Base phi representations and golden mean beta-expansions

F. M. Dekking
Delft University of Technology
Faculty EEMCS, P.O. Box 5031
2600 GA Delft, The Netherlands
F.M.Dekking@math.tudelft.nl

June 21, 2019

Abstract

In the base phi representation any natural number is written uniquely as a sum powers of the golden mean with digits 0 and 1 , where one requires that the product of two consecutive digits is always 0 . In this paper we give precise expressions for the those natural numbers for which the k th digit is 1 , proving two conjectures for $k=0,1$. The expressions are all in terms of generalized Beatty sequences.

1 Introduction

Base phi representations were introduced by George Bergman in 1957 ([2]). Base phi representations are also known as beta-expansions of the natural numbers, with $\beta=(1+\sqrt{5}) / 2=: \varphi$, the golden mean. A natural number N is written in base phi if N has the form

$$
N=\sum_{i=-\infty}^{\infty} d_{i} \varphi^{i}
$$

with digits $d_{i}=0$ or 1 , and where $d_{1} d_{i+1}=11$ is not allowed. Similarly to base 10 numbers, we write these representations as

$$
\beta(N)=d_{L} d_{L-1} \ldots d_{1} d_{0} \cdot d_{-1} d_{-2} \ldots d_{R-1} d_{R}
$$

The base phi representation of a number N is unique ([2]). Our main concern will be the distribution of the digit $d_{0}=d_{0}(N)$ over the natural numbers $N \in \mathbb{N}$. Several authors have interpreted this in the frequency sense. The following result was conjectured by Bergman, and proved in [6].

Theorem 1.1 The frequency of 1 's in $\left(d_{0}(N)\right)$ exists, and $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{M=1}^{N} d_{0}(M)=\frac{1}{\varphi+2}=\frac{5-\sqrt{5}}{10}$.
A more detailed description, obviously implying the previous theorem, was conjectured by Baruchel in 2018 (see A214971 in [8):

Conjecture 1 Digit $d_{0}(N)=1$ if and only if $N=\lfloor n \varphi\rfloor+2 n+1$ for some natural number n, or $N=1$.
Here $\lfloor\cdot\rfloor$ denotes the floor function, and $(\lfloor n \varphi\rfloor)$ is the well known lower Wythoff sequence. The corresponding result for digit d_{1} was conjectured by Kimberling in 2012 (see A054770 in [8]):

Conjecture 2 Digit $d_{1}(N)=1$ if and only if $N=\lfloor n \varphi\rfloor+2 n-1$ for some natural number n.

Both conjectures will be proved in Section 5. In Section 2. 3 and 4 we introduce some objects and tools used in the proof. Finally Section 6 gives the result for any digit $d_{k}(N)$ with $k \geq 1$ of the base phi expansion.

In future work we plan to extend our results to the metallic means, or more generally to arbitrary quadratic bases, as defined and analyzed in 3].

2 Generalized Beatty sequences

The sequences occurring in the conjectures are sequences V of the type $V(n)=p(\lfloor n \alpha\rfloor)+q n+r, n \geq 1$, where α is a real number, and p, q, and r are integers. As in [1], we call them generalized Beatty sequences. If S is a sequence, we denote its sequence of first order differences as ΔS, i.e., ΔS is defined by

$$
\Delta S(n)=S(n+1)-S(n), \quad \text { for } n=1,2 \ldots
$$

It is well known ([7]) that the sequence $\Delta(\lfloor n \varphi\rfloor)$ is equal to the Fibonacci word $x_{1,2}=1211212112 \ldots$ on the alphabet $\{1,2\}$. More generally, we have the following simple lemma.

Lemma 2.1 ([1]) Let $V=(V(n))_{n \geq 1}$ be the generalized Beatty sequence defined by $V(n)=p\lfloor n \varphi\rfloor+q n+r$, and let ΔV be the sequence of its first differences. Then ΔV is the Fibonacci word on the alphabet $\{2 p+$ $q, p+q\}$. Conversely, if $x_{a, b}$ is the Fibonacci word on the alphabet $\{a, b\}$, then any V with $\Delta V=x_{a, b}$ is a generalized Beatty sequence $V=((a-b)\lfloor n \varphi\rfloor)+(2 b-a) n+r)$ for some integer r.

3 Morphisms

A morphism is a map from the set of infinite words over an alphabet to itself, respecting the concatenation operation. The canonical example is the Fibonacci morphism σ on the alphabet $\{0,1\}$ given by

$$
\sigma(0)=01, \quad \sigma(1)=0
$$

A central role in this paper is played by the morphism γ on the alphabet $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$ given by

$$
\gamma(\mathrm{A})=\mathrm{AB}, \quad \gamma(\mathrm{~B})=\mathrm{C}, \quad \gamma(\mathrm{C})=\mathrm{D}, \quad \gamma(\mathrm{D})=\mathrm{ABC} .
$$

In the following we write $|w|$ for the length of a finite word w. Here are some useful properties of γ.
Lemma 3.1 The morphism γ has the following properties
i) $\left|\gamma^{n}(\mathrm{~A})\right|=L_{n}$, for all $n \geq 2$, where L_{n} is the nth Lucas number (see next section).
ii) $\gamma^{n}(\mathrm{~A})=\gamma^{n}(\mathrm{C})$ and $\gamma^{n}(\mathrm{~A})=\gamma^{n+1}(\mathrm{~B})$ for all $n \geq 2$.

Proof: i) Starting at $n=2$, it follows easily with induction from the recursion of the Lucas numbers that one has $\left|\gamma^{n}(\mathrm{~A})\right|=L_{n},\left|\gamma^{n}(\mathrm{~B})\right|=L_{n-1},\left|\gamma^{n}(\mathrm{C})\right|=L_{n},\left|\gamma^{n}(\mathrm{D})\right|=L_{n+1}$.
ii) This follows immediately from $\gamma^{2}(\mathrm{~A})=\gamma(\mathrm{AB})=\mathrm{ABC}=\gamma(\mathrm{D})=\gamma^{2}(\mathrm{C})$.

