
ar
X

iv
:1

90
6.

07
65

2v
1 

 [
m

at
h.

N
T

] 
 1

6 
Ju

n 
20

19

ON THE DIVISIBILITY OF BINOMIAL COEFFICIENTS

SÍLVIA CASACUBERTA

Abstract. In Pacific J. Math. 292 (2018), 223–238, Shareshian and Woodroofe
asked if for every positive integer n there exist primes p and q such that, for all
integers k with 1 ≤ k ≤ n− 1, the binomial coefficient

(

n

k

)

is divisible by at least
one of p or q. We give conditions under which a number n has this property and
discuss a variant of this problem involving more than two primes. We prove that
every positive integer n has infinitely many multiples with this property.

1. Introduction

Binomial coefficients display interesting divisibility properties. Conditions under
which a prime power pa divides a binomial coefficient

(

n
k

)

are given by Kummer’s
Theorem [10] and also by a generalized form of Lucas’ Theorem [5, 12].

Still, there are problems involving divisibility of binomial coefficients that remain
unsolved. In this article we investigate the following question, which was asked by
Shareshian and Woodroofe in [15].

Question 1.1. Is it true that for every positive integer n there exist primes p and
q such that, for all integers k with 1 ≤ k ≤ n − 1, the binomial coefficient

(

n
k

)

is
divisible by p or q?

As in [15], we say that n satisfies Condition 1 if such primes p and q exist for n.
In this article we discuss sufficient conditions under which an integer n satisfies
Condition 1. In Sections 2 and 3 we prove a variation of the Sieve Lemma from
[15] and use it to show that n satisfies Condition 1 if certain inequalities hold. In
Section 5 we infer that every positive integer has infinitely many multiples for which
Condition 1 is satisfied.

The collection of numbers for which Condition 1 is not known to hold has asymp-
totic density 0 assuming the truth of Cramér’s conjecture (as first shown in [15]) and
includes most primorials p1p2 · · · pi, where p1, . . . , pi are the first i primes, namely
those primorials such that (p1p2 · · · pi)− 1 is not a prime.

In addition, we introduce the following variant of Condition 1:

Definition 1.2. A positive integer n satisfies the N-variation of Condition 1 if there
exist N different primes p1, . . . , pN such that if 1 ≤ k ≤ n − 1 then

(

n
k

)

is divisible
by at least one of p1, . . . , pN .

For example, it follows from Kummer’s Theorem or from Lucas’ Theorem that a
positive integer n satisfies the 1-variation of Condition 1 if and only if n is a prime
power, and every integer n satisfies the m-variation of Condition 1 if n = pa11 · · · pamm
where p1, . . . , pm are distinct primes. In Section 4 we discuss upper bounds on N so
that a given n satisfies the N -variation of Condition 1.
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2. An extended sieve lemma

Our results in this section will be based on Lucas’ Theorem:

Theorem 2.1 (Lucas [12]). Let p be a prime and let

n = nrp
r + nr−1p

r−1 + · · ·+ n1p+ n0

k = krp
r + kr−1p

r−1 + · · ·+ k1p+ k0

be base p expansions of two positive integers, where 0 ≤ ni < p and 0 ≤ ki < p for

all i, and nr 6= 0. Then
(

n

k

)

≡
r
∏

i=0

(

ni

ki

)

mod p.

By convention, a binomial coefficient
(

ni

ki

)

is zero if ni < ki. Hence, if any of the
digits of the base p expansion of n is 0 whereas the corresponding digit in the base p
expansion of k is nonzero, then

(

n
k

)

is divisible by p. As a particular case, if a prime

power pa with a > 0 divides n and does not divide k, then
(

n
k

)

is divisible by p.
Observe that, if n satisfies Condition 1 with two primes p and q, then at least

one of these primes has to be a divisor of n, because otherwise
(

n
1

)

would not be
divisible by any of them. The next two results are elementary consequences of Lucas’
Theorem.

Proposition 2.2. If n = pa + 1 with p a prime and a > 0, then n satisfies Condi-

tion 1 with p and any prime dividing n.

