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Abstract

In the base phi representation any natural number is written uniquely as a sum powers of the golden

mean with digits 0 and 1, where one requires that the product of two consecutive digits is always 0. In

this paper we give precise expressions for the those natural numbers for which the kth digit is 1, proving

two conjectures for k = 0, 1. The expressions are all in terms of generalized Beatty sequences.

1 Introduction

Base phi representations were introduced by George Bergman in 1957 ([2]). Base phi representations are
also known as beta-expansions of the natural numbers, with β = (1 +

√
5)/2 =: ϕ, the golden mean.

A natural number N is written in base phi if N has the form

N =

∞∑

i=−∞
diϕ

i,

with digits di = 0 or 1, and where d1di+1 = 11 is not allowed. Similarly to base 10 numbers, we write these
representations as

β(N) = dLdL−1 . . . d1d0 · d−1d−2 . . . dR−1dR.

The base phi representation of a number N is unique ([2]). Our main concern will be the distribution of
the digit d0 = d0(N) over the natural numbers N ∈ N. Several authors have interpreted this in the frequency
sense. The following result was conjectured by Bergman, and proved in [6].

Theorem 1.1 The frequency of 1’s in (d0(N)) exists, and limN→∞
1
N

∑N
M=1 d0(M) = 1

ϕ+2 = 5−
√
5

10 .

A more detailed description, obviously implying the previous theorem, was conjectured by Baruchel in
2018 (see A214971 in [8]):

Conjecture 1 Digit d0(N) = 1 if and only if N = ⌊nϕ⌋+ 2n+ 1 for some natural number n, or N = 1.

Here ⌊·⌋ denotes the floor function, and (⌊nϕ⌋) is the well known lower Wythoff sequence. The corre-
sponding result for digit d1 was conjectured by Kimberling in 2012 (see A054770 in [8]):

Conjecture 2 Digit d1(N) = 1 if and only if N = ⌊nϕ⌋+ 2n− 1 for some natural number n.
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Both conjectures will be proved in Section 5. In Section 2, 3 and 4 we introduce some objects and tools
used in the proof. Finally Section 6 gives the result for any digit dk(N) with k ≥ 1 of the base phi expansion.

In future work we plan to extend our results to the metallic means, or more generally to arbitrary
quadratic bases, as defined and analyzed in [3].

2 Generalized Beatty sequences

The sequences occurring in the conjectures are sequences V of the type V (n) = p(⌊nα⌋) + qn + r, n ≥ 1,
where α is a real number, and p, q, and r are integers. As in [1], we call them generalized Beatty sequences.
If S is a sequence, we denote its sequence of first order differences as ∆S, i.e., ∆S is defined by

∆S(n) = S(n+ 1)− S(n), for n = 1, 2 . . .

It is well known ([7]) that the sequence ∆(⌊nϕ⌋) is equal to the Fibonacci word x1,2 = 1211212112 . . .
on the alphabet {1, 2}. More generally, we have the following simple lemma.

Lemma 2.1 ([1]) Let V = (V (n))n≥1 be the generalized Beatty sequence defined by V (n) = p⌊nϕ⌋+ qn+ r,
and let ∆V be the sequence of its first differences. Then ∆V is the Fibonacci word on the alphabet {2p +
q, p+ q}. Conversely, if xa,b is the Fibonacci word on the alphabet {a, b}, then any V with ∆V = xa,b is a
generalized Beatty sequence V = ((a− b)⌊nϕ⌋) + (2b− a)n+ r) for some integer r.

3 Morphisms

A morphism is a map from the set of infinite words over an alphabet to itself, respecting the concatenation
operation. The canonical example is the Fibonacci morphism σ on the alphabet {0, 1} given by

σ(0) = 01, σ(1) = 0.

A central role in this paper is played by the morphism γ on the alphabet {A,B,C,D} given by

γ(A) = AB, γ(B) = C, γ(C) = D, γ(D) = ABC.

In the following we write |w| for the length of a finite word w. Here are some useful properties of γ.

