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Abstract

We investigate sets of Mutually Orthogonal Latin Squares (MOLS) gen-

erated by Cellular Automata (CA) over finite fields. After introducing how a

CA defined by a bipermutive local rule of diameter d over an alphabet of q el-

ements generates a Latin square of order qd−1, we study the conditions under

which two CA generate a pair of orthogonal Latin squares. In particular, we

prove that the Latin squares induced by two Linear Bipermutive CA (LBCA)

over the finite field Fq are orthogonal if and only if the polynomials associ-

ated to their local rules are relatively prime. Next, we enumerate all such

pairs of orthogonal Latin squares by counting the pairs of coprime monic

polynomials with nonzero constant term and degree n over Fq. Finally, we

present a construction of MOLS generated by LBCA with irreducible poly-

nomials and prove the maximality of the resulting sets, as well as a lower

bound which is asymptotically close to their actual number.

Keywords Mutually orthogonal Latin squares, cellular automata, Sylvester ma-

trices, polynomials
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1 Introduction

A Latin square of order N ∈ N is a N × N matrix where each number from 1 to

N appears exactly once in each row and column. Two Latin squares L1 and L2 of

order N are orthogonal if by superimposing them one obtains all ordered pairs (i, j)

of numbers from 1 to N, and Mutually Orthogonal Latin Squares (MOLS) are sets

of Latin squares that are pairwise orthogonal.

Despite their simple definition, the construction of MOLS is a notoriously dif-

ficult combinatorial problem and it is one of the most studied research topics in de-

sign theory. This interest is also due to the numerous applications that MOLS have

in other fields such as cryptography (for example in the design of authentication

codes [29] and multipermutations [30]), coding theory (see e.g. the Golomb-Posner

code [9]) and statistics (particularly in the design of experiments [23]). Some of

the best known constructions of MOLS include MacNeish’s theorem [16] and Wil-

son’s construction [31] (see [14, 4] for a more complete overview of construction

methods).

The goal of this paper is to investigate a new construction of MOLS based on

Cellular Automata (CA), a particular kind of discrete dynamical system described

by a regular lattice of cells, where each cell synchronously updates its state by

applying a local rule to itself and its neighboring cells. The motivation for studying

this construction of MOLS spawned from the question of designing a threshold

secret sharing scheme based on CA without adjacency constraints on the shares, as

in the schemes proposed in [28, 19].

To this end, we first isolate a particular subclass of CA – namely, those defined

by bipermutive local rules of diameter d – and remark that the Cayley tables of their

global rules are Latin squares of order sd−1, where s is the size of the CA alpha-

bet. We then narrow our attention to the case where the local rules are linear over

the finite field Fq, characterizing the pairs of Linear Bipermutive CA (LBCA) that

produce orthogonal Latin squares. In particular, we prove that the Latin squares

generated by two LBCA are orthogonal if and only if the polynomials associated

to their local rules are relatively prime over Fq. This is done by observing that

the orthogonality of the squares is equivalent to the invertibility of the Sylvester

matrix obtained from the transition matrices of the LBCA. Subsequently, we de-

termine the number of pairs of orthogonal Latin squares generated by LBCA with

rules of a fixed diameter d. Due to the aforementioned characterization, this actu-

ally amounts to counting the number of pairs of coprime monic polynomials with

nonzero constant term and degree n = d − 1 over Fq. Although the enumeration

of coprime polynomial pairs over finite fields is a well-studied problem [27, 3], to

the best of our knowledge the case where both polynomials have a nonzero con-

stant term has not been addressed before. We thus solve this counting problem

through a recurrence equation, remarking that for q = 2 the resulting integer se-

quence is already known in the OEIS for other combinatorial and number-theoretic

facts [1]. Finally, we present a construction of MOLS based on LBCA whose rules

are defined by the product of two irreducible polynomials, and we prove that the
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size of the MOLS resulting from this construction is maximal, meaning that they

cannot be extended by adding another Latin square generated by LBCA. Further,

we count how many maximal MOLS can be produced by our construction, and

we prove that the corresponding lower bound is asymptotically close to the actual

number of maximal MOLS which can be generated by LBCA.

The present paper is an extended version of [17], a work that was informally

presented at AUTOMATA 2016. In particular, the new original contributions of this

paper concern the counting results of coprime polynomials and the construction of

MOLS based on irreducible polynomials.

The rest of this paper is organized as follows. Section 2 covers the basic

background definitions about Latin squares and cellular automata. Section 3 fo-

cuses on the characterization of orthogonal Latin squares generated by linear biper-

mutive CA. Section 4 addresses the enumeration of coprime polynomials with

nonzero constant term, which are in one-to-one correspondence with orthogonal

Latin squares generated by LBCA. Section 5 describes a construction of MOLS

based on LBCA with irreducible polynomials, proves the maximality of the result-

ing MOLS sizes and provides a lower bound for their number. Finally, Section 6

summarizes the contributions of this paper, and discusses some interesting avenues

for future research on this topic.

2 Preliminaries on Latin Squares and Cellular Automata

In this section, we gather all the basic definitions that will be used to describe our

results, referring the reader to [14] and [13] for further information about Latin

squares and cellular automata, respectively.

We start by giving the formal definition of a Latin square:

Definition 1. Let X be a finite set of cardinality |X| = N ∈ N, and let [N] =

{1, · · · ,N}. A Latin square of order N is a N × N square matrix L with entries

from X such that, for all i, j, k ∈ [N] with k , j, it holds that L(i, j) , L(i, k) and

L( j, i) , L(k, i).

In other words, Definition 1 states that each row and each column of a Latin

square is a permutation of the support set X. The concept of Latin square is equiv-

alent to that of quasigroup:

Definition 2. A quasigroup of order N ∈ N is a pair 〈X, ◦〉 where X is a finite set

of N elements and ◦ is a binary operation over X such that for all x, y ∈ X the two

equations x ◦ z = y and z ◦ x = y admit a unique solution for all z ∈ X.

Indeed, an algebraic structure 〈X, ◦〉 is a quasigroup if and only if its Cayley

table is a Latin square [14]. In what follows, we will assume that the support set is

always X = [N] = {1, · · · ,N}.

We now introduce the orthogonality property of Latin squares:
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Definition 3. Two Latin squares L1 and L2 of order N are called orthogonal Latin

squares (OLS) if

(L1(i1, j1), L2(i1, j1)) , (L1(i2, j2), L2(i2, j2)) (1)

for all distinct pairs of coordinates (i1, j1), (i2, j2) ∈ [N] × [N].

