong to the

associated or Lagrange subgroup of the Riordan group.
Note that all the arrays in this note are lower triangular matrices of infinite extent. We

show appropriate truncations.
Many examples of sequences and Riordan arrays are documented in the On-Line Ency-

clopedia of Integer Sequences (OEIS) [5, 6]. Sequences are frequently referred to by their
OEIS number. For instance, the binomial matrix B =

(

1
1−x

, x
1−x

)

(“Pascal’s triangle”) is
A007318. In the sequel we will not distinguish between an array pair (g(x), f(x)) and its
matrix representation.

Having written this note, the author discovered the paper [1] by Peter Bala, written
originally in 2015, which covers some of the ground of this paper and can be read as a
complementary text.

2 The vertical and horizontal halves of a Riordan array

Given a Riordan array M = (g(x), f(x)) = (g(x), xh(x)) with matrix representation (Tn,k)
we shall denote by its vertical half the matrix MV with general (n, k)-th term T2n−k,n. We
have the following result [7, 8].

Lemma 2. Given a Riordan array M = (g(x), f(x)), its vertical half V is the Riordan array

V =

(

φ(x)φ′(x)g(φ(x))

f(φ(x))
, φ(x)

)

=

(

xφ′(x)g(φ(x))

φ(x)
, φ(x)

)

,

where

φ(x) = Rev

(

x2

f(x)

)

.

Proof. We have

T2n−k,n = [x2n−k]g(x)(xh(x))n

= [xn]g(x)xkhn

= (n + 1)
1

n+ 1
[xn]

gxk

h
hn+1

= (n + 1)[xn+1]G
(

Rev
(x

h

))

= [xn]G′
(

Rev
(x

h

)) d

dx
Rev

(x

h

)

= [xn]

(

gxk

h

)

(φ)φ′

= [xn]
xφ′g(φ)

φ
φk,

where we have used the fact that h(φ) = φ

x
.
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Corollary 3. We have the factorization

V = (g(φ(x)), x) ·
(

xφ′(x)

φ(x)
, φ(x)

)

,

where the factor
(

xφ′(x)
φ(x)

, x
)

is an element of the hitting-time subgroup of the Riordan group.

Proof. We have φ(x) = Rev
(

x2

f(x)

)

, and so f(x) = x2

φ̄(x)
. Hence we have

f(φ(x)) =
φ(x)2

x
,

and so

φ(x)φ′(x)g(φ(x))

f(φ(x))
=
φ(x)φ′(x)

φ2

x

g(φ(x))

=
xφ′(x)

φ(x)
.g(φ(x)).

Thus

V =

(

xφ′(x)

φ(x)
.g(φ(x)), φ(x)

)

= (g(φ(x)), x) ·
(

xφ′(x)

φ(x)
, φ(x)

)

.

The horizontal half H of the array M = (g(x), f(x)) is the array whose matrix repre-
sentation has general (n, k)-th term given by T2n,n+k. We then have the following result
[2].

Lemma 4. Given a Riordan array (g(x), f(x)), its horizontal half H is the Riordan array

(

φ(x)φ′(x)g(φ(x))

f(φ(x))
, f(φ(x))

)

,

where

φ(x) = Rev

(

x2

f(x)

)

.

For completeness, we reproduce the proof from [2]

Proof. The matrix H is a Riordan array since we exhibit it as the product of two Riordan
arrays. In order to show that it is the product of two Riordan arrays, we proceed as follows,
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using Lagrange inversion.

T2n,n+k = [x2n]g(x)(xf(x))n+k

= [x2n]xn+kg(x)f(x)kf(x)n

= [xn]g(x)(xf(x))kf(x)n

=

n
∑

i=0

[xi]g(x)(xf(x))k[xn−i]f(x)n

=
n
∑

i=0

ai,k[x
n]

xi

f(x)
f(x)n+1

=

n
∑

i=0

ai,k(n+ 1)
1

n+ 1
[xn]F ′(x)f(x)n+1 (F ′(x) =

xi

f(x)
)

=
n
∑

i=0

ai,k(n+ 1)[xn+1]F

(

Rev

(

x

f(x)