Lemma 3.1 The morphism γ has the following properties

i) |γn(A)| = Ln, for all n ≥ 2, where Ln is the nth Lucas number (see next section).

ii) γn(A) = γn(C) and γn(A) = γn+1(B) for all n ≥ 2.

Proof: i) Starting at n = 2, it follows easily with induction from the recursion of the Lucas numbers that
one has |γn(A)| = Ln, |γn(B)| = Ln−1, |γn(C)| = Ln, |γn(D)| = Ln+1.

ii) This follows immediately from γ2(A) = γ(AB) = ABC = γ(D) = γ2(C). �

It is notationally convenient to extend the semigroup of words to the free group of words. For example,
one has DC−1B−1BC = D.

4 Lucas numbers

The Lucas numbers (Ln) = (2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, . . .) are defined by

L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2 for n ≥ 2.

The Lucas numbers have a particularly simple base phi representation.
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From the well-known formula L2n = ϕ2n + ϕ−2n, and the recursion L2n+1 = L2n + L2n−1, we have for all
n ≥ 1

β(L2n) = 102n · 02n−11, β(L2n+1) = 1(01)n · (01)n.
Exercise Show that the base phi representation of L2n+1 + 1 equals β(L2n+1 + 1) = 102n+1 · (10)n01—see
also Lemma 3.3. (2) in [6], but note that these authors write the digits in reverse order.

Since β(L2n) consists of only 0’s between the exterior 1’s, the following lemma is obvious.

Lemma 4.1 For all n ≥ 1 and k = 1, . . . , L2n−1 one has β(L2n+k) = β(L2n)+β(k) = 10 . . . 0 β(k) 0 . . . 01.

As in [5], [6], and [9], the strategy will be to partition the natural numbers in intervals [Ln+1, Ln+1], and
establish recursive relations for the β-expansions of the numbers in these intervals. However, an analogous
formula as in Lemma 4.1 starting from an odd Lucas number does not exist. To obtain recursive relations
the interval [L2n+1 + 1, L2n+2 − 1] has to be divided into three subintervals. These three intervals are

In := [L2n+1+1, L2n+1+L2n−2−1], Jn := [L2n+1+L2n−2, L2n+1+L2n−1],Kn := [L2n+1+L2n−1+1, L2n+2−1].

Note that In and Kn have the same length L2n−2 − 1, that Jn has length L2n−3 + 1, and that the starting
point L2n+1 + L2n−2 of Jn can be written as 2L2n.

From parts b. and c. of Proposition 3.1 and part c. of Proposition 3.2 in the paper by Sanchis and Sanchis
([9]) we obtain1 recursions for the beta-expansions of the natural numbers in the intervals In, Kn and Jn.

Lemma 4.2 ([9]) For all n ≥ 2 and k = 1, . . . , L2n−2 − 1

β(L2n+1 + k) = 1000(10)−1β(L2n−1 + k)(01)−11001,

β(L2n+1 + L2n−1 + k) = 1010(10)−1β(L2n−1 + k)(01)−10001 = 10β(L2n−1 + k)(01)−10001.

Moreover, for all n ≥ 2 and k = 0, . . . , L2n−3

β(L2n+1 + L2n−2 + k) = 10010(10)−1β(L2n−2 + k)(01)−1001001.

As an illustration, we write out what Lemma 4.2 gives for n = 2. In the first part k takes the values 1
and L2 − 1 = 2, giving (10)−1β(5)(01)−1 = 00 · 10 and (10)−1β(6)(01)−1 = 10 · 00. So the beta expansions
of L5 + 1 = 12, L5 + 2 = 13, L5 + L3 + 1 = 16 and L5 + L3 + 2 = 17 are

β(12) = 100000 · 101001, β(13) = 100010 · 001001, β(16) = 101000 · 100001, β(17) = 101010 · 000001.

In the second part of Lemma 4.2 k takes the values 0 and L1 = 1, giving (10)−1β(3)(01)−1 = 0· and
(10)−1β(4)(01)−1 = 1·. So the beta expansions of L5 + L2 + 1 = 14 and L5 + L2 + 1 = 15 are

β(14) = 100100 · 001001, β(15) = 100101 · 001001.

