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ON A PROBLEM OF DE KONINCK

TOMOHIRO YAMADA*

Abstract. Let σ(n) and γ(n) denote the sum of divisors and the prod-
uct of distinct prime divisors of n respectively. We shall show that,
if n 6= 1, 1782 and σ(n) = (γ(n))2, then there exist odd (not neces-
sarily distinct) primes p, p′ and (not necessarily odd) distinct primes
qi(i = 1, 2, . . . , k) such that p, p′ || n, q2

i
|| n(i = 1, 2, . . . , k) and

q1 | σ(p2), qi+1 | σ(q2
i
)(i = 1, 2, . . . , k − 1), p′ | σ(q2

k
).

1. Introduction

Let σ(n) and γ(n) denote the sum of divisors and the product of distinct
prime divisors of n, called the radical of n, respectively. Moreover, let ω(n)
denote the number of distinct prime divisors of n. De Koninck [6] posed
the problem to prove or disprove that the only solutions

(1) σ(n) = (γ(n))2

are n = 1, 1782.

According to the editorial comment, it is shown that such an integer
n 6= 1, 1782 must be even, have at least four prime factors, be neither square-
free and squarefull, be greater than 109 and has no prime factor raised to
a power congruent to 3 (mod 4). Later, further necessary conditions to
satisfy σ(n) = (γ(n))2 have been shown. Broughan, De Koninck, Kátai and
Luca [2] showed that, if n > 1, then

(2) n = 2e0
s
∏

i=1

peii ,

where pi are distinct odd primes and ei are positive integers satisfying (a)
p1 ≡ 3 (mod 8), e1 = 1 and the other ei’s are even, or (b) p1 ≡ p2 ≡ e1 ≡
e2 ≡ 1 (mod 4),min{e1, e2} = 1 and the other ei’s are even. Moreover, they
showed that ω(n) ≥ 5 and n cannot be fourth power free.
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Luca [8] showed that, if a positive integer n satisfies ω(n) = T and σ(n) |
L(γ(n))K with K,L positive integers, then

n < exp
(

((K + logL)T !)2
T
)

.

Broughan, De Koninck, Kátai and Luca [2] showed that ω(n) ≥ 5 and
n cannot be fourth power free. Broughan, Delbourgo and Zhou [1] showed
that p1 ≥ 43 in the case (a), p1 ≥ 173 in the case (b) with α2 > α1 = 1 and
n must be divisible by the fourth power of an odd prime.

Chen and Tong [4] showed that if n 6= 1, 1782 satisfies (1) with (a), then
n is divisible by 3 and by the fourth powers of at least two odd primes,
p1 ≥ 1571, at most two of pi’s are greater than p1, ei = 2 for at least two
i’s and ei = 2 for any i such that 10p2i ≥ p1. Moreover, they showed that
for any n satisfying (1), at least half of the numbers among ei + 1’s must
be either primes or prime squares.

As usual, pe || n denotes that pe | n but pe+1 ∤ n. In this paper, we shall
give the following new necessary condition for an integer n to satisfy (1).

Theorem 1.1. If an integer n 6= 1, 1782 of the form (2) satisfies (1), then
there exist odd (not necessarily distinct) primes p, p′ and (not necessarily
odd) distinct primes qji(i = 1, 2, . . . , k) such that p, p′ || n, q2i || n(i =
1, 2, . . . , k) and q1 | σ(p

2), qi+1 | σ(q
2
i )(i = 1, 2, . . . , k − 1), p′ | σ(q2k).

Our idea is based on the following simple observation. Consider the
special case ei = 1 only for i = 1, q1 | σ(p2) for two primes p and for
each p, p | σ(qeii ) with ei ≥ 4 for two primes qi. Now we have σ(qeii )/q

2
i >

√

σ(qeii )i > p1/2 > q
1/4
1 for each i. Hence, ((q1 + 1)/q21)

∏

i σ(q
ei
i )/q

2
i >

q1(q1 + 1)/q21 > 1. In order to generalized this observation, we introduce a
directed multigraph related to prime power divisors of n.

In the next section, we introduce some basic terms on directed multi-
graphs and prove an identity on directed multigraphs. In Section 3, we
introduce a certain directed multigraph related to prime power divisors of
n satisfying (1) and give the key point lemma for our proofs as well as some
arithmetic preliminaries.

Under our settings described in Sections 2 and 3, we shall prove the
following theorem.