Proof. If n − 1 is a prime power then the two summands in the left-hand term of
the equality

(

n− 1

k − 1

)

+

(

n− 1

k

)

=

(

n

k

)

are divisible by p by Lucas’ Theorem if 2 ≤ k ≤ n−2, and hence
(

n
k

)

is also divisible

by p. When k = 1 or k = n − 1, we have that
(

n
k

)

= n, so any prime factor of n

divides
(

n
k

)

. �

Proposition 2.3. If a positive integer n is equal to the product of two prime powers

pa1 and pb2 with a > 0, b > 0, and p1 6= p2, then n satisfies Condition 1 with p1
and p2.

Proof. The base p1 expansion of n ends with a zeroes and the base p2 expansion of n
ends with b zeroes. Because a positive integer k smaller than n cannot be divisible
by both pa1 and pb2, it is not possible that k ends with a zeroes in base p1 and b zeroes
in base p2. Consequently, we can apply Lucas’ Theorem modulo p1 if pa1 does not
divide k or modulo p2 if pb2 does not divide k. �

Proposition 2.3 generalizes as follows.

Proposition 2.4. If p1, . . . , pm are distinct primes and n = pa11 · · · pamm with ai > 0
for all i, then n satisfies the m-variation of Condition 1 with p1 . . . , pm.

Proof. If 1 ≤ k ≤ n− 1, then the base pi expansion of k ends with less zeroes than
the base pi expansion of n for at least one prime factor pi of n. �

The following result extends [15, Lemma 4.3]. It is the starting point of our
discussion of Question 1.1 in the next sections.
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Theorem 2.5. Let n be a positive integer and suppose that pa divides n where p is

a prime and a > 0. Suppose that there is a prime q with n/(d+1) < q < n/d, where
d ≥ 1. Then

(

n
k

)

is divisible by p or q except possibly when k is a multiple of pa

belonging to one of the intervals [cq, cq+ β] with β = n− dq and 0 ≤ c < (d+1)/2.

Proof. By symmetry, we only need to consider those values of k with k ≤ n/2.
Moreover, we may restrict our study further to those values of k that are multiples
of pa, since otherwise

(

n
k

)

is divisible by p.
Since q < n/d, the number β = n − dq is positive. If k ≤ β then k is in the

interval [0, β], which is the case c = 0 in the statement of the theorem.
The assumption that n/(d + 1) < q is equivalent to assuming the inequality

n − dq < q, which implies that the last digit in the base q expansion of n is equal
to β. Hence, if β < k < q then we may infer from Lucas’ Theorem that

(

n
k

)

is
divisible by q.

The remaining range of values of k to be considered is q ≤ k ≤ n/2. In this case we
look at the last digit of the base q expansion of k. If this last digit is bigger than β,
then

(

n
k

)

is again divisible by q. Thus the undecided cases are those in which the
residue of k mod q is smaller than or equal to β. This happens when cq ≤ k ≤ cq+β
for some positive integer c, and if cq ≤ k ≤ n/2 then c ≤ n/(2q) < (d+ 1)/2. �

By the Bertrand–Chebyshev Theorem [2], for every integer n > 2 there exists a
prime q such that n/2 < q < n. This yields the following particular instance of
Theorem 2.5, which is also a special case of [15, Lemma 4.3].

Corollary 2.6. For a positive integer n, suppose that pa divides n where p is a

prime and a > 0. If q is a prime such that n/2 < q < n and n − q < pa, then n
satisfies Condition 1 with p and q.

Proof. Pick d = 1 in Theorem 2.5. �

Note that, under the assumptions of Corollary 2.6, the equality n−q = pa cannot
hold, since p divides n and p 6= q because q does not divide n. Hence there remains
to study the case when n − q > pa and q is the largest prime smaller than n while
pa is the largest prime power dividing n. In other words, Condition 1 holds for n
whenever there is a prime between n− pa and n.

The sequence of integers n for which there is no prime between n− pa and n can
be found in The On-Line Encyclopedia of Integer Sequences (OEIS [3]) with the
reference A290203. Its first terms are the following:

(2.1) 126, 210, 330, 630, 1144, 1360, 2520, 2574, 2992, 3432, 3960, 4199 . . .

Banderier’s conjecture [1] claims that if pn# denotes the n-th primorial, that is,

pn# = p1p2 · · · pn
where p1, . . . , pn are the first n primes, and q is the largest prime below pn#, then
either pn#− q = 1 or pn#− q is a prime.