5 A proof of the conjectures

The conjectures in the introduction will be part of the following more general result.

Theorem 5.1 Let β(N) = (di(N)) be the base phi representation of a natural number N . Then:

d0(N) = 1 if and only if N = ⌊nϕ⌋+ 2n+ 1 for some natural number n,

d1d0(N) = 10 if and only if N = ⌊nϕ⌋+ 2n− 1 for some natural number n,

d1d0d−1(N) = 000 if and only if N = ⌊nϕ⌋+ 2n for some natural number n,

d1d0d−1(N) = 001 if and only if N = 3⌊nϕ⌋+ n+ 1 for some natural number n.

1N.B.: these authors write the beta-expansions in reverse order
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It is convenient to code the four possibilities for the digits of N by a map T to an alphabet of four letters
{A,B,C,D}. We let

T (N) = A iff d1d0(N) = 10, T (N) = B iff d1d0d−1(N) = 000,

T (N) = C iff d0(N) = 1, T (N) = D iff d1d0d−1(N) = 001.

We thus have the following scheme.

N β(N) T (N)

1 1 C
2 10 · 01 A
3 100 · 01 B
4 101 · 01 C
5 1000 · 1001 D
6 1010 · 0001 A
7 10000 · 0001 B
8 10001 · 0001 C

N β(N) T (N)

9 10010 · 0101 A
10 10100 · 0101 B
11 10101 · 0101 C
12 100000 · 101001 D
13 100010 · 001001 A
14 100100 · 001001 B
15 100101 · 001001 C
16 101000 · 100001 D

N β(N) T (N)

17 101010 · 000001 A
18 1000000 · 000001 B
19 1000001 · 000001 C
20 1000010 · 010001 A
21 1000100 · 010001 B
22 1000101 · 010001 C
23 1001000 · 100101 D
24 1001010 · 000101 A

The reader may check the validity of the following T -values, which we use in the proof of Theorem 5.3:

T (L2n) = B, T (L2n + 1) = C, T (L2n+1 + 1) = D for all n ≥ 1.

Theorem 5.2 The sequence (T (N))N≥2 is the unique fixed point of the morphism γ.

Theorem 5.2 is an immediate consequence of Theorem 5.3.

Theorem 5.3 Let γ be the morphism given by A 7→ AB, B 7→ C, C 7→ D, D 7→ ABC. Then

a) T (2)T (3) · · ·T (Ln+1) = γn(A) for n ≥ 2

b) T (Ln+2)T (Ln+3) · · ·T (Ln+1+1) = γn−1(A) for n ≥ 3.

Proof: We prove a) and b) simultaneously by induction.

For n = 2, L2 = 3, and one finds T (2)T (3)T (4) = ABC, which indeed equals γ2(A).

Also for n = 3, one has T (2)T (3)T (4)T (5) = ABCD = γ3(A).

Part b) for n = 3 is checked by T (6)T (7)T (8) = ABC = γ2(A).

In the following we do not formally perform an induction step n→ n+1, but show how T -images of intervals
can be expressed in T -images of intervals with lower indices. We have for part a)

T (2) · · ·T (Ln+1+1) = T (2) · · ·T (Ln+1)T (Ln+2) · · ·T (Ln+1+1)

= γn(A) γn−1(A)

= γn(AB) = γn+1(A).

Here we used Lemma 3.1 part ii).

For part b), this formula follows for even indices directly from Lemma 4.1 and part a):

T (L2n+2) · · ·T (L2n+1)T (L2n+1+1) = T (L2n+2) · · ·T (L2n+1)D

= T (2) . . . T (L2n−1)D

= T (2) . . . T (L2n−1)T (L2n−1 + 1) = γ2n−1(A).
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For odd indices, we use Lemma 4.2. We have

T (L2n+1 + 1) · · ·T (L2n+1 + L2n−2−1) = T (L2n+1 + 1) γ2n−2(A)T (L2n + 1)−1 T (L2n)
−1

= D γ2n−2(A)C−1B−1,

T (L2n+1 + L2n−2) · · ·T (L2n+1 + L2n−1) = T (L2n−2)T (L2n−2 + 1) · · ·T (L2n−1 + 1)T (L2n−1 + 1)−1

= BC γ2n−3(A)D−1,

T (L2n+1 + L2n−1 + 1) · · ·T (L2n+2−1) = D γ2n−2(A)C−1B−1.