It is notationally convenient to extend the semigroup of words to the free group of words. For example, one has $\mathrm{DC}^{-1} \mathrm{~B}^{-1} \mathrm{BC}=\mathrm{D}$.

4 Lucas numbers

The Lucas numbers $\left(L_{n}\right)=(2,1,3,4,7,11,18,29,47,76,123,199,322, \ldots)$ are defined by

$$
L_{0}=2, \quad L_{1}=1, \quad L_{n}=L_{n-1}+L_{n-2} \quad \text { for } n \geq 2
$$

The Lucas numbers have a particularly simple base phi representation.

From the well-known formula $L_{2 n}=\varphi^{2 n}+\varphi^{-2 n}$, and the recursion $L_{2 n+1}=L_{2 n}+L_{2 n-1}$, we have for all $n \geq 1$

$$
\beta\left(L_{2 n}\right)=10^{2 n} \cdot 0^{2 n-1} 1, \quad \beta\left(L_{2 n+1}\right)=1(01)^{n} \cdot(01)^{n}
$$

Exercise Show that the base phi representation of $L_{2 n+1}+1$ equals $\beta\left(L_{2 n+1}+1\right)=10^{2 n+1} \cdot(10)^{n} 01-$ see also Lemma 3.3. (2) in [6], but note that these authors write the digits in reverse order.

Since $\beta\left(L_{2 n}\right)$ consists of only 0 's between the exterior 1 's, the following lemma is obvious.
Lemma 4.1 For all $n \geq 1$ and $k=1, \ldots, L_{2 n-1}$ one has $\beta\left(L_{2 n}+k\right)=\beta\left(L_{2 n}\right)+\beta(k)=10 \ldots 0 \beta(k) 0 \ldots 01$.
As in [5], [6], and [9], the strategy will be to partition the natural numbers in intervals $\left[L_{n}+1, L_{n+1}\right]$, and establish recursive relations for the β-expansions of the numbers in these intervals. However, an analogous formula as in Lemma 4.1 starting from an odd Lucas number does not exist. To obtain recursive relations the interval $\left[L_{2 n+1}+1, L_{2 n+2}-1\right]$ has to be divided into three subintervals. These three intervals are
$I_{n}:=\left[L_{2 n+1}+1, L_{2 n+1}+L_{2 n-2}-1\right], J_{n}:=\left[L_{2 n+1}+L_{2 n-2}, L_{2 n+1}+L_{2 n-1}\right], K_{n}:=\left[L_{2 n+1}+L_{2 n-1}+1, L_{2 n+2}-1\right]$.
Note that I_{n} and K_{n} have the same length $L_{2 n-2}-1$, that J_{n} has length $L_{2 n-3}+1$, and that the starting point $L_{2 n+1}+L_{2 n-2}$ of J_{n} can be written as $2 L_{2 n}$.

From parts b. and c. of Proposition 3.1 and part c. of Proposition 3.2 in the paper by Sanchis and Sanchis ([9) we obtain ${ }^{1}$ recursions for the beta-expansions of the natural numbers in the intervals I_{n}, K_{n} and J_{n}.

Lemma 4.2 ([9]) For all $n \geq 2$ and $k=1, \ldots, L_{2 n-2}-1$

$$
\begin{gathered}
\beta\left(L_{2 n+1}+k\right)=1000(10)^{-1} \beta\left(L_{2 n-1}+k\right)(01)^{-1} 1001 \\
\beta\left(L_{2 n+1}+L_{2 n-1}+k\right)=1010(10)^{-1} \beta\left(L_{2 n-1}+k\right)(01)^{-1} 0001=10 \beta\left(L_{2 n-1}+k\right)(01)^{-1} 0001
\end{gathered}
$$

Moreover, for all $n \geq 2$ and $k=0, \ldots, L_{2 n-3}$

$$
\beta\left(L_{2 n+1}+L_{2 n-2}+k\right)=10010(10)^{-1} \beta\left(L_{2 n-2}+k\right)(01)^{-1} 001001
$$

As an illustration, we write out what Lemma 4.2 gives for $n=2$. In the first part k takes the values 1 and $L_{2}-1=2$, giving $(10)^{-1} \beta(5)(01)^{-1}=00 \cdot 10$ and $(10)^{-1} \beta(6)(01)^{-1}=10 \cdot 00$. So the beta expansions of $L_{5}+1=12, L_{5}+2=13, L_{5}+L_{3}+1=16$ and $L_{5}+L_{3}+2=17$ are

$$
\beta(12)=100000 \cdot 101001, \beta(13)=100010 \cdot 001001, \quad \beta(16)=101000 \cdot 100001, \beta(17)=101010 \cdot 000001
$$

In the second part of Lemma $4.2 k$ takes the values 0 and $L_{1}=1$, giving $(10)^{-1} \beta(3)(01)^{-1}=0$. and $(10)^{-1} \beta(4)(01)^{-1}=1 \because$ So the beta expansions of $L_{5}+L_{2}+1=14$ and $L_{5}+L_{2}+1=15$ are

$$
\beta(14)=100100 \cdot 001001, \beta(15)=100101 \cdot 001001
$$

5 A proof of the conjectures

The conjectures in the introduction will be part of the following more general result.
Theorem 5.1 Let $\beta(N)=\left(d_{i}(N)\right)$ be the base phi representation of a natural number N. Then:
$d_{0}(N)=1 \quad$ if and only if $N=\lfloor n \varphi\rfloor+2 n+1$ for some natural number n,
$d_{1} d_{0}(N)=10 \quad$ if and only if $N=\lfloor n \varphi\rfloor+2 n-1$ for some natural number n,
$d_{1} d_{0} d_{-1}(N)=000$ if and only if $N=\lfloor n \varphi\rfloor+2 n$ for some natural number n,
$d_{1} d_{0} d_{-1}(N)=001$ if and only if $N=3\lfloor n \varphi\rfloor+n+1$ for some natural number n.