))

=

n
∑

i=0

ai,k[x
n]F ′

(

Rev

(

x

f(x)

))

d

dx
Rev

(

x

f(x)

)

=
n
∑

i=0

ai,k[x
n]

(

Rev
(

x
f(x)

))i

f
(

Rev
(

x
f(x)

))

d

dx
Rev

(

x

f(x)

)

=

n
∑

i=0

Ti,k[x
n]

φ′(x)

f(φ(x))
(φ(x))i

=
n
∑

i=0

mn,iTi,k,

where

mn,k = [xn]
φ′(x)

f(φ(x))
(φ(x))k

is the general term of the Riordan array

(

φ′

f(φ)
, φ

)

.

Corollary 5. We have

H = (g(φ(x)), x) ·
(

xφ′(x)

φ(x)
, f(φ(x))

)

.
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Example 6. We consider the Pascal-like Riordan array
(

1
1−x

, x(1+x)
1−x

)

which begins





















1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 3 1 0 0 0 0
1 5 5 1 0 0 0
1 7 13 7 1 0 0
1 9 25 25 9 1 0
1 11 41 63 41 11 1





















.

The elements of the vertical half of this array are in bold in the following.





















1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 3 1 0 0 0 0
1 5 5 1 0 0 0
1 7 13 7 1 0 0
1 9 25 25 9 1 0
1 11 41 63 41 11 1





















.

The elements of the horizontal half of this array are in bold in the following.

A =























1 0 0 0 0 0 · · ·
1 1 0 0 0 0 · · ·
1 3 1 0 0 0 · · ·
1 5 5 1 0 0 · · ·
1 7 13 7 1 0 · · ·
1 9 25 25 9 1 · · ·
...

...
...

...
...

...
. . .























.

We have

φ(x) = Rev

(

x2

f(x)

)

= Rev

(

x(1 − x)

1 + x

)

=
1− x−

√
1− 6x+ x2

2
.

Then
φ(x)φ′(x)g(φ(x))

f(φ(x))
=

1√
1− 6x+ x2

and hence the vertical half array corresponding to
(

1
1−x

, x(1+x)
1−x

)

is given by the array

(

1√
1− 6x+ x2

,
1− x−

√
1− 6x+ x2

2

)

.
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This matrix begins

V =





















1 0 0 0 0 0 0
3 1 0 0 0 0 0
13 5 1 0 0 0 0
63 25 7 1 0 0 0
321 129 41 9 1 0 0
1683 681 231 61 11 1 0
8989 3653 1289 377 85 13 1





















.

Now

f(φ(x)) =
1− 4x+ x2 − (1− x)

√
1− 6x+ x2

2x
,

and so the horizontal half of the array is given by

(

1√
1− 6x+ x2

,
1− 4x+ x2 − (1− x)

√
1− 6x+ x2

2x

)

.

This array begins

H =





















1 0 0 0 0 0 0
3 1 0 0 0 0 0
13 7 1 0 0 0 0
63 41 11 1 0 0 0
321 231 85 15 1 0 0
1683 1289 575 145 19 1 0
8989 7183 3649 1159 221 23 1





















.

We calculate the product
V −1 ·H.

We get the matrix that begins





















1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 2 1 0 0 0 0
0 2 4 1 0 0 0
0 2 8 6 1 0 0
0 2 12 18 8 1 0
0 2 16 38 32 10 1





















.

This is the array (1, f(x)). This is a general result.

Proposition 7. Let V and H be respectively the vertical and horizontal halves of the Riordan

array (g(x), f(x)). Then we have

V −1 ·H = (1, f(x)).
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Proof. We have
(

φ(x)φ′(x)g(φ(x))

f(φ(x))
, f(φ(x))

)

=

(

φ(x)φ′(x)g(φ(x))

f(φ(x))
, φ(x)

)

· (1, f(x)).

In general, we have

V = (g(φ), x) ·
(

xφ′

φ
, φ

)

,

H = (g(φ), x) ·
(

xφ′

φ
, f(φ)

)

= (g(φ), x) ·
(

xφ′

φ
, φ

)

· (1, f).