Concatenating the T -images of the intervals In, Jn and Kn, we obtain, using Lemma 3.1 part ii)

T (L2n+1 + 2) · · ·T (L2n+2 + 1) =

T (L2n−1 + 1)−1D γ2n−2(A)C−1B−1BC γ2n−3(A)D−1D γ2n−2(A)C−1B−1BC =

γ2n−2(A) γ2n−3(A) γ2n−2(A) = γ2n−2(ABC) = γ2n−2(γ2(A)) = γ2n(A). �

Proof of Theorem 5.1: From Theorem 5.2 we know that the digit d0(N) = 1 iff T (N) = C, where (with some
abuse of notation) T = CABCABCD . . . is the fixed point of γ, prefixed by C. We see from the form of γ2

that (apart from the prefix C) T is a concatenation of the words ABC and D. Suppose we apply a code:
ψ(ABC) = 0, ψ(D) = 1. Then γ induces a morphism σ on the alphabet {0, 1}:

σ : 0 7→ ψ(γ(ABC)) = ψ(ABCD) = 01, 1 7→ ψ(γ(D)) = ψ(ABC) = 1.

We see that σ is the Fibonacci morphism, with fixed point x0,1. But the 0’s in x0,1 occur at positions
⌊nϕ⌋, n = 1, 2 . . . (see, e.g., [7]). Since the differences between the indices of the positions of C in T are
expanded by 2 by the inverse of ψ, and because of the prefix C, this implies that the C’s occur at positions
⌊nϕ⌋+ 2n+ 1, for n = 0, 1, . . . . But obviously A’s always occur at two places before a C, implying that the
positions of A are given by ⌊nϕ⌋+2n− 1, for n = 1, . . . . Similarly the positions of B are given by ⌊nϕ⌋+2n.

Finding the positions of D is more involved. Consider the locations of D in the morphism γ4:

γ4 : A 7→ ABCDABC, B 7→ ABCD, C 7→ ABCDABC, D 7→ ABCDABCABCD.

We see from this that the difference between the indices of occurrence of D in T = γ4(T ) is always 4 or
7. Moreover, the distances generated by A,B,C and D under γ are respectively 7, 4, 7, and the pair 7,4.
Mapping A 7→ 7,B 7→ 4,C 7→ 7,D 7→ 74, the morphism γ induces for A,C and B a morphism 7 7→ 74, 4 7→ 7.
Moreover, this morphism is compatible with the part induced by D: 74 7→ 747. It follows that the sequence
of differences of indices of occurrence of D is nothing else but the Fibonacci sequence x7,4 on the alphabet
{7, 4}. Lemma 2.1 then gives that this sequence equals (3⌊nϕ⌋+ n+ 1)n≥1. �

Remark 5.4 With induction, using Lemma 4.1 and 4.2, one proves that d1d0(N) = 10 forces d−1(N) = 0.
It follows that Theorem 5.1 implies that

Digit d−1(N) = 1 if and only if N = 3⌊nϕ⌋+ n+ 1 for some natural number n.

6 A general result

Here we given an expression for the set of N with dk(N) = 1 for any k > 1. Recall that we partitioned the
natural numbers in Lucas intervals Λ2n := [L2n, L2n+1] and Λ2n+1 := [L2n+1 + 1, L2n+2 − 1].
The basic idea behind this partition is that if

β(N) = dLdL−1 . . . d1d0 · d−1d−2 . . . dR−1dR,

then the left most index L = L(N) and the right most index R = R(N) satisfy

L(N) = 2n+ 1, R(N) = 2n iff N ∈ Λ2n, L(N) = 2n+ 2 = R(N) iff N ∈ Λ2n+1.
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This is not hard to see from the simple expressions we have for the β-expansions of the Lucas numbers, see
also Theorem 1 in [4]. For the cardinality |Λn| of Λn we have (of course!)

|Λn| = ⌊ϕn+1⌋ − ⌊ϕn⌋.