Proposition 2.7. If Banderier’s conjecture is true, then the sequence (2.1) contains
all primorials pn# such that pn#− 1 is not a prime.

Proof. If pn#− 1 is not a prime, then pn#− q is a prime according to Banderier’s
conjecture. Since pn# − q does not divide pn#, we infer that pn# − q is bigger
than pn, which is the largest prime power dividing pn#. �
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The first primorials pn# such that pn#− 1 is not a prime are

p4# = 210, p7# = 510510, p8# = 9699690, p9# = 223092870.

Inspecting this list could be a strategy to seek for a counterexample for Question 1.1.
The complementary list of primorials can be found in OEIS with reference A057704.

For any fixed value of d, the number β in Theorem 2.5 is smallest when q is as
close as possible to n/d. For this reason, we focus our attention on the largest prime
qd below n/d for various values of d. This motivates the next definition.

Definition 2.8. For positive integers n and 1 ≤ d < n/2, let qd be the largest prime
smaller than n/d and let βd = n − dqd. For each integer c with 0 ≤ c < (d + 1)/2,
we call [cqd, cqd + βd] a dangerous interval.

By Theorem 2.5, if we attempt to prove that Condition 1 holds with p and qd
assuming that qd > n/(d + 1) —that is, assuming that the dangerous intervals are
disjoint— we only need to care about values of k that lie in a dangerous interval
and are multiples of the largest power of p dividing n.

In the case d = 1, the only dangerous interval below n/2 is [0, n−q1]. When d = 2,
we have that [0, n−2q2] and [q2, n− q2] are dangerous intervals. Since n− q2 > n/2,
the second interval may be replaced by [q2, n/2] to carry our study further, as we
do in the next section.

Example 2.9. The largest prime below n = p7# = 510510 is q1 = 510481 and the
largest prime dividing n is p = 17. Here n − q1 = 29 and therefore

(

n
k

)

is divisible
by 17 or 510481 for all k except for k = 17.

On the other hand, the largest prime below n/2 = 255255 is q2 = 255253. Thus
β2 = n − 2q2 = 4 and therefore [0, 4] and [255253, 255257] are dangerous intervals.
The second interval contains a multiple of 17, namely n/2. However, since

510510 = 6 · 174 + 1 · 173 + 15 · 172 + 8 · 17
255255 = 3 · 174 + 0 · 173 + 16 · 172 + 4 · 17,

we infer from Lucas’ Theorem that
(

510510
255255

)

is divisible by 17. Consequently,
(

n
k

)

is
divisible by 17 or 255253 for all k.

3. Using the nearest prime below n/2

Nagura showed in [13] that, if m ≥ 25, then there is a prime between m and
(1 + 1/5)m. Therefore, there is a prime q such that 5n/6 < q < n when n ≥ 30.
This implies that, if n ≥ 30 and the largest prime-power divisor pa of n satisfies
pa ≥ n/6, then there is a prime q between n−pa and n and hence Condition 1 holds
for n with p and q.

The following result is sharper.

Proposition 3.1. If n ≥ 2010882 and the largest prime-power divisor pa of n
satisfies pa ≥ n/16598, then n satisfies Condition 1 with p and the nearest prime q
below n.

Proof. Schoenfeld proved in [14] that for m ≥ 2010760 there is a prime between m
and (1 + 1/16597)m. Hence, if n ≥ 2010882 and the largest prime-power divisor pa

of n satisfies pa ≥ n/16598 then there is a prime between n−pa and n, and therefore
Condition 1 holds for n by Corollary 2.6. �
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The following are consequences of Nagura’s and Schoenfeld’s bounds.

Lemma 3.2. Let qd be the largest prime below n/d for positive integers n and d.

(a) If n ≥ 120 and d < 5, then n/(d+ 1) < qd.
(b) If n ≥ 3.34 · 1010 and d < 16597, then n/(d+ 1) < qd.

Proof. By Nagura’s bound [13], if n/d ≥ 30, then 5n/6d < qd < n/d. Therefore,
n− dqd < n/6. If d < 5, then 6d < 5(d+ 1) and hence

n <
5n(d+ 1)

6d
< qd(d+ 1),

as claimed. The proof of part (b) is analogous using Schoenfeld’s bound [14]. �

In order to apply Theorem 2.5 with d = 2 for a given n, we need that there is a
prime q such that n/3 < q < n/2. If q2 denotes the nearest prime below n/2, then
the inequality n/3 < q2 holds if n ≥ 120 by Lemma 3.2. Since by (2.1) we have that
n− q1 < pa if n < 126, we may assume that n/3 < q2 without any loss of generality.