[^0]It is convenient to code the four possibilities for the digits of N by a map T to an alphabet of four letters $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$. We let

$$
\begin{array}{ll}
T(N)=\mathrm{A} \text { iff } d_{1} d_{0}(N)=10, & T(N)=\mathrm{B} \text { iff } d_{1} d_{0} d_{-1}(N)=000, \\
T(N)=\mathrm{C} \text { iff } d_{0}(N)=1, & T(N)=\mathrm{D} \text { iff } d_{1} d_{0} d_{-1}(N)=001 .
\end{array}
$$

We thus have the following scheme.

N	$\beta(N)$	$T(N)$
1	1	C
2	$10 \cdot 01$	A
3	$100 \cdot 01$	B
4	$101 \cdot 01$	C
5	$1000 \cdot 1001$	D
6	$1010 \cdot 0001$	A
7	$10000 \cdot 0001$	B
8	$10001 \cdot 0001$	C

N	$\beta(N)$	$T(N)$
9	$10010 \cdot 0101$	A
10	$10100 \cdot 0101$	B
11	$10101 \cdot 0101$	C
12	$100000 \cdot 101001$	D
13	$100010 \cdot 001001$	A
14	$100100 \cdot 001001$	B
15	$100101 \cdot 001001$	C
16	$101000 \cdot 100001$	D

N	$\beta(N)$	$T(N)$
17	$101010 \cdot 000001$	A
18	$1000000 \cdot 000001$	B
19	$1000001 \cdot 000001$	C
20	$1000010 \cdot 010001$	A
21	$1000100 \cdot 010001$	B
22	$1000101 \cdot 010001$	C
23	$1001000 \cdot 100101$	D
24	$1001010 \cdot 000101$	A

The reader may check the validity of the following T-values, which we use in the proof of Theorem 5.3

$$
T\left(L_{2 n}\right)=\mathrm{B}, T\left(L_{2 n}+1\right)=\mathrm{C}, T\left(L_{2 n+1}+1\right)=\mathrm{D} \quad \text { for all } n \geq 1 .
$$

Theorem 5.2 The sequence $(T(N))_{N \geq 2}$ is the unique fixed point of the morphism γ.
Theorem 5.2 is an immediate consequence of Theorem 5.3
Theorem 5.3 Let γ be the morphism given by $\mathrm{A} \mapsto \mathrm{AB}, \mathrm{B} \mapsto \mathrm{C}, \mathrm{C} \mapsto \mathrm{D}, \mathrm{D} \mapsto \mathrm{ABC}$. Then
a) $T(2) T(3) \cdots T\left(L_{n}+1\right)=\gamma^{n}(\mathrm{~A})$ for $n \geq 2$
b) $T\left(L_{n}+2\right) T\left(L_{n}+3\right) \cdots T\left(L_{n+1}+1\right)=\gamma^{n-1}(\mathrm{~A})$ for $n \geq 3$.

Proof: We prove a) and b) simultaneously by induction.
For $n=2, L_{2}=3$, and one finds $T(2) T(3) T(4)=\mathrm{ABC}$, which indeed equals $\gamma^{2}(\mathrm{~A})$.
Also for $n=3$, one has $T(2) T(3) T(4) T(5)=\mathrm{ABCD}=\gamma^{3}(\mathrm{~A})$.
Part b) for $n=3$ is checked by $T(6) T(7) T(8)=\mathrm{ABC}=\gamma^{2}(\mathrm{~A})$.
In the following we do not formally perform an induction step $n \rightarrow n+1$, but show how T-images of intervals can be expressed in T-images of intervals with lower indices. We have for part a)

$$
\begin{aligned}
T(2) \cdots T\left(L_{n+1}+1\right) & =T(2) \cdots T\left(L_{n}+1\right) T\left(L_{n}+2\right) \cdots T\left(L_{n+1}+1\right) \\
& =\gamma^{n}(\mathrm{~A}) \gamma^{n-1}(\mathrm{~A}) \\
& =\gamma^{n}(\mathrm{AB})=\gamma^{n+1}(\mathrm{~A}) .
\end{aligned}
$$

Here we used Lemma 3.1 part ii).
For part b), this formula follows for even indices directly from Lemma 4.1 and part a):

$$
\begin{aligned}
T\left(L_{2 n}+2\right) \cdots T\left(L_{2 n+1}\right) T\left(L_{2 n+1}+1\right) & =T\left(L_{2 n}+2\right) \cdots T\left(L_{2 n+1}\right) \mathrm{D} \\
& =T(2) \ldots T\left(L_{2 n-1}\right) \mathrm{D} \\
& =T(2) \ldots T\left(L_{2 n-1}\right) T\left(L_{2 n-1}+1\right)=\gamma^{2 n-1}(\mathrm{~A})
\end{aligned}
$$

For odd indices, we use Lemma 4.2. We have

$$
\begin{aligned}
T\left(L_{2 n+1}+1\right) \cdots T\left(L_{2 n+1}+L_{2 n-2}-1\right) & =T\left(L_{2 n+1}+1\right) \gamma^{2 n-2}(\mathrm{~A}) T\left(L_{2 n}+1\right)^{-1} T\left(L_{2 n}\right)^{-1} \\
& =\mathrm{D} \gamma^{2 n-2}(\mathrm{~A}) \mathrm{C}^{-1} \mathrm{~B}^{-1}, \\
T\left(L_{2 n+1}+L_{2 n-2}\right) \cdots T\left(L_{2 n+1}+L_{2 n-1}\right) & =T\left(L_{2 n-2}\right) T\left(L_{2 n-2}+1\right) \cdots T\left(L_{2 n-1}+1\right) T\left(L_{2 n-1}+1\right)^{-1} \\
& =\mathrm{B} \mathrm{C} \gamma^{2 n-3}(\mathrm{~A}) \mathrm{D}^{-1} \\
T\left(L_{2 n+1}+L_{2 n-1}+1\right) \cdots T\left(L_{2 n+2}-1\right) & =\mathrm{D} \gamma^{2 n-2}(\mathrm{~A}) \mathrm{C}^{-1} \mathrm{~B}^{-1} .
\end{aligned}
$$