Note that we also have |Λ2n| = L2n−1+1, and |Λ2n+1| = L2n−1, the expressions used in [9]. It can therefore
be checked easily that our Theorem 6.1 implies the main result of [9] (for positive k).

Theorem 6.1 Let β(N) = (di(N)) be the base phi representation of a natural number N , and let k ≥ 2.
Then dk(N) = 1 if and only if N is a member of one of the generalized Beatty sequences (⌊nϕ⌋Lk+nLk−1+r),
where r = r1, r1+ 1, . . . , r1+ |Λk|− 1, with r1 = −Lk−1 if k is even, and r1 = −Lk−1+1 if k is odd.

Proof: It turns out that the coding with the alphabet {A,B,C,D} is still useful. In fact, we extend this
alphabet to an alphabet {A0,A1,B0,B1,C0,C1,D0,D1} via the extended coding T+ defined for j = 0, 1 by

T+(N) = Aj iff dk(N) = j, T (N) = A, . . . , T+(N) = Dj iff dk(N) = j, T (N) = D.

We also want to extend the morphism γ to a morphism γ+. Here it turns out that one has to extend γk+2

instead of γ. For simplicity in notation we suppress the dependence on k in γ+. We obtain γ+ by looking at
γk+2(A)γk+2(B)γk+2(C)γk+2(D)—note that this word is always a prefix of (T (N))N≥2 as a consequence of
Theorem 5.2. We define

γ+(A0) = γ+(A1) = T+(2) . . . T+(Lk+2 + 1),

γ+(B0) = γ+(B1) = T+(Lk+2 + 2) . . . T+(Lk+2 + Lk+1 + 1) = T+(Lk+2 + 2) . . . T+(Lk+3 + 1),

γ+(C0) = γ+(C1) = T+(Lk+3 + 2) . . . T+(Lk+3 + Lk+2 + 1) = T+(Lk+3 + 2) . . . T+(Lk+4 + 1),

γ+(D0) = γ+(D1) = T+(Lk+4 + 2) . . . T+(Lk+4 + Lk+3 + 1) = T+(Lk+4 + 2) . . . T+(Lk+5 + 1).

In view of the complexity of the proof we start with the case k = 2, so γk+2 = γ4, and γ+ has the form:

γ+(A0) = γ+(A1) = A0B1C1D0A0B0C0,

γ+(B0) = γ+(B1) = A0B1C1D0,

γ+(C0) = γ+(C1) = A0B1C1D0A0B0C0,

γ+(D0) = γ+(D1) = A0B1C1D0A0B0C0A0B1C1D0.

Here the B1C1 in γ+(Aj) is coming from the first couple of 1’s in d2(N) occurring in Λ2 = [L2, L3] = [3, 4].

We claim that (T+(N))N≥2 is the unique fixed point of γ+. We will prove this in a way similar to the
proof of Theorem 5.3.

CLAIM:
⊞ a) T+(2) · · ·T+(L4n+1) = γn+(A0) for n ≥ 1

⊞ b) T+(L4n+2) · · ·T+(L4n+1+1) = γn+(B0) for n ≥ 1.

⊞ c) T+(L4n+1+2) · · ·T+(L4n+2+1) = γn+(C0) for n ≥ 1.

⊞ d) T+(L4n+2+2) · · ·T+(L4n+3+1) = γn+(D0) for n ≥ 1.

⊞ e) T+(L4n+3+2) · · ·T+(L4n+4+1) = γn+(A0B0C0) for n ≥ 1.

Proof of the claim: This will be done with induction, with an unexpected twist.

First the case n = 1.