Theorem 1.2. Let n 6= 1, 1782 be an integer of the form (2) satisfying (1)
and L be the set of odd prime divisors qi’s with ei = 1. Let G(n), N =
N(L),M = M(L), B = B(L) and C = C(L) be directed multigraphs or sets
defined in Section 3. Then,
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i) If qk+1 → qk → · · · → q1 → p is a path from a vertex qk+1 in B to a
vertex p in L via vertices in M , then k ≤ 3 and qi ≡ 1 (mod 3) for
1 ≤ i ≤ k − 1.

ii) M contains at most two primes ≡ 1 (mod 3). Furthermore, #M ≤
6 if #L = 1 and #M ≤ 8 if #L = 2.

iii) There exists a path from qi in L to qj in L consisting of vertices
ql ∈ N other than qi, qj, where qi and qj may be the same prime.

Now Theorem 1.1 is an arithmetic translation of iii) of Theorem 1.2. In
Sections 4 and 5, we prove that the directed multigraph related to prime
power divisors of n defined in Section 3 cannot have some forms, which
yields iii) of Theorem (1.2). Other statements of Theorem 1.2 easily follow
from an elementary divisibility property of values of σ(p2) with p prime.

2. An identity on directed multigraphs

Before stating our result on directed multigraphs, we would like to intro-
duce some basic terms on directed multigraphs according to [5] with some
modifications. A directed multigraph G = (V,A) consists of a set V of
elements called vertices and a multiset A, where an element may be con-
tained more than once, of ordered pairs of distinct elements in V called
arcs. V = V (G) and A = A(G) are called the vertex set and the arc set
of G respectively. For an arc (u, v) in A, which we call an arc from u to v,
the former vertex u and the latter vertex v are called its tail and its head
respectively. We often write u → v if (u, v) ∈ A and u

k
→ v if (u, v) ∈ A

exactly k times.

The subgraph of G = (V,A) spanned by a given set of vertices S ⊂ V is
the directed graph whose vertex set is S and whose arc set consists of all
arcs in A whose tail and head both belong to S.

A walk (a1, a2, . . . , ak) is a sequence of arcs ai = (ui, vi)(i = 1, 2, . . . , k)
such that vi = ui+1 for all i = 1, 2, . . . , k − 1. A walk (a1, a2, . . . , ak) with
ai = (ui, ui+1)(i = 1, 2, . . . , k) is called a path if u1, u2, . . . , uk and vk are
all distinct and a cycle if u1, u2, . . . , uk are all distinct and u1 = vk. A
walk (a1, a2, . . . , ak) with ai = (ui, ui+1)(i = 1, 2, . . . , k) is often written as
u1 → u2 → · · · → uk. A directed graph G = (V,A) is acyclic if A contains
no cycle.

The out-degree d+(v) = d+G(v) and the in-degree d−(v) = d−G(v) of the
vertex v are the number of arcs from v and to v respectively counted with
multiplicity. A vertex v is called a sink if d+(v) = 0 and a source if d−(v) = 0.
S(G) denotes the set of sources of the directed multigraph G.

Now we would like to state our identity.
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Lemma 2.1. Let G be a directed acyclic multigraph. Then, for any vertex
v0 of G with d−(v0) > 0,

(3)
∑

P :vk→vk−1→···→v0⊂G,
vn∈S(G)

1
∏k−1

i=0 d
−
G(vi)

= 1.

Proof. If G consists of only one sink v0 and sources u1, u2, . . . , ul with arcs
(ui, v0), then (3) is clear.

For any fixed vertices v0, v1, . . . , vk−1 such that vk−1 → vk−2 → · · · → v0
and any vertex w → vk−1 is a source in G, we have

(4)
∑

vk∈S(G),
vk→vk−1→···→v0⊂G

1
∏k−1

i=0 d
−
G(vi)

=
1

∏k−2
i=0 d

−
G(vi)

.

Thus, setting H to be the directed multigraph obtained from G by elimi-
nating all arcs to vk−1, we have

(5)
∑

P :vk→vk−1→···→v0⊂G,
vk∈S(G)

1
∏k−1

i=0 d−G(vi)
=

∑

P :vk→vk−1→···→v0⊂H,
vk∈S(H)

1
∏k−1

i=0 d−H(vi)
.