Concatenating the T-images of the intervals I_{n}, J_{n} and K_{n}, we obtain, using Lemma 3.1 part ii)
$T\left(L_{2 n+1}+2\right) \cdots T\left(L_{2 n+2}+1\right)=$
$T\left(L_{2 n-1}+1\right)^{-1} \mathrm{D} \gamma^{2 n-2}(\mathrm{~A}) \mathrm{C}^{-1} \mathrm{~B}^{-1} \mathrm{BC} \gamma^{2 n-3}(\mathrm{~A}) \mathrm{D}^{-1} \mathrm{D} \gamma^{2 n-2}(\mathrm{~A}) \mathrm{C}^{-1} \mathrm{~B}^{-1} \mathrm{BC}=$
$\gamma^{2 n-2}(\mathrm{~A}) \gamma^{2 n-3}(\mathrm{~A}) \gamma^{2 n-2}(\mathrm{~A})=\gamma^{2 n-2}(\mathrm{ABC})=\gamma^{2 n-2}\left(\gamma^{2}(\mathrm{~A})\right)=\gamma^{2 n}(\mathrm{~A})$.

Proof of Theorem 5.1; From Theorem5.2 we know that the digit $d_{0}(N)=1$ iff $T(N)=$ C, where (with some abuse of notation) $T=$ CABCABCD \ldots is the fixed point of γ, prefixed by C. We see from the form of γ^{2} that (apart from the prefix C) T is a concatenation of the words ABC and D. Suppose we apply a code: $\psi(\mathrm{ABC})=0, \psi(\mathrm{D})=1$. Then γ induces a morphism σ on the alphabet $\{0,1\}$:

$$
\sigma: \quad 0 \mapsto \psi(\gamma(\mathrm{ABC}))=\psi(\mathrm{ABCD})=01, \quad 1 \mapsto \psi(\gamma(\mathrm{D}))=\psi(\mathrm{ABC})=1
$$

We see that σ is the Fibonacci morphism, with fixed point $x_{0,1}$. But the 0 's in $x_{0,1}$ occur at positions $\lfloor n \varphi\rfloor, n=1,2 \ldots$ (see, e.g., [7). Since the differences between the indices of the positions of C in T are expanded by 2 by the inverse of ψ, and because of the prefix C , this implies that the C's occur at positions $\lfloor n \varphi\rfloor+2 n+1$, for $n=0,1, \ldots$. But obviously A's always occur at two places before a C , implying that the positions of A are given by $\lfloor n \varphi\rfloor+2 n-1$, for $n=1, \ldots$. Similarly the positions of B are given by $\lfloor n \varphi\rfloor+2 n$.

Finding the positions of D is more involved. Consider the locations of D in the morphism γ^{4} :

$$
\gamma^{4}: \quad \mathrm{A} \mapsto \mathrm{ABCD} \mathrm{ABC}, \mathrm{~B} \mapsto \mathrm{ABCD}, \mathrm{C} \mapsto \mathrm{ABCD} \mathrm{ABC}, \mathrm{D} \mapsto \mathrm{ABCD} A B C A B C \underline{D} .
$$

We see from this that the difference between the indices of occurrence of D in $T=\gamma^{4}(T)$ is always 4 or 7. Moreover, the distances generated by $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D under γ are respectively $7,4,7$, and the pair 7,4. Mapping $\mathrm{A} \mapsto 7, \mathrm{~B} \mapsto 4, \mathrm{C} \mapsto 7, \mathrm{D} \mapsto 74$, the morphism γ induces for A, C and B a morphism $7 \mapsto 74,4 \mapsto 7$. Moreover, this morphism is compatible with the part induced by D: $74 \mapsto 747$. It follows that the sequence of differences of indices of occurrence of D is nothing else but the Fibonacci sequence $x_{7,4}$ on the alphabet $\{7,4\}$. Lemma 2.1 then gives that this sequence equals $(3\lfloor n \varphi\rfloor+n+1)_{n \geq 1}$.

Remark 5.4 With induction, using Lemma 4.1 and 4.2, one proves that $d_{1} d_{0}(N)=10$ forces $d_{-1}(N)=0$. It follows that Theorem 5.1 implies that

Digit $d_{-1}(N)=1$ if and only if $N=3\lfloor n \varphi\rfloor+n+1$ for some natural number n.

6 A general result

Here we given an expression for the set of N with $d_{k}(N)=1$ for any $k>1$. Recall that we partitioned the natural numbers in Lucas intervals $\Lambda_{2 n}:=\left[L_{2 n}, L_{2 n+1}\right]$ and $\Lambda_{2 n+1}:=\left[L_{2 n+1}+1, L_{2 n+2}-1\right]$.
The basic idea behind this partition is that if

$$
\beta(N)=d_{L} d_{L-1} \ldots d_{1} d_{0} \cdot d_{-1} d_{-2} \ldots d_{R-1} d_{R}
$$

then the left most index $L=L(N)$ and the right most index $R=R(N)$ satisfy

$$
L(N)=2 n+1, R(N)=2 n \text { iff } N \in \Lambda_{2 n}, \quad L(N)=2 n+2=R(N) \text { iff } N \in \Lambda_{2 n+1}
$$

This is not hard to see from the simple expressions we have for the β-expansions of the Lucas numbers, see also Theorem 1 in [4]. For the cardinality $\left|\Lambda_{n}\right|$ of Λ_{n} we have (of course!)

$$
\left|\Lambda_{n}\right|=\left\lfloor\varphi^{n+1}\right\rfloor-\left\lfloor\varphi^{n}\right\rfloor \text {. }
$$

Note that we also have $\left|\Lambda_{2 n}\right|=L_{2 n-1}+1$, and $\left|\Lambda_{2 n+1}\right|=L_{2 n}-1$, the expressions used in [9]. It can therefore be checked easily that our Theorem 6.1] implies the main result of [9] (for positive k).