Thus
H = V · (1, f).

We end this section with a generic factorization of elements of the associated or Lagrange
subgroup of the Riordan group.

Proposition 8. Let A = (1, f(x)) be an element of the associated group. Let H and V
respectively be the horizontal half and the vertical half of A. The array V is an element of

the hitting time subgroup, and thus so is V −1. We then have

V · A = H,

or equivalently,

A = V −1 ·H.

Proof. For A = (1, f), we have g(x) = 1, and so (g(φ), x) = (1, x) the identity. We then
apply the above result.

We may also verify the factorization directly as follows. Since φ = Rev
(

x2

f(x)

)

, we have

that f(x) = x2

φ̄(x)
and so f(φ(x)) = φ(x)2

x
. Then the result corresponds to the following

product of Riordan arrays.
(

xφ′(x)

φ(x)
, φ(x)

)

·
(

1,
x2

φ̄(x)

)

=

(

xφ′(x)

φ(x)
,
φ2

x

)

,

which is easily verified.

Example 9. We seek the “hitting-time” factorization of the Catalan matrix given by
(1, xc(x)) where c(x) = 1−

√
1−4x
2x

is the generating function of the Catalan numbers 1
n+1

(

2n
n

)

.
This array begins





















1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 0 0 0
0 2 2 1 0 0 0
0 5 5 3 1 0 0
0 14 14 9 4 1 0
0 42 42 28 14 5 1





















.
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We have

f(x) = xc(x) =⇒ φ(x) =
2
√
x sin

(

1
3
sin−1

(

3
√
3
√
x

2

))

√
3

.

We then find that

f(φ(x)) =
1

2
−

√√
3− 8

√
x sin

(

1
3
sin−1

(

3
√
3
√
x

2

))

2 4
√
3

,

and

xφ′

φ
=

√
3
√
x cot

(

1
3
sin−1

(

3
√
3
√
x

2

))

2
√
4− 27x

+
1

2
.

The vertical half V of (1, xc(x)) then begins





















1 0 0 0 0 0 0
1 1 0 0 0 0 0
5 2 1 0 0 0 0
28 9 3 1 0 0 0
165 48 14 4 1 0 0
1001 275 75 20 5 1 0
6188 1638 429 110 27 6 1





















.

This is




√
3
√
x cot

(

1
3
sin−1

(

3
√
3
√
x

2

))

2
√
4− 27x

+
1

2
,
2
√
x sin

(

1
3
sin−1

(

3
√
3
√
x

2

))

√
3



 .

The horizontal half H of (1, xc(x)) begins





















1 0 0 0 0 0 0
1 1 0 0 0 0 0
5 3 1 0 0 0 0
28 14 5 1 0 0 0
165 75 27 7 1 0 0
1001 429 154 44 9 1 0
6188 2548 910 273 65 11 1





















.

This is









√
3
√
x cot

(

1
3
sin−1

(

3
√
3
√
x

2

))

2
√
4− 27x

+
1

2
,
1

2
−

√√
3− 8

√
x sin

(

1
3
sin−1

(

3
√
3
√
x

2

))

2 4
√
3









.

We note that we can express the inverse V −1 of the vertical half V in terms of f(x).
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Proposition 10. We have

V −1 =

(

2− xf ′(x)

f(x)
,
x2

f(x)

)

.

Proof. We have

V =

(

xφ′(x)

φ(x)
, φ(x)

)

,

where

φ(x) = Rev

(

x2

f(x)

)

.

Now since V is in the hitting-time subgroup, its inverse will be given by

V −1 =

(

xφ̄′(x)

φ̄(x)
, φ̄(x)

)

.

Here, we have

φ̄(x) =
x2

f(x)
.

We find that
xφ̄′(x)

φ̄(x)
=

2f(x)− xf ′(x)

f(x)
,

and the result follows.

We close this section by asking the question: what condition on f(x) guarantees that the
vertical half V be a pseudo-involution? The following provides an answer.

Proposition 11. The vertical half V of the array (1, f(x)) will be a pseudo-involution when-

ever we have
x2

f(x)
= Rev

(

x2

−f(−x)

)

.