Note that the inequality n/3 < q is equivalent to n − 2q < q, so the intervals
[0, n− 2q] and [q, n− q] are disjoint.

Theorem 3.3. For an odd positive integer n and a prime power pa dividing n,
suppose that there is a prime q with n/3 < q < n/2 and n − 2q < pa. Then n
satisfies Condition 1 with p and q.

Proof. By Theorem 2.5, in order to infer that
(

n
k

)

is divisible by p or q, the only
cases that we need to discuss are those values of k that are multiples of pa with
k ∈ [0, n − 2q] or k ∈ [q, n − q]. By assumption, there are no multiples of pa in
[0, n− 2q]. Since n− q > n/2, we may focus on the interval [q, n/2]. Since n is odd,
n/2 is not an integer; hence we are only left to prove that there is no multiple k of
pa with q ≤ k < n/2. We will prove this by contradiction.

Thus suppose that q ≤ λpa < n/2 for some integer λ. The assumption that
n− 2q < pa implies that n− pa < 2q and hence

n/2− pa/2 < q ≤ λpa.

Consequently, λpa < n/2 < (λ + 1/2)pa. If we now write n = mpa, we obtain that
2λ < m < 2λ+ 1, which is impossible for an integer m. �

The rest of this section is devoted to the case when n is even.

Lemma 3.4. Suppose that n is even and there is a prime q with q < n/2 and

n− 2q < pa, where pa is the largest power of p dividing n. If there is a multiple k of

pa in the interval [q, n/2], then p is odd and k = n/2.

Proof. Suppose first that p is odd. Then the integer n/2 is a multiple of pa, so we
may write n/2 = λpa for some integer λ. If there is another multiple of pa in the
interval [q, n/2], then q ≤ (λ− 1)pa < n/2, and this implies that

n/2− pa = λpa − pa = (λ− 1)pa ≥ q.

Hence n− 2q ≥ 2pa, which is incompatible with our assumption that n− 2q < pa.
In the case p = 2 (so that 2a is the largest power of 2 dividing n), we have that n/2

is divisible by 2a−1, and we may write n/2 = λ2a−1 with λ odd. If there is a multiple
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of 2a in the interval [q, n/2), then q ≤ µ2a < n/2, so µ < λ/2 and µ ≤ (λ − 1)/2
because λ is odd. Therefore

n/2− 2a−1 = (λ− 1)2a−1 ≥ µ2a ≥ q.

Hence, as above, n− 2q ≥ 2a, which contradicts that n− 2q < 2a. �

Theorem 3.5. For an even positive integer n, suppose that there is a prime q with

n/3 < q < n/2 and n− 2q < pa, where pa is the largest power of p dividing n.

(a) If p = 2, then n satisfies Condition 1 with 2 and q.

(b) If p 6= 2, then n satisfies Condition 1 with p and q if and only if
(

n
n/2

)

is

divisible by p.

Proof. By Theorem 2.5 and Lemma 3.4, the only case left is k = n/2 for p odd.
Consequently, if

(

n
n/2

)

is divisible by p, then n satisfies Condition 1 with p and q.

Moreover,
(

n
n/2

)

is not divisible by q, since the base q expansions of n and n/2 are,

respectively, 2 · q + (n− 2q) and 1 · q + (n/2− q). Hence the assumption that
(

n
n/2

)

be divisible by p is necessary. �

Our last remarks in this section correspond to the case when n is even, and they
are only relevant if p 6= 2, by Theorem 3.5. Sufficient conditions are given to infer
that a prime p divides

(

n
n/2

)

. The greatest integer less than or equal to a real number

x is denoted by ⌊x⌋, and we write vp(n) = a if pa is the maximum power of p such
that pa divides n.

Recall from [11] that

(3.1) vp(n!) =
∞
∑

k=1

⌊

n

pk

⌋

=
n− sp(n)

p− 1
,

where sp(n) denotes the sum of all the digits in the base p expansion of n.