Theorem 6.1 Let $\beta(N)=\left(d_{i}(N)\right)$ be the base phi representation of a natural number N, and let $k \geq 2$. Then $d_{k}(N)=1$ if and only if N is a member of one of the generalized Beatty sequences $\left(\lfloor n \varphi\rfloor L_{k}+n L_{k-1}+r\right)$, where $r=r_{1}, r_{1}+1, \ldots, r_{1}+\left|\Lambda_{k}\right|-1$, with $r_{1}=-L_{k-1}$ if k is even, and $r_{1}=-L_{k-1}+1$ if k is odd.

Proof: It turns out that the coding with the alphabet $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$ is still useful. In fact, we extend this alphabet to an alphabet $\left\{\mathrm{A}_{0}, \mathrm{~A}_{1}, \mathrm{~B}_{0}, \mathrm{~B}_{1}, \mathrm{C}_{0}, \mathrm{C}_{1}, \mathrm{D}_{0}, \mathrm{D}_{1}\right\}$ via the extended coding T_{+}defined for $j=0,1$ by

$$
T_{+}(N)=\mathrm{A}_{j} \text { iff } d_{k}(N)=j, T(N)=\mathrm{A}, \ldots, T_{+}(N)=\mathrm{D}_{j} \text { iff } d_{k}(N)=j, T(N)=\mathrm{D}
$$

We also want to extend the morphism γ to a morphism γ_{+}. Here it turns out that one has to extend γ^{k+2} instead of γ. For simplicity in notation we suppress the dependence on k in γ_{+}. We obtain γ_{+}by looking at $\gamma^{k+2}(\mathrm{~A}) \gamma^{k+2}(\mathrm{~B}) \gamma^{k+2}(\mathrm{C}) \gamma^{k+2}(\mathrm{D})$ —note that this word is always a prefix of $(T(N))_{N \geq 2}$ as a consequence of Theorem 5.2. We define

$$
\begin{aligned}
& \gamma_{+}\left(\mathrm{A}_{0}\right)=\gamma_{+}\left(\mathrm{A}_{1}\right)=T_{+}(2) \ldots T_{+}\left(L_{k+2}+1\right) \\
& \gamma_{+}\left(\mathrm{B}_{0}\right)=\gamma_{+}\left(\mathrm{B}_{1}\right)=T_{+}\left(L_{k+2}+2\right) \ldots T_{+}\left(L_{k+2}+L_{k+1}+1\right)=T_{+}\left(L_{k+2}+2\right) \ldots T_{+}\left(L_{k+3}+1\right), \\
& \gamma_{+}\left(\mathrm{C}_{0}\right)=\gamma_{+}\left(\mathrm{C}_{1}\right)=T_{+}\left(L_{k+3}+2\right) \ldots T_{+}\left(L_{k+3}+L_{k+2}+1\right)=T_{+}\left(L_{k+3}+2\right) \ldots T_{+}\left(L_{k+4}+1\right), \\
& \gamma_{+}\left(\mathrm{D}_{0}\right)=\gamma_{+}\left(\mathrm{D}_{1}\right)=T_{+}\left(L_{k+4}+2\right) \ldots T_{+}\left(L_{k+4}+L_{k+3}+1\right)=T_{+}\left(L_{k+4}+2\right) \ldots T_{+}\left(L_{k+5}+1\right) .
\end{aligned}
$$

In view of the complexity of the proof we start with the case $k=2$, so $\gamma^{k+2}=\gamma^{4}$, and γ_{+}has the form:

$$
\begin{aligned}
& \gamma_{+}\left(\mathrm{A}_{0}\right)=\gamma_{+}\left(\mathrm{A}_{1}\right)=\mathrm{A}_{0} \mathrm{~B}_{1} \mathrm{C}_{1} \mathrm{D}_{0} \mathrm{~A}_{0} \mathrm{~B}_{0} \mathrm{C}_{0}, \\
& \gamma_{+}\left(\mathrm{B}_{0}\right)=\gamma_{+}\left(\mathrm{B}_{1}\right)=\mathrm{A}_{0} \mathrm{~B}_{1} \mathrm{C}_{1} \mathrm{D}_{0}, \\
& \gamma_{+}\left(\mathrm{C}_{0}\right)=\gamma_{+}\left(\mathrm{C}_{1}\right)=\mathrm{A}_{0} \mathrm{~B}_{1} \mathrm{C}_{1} \mathrm{D}_{0} \mathrm{~A}_{0} \mathrm{~B}_{0} \mathrm{C}_{0}, \\
& \gamma_{+}\left(\mathrm{D}_{0}\right)=\gamma_{+}\left(\mathrm{D}_{1}\right)=\mathrm{A}_{0} \mathrm{~B}_{1} \mathrm{C}_{1} \mathrm{D}_{0} \mathrm{~A}_{0} \mathrm{~B}_{0} \mathrm{C}_{0} \mathrm{~A}_{0} \mathrm{~B}_{1} \mathrm{C}_{1} \mathrm{D}_{0} .
\end{aligned}
$$

Here the $\mathrm{B}_{1} \mathrm{C}_{1}$ in $\gamma_{+}\left(\mathrm{A}_{j}\right)$ is coming from the first couple of 1's in $d_{2}(N)$ occurring in $\Lambda_{2}=\left[L_{2}, L_{3}\right]=[3,4]$.
We claim that $\left(T_{+}(N)\right)_{N \geq 2}$ is the unique fixed point of γ_{+}. We will prove this in a way similar to the proof of Theorem 5.3.