Proof. In order that V =
(

xφ′(x)
φ(x)

, φ(x)
)

be a pseudo-involution, we require that

φ̄(x) = −φ(−x).

But since φ̄(x) = x2

f(x)
, this means that we require

x2

f(x)
= −Rev

(

x2

f(−x)

)

= Rev

(

x2

−f(−x)

)

.
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Example 12. We take f(x) = x(1 + x). Then (1, f(x)) is the matrix
((

n−1
n−k

))

. Now

φ(x) = Rev

(

x2

x(1 + x)

)

=
x

1− x
.

This means that

V =

(

1

1− x
,

x

1− x

)

.

This is the binomial matrix
((

n

k

))

, which is indeed a pseudo-involution.

We close this section by noting the importance of the hitting-time group element
(

xφ′

φ
, φ
)

.

H = (g(φ), x) ·
(

xφ′

φ
,
φ2

x

)

=

(

xφ′

φ
, φ

)

· (g, f).

V = (g(φ), x) ·
(

xφ′

φ
, φ

)

.

We see that in general we have

V · (g, f) = (g(φ(x)), x) ·H.

3 Riordan antecedents of a Riordan array half

We now consider the question: given a Riordan array (ψ(x), φ(x)), can we express it as
the half (either vertical or horizontal) of another Riordan array (g(x), f(x))? If such a
Riordan array (g(x), f(x)) exists, we shall call it a Riordan antecedent of the given matrix
(ψ(x), φ(x)). Note that if we drop the stipulation of being Riordan, then it is possible to
define an arbitrary number of lower-triangular invertible antecedents.

Example 13. Consider the array R = (ψ(x), φ(x)) =
(

1
1−x

, x
1−x

)

(the binomial array). As we

have seen, its general element is
(

n

k

)

. We claim that the matrix with general termM =
(

k

2k−n

)

is a vertical antecedent of A, that is, we have MV = A. This follows since if Tn,k =
(

k

2k−n

)

,

then T2n−k,n =
(

n

2n−(2n−k)

)

=
(

n

k

)

. The matrix (
(

k

2k−n

)

) = (
(

k

n−k

)

) begins

























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 2 1 0 0 0 0
0 0 1 3 1 0 0 0
0 0 0 3 4 1 0 0
0 0 0 1 6 5 1 0
0 0 0 0 4 10 6 1

























.

This is in fact the Riordan array (1, x(1+x)) so in this case we see that the binomial matrix
has a vertical Riordan antecedent.
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Example 14. For this example, we again take the case of the binomial matrix
((

n

k

))

. We

now consider the matrix with general term
( n

2

k−n

2

)

. This matrix begins

























1 0 0 0 0 0 0 0
1
2

1 0 0 0 0 0 0
0 1 1 0 0 0 0 0

− 1
16

3
8

3
2

1 0 0 0 0
0 0 1 2 1 0 0 0
3

256
− 5

128
5
16

15
8

5
2

1 0 0
0 0 0 1 3 3 1 0

− 5
2048

7
1024

− 7
256

35
128

35
16

35
8

7
2

1

























.

Letting Tn,k =
( n

2

k−n

2

)

, we can calculate that T2n,n+k =
(

n

k

)

. Thus the matrix (
( n

2

k−n

2

)

) is a

horizontal antecedent of the binomial matrix.

We have the following general results.

Proposition 15. Every Riordan array (Ψ(x),Φ(x)) has a vertical Riordan antecedent.

Proof. If such an antecedent exists, then there would exist a Riordan array (g(x), f(x)) with
vertical half given by

(

φ(x)φ′(x)g(φ(x))

f(φ(x))
, φ(x)

)

,

where

φ(x) = Rev

(

x2

f(x)

)

.

We would then have
Φ(x) = φ(x)

and
φ(x)φ′(x)g(φ(x))

f(φ(x))
= Ψ(x).

Thus we must show that we can solve these last two equations to obtain g(x) and f(x).
Using the presumed equality of Φ(x) and φ(x), we set

Φ(x) = Rev

(

x2

f(x)

)

,

or

f(x) =
x2

Rev(Φ(x))
.