Equivalently, L1 and L2 are orthogonal if their superposition yields all the or-

dered pairs of the Cartesian product [N] × [N]. A set of k Latin squares which

are pairwise orthogonal is denoted as a k-MOLS, where the acronym stands for

Mutually Orthogonal Latin Squares.

Cellular Automata (CA) are a particular kind of discrete dynamical systems

defined by shift-invariant local functions. In particular, a CA is composed of a

lattice of cells whose states range over a finite alphabet A. Each cell updates in

parallel its state by applying a local rule f : Aν → A to itself and ν− 1 surrounding

cells. One of the most common studied settings is that of one-dimensional infinite

CA, where the lattice is the full shift space AZ. The Curtis-Hedlund-Theorem [11]

topologically characterizes such CA in terms of global maps F : AZ → AZ that are

both shift-invariant and uniformly continuous with respect to the Cantor distance.

For our work, we are interested in one-dimensional finite CA. This case leads to

the problem of updating the cells at the boundaries, since they do not have enough

neighbors upon which the local rule can be applied. In this paper we focus on No

Boundary CA (NBCA), which we define as follows:

Definition 4. Let A be a finite alphabet and n, d ∈ N with n ≥ d. The No Boundary

Cellular Automaton (NBCA) F : An → An−d+1 of length n and diameter d deter-

mined by the local rule f : Ad → A is the vectorial function defined for all x ∈ An

as

F(x0, · · · , xn−1) = ( f (x0, · · · , xd−1), f (x1, · · · , xd), · · · , f (xn−d, · · · , xn−1)) . (2)

In other words, in a NBCA of length n, each output coordinate with index

0 ≤ i ≤ n − d is determined by evaluating the local rule f of diameter d on the

neighborhood formed by the i-th input coordinate xi and the d − 1 coordinates to

its right, i.e. xi+1, · · · , xi+d.

The NBCA model has been investigated in [22] for the design of S-boxes.

There, the authors considered the case where the alphabet is A = F2, so that a

NBCA corresponds to a particular kind of vectorial Boolean function defined by

shift-invariant coordinate functions. When the CA alphabet is F2 the local rule

f : Fd
2
→ F2 can be represented by its truth table, and its decimal representation is

referred to as the Wolfram code of the rule. In this paper, we will mainly consider

the setting where the alphabet is the finite field Fq, with q being any power of a

prime number. In order to avoid burdening notation we will use CA and NBCA in-

terchangeably, since NBCA is the only model considered in the remainder of this

work.

The following example grounds Definition 4 for the case of binary CA (i.e.

when A = F2):

4



1 0 1 1

f (0, 1, 0) = 1

10 0 1 0 0

x0, x1, x2 f (x0, x1, x2)

000 0

100 1

010 1

110 0

001 1

101 0

011 0

111 1

Figure 1: Example of CA of length n = 6 defined by rule 150.

Example 1. Let A = F2, and consider a CA F : F6
2
→ F4

2
of length n = 6 and

diameter d = 3 with local rule f : F3
2
→ F2 defined as f (x0, x1, x2) = x0 ⊕ x1 ⊕ x2.

Figure 1 depicts the application of the CA global function F over the vector x =

(0, 1, 0, 1, 0, 0) and reports the truth table of the local rule f . The Wolfram code

of f is 150, since it corresponds to the decimal encoding of the output column

(0, 1, 1, 0, 1, 0, 0, 1) of the table.

This paper focuses on the class of bipermutive CA, formally defined below:

Definition 5. A CA F : An → An−d+1 induced by a local rule f : Ad → A is called

left permutive (respectively, right permutive) if, for all z ∈ Ad−1, the restriction

fR,z : A → A (respectively, fL,z : A → A) obtained by fixing the first (respectively,

the last) d − 1 coordinates of f to the values specified in z is a permutation on A. A

CA which is both left and right permutive is said to be a bipermutive CA (BCA).

Remark that when A = F2 = {0, 1} a local rule f : Fd
2
→ F2 is left permutive if

and only if there exists a generating function ϕ : Fd−1
2
→ F2 such that

f (x0, x1, · · · , xd−1) = x0 ⊕ ϕ(x1, · · · , xd−1) , (3)

and symmetrically for right permutive rules. Thus, bipermutive CA over F2 are

those induced by local rules of the form

f (x0, x1, · · · , xd−1) = x0 ⊕ ϕ(x1, · · · , xd−2) ⊕ xd−1 , (4)

where ϕ is a Boolean function of d − 2 variables. Considering Example 1, one can

see that rule 150 is bipermutive, since it corresponds to the case where ϕ is the

identity function over the second variable of the neighborhood.

Most of the results stated in this paper concern CA that, beside being bipermu-

tive, are also linear over the finite field Fq. A CA F : Fn
q → F

n−d+1
q of diameter d is

called linear if its local rule f : Fd
q → Fq is a linear combination of the cells in the

neighborhood, i.e. there exist a0, · · · , ad−1 ∈ Fq such that

f (x0, · · · , xd−1) = a0x0 + a1x1 + · · · + ad−1xd−1 , (5)
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for all x ∈ Fd
q, where sum and product are the field operations of Fq. For q = 2,

these respectively correspond to the logical operations XOR (⊕) and AND (∧). A

linear CA can be seen as a linear transformation over Fq-vector spaces described

by the following n × (n − d + 1) transition matrix:

MF =



































a0 · · · ad−1 0 · · · · · · · · · · · · 0

0 a0 · · · ad−1 0 · · · · · · · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 · · · · · · · · · · · · 0 a0 · · · ad−1



































. (6)

In particular, the CA global rule is defined as the matrix-vector multiplication

F(x) = MF · x
⊤ for all x ∈ Fn

q. As remarked in [20], the matrix MF in Equation (6)

is the generator matrix of a cyclic code. Hence, one can naturally define the poly-

nomial p f (X) ∈ Fq[X] associated to a linear CA F as the generator polynomial of

degree n ≤ d − 1 of the corresponding cyclic code:

p f (X) = a0 + a1X + · · · + ad−1Xd−1 ∈ Fq[X] . (7)

It is easy to see that a linear CA is bipermutive if and only if both a0 and ad−1 are

not null. Indeed, the inverse functions of the right and left restrictions fR,z and fL,z

can be defined for all z ∈ Fd−1
q and y ∈ Fq as follows:

xd−1 = a−1
d−1(y − a0z0 − · · · − ad−2zd−2) , (8)

x0 = a−1
0 (y − a1z0 − · · · − ad−1zd−2) . (9)

Following the notation in [21], we denote by LBCA a CA F which is defined by a

rule which is both linear and bipermutive. In what follows, we will consider mainly

the situation where ad−1 = 1, which means that the polynomial p f (X) associated to

the LBCA is monic of degree n = d − 1.