Since G is acyclic, this descent argument eventually reduces G to a di-
rected multigraph (V,A) with V = {v0, u1, u2, . . . , ul} and A = {(ui, v0), i =
1, . . . , l}. Now the lemma follows by induction. �

3. A directed graph related to divisors of an integer

Let n be a positive integer greater than one. We define the directed
multigraph G = G(n) arising from n by setting its vertex set to be the set
of primes dividing nσ(n).

and each arc p
k
→ q to be of multiplicity k if qk || σ(pe) for the exponent

e with pe || n. For convenience, we write pe → qf if p → q and pe, qf || n
and pe ∈ S if pe || n and p belongs to a set S of vertices.

For a set S of vertices w1, w2, . . . , wk of G, we define their 2-incomponent
N(S) to be the subgraph of G consisting w1, w2, . . . , wk themselves and the
vertices w such that there exists a path v2 → v21 → · · · → v2l → wi to some
vertex wi, their 2-boundary B(S) by the set of vertices v 6∈ N(S) from which
there exists an edge to some vertex in N(S) and their 2-closure C(S) by
the subgraph whose vertex set is N(S) ∪ B(S) and whose arc set consists
of all edges in B(S) and all arcs from N(S) to B(S). For convenience, we
simply write N(w) for N({w}) and so on. Moreover, we put p0 = 2 and
M(S) = N(S)\S. We note that C(S) may contain p0 = 2.
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Now Theorem 1.1 can be restated as in iii) of Theorem 1.2.

For a set S of prime powers, we define h(S) =
∏

pe∈S σ(p
e)/p2. Clearly,

we have h(S0) = σ(n)/(γ(n))2 for the set S0 of all prime-power divisors of
n. For convenience, we write h(pe) = h({pe}) for a prime power pe and
h(n) = h(S0) for the set S0 mentioned above.

We clearly have the following lemma.

Lemma 3.1. We have h(m) ≥ 1 for any positive integer m with the equality
just when m = 1. If m1 divides m2, then h(m1) ≤ h(m2). Furthermore,
if S and T are disjoint sets of prime-power divisors of n, then h(S ∪ T ) =
h(S)h(T ).

We also use the following divisibility property of values of the polynomial
x2 + x+ 1.

Lemma 3.2. If m is an integer and a prime p divides m2 + m + 1, then
p = 3 or p ≡ 1 (mod 3). Furthermore, 3 divides m2 +m+ 1 if and only if
m ≡ 1 (mod 3).

Proof. The former is a special case of Theorem 94 of [7]. Indeed, if p 6= 3
divides m2 +m + 1, then m 6≡ 1 (mod p) and m3 ≡ 1 (mod p). Hence, m
(mod p) has the multiplicative order 3 and therefore p−1 must be divisible
by 3. The latter can be easily confirmed by calculating modulo 3. �

The following lemma is the key point of our proof of Theorem 1.1.

Lemma 3.3. Let n be an integer of the form (2) satisfying (1) and L be a
set of prime power divisors of n. We define quantities κi for pi ∈ C = C(L)
and λi for pi ∈ M = M(L) by

(6) σ(peii ) = κi

∏

pj∈N(L)

p
ki,j
j

and

(7) p2i = λi

∏

pj∈N(L)

p
ki,j
j .

If N = N(L) is acyclic and any element of L is a sink of N , then

(8)
∏

pi∈B

σ(peii ) =
∏

pi∈B

κi

∏

pj∈M

λj

∏

pi∈L

p2i

and

(9) h(C) >
∏

pi∈B

κ
1

2

i p
ei
2
−2

i

∏

pj∈M

√

σ(p2j )

pj

∏

pi∈L

pei−1
i .
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Proof. We see that

(10) pi = λ
1

2

i

∏

pi→pj ,pj∈N

p
1

2

j

for pi ∈ M . Since we assume that a vertex in L must be a sink in C = C(L),
if P = q21 → · · · → q2k → q0 is a path in N and a prime q in L occurs in P ,
then q = q0. Moreover, by the assumption, N is acyclic. Hence, we iterate
(10) to obtain

(11) q1 =
∏

q2
1
→···→q2

k
→p1,p∈L

(λ
1

2

j1
λ

1

4

j2
· · ·λ

1

2k

jk
)q

1

2k

i

for any q1 ∈ M , where jm’s (m = 1, 2, . . . , k) are indices such that pjm = qm.

Moreover, we see that

(12) σ(peii ) = κi

∏

j

p
ki,j
j = κi

∏

pi→pj,pj∈N

pj

for pi ∈ B. Combining (11) and (12), we have

(13)
∏

pi∈B

σ(peii ) =

(

∏

pi∈B

κi

)

∏

pj∈M

λ
sj
j

∏

pi∈L

p
2sj
j ,

where, observing that d−C(pi) = d−G(pi) = 2 for any pi ∈ N from (1),

(14) sj =
∑

q0→q1→···→qk=pj,
q0∈B,q1,...,qk−1∈N

1

2k
=

∑

q0→q1→···→qk=pj ,
q0∈B,q1,...,qk−1∈N

1
∏k

l=1 d
−
C(ql)

.