We now solve the equation
Φ′ · Φ · u
f(Φ)

= Ψ

to obtain u = u(x). Then setting g(x) = u(Rev(Φ(x))) gives us the second element of the
pair (g(x), f(x)).
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Example 16. We consider the Riordan array (ψ, φ) =
(

1
1−x

, x(1+x)
1−x

)

. We have

φ(x) =
x(1 + x)

1− x
=⇒ φ̄(x) =

√
1 + 6x+ x2 − x− 1

2
.

Thus we have

f(x) =
x2

φ̄(x)
=
x(1 + x+

√
1 + 6x+ x2)

2
.

We calculate f(φ(x)) = x(1+x)2

(1−x)2
. We must now solve for u in the equation

φ′ · φ · u
f(φ)

= ψ =
1

1− x
.

We obtain

u(x) =
1 + x

1 + 2x− x2
.

Finally we have

g(x) = u(φ̄(x)) =
1 + x+

√
1 + 6x+ x2

2
√
1 + 6x+ x2

.

The matrix
(

1 + x+
√
1 + 6x+ x2

2
√
1 + 6x+ x2

,
x(1 + x+

√
1 + 6x+ x2)

2

)

is thus a vertical Riordan antecedent of the Pascal-like Riordan array
(

1
1−x

, x(1+x)
1−x

)

. This

antecedent matrix begins

























1 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0
5 1 1 0 0 0 0 0

−25 1 3 1 0 0 0 0
129 −7 1 5 1 0 0 0
−681 41 −1 5 7 1 0 0
3653 −231 9 1 13 9 1 0

−19825 1289 −61 1 7 25 11 1

























.

We also have the following result.

Proposition 17. Assume given a Riordan array (Ψ(x),Γ(x)). If there exists a solution f(x)
of the implicit equation

Γ

(

x2

f(x)

)

= f(x)

with f(0) = 0, then we can construct a horizontal Riordan antecedent of (Ψ(x),Γ(x)).

13



Proof. If such an antecedent (g(x), f(x)) existed, then we should have

(Ψ(x),Γ(x)) =

(

φ(x)φ′(x)g(φ(x))

f(φ(x))
, f(φ(x))

)

,

where

φ(x) = Rev

(

x2

f(x)

)

.

This last equation gives us

φ̄(x) =
x2

f(x)
.

Now Γ(x) = f(φ(x)) gives us that

Γ(φ̄(x)) = f(φ(φ̄(x))) = f(x).

This gives us an implicit equation for f .

Γ

(

x2

f(x)

)

= f(x).

Let f(x) be the solution of this equation for which f(0) = 0. We can now solve for the

corresponding φ since φ(x) = Rev
(

x2

f(x)

)

. As before, we can now solve for g(x).

Example 18. We consider the case of the binomial matrix
(

1
1−x

, x
1−x

)

. Thus Γ(x) = x
1−x

,
and the equation

Γ

(

x2

f(x)

)

= f(x)

becomes the equation
x2

f − x2
= f,

with solution

f(x) =
x2 + x

√
x2 + 4

2
.

This gives us

φ̄(x) =
x2

f(x)
=
x(
√
x2 + 4− x)

2
.

Solving for φ(x), we get

φ(x) =
x√
1− x

.

Solving the equation
φ′ · φ · u
f(φ)

=
1

1− x
,

14



we obtain u(x) = 2
2−x

. Then we have

g(x) = u(φ̄(x)) =
x+

√
x2 + 4√

x2 + 4
.

Thus the sought-after horizontal Riordan antecedent of the binomial matrix is given by the
Riordan array

(

x+
√
x2 + 4√

x2 + 4
,
x2 + x

√
x2 + 4

2

)

.