3 Characterization Results

In this section, we first observe that any bipermutive CA can be used to generate a

Latin square. We then prove a necessary and sufficient condition which character-

izes orthogonal Latin squares generated by pairs of LBCA.

3.1 Latin Squares from Bipermutive CA

We begin by showing that any BCA of diameter d and length 2(d − 1) generates a

Latin square of order N = qd−1, where q is the size of the CA alphabet. To this end,

we first need some additional notation and definitions.

Given an alphabet A of q symbols, in what follows we assume that a total order

≤ is defined over Ad−1 and φ : Ad−1 → [N] is a monotone one-to-one mapping

between Ad−1 and [N] = {1, · · · , qd−1}, where [N] is endowed with the usual order

of natural numbers. We denote by ψ the inverse mapping of φ.

We now formally define the notion of square associated to a CA:
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0 0 0 0
0 0

0 0 1 0
1 1

0 0 0 1
0 1

0 0 1 1
1 0

1 0 0 0
1 0

1 0 1 0
0 1

1 0 0 1
1 1

1 0 1 1
0 0

0 1 0 0
1 1

0 1 1 0
0 0

0 1 0 1
1 0

0 1 1 1
0 1

1 1 0 0
0 1

1 1 1 0
1 0

1 1 0 1
0 0

1 1 1 1
1 1

1 4 3 2

2 3 4 1

4 1 2 3

3 2 1 4

Figure 2: Example of square of order 23−1
= 4 induced by rule 150.

Definition 6. Let A be an alphabet of q symbols. The square associated to the CA

F : A2(d−1) → Ad−1 defined by rule f : Ad → A is the square matrix SF of size

qd−1 × qd−1 with entries from [qd−1] defined for all 1 ≤ i, j ≤ qd−1 as

SF(i, j) = φ(F(ψ(i)||ψ( j))) , (10)

where ψ(i)||ψ( j) ∈ A2(d−1) denotes the concatenation of ψ(i), ψ( j) ∈ Ad−1.

Hence, the square SF is defined by encoding the first half of the CA configu-

ration as the row coordinate i, the second half as the column coordinate j and the

output F(ψ(i)||ψ( j)) as the entry at (i, j).

As an example, for A = F2 and diameter d = 3, Figure 2 depicts the square SF

associated to the CA F : F4
2
→ F2

2
defined by rule 150. The mapping φ is defined

as φ(00) 7→ 1, φ(10) 7→ 2, φ(01) 7→ 3 and φ(11) 7→ 4. Notice that in this particular

case SF is a Latin square.

We remark that this representation has been adopted in several works in the CA

literature, even though under a different guise. Indeed, one can consider the square

associated to a CA as the Cayley table of an algebraic structure 〈S , ◦〉, where S is

a set of size |A|d−1 isomorphic to Ad−1, and ◦ is a binary operation over S . The two

operands x, y ∈ S are represented by the vectors respectively composed of the left-

most and rightmost d−1 input cells of the CA, while the d−1 output cells represent

the result z = x ◦ y. To the best of our knowledge, the first researchers who em-

ployed this algebraic characterization of cellular automata were Pedersen [26] and

Eloranta [6], respectively for investigating their periodicity and partial reversibility

properties. Other works in this line of research include Moore and Drisko [25], who

studied the algebraic properties of the square representation of CA, and Moore [24],

who considered the computational complexity of predicting CA whose local rules

define solvable and nilpotent groups.

As noticed above, the square associated to the CA defined by rule 150 is actu-

ally a Latin square. We will now show that this holds in general for all bipermutive

CA. To this end, we first recall a Lemma proved in [19], which states that fixing

d − 1 adjacent cells in a bipermutive CA yields a permutation between the remain-

ing variables and the output:
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Lemma 1. Let F : An → An−d+1 be a BCA defined by local rule f : Ad → A.

Given x̃ ∈ Ad−1 and i with 0 ≤ i ≤ n − d + 1, let F |x̃,i : An−d+1 → An−d+1 be the

restriction of F obtained by fixing to x̃ the block of d − 1 consecutive coordinates

starting in i of the BCA input vector, i.e. xi = x̃0, xi+1 = x̃1, · · · , xi+d−2 = x̃d−2.

Then, F|x̃,i is a permutation over An−d+1.

On account of Lemma 1, we can prove that the squares associated to bipermu-

tive CA are indeed Latin squares:

Lemma 2. Let A be an alphabet of q symbols, and d ≥ 2. Then, the square LF of

the BCA F : A2(d−1) → Ad−1 defined by local rule f : Ad → A is a Latin square of

order N = qd−1.

Proof. Let i ∈ [N] be a row of LF , and let ψ(i) = (x0, · · · , xd−2) ∈ Ad−1 be the

vector associated to i with respect to the total order ≤ on Ad−1. Consider now the

set C = {c ∈ A2(d−1) : (c0, · · · , cd−2) = ψ(i)}, i.e. the set of configurations of length

2(d − 1) whose first d − 1 coordinates coincide with ψ(i), and let Fψ(i),0 : Ad−1 →

Ad−1 be the restriction of F determined by ψ(i). By Lemma 1, the function Fψ(i),0

is a permutation over Ad−1. So, the i-th row of LF is a permutation of [N]. A

symmetric argument holds for any column j of LF , with 1 ≤ j ≤ N, which fixes

the rightmost d − 1 variables of F to ψ( j). Hence, every column of LF is also a

permutation of [N], and thus LF is a Latin square of order qd−1. � �

3.2 Orthogonal Latin Squares from Linear Bipermutive CA

In the next result, we prove a characterization of orthogonal Latin squares gener-

ated by LBCA in terms of their associated polynomials:

Theorem 1. Let F,G : F
2(d−1)
q → Fd−1

q be two LBCA of length 2(d−1), respectively

defined by the local rules f , g : Fd
q → Fq defined as:

f (x0, · · · , xd−1) = a0x0 + · · · + ad−1xd−1 , (11)

g(x0, · · · , xd−1) = b0x0 + · · · + bd−1xd−1 . (12)

Then, the Latin squares LF and LG of order qd−1 generated by F and G are orthog-

onal if and only if the polynomials p f (X), pg(X) ∈ Fq[X] associated to f and g are

relatively prime.