Since N is acyclic by the assumption, Lemma 2.1 gives that sj = 1 for
all pj ∈ N . Thus we obtain

(15)
∏

pi∈B

σ(peii ) =

(

∏

pi∈B

κi

)





∏

pj∈M

λj





∏

pi∈L

p2i

and therefore

∏

pi∈C

σ(peii )

p2i
>
∏

pi∈B

p
ei
2
−2

i

√

σ(peii )
∏

pj∈M

σ(p2j)

p2j

∏

pi∈L

pei−1
i

≥
∏

pi∈B

κ
1

2

i p
ei
2
−2

i

∏

pj∈M

λ
1

2

j

σ(p2j )

p2j

∏

pi∈L

pei−1
i .

(16)

Now the lemma immediately follows observing that λj ≥ p2j/σ(p
2
j) for pj ∈

M . �
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4. Acyclic cases

In this and the next section, We assume that n is an integer of the form
(2) satisfying (1) and we put L to be the set of odd primes pi with ei = 1.
Thus, L = {p1, p2} in the case (b) with e1 = e2 = 1 and L = {p1} in the case
(a) and the case (b) with e1 = 1 < e2. In this section, we shall show that,
N = N(L) must have a cycle or we must have L = {p1, p2} and p1 ∈ B(p2)
or p2 ∈ B(p1).

Lemma 4.1. If n is divisible by 4 or 2×36 or n is divisible by 2 and 3 does
not belong to C = C(L), then N = N(L) must have a cycle or we must
have L = {p1, p2} and p1 ∈ B(p2) or p2 ∈ B(p1).

Proof. Assume that n of the form (2) is divisible by 22 or 2 × 36 and N is
acyclic and, in the case L = {p1, p2}, p1 6∈ B(p2) and p2 6∈ B(p1).

We can easily see that any prime pi in L must be a sink in N . Indeed,
if pi ∈ L and pi → pj for some pj ∈ N not necessarily distinct from pi,
then, there exists a path from pi to pj ∈ L via N , which contradicts to the
assumption. Thus, we can apply Lemma 3.3 and, observing that κi ≥ 1 for
all pi ∈ B = B(L), we obtain

(17) h(C) >
∏

pi∈B

p
ei
2
−2

i .

If 4 = 22 divides n, then, observing that ei/2 ≥ 2 for pi ∈ B, Lemma 3.1
and (17) gives that h(n) > h(C) > 1.

If 2 divides n and 3 does not belong to C, then, by Lemma 3.1, we have
h(n) ≥ h(C ∪ {2, 32}) = h({2, 32})h(C) > (4/3)(13/9) > 1.

If 2 × 36 divides n and 3 belongs to C, then (17) yields that h(C) > 3
and h(n) ≥ (3/4)h(C) > 9/4 > 1.

Thus, in any case, we have h(n) > 1 or, equivalently, σ(n) > (γ(n))2,
which contradicts to the assumption that n satisfies (1). �

Lemma 4.2. If e0 = 1 and 32 ∈ N = N(L), then N must have a cycle or
we must have L = {p1, p2} and p1 ∈ B(p2) or p2 ∈ B(p1).

Proof. Assume that 32 ∈ N , N is acyclic and, in the case (b) with e1 =
e2 = 1, p1 6∈ B(p2) and p2 6∈ B(p1). Since 32 belongs to N , 32 → 13 also
belongs to N . If 13 ∈ M = M(L), then 32 → 132 → 3, which contradicts to
the assumption that N is acyclic. Thus, 131 ∈ L. Now we may assume that
p1 = 13. We see that p2 ∈ L and p2 ≡ 1 (mod 4) since p1 ≡ 1 (mod 4).
Hence, 13 → 7e divides N .



8 TOMOHIRO YAMADA

We see that e ≥ 2 must be even since 23 | (7 + 1). If 72 || N , then
13 → 72 → 32 → 13, contrary to the assumption that N is acyclic. Thus,
e ≥ 4.

If 7e 6∈ B(p2), then, applying Lemma 3.3, we have

(18) h(n) ≥ h({2, 32, 13, 7e})h(C(p2)) > h(C(p2)) > 1,

which is a contradiction.