This matrix begins





































1 0 0 0 0 0 0 0 0 0 0
1
2

1 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0

− 1
16

3
8

3
2

1 0 0 0 0 0 0 0
0 0 1 2 1 0 0 0 0 0 0
3

256
− 5

128
5
16

15
8

5
2

1 0 0 0 0 0
0 0 0 1 3 3 1 0 0 0 0

− 5
2048

7
1024

− 7
256

35
128

35
16

35
8

7
2

1 0 0 0
0 0 0 0 1 4 6 4 1 0 0
35

65536
− 45

32768
9

2048
− 21

1024
63
256

315
128

105
16

63
8

9
2

1 0
0 0 0 0 0 1 5 10 10 5 1





































.

We note that while the original matrix was integer valued, its antecedent has rational values.
The inverse of the antecedent matrix is the Riordan array

(

2 + x

2(1 + x)
,

x√
1 + x

)

.

Example 19. We now consider the matrix (Ψ(x),Γ(x)) =
(

1
1−x

, x
(1−x)2

)

. This matrix

A085478 begins as follows.












1 0 0 0 0
1 1 0 0 0
1 3 1 0 0
1 6 5 1 0
1 10 15 7 1













.

It has its general (n, k) element given by
(

n+k

2k

)

. In this case, the implicit equation

Γ

(

x2

f(x)

)

= f(x)

becomes the equation
fx2

(x2 − f)2
= f,
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with solution
f(x) = x(1 + x).

Thus

φ̄(x) =
x2

f(x)
=

x2

x(1 + x)
=

x

1 + x
,

from which we get

φ(x) =
x

1− x
.

Proceeding as above we now find that

g(x) = 1.

Thus the horizontal antecedent of
(

1
1−x

, x
(1−x)2

)

is the integer valued matrix (1, x(1 + x)) =
((

k

n−k

))

. This matrix begins as follows.

























1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 2 1 0 0 0 0
0 0 1 3 1 0 0 0
0 0 0 3 4 1 0 0
0 0 0 1 6 5 1 0
0 0 0 0 4 10 6 1

























.

Letting Tn,k =
(

n+k

2k

)

, we have that Tn

2
,k−n

2
=
(

k

n−k

)

, which is the general term of (1, x(1+x)).

This example show that the matrix (
(

k

n−k

)

) is a vertical Riordan antecedent of the bino-

mial matrix (
(

n

k

)

) and a horizontal Riordan antecedent of the matrix (
(

n+k

2k

)

).
With regard to the first component g(x) of an antecedent, we have the following result.

Proposition 20. Suppose given a Riordan antecedent (g(x), f(x)) of a Riordan array (ψ(x), φ(x)).
Then we have

g(x) =
f(x)

x
φ̄′(x)ψ(φ̄(x)).

Proof. We have g(x) = u(φ̄(x)) where

φ · φ′ · u
f(φ)

= ψ.

This gives

u =
f(φ)ψ

φ · φ′

and so

g(x) = u(φ̄(x)) =
f(φ(φ̄(x)))ψ(φ̄(x))

φ(φ̄(x)) · φ′(φ̄(x))

The result now follows from φ(φ̄(x)) = x and φ′(φ̄(x)) = 1
φ̄′(x)

.
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Corollary 21. Let Ψ(x) be a primitive of ψ(x): Ψ′(x) = ψ(x). Then in the circumstances

above, we have

g(x) =
f(x)

x

d

dx
Ψ(φ̄(x)).

Corollary 22. Let (g1(x), f(x)) and (g2(x), f(x)) be antecedents of the Riordan arrays

(ψ1(x), φ(x)) and (ψ2(x), φ(x)), respectively. Then we have

g1(x)

g2(x)
=
ψ1(φ̄(x))

ψ2(φ̄(x))
.

4 Further antecedent examples

Example 23. We consider the combinatorially important case of the Catalan triangle
A033184 given by the Riordan array (c(x), xc(x)) where c(x) = 1−

√
1−4x
2x

= Rev(x(1 − x))

is the generating function of the Catalan numbers Cn = 1
n+1

(

2n
n

)

. This matrix has general

element k+1
n+1

(

2n−k

n−k

)

and it begins as follows.

















1 0 0 0 0 0
1 1 0 0 0 0
2 2 1 0 0 0
5 5 3 1 0 0
14 14 9 4 1 0
42 42 28 14 5 1

















.