Proof. Denote by z = x||y the concatenation of vectors x and y. We show that

the function H : F
2(d−1)
q × F

2(d−1)
q → F

2(d−1)
q × F

2(d−1)
q , defined for all (x, y) ∈

F
2(d−1)
q × F

2(d−1)
q as

H(x, y) = (F(z),G(z)) = (x̃, ỹ) (13)

is bijective if and only if the polynomials p f (X) and pg(X) associated to F and G

are coprime. Given the transition matrices MF and MG respectively associated to

F and G, one can rewrite Equation (13) as a system of two equations:














F(z) = MFz⊤ = x̃

G(z) = MGz⊤ = ỹ
. (14)
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1 4 3 2

2 3 4 1

4 1 2 3

3 2 1 4

(a) Rule 150

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

(b) Rule 90

1,1 4, 2 3, 3 2, 4

2, 2 3, 1 4, 4 1, 3

4, 3 1, 4 2, 1 3, 2

3, 4 2, 3 1, 2 4, 1

(c) Overlay

Figure 3: Orthogonal Latin squares generated by BCA with rules 150 and 90, cor-

responding to the pair of coprime polynomials 1 + X + X2 and 1 + X2.

Since both MF and MG have size (d − 1) × 2(d − 1), Equation (14) is a linear

system of 2(d − 1) equations and 2(d − 1) unknowns, defined by the following

2(d − 1) × 2(d − 1) square matrix:

M =



















































































a0 · · · ad−1 0 · · · · · · · · · · · · 0

0 a0 · · · ad−1 0 · · · · · · · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 · · · · · · · · · · · · 0 a0 · · · ad−1

b0 · · · bd−1 0 · · · · · · · · · · · · 0

0 b0 · · · bd−1 0 · · · · · · · · · 0
...

...
...

. . .
...

...
...

. . .
...

0 · · · · · · · · · · · · 0 b0 · · · bd−1



















































































, (15)

i.e., M is obtained by superposing the transition matrices MF and MG. Thus

H(x, y) = Mz⊤ and H is bijective if and only if the determinant of M is not null.

Remark that matrix M in Equation (15) is a Sylvester matrix, and its determinant

is the resultant of the two polynomials p f (X) and pg(X) associated to the LBCA

F and G, respectively. It is well known (see for instance [15]) that the resultant of

two polynomials is nonzero if and only if they are relatively prime. Hence, H is

bijective (or equivalently, the Latin squares LF and LG are orthogonal) if and only

if the polynomials p f (X) and pg(X) are relatively prime. � �

The next result immediately follows from the above theorem:

Corollary 1. A family p1(X), · · · , pk(X) ∈ Fq[X] of k ∈ N pairwise coprime poly-

nomials of degree n = d − 1 is equivalent to a set of k MOLS of order qn generated

by LBCA.

For alphabet A = F2 and diameter d = 3 there exist only two linear bipermutive

rules, i.e. rule 150 and rule 90, the latter defined as f90(x0, x1, x2) = x0 ⊕ x2. As

shown in Figure 3, the Latin squares of order N = 4 defined by the LBCA F150

and F90 respectively induced by f150 and f90 are orthogonal, since the associated

polynomials p150(X) = 1 + X + X2 and p90(X) = 1 + X2 are coprime over F2.

9



4 Counting Coprime Polynomial Pairs

By Corollary 1, one can generate a set of k MOLS of order qd−1 through LBCA of

diameter d by finding k pairwise relatively prime polynomials of degree n = d − 1.

The problem of counting the number of pairs of relatively prime polynomials over

finite fields has been investigated in several papers (see e.g. [27, 2, 3, 12]). How-

ever, notice that determining the number of pairs of linear CA inducing orthogonal

Latin squares entails counting only specific pairs of polynomials, namely those

whose constant term is not null. This is due to the requirement that the CA local

rules must be bipermutive. To the best of our knowledge, this particular counting

problem has not been considered in the literature, for which reason we address it

in this section.

Formally, for n ≥ 1 let

S n = { f (X) = a0 + a1X + · · · + an−1Xn−1
+ Xn : a0 , 0} (16)

be the set of monic polynomials in Fq[X] of degree n and with nonzero constant

term. For all n ≥ 1 we have that sn = |S n| = (q − 1)qn−1. Moreover, we define

S 0 = {1} (the unique monic polynomial of degree zero), and hence s0 = 1.

Recall that the greatest common divisor of two polynomials f , g ∈ Fq[X] is the

unique monic polynomial of highest degree h such that

f (X) = h(X)i(X) ,

g(X) = h(X) j(X) ,

for some i, j ∈ Fq[X]. We remark that if f , g ∈ S n, then i, j ∈ S e for some 0 ≤ e ≤ n

and h ∈ S n−e.

Additionally, let us define the following subsets of S 2
n = S n × S n:

An = {( f , g) ∈ S 2
n : gcd( f , g) = 1} ,

Bn = {( f , g) ∈ S 2
n : gcd( f , g) , 1} .

In other words, An and Bn are respectively the sets of pairs of coprime and non-

coprime monic polynomials of degree n with nonzero constant term. Similarly as

above, let an = |An| and bn = |Bn|. We are interested in determining an, since by

Theorem 1 the cardinality of An corresponds to the number of orthogonal Latin

squares of order qn generated by LBCA pairs of diameter d = n + 1. For n = 0, we

clearly have a0 = 1 and b0 = 0. The following result characterizes an for all n ≥ 1:

Theorem 2. Let n ≥ 1. Then, the number of pairs of coprime monic polynomials

of degree n with nonzero constant term is

an = q(q − 1)3 q2n−2 − 1

q2 − 1
+ (q − 1)(q − 2) . (17)
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Proof. Let us first settle the case n = 1, for which we have

S 1 = { f (X) = a0 + X : a0 , 0} .