CLAIM:

\boxplus a) $T_{+}(2) \cdots T_{+}\left(L_{4 n}+1\right)=\gamma_{+}^{n}\left(\mathrm{~A}_{0}\right)$ for $n \geq 1$
$\boxplus \mathrm{b}) T_{+}\left(L_{4 n}+2\right) \cdots T_{+}\left(L_{4 n+1}+1\right)=\gamma_{+}^{n}\left(\mathrm{~B}_{0}\right)$ for $n \geq 1$.
\boxplus c) $T_{+}\left(L_{4 n+1}+2\right) \cdots T_{+}\left(L_{4 n+2}+1\right)=\gamma_{+}^{n}\left(\mathrm{C}_{0}\right)$ for $n \geq 1$.
$\boxplus \mathrm{d}) T_{+}\left(L_{4 n+2}+2\right) \cdots T_{+}\left(L_{4 n+3}+1\right)=\gamma_{+}^{n}\left(\mathrm{D}_{0}\right)$ for $n \geq 1$.
$\boxplus \mathrm{e}) T_{+}\left(L_{4 n+3}+2\right) \cdots T_{+}\left(L_{4 n+4}+1\right)=\gamma_{+}^{n}\left(\mathrm{~A}_{0} \mathrm{~B}_{0} \mathrm{C}_{0}\right)$ for $n \geq 1$.
Proof of the claim: This will be done with induction, with an unexpected twist.
First the case $n=1$.
By definition one has \boxplus a) $T_{+}(2) \cdots T_{+}\left(L_{4}+1\right)=\gamma_{+}\left(\mathrm{A}_{0}\right)$, \boxplus b) $\left.T_{+}\left(L_{4}+2\right) \cdots T_{+}\left(L_{5}+1\right)=\gamma_{+}\left(\mathrm{B}_{0}\right), \boxplus \mathrm{c}\right)$ $T_{+}\left(L_{5}+2\right) \cdots T_{+}\left(L_{6}+1\right)=\gamma_{+}\left(\mathrm{C}_{0}\right)$, and $\left.\boxplus \mathrm{d}\right) T_{+}\left(L_{6}+2\right) \cdots T_{+}\left(L_{7}+1\right)=\gamma_{+}\left(\mathrm{D}_{0}\right)$.
What remains is \boxplus e) $T_{+}\left(L_{7}+2\right) \cdots T_{+}\left(L_{8}+1\right)=\gamma_{+}\left(\mathrm{A}_{0} \mathrm{~B}_{0} \mathrm{C}_{0}\right)$, which can be proved by using Lemma 4.2, the central part of $\beta\left(L_{7}+k\right)$ equals $\beta\left(L_{5}+k\right)$ for $k=1, \ldots L_{4}-1$, yielding $T_{+}\left(L_{7}+2\right) \cdots T_{+}\left(L_{7}+L_{4}-\right.$ $1)=\gamma_{+}\left(\mathrm{C}_{0}\right) \mathrm{C}_{0}^{-1} \mathrm{~B}_{0}^{-1}$. Similarly, $T_{+}\left(L_{7}+L_{5}+1\right) \cdots T_{+}\left(L_{8}-1\right)=\mathrm{D}_{0} \gamma_{+}\left(\mathrm{C}_{0}\right) \mathrm{C}_{0}^{-1} \mathrm{~B}_{0}^{-1}$. In between we have
$T_{+}\left(L_{7}+L_{4}\right) \cdots T_{+}\left(L_{7}+L_{4}+L_{3}\right)=\mathrm{B}_{0} \mathrm{C}_{0} \gamma_{+}\left(\mathrm{B}_{0}\right) \mathrm{D}_{0}^{-1}$. Pasting these three words together, and adding the two letters $T_{+}\left(L_{8}\right)=\mathrm{B}_{0}$, and $T_{+}\left(L_{8}+1\right)=\mathrm{C}_{0}$, we obtain the word $\gamma_{+}\left(\mathrm{C}_{0} \mathrm{~B}_{0} \mathrm{C}_{0}\right)=\gamma_{+}\left(\mathrm{A}_{0} \mathrm{~B}_{0} \mathrm{C}_{0}\right)$.
Next we make the induction step $n \rightarrow n+1$.
\boxplus a) Here one splits $T_{+}(2) \cdots T_{+}\left(L_{4(n+1)}+1\right)$ into 5 subwords $T_{+}\left(L_{4 n+j}+2\right) \cdots T_{+}\left(L_{4 n+j+1}+1\right), j=0, \ldots, 4$. The induction hypothesis then gives

$$
T_{+}(2) \cdots T_{+}\left(L_{4(n+1)}+1\right)=\gamma_{+}^{n}\left(\mathrm{~A}_{0}\right) \gamma_{+}^{n}\left(\mathrm{~B}_{0}\right) \gamma_{+}^{n}\left(\mathrm{C}_{0}\right) \gamma_{+}^{n}\left(\mathrm{D}_{0}\right) \gamma_{+}^{n}\left(\mathrm{~A}_{0} \mathrm{~B}_{0} \mathrm{C}_{0}\right)=\gamma_{+}^{n+1}\left(\mathrm{~A}_{0}\right)
$$