Thus, we may assume that 7e ∈ B(p2). If e ≥ 8, then, Lemma 3.3 gives
that

(19) h({2, 32, 13})h(C(p2)) > 72h({2, 32, 13}) > 1,

which is a contradiction again.

Assume that 74 ∈ B(p2), which immediately yields that 2801 ∈ N(p2).
If p2 = 2801, then p2 → 32 → 13 = p1, contrary to the assumption that
pe22 6∈ B(p1). Thus, 2801

2 ∈ N(p2) and 28012 → 37, 43, 4933.

If p2 = 37, then p3 = 19 divides n. If p2 = 4933, then p3 = 2467 divide n.
In both cases, if p23 || n, then p2 → p23 → 32 → 13 = p1, which is impossible.
If p43 | n, then

h(n) ≥ h({2, 32, 13, 74, 28012, 37, 194}) > 1

or
h(n) ≥ h({2, 32, 13, 74, 28012, 4933, 24674}) > 1.

Hence, p2 = 37 and p2 = 4933 are both impossible.

If 372 ∈ N(p2), then σ(372) = 3× 7× 67 and therefore 67 ∈ N(p2). Since
67 ≡ 3 (mod 4), we have p2 6= 67 and 372 → 672. But this implies that
33 | σ(2× 372 × 672) | σ(n), which is a contradiction.

If 49332 ∈ N(p2), then σ(49332) = 3 × 127 × 193 × 331 and therefore
p2 = 193, since p23 ∈ N(p2) with p3 = 127, 193 or 331 would imply that
33 | σ(2 × 49332 × p23), a contradiction. Thus p3 = 97 must divide n. If
e3 = 2, then 33 | σ(2 × 49332 × 972) | σ(n), which is impossible. But, if
e3 ≥ 4, then

h(n) ≥ h({2, 32, 13, 74, 28012, 49332, 193, 974}) > 1,

which is a contradiction again.

If 432 ∈ N(p2), then σ(432) = 3×7×631 and therefore 631 ∈ N(p2). Since
631 ≡ 3 (mod 4), we must have 6312 ∈ N(p2) and 33 | σ(2 × 432 × 6312) |
σ(n), which is impossible. Thus we see that 2801f 6∈ N(p2) and therefore
74 6∈ N(p2).

Now we must have 76 ∈ B(p2). σ(76) = 29 × 4733 must divide n. It
is impossible that p2 = 29, 4733 since this would imply that p2 → 32 →
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13 = p1. If 292 ∈ N(p2), then, observing that σ(292) = 13 × 67 and
σ(672) = 3 × 72 × 31, we must have 292 → 672 → 312. However, this is
impossible since 33 | σ(2× 672 × 312).

If 47332 ∈ N(p2), then, observing that 47332 + 4733 + 1 = 22406023 ≡ 3
(mod 4) is prime, we must have 224060232 ∈ N(p2). If 224060232 → p2,
then p2 = 1117 or p2 = 606538249. However, neither of them is impossible
since 133 | σ(32 × 224060232 × 1117) and 53 | σ(606538249). Hence, we
must have 224060232 → p23 ∈ N(p2) for some prime divisor p3 6= 3 of
σ(224060232). But, this is also impossible since 33 | σ(2× 224060232 × p23).

Now we conclude that 7 cannot divide N and therefore 13 cannot be in
L. Hence, 32 cannot be in N(L). This proves the lemma. �

Lemma 4.3. If e0 = 1 and 34 ∈ B = B(L), then n = 1782, N = N(L) must
have a cycle or we must have L = {p1, p2} and p1 ∈ B(p2) or p2 ∈ B(p1).

Proof. Since 34 ∈ B, p1 = 11 or 112 ∈ N . If p1 = 11, then n = 2×34×p1 =
1782. We note that if n = n0 is a solution of (1), then n = kn0 with
k > 1 odd and gcd(k, n) = 1 can never be a solution of (1). Indeed,
h(n0) = h(kn0) = 1, then h(k) = 1. However, this is impossible since n = 1
is the only odd solution of (1).

Now we may assume that 112 ∈ N . If p23 ∈ N with p3 = 7 or 19, then
34 → 112 → p23 → 34 in N , contrary to the assumption. Thus, we must
have p1 = 19 and 74 | N . Since p1 ≡ 3 (mod 8), we must have L = {p1}.
Hence,

h(n) ≥ h({2, 34, 112, 74, 19}) > 1,

which is impossible again. �

5. Cyclic cases

In the previous section, we showed that, if an integer n of the form (2)
satisfies (1) and L is the set of odd primes pi with ei = 1, then N(L) must
be cyclic or we must have L = {p1, p2} and p1 ∈ B(p2) or p2 ∈ B(p1). In
this section, we shall show that M(L) must be acyclic and then complete
the proof of Theorems 1.1 and 1.2. We begin by showing that M = M(L)
cannot contain a cycle of length ≥ 3.