By definition one has ⊞ a) T+(2) · · ·T+(L4+1) = γ+(A0), ⊞ b) T+(L4+2) · · ·T+(L5+1) = γ+(B0), ⊞ c)
T+(L5+2) · · ·T+(L6+1) = γ+(C0), and ⊞ d) T+(L6+2) · · ·T+(L7+1) = γ+(D0).

What remains is ⊞ e) T+(L7+2) · · ·T+(L8+1) = γ+(A0B0C0), which can be proved by using Lemma 4.2:

the central part of β(L7+k) equals β(L5+k) for k = 1, . . . L4 − 1, yielding T+(L7+2) · · ·T+(L7+L4−
1) = γ+(C0)C

−1
0 B−1

0 . Similarly, T+(L7+L5+1) · · ·T+(L8−1) = D0γ+(C0)C
−1
0 B−1

0 . In between we have
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T+(L7+L4) · · ·T+(L7+L4+L3) = B0C0γ+(B0)D
−1
0 . Pasting these three words together, and adding the two

letters T+(L8) = B0, and T+(L8+1) = C0, we obtain the word γ+(C0B0C0) = γ+(A0B0C0).

Next we make the induction step n→ n+ 1.

⊞ a) Here one splits T+(2) · · ·T+(L4(n+1)+1) into 5 subwords T+(L4n+j+2) · · ·T+(L4n+j+1+1), j = 0, . . . , 4.
The induction hypothesis then gives

T+(2) · · ·T+(L4(n+1)+1) = γn+(A0)γ
n
+(B0)γ

n
+(C0)γ

n
+(D0)γ

n
+(A0B0C0) = γn+1

+ (A0).

⊞ b) From Lemma 4.1 one obtains from the induction hypothesis, again with a splitting

T+(L4(n+1)+2) · · ·T+(L4(n+1)+1+1) = T+(2) · · ·T+(L4n+3+1) = γn+(A0)γ
n
+(B0)γ

n
+(C0)γ

n
+(D0) = γn+1

+ (B0).

⊞ c) This is more involved, as we have to use Lemma 4.2. This lemma yields

T+(L4(n+1)+1+2) · · ·T+(L4(n+1)+1+L4n+2 − 1) = T+(L4(n+1)−1+2) · · ·T+(L4(n+1)−1+L4n+2 − 1)

= T+(L4n+3+2) · · ·T+(L4n+4 − 1) = γn+(A0B0C0)C
−1
0 B−1

0 ,

where we used part e) of the induction hypothesis in the last step. For the ‘middle part’ Lemma 4.2 yields

T+(L4(n+1)+1+L4n+2) · · ·T+(L4(n+1)+1+L4n+3) = T+(L4n+2) · · ·T+(L4n+3) = B0C0γ
n
+(D0)D

−1
0

The last part is similar to the first part. Pasting the three parts together, and adding B0C0 at the end we
obtain

T+(L4(n+1)+1+2) · · ·T+(L4(n+1)+2+1) = γn+(A0B0C0)C
−1
0 B−1

0 B0C0γ
n
+(D0)D

−1
0 D0γ

n
+(A0B0C0)C

−1
0 B−1

0 B0C0

= γn+(A0B1C1)γ
n
+(D0)γ

n
+(A0B0C0) = γn+1

+ (C0).

⊞ d) From Lemma 4.1 one obtains

T+(L4(n+1)+2+2) · · ·T+(L4(n+1)+3+1) = T+(2) · · ·T+(L4n+5+1)

= T+(2) · · ·T+(L4n+4+1)T+(L4n+4+2) · · ·T+(L4n+5+1)

= γn+1
+ (A0) γ

n+1
+ (B0) = γn+1

+ (D0).

Here we could not use the induction hypothesis, but can apply part a) and b) already proved above.