\boxplus b) From Lemma 4.1 one obtains from the induction hypothesis, again with a splitting
$T_{+}\left(L_{4(n+1)}+2\right) \cdots T_{+}\left(L_{4(n+1)+1}+1\right)=T_{+}(2) \cdots T_{+}\left(L_{4 n+3}+1\right)=\gamma_{+}^{n}\left(\mathrm{~A}_{0}\right) \gamma_{+}^{n}\left(\mathrm{~B}_{0}\right) \gamma_{+}^{n}\left(\mathrm{C}_{0}\right) \gamma_{+}^{n}\left(\mathrm{D}_{0}\right)=\gamma_{+}^{n+1}\left(\mathrm{~B}_{0}\right)$.
$\boxplus \mathrm{c})$ This is more involved, as we have to use Lemma 4.2. This lemma yields

$$
\begin{aligned}
T_{+}\left(L_{4(n+1)+1}+2\right) \cdots T_{+}\left(L_{4(n+1)+1}+L_{4 n+2}-1\right) & =T_{+}\left(L_{4(n+1)-1}+2\right) \cdots T_{+}\left(L_{4(n+1)-1}+L_{4 n+2}-1\right) \\
& =T_{+}\left(L_{4 n+3}+2\right) \cdots T_{+}\left(L_{4 n+4}-1\right)=\gamma_{+}^{n}\left(\mathrm{~A}_{0} \mathrm{~B}_{0} \mathrm{C}_{0}\right) \mathrm{C}_{0}^{-1} \mathrm{~B}_{0}^{-1}
\end{aligned}
$$

where we used part e) of the induction hypothesis in the last step. For the 'middle part' Lemma 4.2 yields

$$
T_{+}\left(L_{4(n+1)+1}+L_{4 n+2}\right) \cdots T_{+}\left(L_{4(n+1)+1}+L_{4 n+3}\right)=T_{+}\left(L_{4 n+2}\right) \cdots T_{+}\left(L_{4 n+3}\right)=\mathrm{B}_{0} \mathrm{C}_{0} \gamma_{+}^{n}\left(\mathrm{D}_{0}\right) \mathrm{D}_{0}^{-1}
$$

The last part is similar to the first part. Pasting the three parts together, and adding $\mathrm{B}_{0} \mathrm{C}_{0}$ at the end we obtain

$$
\begin{aligned}
T_{+}\left(L_{4(n+1)+1}+2\right) \cdots T_{+}\left(L_{4(n+1)+2}+1\right) & =\gamma_{+}^{n}\left(\mathrm{~A}_{0} \mathrm{~B}_{0} \mathrm{C}_{0}\right) \mathrm{C}_{0}^{-1} \mathrm{~B}_{0}^{-1} \mathrm{~B}_{0} \mathrm{C}_{0} \gamma_{+}^{n}\left(\mathrm{D}_{0}\right) \mathrm{D}_{0}^{-1} \mathrm{D}_{0} \gamma_{+}^{n}\left(\mathrm{~A}_{0} \mathrm{~B}_{0} \mathrm{C}_{0}\right) \mathrm{C}_{0}^{-1} \mathrm{~B}_{0}^{-1} \mathrm{~B}_{0} \mathrm{C}_{0} \\
& =\gamma_{+}^{n}\left(\mathrm{~A}_{0} \mathrm{~B}_{1} \mathrm{C}_{1}\right) \gamma_{+}^{n}\left(\mathrm{D}_{0}\right) \gamma_{+}^{n}\left(\mathrm{~A}_{0} \mathrm{~B}_{0} \mathrm{C}_{0}\right)=\gamma_{+}^{n+1}\left(\mathrm{C}_{0}\right)
\end{aligned}
$$

\boxplus d) From Lemma 4.1 one obtains

$$
\begin{aligned}
T_{+}\left(L_{4(n+1)+2}+2\right) \cdots T_{+}\left(L_{4(n+1)+3}+1\right) & =T_{+}(2) \cdots T_{+}\left(L_{4 n+5}+1\right) \\
& =T_{+}(2) \cdots T_{+}\left(L_{4 n+4}+1\right) T_{+}\left(L_{4 n+4}+2\right) \cdots T_{+}\left(L_{4 n+5}+1\right) \\
& =\gamma_{+}^{n+1}\left(\mathrm{~A}_{0}\right) \gamma_{+}^{n+1}\left(\mathrm{~B}_{0}\right)=\gamma_{+}^{n+1}\left(\mathrm{D}_{0}\right)
\end{aligned}
$$

Here we could not use the induction hypothesis, but can apply part a) and b) already proved above. \boxplus e) Again, we have to use Lemma 4.2. This lemma yields

$$
\begin{aligned}
T_{+}\left(L_{4(n+1)+3}+2\right) \cdots T_{+}\left(L_{4(n+1)+3}+L_{4 n+2}-1\right) & =T_{+}\left(L_{4(n+1)+1}+2\right) \cdots T_{+}\left(L_{4(n+1)+1}+L_{4 n+4}-1\right) \\
& =T_{+}\left(L_{4 n+5}+2\right) \cdots T_{+}\left(L_{4 n+6}-1\right)=\gamma_{+}^{n+1}\left(\mathrm{C}_{0}\right) \mathrm{C}_{0}^{-1} \mathrm{~B}_{0}^{-1}
\end{aligned}
$$

where we used part c) already proved above. For the 'middle part' Lemma 4.2 yields

$$
T_{+}\left(L_{4(n+1)+3}+L_{4 n+4}\right) \cdots T_{+}\left(L_{4(n+1)+3}+L_{4 n+5}\right)=T_{+}\left(L_{4 n+4}\right) \cdots T_{+}\left(L_{4 n+5}\right)=\mathrm{B}_{0} \mathrm{C}_{0} \gamma_{+}^{n+1}\left(\mathrm{~B}_{0}\right) \mathrm{D}_{0}^{-1}
$$

where we used part b) already proved above.
The last part is similar to the first part. Pasting the three parts together we obtain

$$
T_{+}\left(L_{4(n+1)+3}+2\right) \cdots T_{+}\left(L_{4(n+1)+4}+1\right)=\gamma_{+}^{n+1}\left(\mathrm{C}_{0}\right) \gamma_{+}^{n+1}\left(\mathrm{~B}_{0}\right) \gamma_{+}^{n+1}\left(\mathrm{C}_{0}\right)=\gamma_{+}^{n+1}\left(\mathrm{~A}_{0} \mathrm{~B}_{0} \mathrm{C}_{0}\right)
$$

This finishes the proof of the claim. To finish the proof of the theorem for the case $k=2$, we note that the situation is almost identica $\sqrt{2}$ to the appearance of D in $\gamma^{4}(\mathrm{~A}), \ldots, \gamma^{4}(\mathrm{D})$ at the end of the proof of Theorem 5.2. the words $\mathrm{B}_{1} \mathrm{C}_{1}$ occur at indices which differ by 7 or 4 , and these differences occur as $x_{7,4}$, the Fibonacci

[^1]word on the alphabet $\{7,4\}$. An application of Lemma 2.1 then gives that the numbers N with $d_{2}(N)=1$ occur as $N=3\lfloor n \varphi\rfloor+n+r$ with two possibilities for r, which are found to be $r=0$ and $r=-1$.