Proposition 3.6. Suppose that n is even. A prime p divides
(

n
n/2

)

if and only if at

least one of the numbers ⌊n/pr⌋ with r ≥ 1 is odd.

Proof. By comparing vp(n!) and vp((n/2)!) we see that, for each r,
⌊

n

pr

⌋

= 2

⌊

n/2

pr

⌋

if ⌊n/pr⌋ is even. If ⌊n/pr⌋ is even for all r, we conclude that vp(n!) = 2vp((n/2)!),
and hence p does not divide

(

n
n/2

)

. However, if ⌊n/pr⌋ is odd, then
⌊

n

pr

⌋

= 2

⌊

n/2

pr

⌋

+ 1

and consequently vp(n!) is greater than 2vp((n/2)!). �

Corollary 3.7. If n is even and (n− sp(n))/(p− 1) is odd, then p divides
(

n
n/2

)

.

Proof. This follows from Proposition 3.6 and Legendre’s formula (3.1). �

Corollary 3.8. Suppose that n is even.

(a) If any of the digits in the base p expansion of n/2 is larger than ⌊p/2⌋, then
p divides

(

n
n/2

)

.
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(b) If one of the digits in the base p expansion of n is odd, then p divides
(

n
n/2

)

.

Proof. If a digit of n/2 in base p is larger than ⌊p/2⌋, then when we add n/2 to
itself in base p to obtain n there is at least one carry. Similarly, if n has an odd
digit in base p, then there is a carry when adding n/2 and n/2 in base p. Hence,
by Kummer’s Theorem [10] with k = n/2, if there is at least one carry when adding
n/2 to itself in base p, then p divides

(

n
n/2

)

. �

Corollary 3.9. Let n be an even positive integer. Suppose that there is a prime q
such that n/3 < q < n/2 and n − 2q < pa, where pa denotes the largest power of

p dividing n. If p⌊logn/ log p⌋ > n/2, then p divides
(

n
n/2

)

and therefore n satisfies

Condition 1 with p and q.

Proof. The largest value of r such that pr < n < pr+1 is ⌊logn/ log p⌋. Therefore, in
Proposition 3.6, the exponent r is bounded by ⌊log n/ log p⌋. Also note that r ≥ a,
where a is the largest exponent of p such that pa divides n. If p⌊logn/ log p⌋ > n/2,
then ⌊n/pr⌋ = 1. Because this is odd, p divides

(

n
n/2

)

by Proposition 3.6. �

In those cases when the inequalities n− q1 < pa and n−2q2 < pa both fail for the
largest prime power pa dividing n, a possible strategy is to analyze the inequality
n− dqd < pa for bigger values of d, where qd is the largest prime below n/d.

Up to 1,000,000 there are 88 integers that do not satisfy n− 2q2 < pa, where pa is
the largest prime power dividing n. The On-Line Encyclopedia of Integer Sequences
has published these numbers [4] with the reference A290290. Among these, there
are 25 that do not satisfy the inequality n−3q3 < pa; there are 7 that do not satisfy
the inequality n− 4q4 < pa either; there are 5 for which the inequality n− 5q5 < pa

also fails, and there is only one integer for which the inequality n−6q6 < pa still fails
(namely, n = 875160). However, the value of n− dqd need not decrease as d grows,
and the number of dangerous intervals that one needs to inspect when n− dqd < pa

increases linearly with d. Therefore this strategy is not conclusive, although it often
works in practice.

Example 3.10. The largest prime power dividing n = p14# = 13082761331670030
is p = 43. In this case, n − q1 = 89 and n − 2q2 = 268. Thus, Condition 1 fails
for p and q1 and it also fails for p and q2. Nevertheless, n− 3q3 = 27 works, as the
dangerous interval [q3, n−2q3] contains one multiple of 43, namely n/3, and

(

n
n/3

)

is

divisible by 43. Therefore Condition 1 holds for p = 43 and q3 = 4360920443890001.

Example 3.11. For n = 210, the inequality n − q1 < 7 fails while n − 2q2 < 7 is
true. However,

(

210
105

)

is not divisible by 7. Hence we look for greater values of d and

find that n−5q5 < 7 with q5 = 41. Now 42 ∈ [41, 46] and 84 ∈ [82, 87], yet
(

210
42

)

and
(

210
84

)

are both divisible by 7. Hence Condition 1 is satisfied with p = 7 and q5 = 41.