It is clear that gcd( f , g) = 1 for any f , g ∈ S 1 if and only if f , g. Thus, it follows

that

a1 = (q − 1)(q − 2) ,

which proves Equation (17) for the case n = 1. For n > 1, remark first that

s2
n = an + bn . (18)

Moreover, any pair ( f , g) with deg(gcd( f , g)) = n−e (0 ≤ e ≤ n−1) can be uniquely

expressed as a pair (h, (i, j)), where h ∈ S n−e and (i, j) ∈ S e. Hence,

bn =

n−1
∑

e=0

ae sn−e . (19)

Combining Equations (18) and (19) we have

an = s2
n −

n−1
∑

e=0

ae sn−e , (20)

an−1 = s2
n−1 −

n−2
∑

e=0

aesn−1−e . (21)

Multiplying both sides of (21) by q we obtain

qan−1 = qs2
n−1 −

n−2
∑

e=0

ae(qsn−1−e) . (22)

Remark that qsn−1−e = q(q−1)qn−2−e
= (q−1)qn−1−e

= sn−e. Hence, Equation (22)

can be rewritten as

qan−1 = qs2
n−1 −

n−2
∑

e=0

aesn−e . (23)

By subtracting Equations (20) and (23) we thus have

an − qan−1 = s2
n −

n−1
∑

e=0

aesn−e − qs2
n−1 +

n−2
∑

e=0

aesn−e

= s2
n − qs2

n−1 − an−1s1 . (24)

Since s2
n = (q−1)2q2n−2, while qs2

n−1
= (q−1)2q2n−3 and s1 = (q−1), Equation (24)

becomes

an − qan−1 = (q − 1)2(q2n−2 − q2n−3) − an−1(q − 1) , (25)
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from which it follows that

an = (q − 1)2(q2n−2 − q2n−3) + an−1

= (q − 1)2q2n−3(q − 1) + an−1

= (q − 1)3qq2n−4
+ an−1 . (26)

By iterating the above procedure to determine the term an−1 from the difference

an−1 − qan−2, the term an−2 from an−2 − qan−3, and so on until a2 from a2 − qa1,

one has

an = q(q − 1)3{q2n−4
+ q2n−6

+ · · · + q2
+ 1} + a1

= q(q − 1)3
n−2
∑

t=0

q2t
+ a1

= q(q − 1)3 q2n−2 − 1

q2 − 1
+ a1

= q(q − 1)3 q2n−2 − 1

q2 − 1
+ (q − 1)(q − 2) , (27)

from which we finally obtain the result. � �

Remark 1. Notice that in Theorem 2 we count all ordered coprime polynomial

pairs. To get the number of distinct pairs, one simply has to divide Equation (17)

by 2, thus obtaining ãn =
1
2
an. In particular, for q = 2 the formula for ãn becomes

ãn =
4n−1 − 1

3
. (28)

The first terms of this sequence for n ≥ 1 are:

ãn = 0, 1, 5, 21, 85, 341, 1365, · · · (29)

which is a shifted version of OEIS sequence A002450 [1], defined by

cn =
4n − 1

3
. (30)

It is easily seen that cn = ãn+1, i.e. cn corresponds to the number of distinct co-

prime pairs of polynomials of degree n + 1 over F2 where both polynomials have

nonzero constant term. We remark that sequence A002450 is known for several

other combinatorial facts not related to polynomials or orthogonal Latin squares

arising from LBCA, for which we refer the reader to [1].

5 A Construction of MOLS based on LBCA

In this section, we tackle the question of determining the maximum number of

MOLS generated by linear bipermutive CA over Fq of a given order. Given n ∈ N

we consider in particular the following two problems:

12



Problem 1. What is the maximum number Nn of LBCA over Fq of diameter n +

1 whose Latin squares are mutually orthogonal? From Section 3, this actually

amounts to compute the maximum number of monic pairwise coprime polynomials

of degree n and nonzero constant term over Fq.

Problem 2. What is the number Tn of maximal sets of Nn MOLS generated by

LBCA?

In the remainder of this section we present a construction for sets of MOLS

based on LBCA defined by pairwise coprime polynomials over Fq. Moreover, we

solve Problem 1 by proving that the size of MOLS resulting from this construction

is maximal. We also determine the number Dn of MOLS that can be generated

through this construction, and show that it is asymptotically close to Tn.

Recall from Section 4 that S n denotes the set of all degree n monic polynomials

f ∈ Fq[X] with nonzero constant term a0. Additionally, let

Mn = {Rn ⊆ S n : ∀ f , g ∈ Rn, gcd( f , g) = 1} . (31)

In other words,Mn is the family of subsets of S n of pairwise coprime polynomials.

In order to solve Problem 1, we have to determine the maximal cardinality of the

subsets inMn, that is

Nn = max
Rn∈Mn

|Rn| . (32)

On the other hand, for Problem 2 we want to count how many sets in Mn have

cardinality Nn:

Tn = |{Rn ∈ Mn : |Rn| = Nn}| . (33)

We begin by considering the set In of irreducible polynomials of degree n over

Fq with nonzero constant term, all of which are trivially pairwise coprime. Hence,

In is included in all subsets having maximum cardinality Nn. Denoting by In the

cardinality of In, one has that I0 = 1 and I1 = q − 1, while for n ≥ 2 In is given by

Gauss’s formula [7]:

In = |In| =
1

n

∑

d|n

µ(d) · q
n
d , (34)

where d ranges over all positive divisors of n (including 1 and n), while µ denotes

the Möbius function. Let d = ̺
α1

1
̺
α2

2
· · · ̺

αk

k
be the prime factorization of d ∈ N.

Then, d is called square-free (s.f.) if αi = 1 for all i ∈ {1, · · · , k}, i.e. if d is not

divisible by any prime power with exponent higher than 1. The Möbius function

of d is defined as:

µ(d) =



























1 , if d = 1 or d is s.f. and has an even number of prime factors

−1 , if d is s.f. and has an odd number of prime factors

0 , if d is not s.f.

(35)

We thus have that

Nn ≥ In . (36)
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In order to refine this lower bound, we have to determine how many other (re-

ducible) polynomials of degree n one can add to In so that the resulting set only

includes pairwise coprime polynomials. To this end, we first need a side result

which shows that the sequence of the numbers of monic irreducible polynomials

is non-decreasing in the degree n. As a preliminary remark, observe that any poly-

nomial f in S n is either irreducible and hence belongs to In, or all its irreducible

factors belong to Jn =
⋃⌊ n

2
⌋

k=1
Ik.

Lemma 3. For all q ≥ 2 powers of a prime number and n ≥ 1, In is a non-

decreasing function of n.

Proof. We want to show that In ≥ In−1 for all n ≥ 2. Note that I1 = q − 1 since we

do not consider the polynomial X (its constant term being null), while In is given

by Gauss’s formula for n ≥ 2.