We take (ψ(x), φ(x)) = (c(x), xc(x)) and we seek the vertical antecedent (g(x), f(x)) of this
matrix. We have

f(x) =
x2

Rev(xc(x))
=

x2

x(1− x)
=

x

1− x
.

We have φ′(x) = (xc(x))′ = 1√
1−4x

, while

f(φ(x)) =
1− 2x−

√
1− 4x

2x
.

Solving for g(x), we obtain

g(x) =
1− 2x

(1− x)2
.

Thus a vertical Riordan antecedent of the Catalan matrix (c(x), xc(x)) is given by the Rior-
dan array

(

1− 2x

(1− x)2
,

x

1− x

)

.
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This matrix begins




















1 0 0 0 0 0 0
0 1 0 0 0 0 0
−1 1 1 0 0 0 0
−2 0 2 1 0 0 0
−3 −2 2 3 1 0 0
−4 −5 0 5 4 1 0
−5 −9 −5 5 9 5 1





















.

We find that the horizontal Riordan antecedent of (c(x), xc(x)) is given by

(

2− 5x+ 3x2

2− 4x
, x
√
1− x

)−1

.

This array begins

























1 0 0 0 0 0 0 0
1
2

1 0 0 0 0 0 0
0 1 1 0 0 0 0 0

−21
16

7
8

3
2

1 0 0 0 0
−5 0 2 2 1 0 0 0

−3861
256

−429
128

33
16

27
8

5
2

1 0 0
−42 −14 0 5 5 3 1 0

−230945
2048

−46189
1024

−2431
256

715
128

143
16

55
8

7
2

1

























.

Example 24. We finish with the case of the Riordan array
(

1
1−x−x2 ,

x
1−x−x2

)

. This matrix
A037027 begins













1 0 0 0 0
1 1 0 0 0
2 2 1 0 0
3 5 3 1 0
5 10 9 4 1













.

Letting Γ(x) = x
1−x−x2 , we find that

f(x) =
1

2
(x2 + x

√
4 + 5x2).

Also we obtain

φ̄(x) =
2x2

x2 + x
√
4 + 5x2

and
φ(x) =

x√
1− x− x2

.

Finally we obtain

g(x) =
4 + 6x2 + 2x

√
4 + 5x2

4 + 5x2 + x
√
4 + 5x2

.
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Thus a horizontal antecedent Riordan array to the Fibonacci array
(

1
1−x−x2 ,

x
1−x−x2

)

is given
by the array

(

4 + 6x2 + 2x
√
4 + 5x2

4 + 5x2 + x
√
4 + 5x2

,
1

2
(x2 + x

√
4 + 5x2)

)

.

This array begins





























1 0 0 0 0 0 0 0 0
1
2

1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0

− 5
16

7
8

3
2

1 0 0 0 0 0
0 0 2 2 1 0 0 0 0
75
256

− 45
128

17
16

27
8

5
2

1 0 0 0
0 0 0 3 5 3 1 0 0

− 625
2048

275
1024

− 95
256

203
128

95
16

55
8

7
2

1 0
0 0 0 0 5 10 9 4 1





























.

The first column of this array, with generating function g(x), begins

1,
1

2
, 0,− 5

16
, 0,

75

256
, 0,− 625

2048
, 0,

21875

65536
, 0, . . . .

Its Hankel transform hn is given as follows.

Proposition 25. The Hankel transform of the expansion of g(x) is given by

hn = (−1)(
n+1

2 ) 5
2⌊n

2

4
⌋

4n2
.

This follows from the following result.

Proposition 26. The generating function g(x) has the following Jacobi continued fraction

expansion.

g(x) =
1

1− x
2
+

x2

4

1− 3x
4
+

25x2

16

1 + x+
x2

16

1− x+
25x2

16

1 + x+
x2

16

1− · · ·

.

Here, the Jacobi parameters are

J (1/2, 3/4,−1, 1,−1, 1,−1, 1, . . . ;−1/4,−25/16,−1/16,−25/16,−1/16,−25/16, . . .).

Thus the elements of the expansion of g(x) are the moments of a family of orthogonal
polynomials.
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