Consider in general the case of an even integer $2 k, k=1,2 \ldots$ One first proves that $\left(T_{+}(N)\right)_{N \geq 2}$ is the unique fixed point of γ_{+}, following the same scheme as in the proof for the $k=2$ case. Next, one has to sort out where the N with $d_{2 k}(N)=1$ appear with respect to the $\gamma_{+}\left(\mathrm{A}_{0}\right), \ldots, \gamma_{+}\left(\mathrm{D}_{0}\right)$ in the fixed point of γ_{+}. The first time $d_{2 k}(N)=1$ appears is for $N=L_{2 k}$, the first number in $\Lambda_{2 k}$, and all other N in $\Lambda_{2 k}$ also have $d_{2 k}(N)=1$. By Lemma 4.1, these trains of N 's with $d_{2 k}(N)=1$ also appear at the end of $\Lambda_{2 k+2}$ (excepting $N=L_{2 k+3}+1$). Since they can not appear in $\Lambda_{2 k+1}$, this is the second appearance of the train. Application of Lemma 4.2 and another time Lemma 4.1 then gives that the third appearance is in $\Lambda_{2 k+3}$, and the fourth and fifth appearance are in $\Lambda_{2 k+4}$. Moreover, these three Lucas intervals correspond-except for one or two symbols at the begin and at the end-to the intervals used to define $\gamma_{+}\left(B_{0}\right), \gamma_{+}\left(C_{0}\right)$, and $\gamma_{+}\left(D_{0}\right)$, and at the same time it shows that $\gamma_{+}\left(C_{0}\right)=\gamma_{+}\left(A_{0}\right)$, and $\gamma_{+}\left(D_{0}\right)=\gamma_{+}\left(B_{0}\right) \gamma_{+}\left(C_{0}\right)$.

This means that the situation is very much like the appearance of $B_{1} C_{1}$ in the words $\gamma_{+}\left(A_{0}\right), \ldots, \gamma_{+}\left(D_{0}\right)$ in the $k=2$ case treated above: the trains occur at indices which differ by $L_{2 k+2}$ or $L_{2 k+1}$, and these differences occur as $x_{L_{2 k+2}, L_{2 k+1}}$, the Fibonacci word on the alphabet $\left\{L_{2 k+2}, L_{2 k+1}\right\}$. An application of Lemma 2.1 then gives that the numbers N in the train occur as $\lfloor n \varphi\rfloor L_{2 k}+n L_{2 k-1}+r$ for some r, since

$$
L_{2 k+2}-L_{2 k+1}=L_{2 k}, \quad \text { and } \quad 2 L_{2 k+1}-L_{2 k+2}=L_{2 k-1}
$$

Substituting $n=1$, corresponding to the first train, with first element $N=L_{2 k}$, gives $r_{1}=-L_{2 k-1}$. The length of the train is of course $\left|\Lambda_{2 k}\right|$.

The proof for odd integers $2 k+1$ follows the same steps, the sole difference being that r_{1} turns out to be one larger, due to the fact that $\Lambda_{2 k}$ starts at $L_{2 k}$, but $\Lambda_{2 k+1}$ starts at $L_{2 k+1}+1$.

Remark 6.2 A result similar to Theorem 6.1 will hold for digits $d_{N}(k)$ with k negative, but the situation is somewhat more complex. One has, for example,

Digit $d_{-2}(N)=1$ if and only if $N=4\lfloor n \varphi\rfloor+3 n+r$ for some $r=2,3,4$ and some non-negative integer n.

References

[1] J.-P. Allouche and F.M. Dekking, Generalized Beatty sequences and complementary triples, arXiv: 1809.03424v3 [math.NT]. To appear in Moscow Journal of Combinatorics and Number Theory (2019).
[2] G. Bergman, A number system with an irrational base, Math. Magazine 31 (1957), 98-110.
[3] E.B. Burger, D.C. Clyde, C.H. Colbert, G.H. Shin, Z. Wang, Canonical diophantine representations of natural numbers with respect to quadratic "bases", Journal of Number Theory 133 (2013), 1372-1388.
[4] P. J. Grabner, I. Nemes, A. Pethö and R. F. Tichy, Generalized Zeckendorf decompositions, Applied Math. Letters 7 (1994), 25-28.
[5] E. Hart. On Using Patterns in the Beta-Expansions To Study Fibonacci-Lucas Products, The Fibonacci Quarterly 36 (1998), 396-406.
[6] E. Hart and L. Sanchis, On the occurrence of F_{n} in the Zeckendorf decomposition of $n F_{n}$, The Fibonacci Quarterly 37 (1999), 21-33.
[7] M. Lothaire, Algebraic combinatorics on words, Cambridge University Press, 2002.
[8] On-Line Encyclopedia of Integer Sequences, founded by N. J. A. Sloane, electronically available at http://oeis.org.
[9] G.R. Sanchis and L.A. Sanchis, On the frequency of occurrence of α^{i} in the α-expansions of the positive integers, The Fibonacci Quarterly 39 (2001), 123-173.

[^0]: ${ }^{1}$ N.B.: these authors write the beta-expansions in reverse order

[^1]: ${ }^{2}$ This observation also leads to a more or less independent proof of Theorem 6.1 for $k=2: \mathrm{B}_{1} \mathrm{C}_{1}$ occurs always immediately before D_{0}, so the positions of B_{1}, respectively C_{1}, are just those of D in Theorem 5.1 shifted by -1 and -2 .