The claim is easily proved for n ≤ 4, since

I1 = q − 1 ,

I2 =
1

2
(q2 − q) =

q

2
I1 ≥ I1 ,

I3 =
1

3
(q3 − q) =

2(q + 1)

3
I2 ≥ I2 ,

I4 =
1

4
(q4 − q2) =

3q

4
I3 ≥ I3 .

We now assume n ≥ 5. We first prove that In ≥
1
n
(qn − qn−2). It is easily checked

for n = 5, since I5 =
1
5
(q5 − q); for n ≥ 6, consider the sum

q⌊
n
2
⌋
+ q⌊

n
2
⌋−1
+ · · · + q + 1 =

⌊ n
2
⌋

∑

i=0

qi
=

q⌊
n
2
⌋+1 − 1

q − 1
. (37)

Remark that, for all d|n with d , 1, the term q
n
d in the sum of Gauss’s formula

occurs in the sum of Equation (37), i.e. for i = n
d
. Since in Gauss’s formula one

always adds or subtracts the term q
n
d depending on the value of µ(d), by Equa-

tions (34) and (37) we have the following inequality:

In ≥
1

n



















qn −

⌊ n
2
⌋

∑

i=0

qi



















=
1

n

(

qn −
q⌊

n
2
⌋+1 − 1

q − 1

)

, (38)

from which it follows that

In ≥
1

n
(qn − q⌊

n
2⌋+1)

≥
1

n
(qn − qn−2) . (39)
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We now prove that In−1 ≤
1

n−1
qn−1. Similarly to the previous inequality, let us

denote by p the smallest prime divisor of n − 1. Then, in the sum of Gauss’s

formula for In−1 we subtract q
n−1

p , since µ(p) = −1. Consider now the sum

q
n−1

p
−1
+ q

n−1
p
−2
+ · · · + q + 1 =

n−1
p
−1

∑

i=0

qi
=

q
n−1

p − 1

q − 1
. (40)

Again, each term q
n−1

d in Gauss’s formula for In−1 occurs in (40) for i = n−1
d

. Thus,

the following inequality holds:

In−1 ≤
1

n − 1

















qn−1 − q
n−1

p +
q

n−1
p − 1

q − 1

















. (41)

Therefore,

In−1 ≤
1

n − 1
qn−1 . (42)

Combining the lower bound in (39) and the upper bound in (42), we obtain

In ≥ In−1

n − 1

n
·

qn − qn−2

qn−1
(43)

= In−1
n − 1

n
·

(

q −
1

q

)

. (44)

Thus, since q ≥ 2 and n > 5, it follows that

In ≥ In−1

4

5
·

3

2
≥ In−1 . (45)

� �

Consider now the following construction for a family of pairwise coprime poly-

nomials parameterized on the degree n:

Construction-Irreducible(n)

Initialization: Initialize set Pn to In

Loop: For all 1 ≤ k ≤
⌊

n
2

⌋

do:

1. Build set P′
k

by multiplying each polynomial in Ik with a distinct poly-

nomial in In−k

2. Add set P′
k

to Pn

Output: return Pn
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Hence, set Pn is constructed by first adding all irreducible polynomials of de-

gree n, then by adding the set of all irreducible polynomials of degree 1 multiplied

by as many irreducible polynomials of degree n−1, and so on. In particular, notice

that step 1 in the loop of Construction-Irreducible is possible since by Lemma 3

one has that In−k ≥ Ik for all k ≤
⌊

n
2

⌋

. Further, all polynomials added to Pn through

Construction-Irreducible are pairwise coprime, since they all have distinct irre-

ducible factors.

Remark that the procedure Construction-Irreducible can be iterated only up

to k ≤
⌊

n
2

⌋

, because by symmetry the irreducible polynomials of degree n − k with

k >
⌊

n
2

⌋

correspond to those of degree k ≤
⌊

n
2

⌋

. Notice also that, when n is even,

the last step of the procedure consists of squaring all irreducible polynomials of

degree n
2
.

Hence, we have shown that the setPn which is generated by procedure Construction-

Irreducible is indeed a member of the family Mn. The cardinality of such set is

given by

Cn = |Pn| = In +

⌊ n
2⌋

∑

k=1

Ik . (46)

In fact, beside the initial step when one adds all irreducible polynomials of degree n

to Pn, in each iteration k of the loop the number of polynomials that one can obtain

by multiplying two irreducible factors is bounded by the number of irreducible

polynomials of degree k, which is Ik. We have thus obtained the following result,

which gives a more precise lower bound on Nn:

Nn ≥ Cn . (47)

A natural question arising from Inequality (47) is whether the above construction

is optimal, i.e. if the maximum number of pairwise coprime polynomials Nn is

actually equal to Cn. In the next theorem, we prove that the MOLS produced by

Construction-Irreducible are indeed maximal, and we characterize the families of

Tn.

Theorem 3. For any n and q, the maximum number of MOLS generated by LBCA

of diameter d = n + 1, or equivalently the maximum number of pairwise coprime

monic polynomials of degree n and nonzero constant term is:

Nn = In +

⌊ n
2
⌋

∑

k=1

Ik . (48)

Moreover, let A ⊆ S n. Then, A ∈ Tn if and only if the following hold:

1. A contains In;

2. if n is even then A contains {g2 : g ∈ In/2};
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3. for every g ∈ Ik with k < n/2, there exists a unique f ∈ A such that g| f . This

f is either of the form f = ga with a = n/k, or of the form f = gbh where

bk < n/2 and h ∈ In−bk, in which case h does not divide any other f ′ ∈ A.

Proof. We first determine the value of Nn. By inequality (47) we have that Nn ≥ Cn.

Conversely, let A ∈ Mn be a maximum collection of mutually coprime polynomials

in S n, i.e. with cardinality Nn. Clearly, A must contain all irreducible polynomials

In, so let B = A\In be the set of reducible polynomials in A. For any f ∈ B, denote

the irreducible polynomial of lowest degree in the factorization of f as T f (if there

are several, choose the first one in lexicographic order). Note that T f has degree at

most n/2. Now if f , g ∈ B satisfy T f = Tg, then f and g are not coprime, therefore

the map f 7→ T f is an injection from B to Jn. Thus |A| ≤ Cn and Nn = Cn.

We now characterize the families of cardinality Nn. We begin by showing that

any such family must satisfy the three properties of the theorem. Firstly, as seen

above, such a family A must contain In, so let us focus on B = A \ In. This time,

the mapping f 7→ T f is a bijection from B to Jn, hence let g 7→ Fg be its inverse.

Secondly, if g ∈ In/2, then Fg = gh for some h ∈ In/2. If h , g, then Fh , Fg but

gcd(Fg, Fh) = h, which violates coprimality; thus h = g and Fg = g2. Thirdly, if

g ∈ Ik, then either Fg = ga for a = n/k or Fg = gbHg for bk < n and gcd(Hg, g) = 1.