Example 3.12. For n = 875160, the inequality n−dqd < 17 is satisfied with d = 11
but not with any smaller value of d. There are 6 dangerous intervals of length
n−11q11 = 11. Each of these intervals (except the first) contains one multiple of 17,
and in each case the corresponding binomial coefficient

(

n
k

)

happens to be divisible
by 17. Therefore Condition 1 is satisfied with p = 17 and q11 = 79559.



ON THE DIVISIBILITY OF BINOMIAL COEFFICIENTS 8

4. On the N-variation of Condition 1

Recall from Definition 1.2 that n satisfies the N-variation of Condition 1 if there
are N primes p1, . . . , pN such that if 1 ≤ k ≤ n− 1 then

(

n
k

)

is divisible by at least
one of p1, . . . , pN .

Theorem 4.1. If an even positive integer n satisfies n−2q < pa for a prime q with

n/3 < q < n/2, where pa is the largest power of p dividing n and p 6= 2, then n
satisfies the 3-variation of Condition 1 with p, q and any prime that divides

(

n
n/2

)

.

Proof. According to part (b) of Theorem 3.5, the only binomial coefficient
(

n
k

)

with

1 ≤ k ≤ n− 1 that might fail to be divisible by p or q is
(

n
n/2

)

. Hence it suffices to

add an extra prime with this purpose. �

Proposition 4.2. For a positive integer n, let q1 be the largest prime smaller than n,
let pa11 be the largest prime-power divisor of n and let pa22 be the second largest prime-

power divisor of n. If pa11 pa22 > n−q1, then n satisfies the 3-variation of Condition 1
with p1, p2 and q1.

Proof. By Lucas’ Theorem, for any k such that 1 ≤ k < pa11 , the binomial coefficient
(

n
k

)

is divisible by p1, and for any k such that n − q1 < k ≤ n/2 the binomial

coefficient
(

n
k

)

is divisible by q1. Thus we need to add a prime that divides at least

the binomial coefficients
(

n
k

)

with pa11 ≤ k ≤ n − q1 in which k is a multiple of pa11 .
For this, we pick p2 and therefore we only need to consider those values of k that are,
in addition, multiples of pa22 . The least k that is a multiple of both prime powers
is pa11 pa22 . Therefore, if pa11 pa22 > n − q1, then all values of k lying in the interval
pa11 ≤ k ≤ n− q1 are such that

(

n
k

)

is divisible by p1 or p2. �

In the statement of Proposition 4.2, the condition that pa11 pa22 > n − q1 holds by
Nagura’s bound [13] if we impose instead that pa11 pa22 > n/6.

For each n, we are interested in the minimum number N of primes such that n
satisfies the N -variation of Condition 1. We next discuss upper bounds for N .

Proposition 4.3. For positive integers n and d, suppose that there is a prime q such

that n/(d+ 1) < q < n/d and a prime-power divisor pa of n such that n− dq < pa.
Then n satisfies the N-variation of Condition 1 with N = 2 + ⌊d/2⌋.
Proof. By Theorem 2.5, the binomial coefficients

(

n
k

)

are divisible by q except pos-
sibly if k lies in a dangerous interval. In the dangerous intervals we only need
to consider those integers that are multiples of pa, since otherwise

(

n
k

)

is divisible
by p. Since we are assuming that n − dq < pa, we know that in each dangerous
interval there is at most one multiple of pa. This means that the worst case is the
one in which there is a multiple of pa in every dangerous interval [cq, cq + β] with
1 ≤ c ≤ ⌊d/2⌋. Hence we pick one extra prime for each such interval. �

Corollary 4.4. If 1 < d < 5 and pa > qd+βd where p
a divides n and qd is the largest

prime below n/d, and βd = n− dqd, then n satisfies Condition 1 with p and qd.