⊞ e) Again, we have to use Lemma 4.2. This lemma yields

T+(L4(n+1)+3+2) · · ·T+(L4(n+1)+3+L4n+2 − 1) = T+(L4(n+1)+1+2) · · ·T+(L4(n+1)+1+L4n+4 − 1)

= T+(L4n+5+2) · · ·T+(L4n+6 − 1) = γn+1
+ (C0)C

−1
0 B−1

0 ,

where we used part c) already proved above. For the ’middle part’ Lemma 4.2 yields

T+(L4(n+1)+3+L4n+4) · · ·T+(L4(n+1)+3+L4n+5) = T+(L4n+4) · · ·T+(L4n+5) = B0C0γ
n+1
+ (B0)D

−1
0 ,

where we used part b) already proved above.
The last part is similar to the first part. Pasting the three parts together we obtain

T+(L4(n+1)+3+2) · · ·T+(L4(n+1)+4+1) = γn+1
+ (C0)γ

n+1
+ (B0)γ

n+1
+ (C0) = γn+1

+ (A0B0C0).

This finishes the proof of the claim. To finish the proof of the theorem for the case k = 2, we note that the
situation is almost identical2 to the appearance of D in γ4(A), . . . , γ4(D) at the end of the proof of Theorem
5.2: the words B1C1 occur at indices which differ by 7 or 4, and these differences occur as x7,4, the Fibonacci

2This observation also leads to a more or less independent proof of Theorem 6.1 for k = 2: B1C1 occurs always immediately

before D0, so the positions of B1, respectively C1, are just those of D in Theorem 5.1 shifted by -1 and -2.
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word on the alphabet {7, 4}. An application of Lemma 2.1 then gives that the numbers N with d2(N) = 1
occur as N = 3⌊nϕ⌋+ n+ r with two possibilities for r, which are found to be r = 0 and r = −1.

Consider in general the case of an even integer 2k, k = 1, 2 . . . . One first proves that (T+(N))N≥2 is the
unique fixed point of γ+, following the same scheme as in the proof for the k = 2 case. Next, one has to
sort out where the N with d2k(N) = 1 appear with respect to the γ+(A0), . . . , γ+(D0) in the fixed point
of γ+. The first time d2k(N) = 1 appears is for N = L2k, the first number in Λ2k, and all other N in Λ2k

also have d2k(N) = 1. By Lemma 4.1, these trains of N ’s with d2k(N) = 1 also appear at the end of Λ2k+2

(excepting N = L2k+3 + 1). Since they can not appear in Λ2k+1, this is the second appearance of the train.
Application of Lemma 4.2, and another time Lemma 4.1, then gives that the third appearance is in Λ2k+3,
and the fourth and fifth appearance are in Λ2k+4. Moreover, these three Lucas intervals correspond—except
for one or two symbols at the begin and at the end—to the intervals used to define γ+(B0), γ+(C0), and
γ+(D0), and at the same time it shows that γ+(C0) = γ+(A0), and γ+(D0) = γ+(B0)γ+(C0).

This means that the situation is very much like the appearance of B1C1 in the words γ+(A0), . . . , γ+(D0)
in the k = 2 case treated above: the trains occur at indices which differ by L2k+2 or L2k+1, and these
differences occur as xL2k+2,L2k+1

, the Fibonacci word on the alphabet {L2k+2, L2k+1}. An application of
Lemma 2.1 then gives that the numbers N in the train occur as ⌊nϕ⌋L2k + nL2k−1 + r for some r, since

L2k+2 − L2k+1 = L2k, and 2L2k+1 − L2k+2 = L2k−1.

Substituting n = 1, corresponding to the first train, with first element N = L2k, gives r1 = −L2k−1. The
length of the train is of course |Λ2k|.

The proof for odd integers 2k + 1 follows the same steps, the sole difference being that r1 turns out to
be one larger, due to the fact that Λ2k starts at L2k, but Λ2k+1 starts at L2k+1+1 . �

Remark 6.2 A result similar to Theorem 6.1 will hold for digits dN (k) with k negative, but the situation
is somewhat more complex. One has, for example,

Digit d−2(N) = 1 if and only if N = 4⌊nϕ⌋+3n+ r for some r = 2, 3, 4 and some non-negative integer n.
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