If Hg is reducible, then its factor of lowest degree h ∈ Jn is a common divisor of Fh

and Fg, which again violates coprimality. Thus Hg ∈ In−bk for bk < n/2. Finally,

if Hg = Hg′ for another g′ ∈ Jn, then again coprimality is violated. Conversely,

it is easily checked that any family satisfying all three properties is a family of Nn

coprime polynomials in S n. � �

We now determine how many maximal sets of pairwise coprime polynomials

of degree n one can obtain through Construction-Irreducible, thus providing a

lower bound on Tn. In particular, this corresponds to the case of families A ∈ Tn

where the polynomial f ∈ A in the third condition of Theorem 3 is of the form

f = gh (i.e. b = 1) and h ∈ In−bk. Moreover, we show that this lower bound is

asymptotically close to the actual value of Tn. Before proving this result, we first

need the following asymptotic estimate of In:

Lemma 4. Let In be defined as in Equation (34). Then, as n tends to infinity,

In =
1

n

(

qn − O
(

q
n
2

))

. (49)

Proof. Let us rewrite Equation (34) by extracting the terms d = 1 and d = p from

the sum, where p is the smallest prime divisor of n. Since µ(1) = 1 and µ(p) = −1,

we have

In =
1

n



















qn − q
n
p +

∑

d|n:d,1,p

µ(d) · q
n
d



















. (50)

The smallest divisor of n which is strictly greater than p can be at most p+1. Thus,

each term in the sum of Equation (50) is limited in absolute value by q
n

p+1 . In
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particular, as d grows the value q
n
d decreases, hence we can bound the sum in (50)

with the geometric series
∑∞

i=0 q
n

p+1
−i

:

∑

d|n:d,1,p

µ(d) · q
n
d ≤

∞
∑

i=0

q
n

p+1
−i
= q

n
p+1

∞
∑

i=0

q−i . (51)

Since q ≥ 2, we have that
∑∞

i=0 q−i ≤ 2. Thus, we obtain

∑

d|n:d,1,p

µ(d) · q
n
d ≤ 2 · q

n
p+1 . (52)

Consider now the difference q
n
p − 2 · q

n
p+1 :

q
n
p − 2 · q

n
p+1 = q

n
p

(

1 − 2 · q
n

p+1
− n

p

)

= q
n
p

(

1 − 2 · q
− n

p(p+1)

)

. (53)

Clearly, q
− n

p(p+1) → 0 for n → ∞. Hence, we have that q
n
p − 2 · q

n
p+1 = O

(

q
n
p

)

, and

by Inequality (52) it follows that

q
n
p −

∑

d|n:d,1,p

µ(d) · q
n
d = O

(

q
n
p

)

. (54)

Therefore, Equation (34) can be rewritten as

In =

(

qn − O
(

q
n
p

))

=

(

qn − O
(

q
n
2

))

, (55)

where the rightmost equality follows from the fact that p ≥ 2 for all n ∈ N. � �

We can now prove our lower bound on Tn. In what follows, we denote by Dn

the number of maximal sets produced by Construction-Irreducible.

Theorem 4. For all n, it holds that

Dn =

⌈ n
2
−1⌉

∏

k=1

In−k!

(In−k − Ik)!
.

Moreover, as n tends to infinity, we have

logq Dn = Θ(q
n
2 ) .

logq Tn = logq Dn + O(q
n
3 ) = Θ(q

n
2 ) .

Proof. Let us first prove the formula for Dn. For all 1 ≤ k ≤ ⌊ n
2
⌋, the set P′

k
in step

1 of the loop of Construction-Irreducible is obtained by first taking an irreducible

polynomial f1 ∈ Ik and multiplying it by an irreducible polynomial g1 ∈ In−k.

Hence, the choices for g1 are In−k. Then, one takes another irreducible polynomial

f2 ∈ Ik and multiplies it by an irreducible polynomial g2 ∈ In−k, with g2 , g1.

Thus, the possible choices for g2 are In−k−1. Since the choices for the polynomials
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in In−k are independent, and since we have to select Ik of them, we have that the

number of choices for constructing P′
k

is

Ek = In−k(In−k − 1) · · · (In−k − Ik + 1) =
In−k!

(In−k − Ik)!
. (56)

Further, since for 1 ≤ k1, k2 ≤ ⌊
n
2
⌋ with k1 , k2 the choices for constructing P′

k1

and P′
k2

are independent, we obtain that

Dn =

⌈ n
2
−1⌉

∏

k=1

Ek =

⌈ n
2
−1⌉

∏

k=1

In−k!

(In−k − Ik)!
. (57)

We now prove that logq Dn = Θ(q
n
2 ), starting with some estimates for logq In−k

and logq(In−k− Ik). As a first remark, observe that Equation (49) in Lemma 4 shows

that

logq In−k ≤ n − k . (58)

It is then easy to prove that for n large enough and k < n/2, one has

Ik ≤
1

k
qk < δ

1

n − k
qn−k , (59)

for δ < 1, e.g. δ = 1
q−1/2

. Combining Inequality (59) with Equation (49) we obtain

In−k − Ik ≥
1

n − k

{

(1 − δ)qn−k − O(q
n−k

2 )

}

, (60)

and hence

In−k − Ik =
(1 − δ − o(1))qn−k

n − k
. (61)

Equation (61) thus yields the following estimate for logq(In−k − Ik):

logq(In−k − Ik) = n − k − logq(n − k) + logq(1 − δ − o(1))

= n − k − O(log(n − k)) . (62)

Consider now logq Ek. By Equation (56), it is easy to see that

Ik logq(In−k − Ik) ≤ logq Ek ≤ Ik logq In−k . (63)

Since by (58) we have that logq In−k ≤ n − k, while by (62) it holds that logq Ek ≥

Ik(n − k − O(log(n − k))), the inequalities in (63) can be rewritten as follows:

Ik(n − k − O(log(n − k))) ≤ logq Ek ≤ Ik logq In−k . (64)
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Consequently, we obtain the following estimate for logq Ek:

logq Ek = Ik

(

n − k − O(log(n − k))
)

=
1

k
(qk − O(q

k
2 ))

(

n − k − O(log(n − k))
)

=
1

k
((1 − o(1))qk)((1 − o(1))(n − k))

=
1

k
(1 − o(1))qk(n − k)

=
n − k

k
qk − o

(

n

k
qk

)

. (65)