Proof. By Lemma 3.2, we may assume that n/(d+1) < qd. If 1 < d < 5, then ⌊d/2⌋
equals 1 or 2. If ⌊d/2⌋ = 1, then the assumption that pa > qd + βd implies that no
multiple of pa falls into any dangerous interval until n/2. If ⌊d/2⌋ = 2, then we need
to check that 2pa > 2qd + βd in order to ensure that 2pa does not fall into the third
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dangerous interval. The minimum value of pa such that our assumption pa > qd+βd

holds is qd+βd+1. The next multiple of qd+βd+1 is 2qd+2βd+2, which is greater
than 2qd + βd and therefore 2pa does not fall into the third dangerous interval. �

In order to refine the conclusion of Proposition 4.3, we consider the Diophantine
equation

(4.1) pax− qdy = δ,

for 0 ≤ δ ≤ βd = n − dqd, where pa is a prime-power divisor of a given number n
and qd is the largest prime below n/d with d ≥ 1. We keep assuming, as above, that
qd > n/(d + 1). We will also assume that p 6= qd, which guarantees that (4.1) has
infinitely many solutions for each value of δ. Specifically, if (x1, y1) is a particular
solution for some value of δ, then the general solution for this δ is

x = x1 + rqd, y = y1 + rpa,

where r is any integer. In the next theorem we denote by N(δ) the number of
solutions (x, y) of (4.1) with x > 0 and 0 ≤ y ≤ ⌊d/2⌋ for each value of δ with
0 ≤ δ ≤ βd. Thus N(δ) = 0 precisely when (4.1) has no solution (x, y) subject to
these conditions.

Theorem 4.5. For positive integers n and d, suppose that the largest prime qd below
n/d satisfies qd > n/(d+1), and let βd = n−dqd. Let p

a be a prime power dividing n
with p 6= qd. Then n satisfies the N-variation of Condition 1 with

N = 2 +

βd
∑

δ=0

N(δ),

where N(δ) is the number of solutions (x, y) of pax − qdy = δ with x > 0 and

0 ≤ y ≤ ⌊d/2⌋ for each value of δ with 0 ≤ δ ≤ βd.

Proof. The number N(δ) counts how many times a multiple of pa falls into a danger-
ous interval [cqd, cqd + βd] at a distance δ from the origin of that interval. Thus we
pick an extra prime for each such case, and add two to the sum in order to account
for p and qd. �

Example 4.6. The largest prime-power divisor of n = 96135 is p = 29. For d = 4 we
find that q4 = 24029 and β4 = 19. Since 24029 ≡ 17 mod 29, the only solution (x, y)
of the Diophantine equation 29x−24029y = δ with x > 0 and 0 ≤ y ≤ 2 is (829, 1) for
δ = 12. Thus, N(12) = 1 and N = 3 for d = 4. In other words, the only occurrence
of a multiple of 29 in a dangerous interval for d = 4 is 24041 ∈ [24029, 24048]. This
example shows that the bound 2 + ⌊d/2⌋ given in Proposition 4.3 can be lowered.

The number N given by Theorem 4.5 is not a sharp bound. For those multiples
pax of pa falling into a dangerous interval [cqd, cqd + βd], it often happens that the
corresponding binomial coefficient

(

n
pax

)

is divisible by p, as in Example 4.6 or in

other examples given in the previous sections. It could also be divisible by qd if
d ≥ qd. When d < qd, we have that n satisfies Condition 1 with p and qd if and only
if the binomial coefficient

(

n
pax

)

is divisible by p for every solution (x, y) of (4.1) with

x > 0 and 0 ≤ y ≤ ⌊d/2⌋, since n = dqd + βd and pax = yqd + δ with δ ≤ βd < qd
and y ≤ ⌊d/2⌋ < d, so

(

n
pax

)

is not divisible by qd by Lucas’ Theorem. Note also, for

practical purposes, that
(

n
pax

)

≡
(

n/pa

x

)

mod p.
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5. Every number has multiples for which Condition 1 holds

We next prove that every positive integer n has infinitely many multiples for which
Condition 1 holds. We are indebted to R.Woodroofe for simplifying and improving
our earlier statement of this result, which was based on prime gap conjectures.

It follows from the Prime Number Theorem [7] that, given any real number ε > 0,
there is a prime between m and m(1 + ε) for sufficiently large m. This fact can be
used to prove the following:

Theorem 5.1. For every positive integer n and every prime p, the number npk

satisfies Condition 1 with p and another prime, for all sufficiently large values of k.

Proof. For any prime p and any k > 0, let m = npk − pk = pk(n− 1). Then

npk = m+ pk = m

(

1 +
1

n− 1

)

.

Therefore, by the Prime Number Theorem, there is a prime between m and npk

for all sufficiently large values of k. Choose the largest prime q with this property.
Thus,

npk − pk < q < npk,

so npk − q < pk, from which it follows, according to Corollary 2.6, that npk satisfies
Condition 1 with p and q. �

Theorem 5.2. For every positive integer n there is a number M such that if p is

any prime with p > M then np satisfies Condition 1 with p and another prime.

Proof. Given n, let ε = 1/(n− 1). Choose m0 such that there is a prime between m
and m(1 + ε) for all m ≥ m0, and let M = εm0. If p is any prime such that p > M ,
then for m = p(n− 1) we have

np = m+ p = m
(

1 +
p

m

)

= m

(

1 +
1

n− 1

)

= m(1 + ε).

Therefore, by our choice of m0, there is a prime between m and np. If q is the
largest prime with this property, then np − p < q < np, and consequently np
satisfies Condition 1 with p and q. �

Prime gap conjectures provide information relevant to our problem. For example,
if pi denotes the i-th prime, then Cramér’s conjecture [6] claims that there exist
constants M and N such that if pi ≥ N then

pi+1 − pi ≤ M(log pi)
2.

Proposition 5.3. Let m be the number of distinct prime factors of n. If Cramér’s

conjecture is true and n grows sufficiently large keeping m fixed, then n satisfies

Condition 1.

Proof. If n hasm distinct prime factors, then m
√
n ≤ pa, where pa is the largest prime-

power divisor of n. Let M and N be the constants given by Cramér’s conjecture.
Pick n0 such that if n ≥ n0 then M(log n)2 < m

√
n. For every n such that n ≥ n0

and N ≤ pi < n ≤ pi+1 (where pi denotes the i-th prime), we have

n− pi ≤ pi+1 − pi ≤ M(log pi)
2 < M(log n)2 < m

√
n ≤ pa,

from which it follows that n satisfies Condition 1 with p and pi. �
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We note that the argument used in the proof of Proposition 5.3 yields an alter-
native proof of the fact that Condition 1 holds for a set of integers of asymptotic
density 1 if Cramér’s conjecture holds, a result first found in [15, § 5]:
Theorem 5.4 ([15]). If Cramér’s conjecture is true, then the set of numbers in the

sequence (2.1) has asymptotic density zero.

Proof. Suppose that Cramér’s conjecture holds with constantsM and N , and denote
by ω(n) the number of distinct prime divisors of n. Thus n1/ω(n) ≤ pa, where pa

is the largest prime-power divisor of n. According to [8, § 3.2], for every ε > 0 the
inequality

(5.1) ω(n) < (1 + ε) log log n

holds for all n except those of a set of asymptotic density zero. Since

lim
n→∞

n1/ log logn

(logn)k
= ∞

for all k, there is an n0 such that n1/ω(n) > M(log n)2 if n ≥ n0. Now, if n is bigger
than n0 and satisfies N ≤ pi < n ≤ pi+1, and moreover n is not in the set of integers
for which (5.1) fails, then

n− pi ≤ pi+1 − pi ≤ M(log pi)
2 < M(log n)2 < n1/w(n) ≤ pa.

Therefore, n satisfies Condition 1 with p and pi. �

6. Multinomials

We also consider a generalization of Condition 1 to multinomials. We say that
a positive integer n satisfies Condition 1 for multinomials of order m if there are
primes p and q such that the multinomial coefficient

(

n

k1, k2, . . . , km

)

=
n!

k1!k2! · · ·km!
is divisible by either p or q whenever k1+ · · ·+ km = n with 1 ≤ ki ≤ n− 1 for all i.

Proposition 6.1. If n satisfies Condition 1 with two primes p and q, then n satisfies

Condition 1 for multinomials of any order m ≤ n with p and q.

Proof. This follows from the equality
(

n

k1, k2, . . . , km

)

=

(

n

k1

)(

n− k1
k2

)(

n− k1 − k2
k3

)

· · ·
(

km
km

)

,

and the fact that
(

n
k1

)

is divisible by p or q by assumption. �

Therefore, if Condition 1 is proven for binomial coefficients, then it automatically
holds for multinomial coefficients.
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