Denoting σ =
∑∞

i=0 q−i, we have

q⌈
n
2−1⌉ ≤

⌈ n
2
−1⌉

∑

k=⌊ n
3⌋+1

n − k

k
qk ≤ 2σq⌈

n
2−1⌉ . (66)

Therefore,

logq Dn =

⌈ n
2
−1⌉

∑

k=1

logq Ek

=

⌈ n
2
−1⌉

∑

k=⌊ n
3⌋+1

logq Ek +

⌊ n
3⌋

∑

k=1

logq Ek

= Θ(q
n
2 ) + O(nq

n
3 ) . (67)

We finally prove that logq Tn = logq Dn+O(q
n
3 ). By Theorem 3, in any maximal

family of polynomials in Tn, and any irreducible g ∈ Ik for n/3 < k < n/2, the

corresponding f must be f = gh for some h ∈ In−k, thus there are Ek choices for

the polynomials in the family that have an irreducible factor of degree k. If k ≤ n/3,

then for any g ∈ Ik there are at most 1+
∑n−k

d=⌊ n
2⌋+1

Id choices for the corresponding

polynomial f in the family. Altogether, we obtain

Tn ≤

⌈ n
2
−1⌉

∏

k=⌊ n
3⌋+1

Ek ·

⌊ n
3⌋

∏

k=1























1 +

n−k
∑

d=⌊ n
2⌋+1

Id























Ik

. (68)

Define now Bk as

Bk =























1 +

n−k
∑

d=⌊ n
2⌋+1

Id























Ik

≤
{

qn−k
} 1

k
qk

≤ q
n−k

k
qk

. (69)
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Again, this yields
∑⌊ n

3⌋
k=1

logq Bk = O(q
n
3 ), which in turn gives us

logq Tn ≤ logq Dn +

⌊ n
2⌋

∑

k=1

logq Bk = logq Dn + O(q
n
3 ) . (70)

� �

6 Conclusions and Perspectives

In this paper we undertook an investigation of mutually orthogonal Latin squares

generated through linear bipermutive CA. First, we proved that any bipermutive

CA of diameter d and length 2(d − 1) can be used to generate a Latin square of

order N = qd−1, with q being the size of the CA alphabet. We then focused on

orthogonal Latin squares generated by LBCA, showing a characterization result

based on the Sylvester matrix induced by two linear local rules. In particular, we

proved that two LBCA generate orthogonal Latin squares if and only if the polyno-

mials associated to their local rules are relatively prime. In the second part of the

paper, we determined the number of LBCA pairs over Fq generating orthogonal

Latin squares, i.e. the number of coprime polynomial pairs ( f , g) of degree n over

Fq where both f and g have nonzero constant term. In particular, we remarked that

the integer sequence generated by the closed-form formula of the recurrence equa-

tion for q = 2 corresponds to A002450, a sequence which is already known in the

OEIS for several other facts not related to polynomials or orthogonal Latin squares.

In the last part of the paper, we presented a construction of MOLS generated by

LBCA based on irreducible polynomials, and we proved that the resulting families

are maximal. Finally, we also derived a lower bound on the number of maximal

MOLS induced by the proposed construction, and showed that this bound is asymp-

totically close to the actual number of maximal MOLS produced by LBCA.

There are several opportunities for further improvements on the results pre-

sented in this paper.

A first direction for future research is to generalize the study to MOLS gen-

erated by nonlinear bipermutive CA. In this case, one obviously cannot rely on

the characterization result of Theorem 1, since this crucially depends on the use of

the Sylvester matrix defined from the transition matrices of linear CA. Preliminary

work led by some of the authors of the present paper showed that a necessary con-

dition for a pair of BCA (either linear or nonlinear) to generate orthogonal Latin

squares is that their local rules must be pairwise balanced, meaning that each of

the four pair of bits must occur equally often in the juxtaposition of their truth

tables [18]. We believe it is still possible to use the theory of resultants to charac-

terize orthogonal Latin squares generated by nonlinear BCA. As a matter of fact,

the main difference between linear and nonlinear pairs is that in the former case

the system of equations (14) concerns univariate polynomials. On the other hand,

in the nonlinear case one can associate multivariate polynomials to the local rules,
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and then use the tools of elimination theory (to which the concept of resultant be-

longs) to study the invertibility of the resulting systems.

A second extension worth exploring, especially concerning the possible appli-

cations related to secret sharing, is to investigate the structure of the inverse of a

Sylvester matrix. As described in [17], a family of k MOLS generated by LBCA

can be used to design a (2, k)-threshold secret where the dealing phase corresponds

to evaluating the global rules of the k LBCA to an initial configuration whose left

half is the secret, while the right half is randomly chosen. The outputs of the

LBCA will be the shares distributed to the k players. In order to reconstruct the

secret, any two out of k players must invert the Sylvester matrix associated to their

CA (which are assumed to be public) and then multiply it by the vector obtained

by concatenating their shares. Hence, an interesting question is whether the recon-

struction phase can be carried out again by CA computation, which means that the

inverse of the Sylvester matrix related to two LBCA must be of Sylvester type as

well. This question has been answered in negative during the Fifth International

Students’ Olympiad in Cryptography – NSUCRYPTO [10] for LBCA over the fi-

nite field F2. In particular, it has been proved that the only Sylvester matrix over F2

satisfying this condition is the one defined by the polynomials Xn and 1+Xn, which

does not correspond to a pair of LBCA since Xn has null constant term. However,

the existence question for Sylvester matrices whose inverses are of Sylvester type

remains open for larger finite fields.

Finally, another interesting idea would be to extend our investigation to Mu-

tually Orthogonal Latin Hypercubes generated by CA, i.e. the generalization of

MOLS to higher dimensions. This would be equivalent to study the conditions un-

der which CA can be used to construct orthogonal arrays with strength higher than

2. A characterization result for such kind of orthogonal arrays would allow one

to design a general (t, n)-threshold secret sharing scheme based on CA, or equiv-

alently to design linear MDS codes through CA. A possible idea to achieve this

result would be to first characterize which subclasses of bipermutive CA generate

Latin hypercubes. From there, the next step would be to characterize sets of linear

CA inducing Orthogonal Latin Hypercubes, which are equivalent to orthogonal ar-

rays [14]. However, we note that there are no straightforward ways to generalize

the concept of resultant to more than two polynomials [8]. As a matter of fact, some

of the existing generalizations involve matrices which do not correspond to those

related to hypercubes generated by CA. To the best of our knowledge, the only re-

sultant matrix for several polynomials that most resemble the CA hypercube case

has been defined in [5], which could thus represent a starting point for future work

on the subject.
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