Lemma 5.1. Assume that for there exists no arc pi → pj from pi ∈ L to
pj ∈ N(L). Then M = M(L) cannot contain a cycle of length ≥ 3.

Proof. Assume that qi(i = 1, 2, . . . , l) is a cycle of length l ≥ 3. We see that
qi ≡ 1 (mod 3) for all i except possibly one index j, for which qj = 3. We
must have l = 3 and qj = 3 for some j since otherwise we must have qi ≡ 1
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(mod 3) for at least three i’s by Lemma 3.1 and 33 |
∏

j σ(q
2
i ) | n, which is

a contradiction.

Now we see that 32 → 132 → 612 → 32 is a cycle in M and p1 = 97 ∈ L.
Hence, 97 → 7e must divide n and, observing that no more prime pi ≡ 1
(mod 3) can satisfy p2i || N again, e ≥ 4 must be even. Moreover, we must
have e0 ≥ 2 since 33 | σ(2× 132 × 612).

If L = {p1} and 76 divides n, then

h(n) ≥ h(76)h(C(L)) > h({32, 132, 612, 97, 76}) > 1,

which is a contradiction.

If L = {p1, p2} and 710 divides n, then, since N(p2) is acyclic, Lemma 3.3
gives
(20)
h(n) ≥ h({32, 132, 612, 97})h(C(p2) ∪ {710}) > 73h({32, 132, 612, 97}) > 1.

Now we must have e = 4, 6 or 8. We can never have 97 → 78 since
33 | σ(132×612×78). In both cases e = 4 and e = 6, we have a contradiction
that p3 | σ(n) = (γ(n))2 for some prime p or h(n) > 1 as follows:

A. If 97 → 76, then σ(76) = 29× 4733.

A. 1. If 76 → p43 with p3 = 29 or 4733, then h({32, 132, 612, 97, 76, p43} > 1.

A. 2. If p2 = 29 or 4733, then 33 | σ(132 × 612 × p2).

A. 3. We cannot have 76 → 292 since 133 | σ(32 × 612 × 292).

A. 4. If 76 → 47332, then 47332 → 224060232 and 33 | σ(132 × 612 ×
224060232).

B. If 97 → 74, then 74 → 2801f for some integer f > 0.

B 1. If f ≡ 1 (mod 4), then 33 | σ(132 × 612 × 2801).

B. 2. If f ≥ 6 and L = {p1, p2}, then h({32, 132, 612, 97, 74, 2801f} ∪
C(p2)) > 2801h({97, 74}) > 1.

B. 3. If f ≥ 4 and L = {p1}, then h({32, 132, 612, 97, 74, 2801f}∪C(p2)) >
2801h({97, 74}) > 1.

B. 4. If f = 4, 28014 6∈ B(p2), then h({32, 132, 612, 97, 74, 28014} ∪
C(p2)) > h({97, 74, 28014}) > 1.

B. 5. If f = 4, L = {p1, p2} and 28014 ∈ B(p2), then q ∈ N(p2), q =
5, 195611, 6294091.
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B. 5. a. If p2 = 5, then 33 | σ(132 × 612 × p2).

B. 5. b. If 52 ∈ N(p2), then 52 → 312 but 33 | σ(132 × 612 × 312).

B. 5. c. We cannot have 62940912 ∈ N(p2) since 33 | σ(132 × 612 ×
62940912).

B. 5. d. If 1956112 ∈ N(p2), then σ(1956112) = 211 × 181345303 and
1956112 → p23 with p3 = 211 or 181345303. However, 33 | σ(132 × 612 × p23).

B. 6. If f = 2, then σ(28012) = 37× 43× 4933.

B. 6. a. We cannot have 28012 → 432 since 33 | σ(132 × 612 × 432).

B. 6. b. If 28012 → 43e3, e3 ≥ 6, then h(n) > h({97, 74, 43e3} ∪ C(p2)) >
43h({97, 74}) > 1.

B. 6. c. If 28012 → 434 and 434 6∈ B(p2), then h(n) > h({97, 74, 434} ∪
C(p2)) > h({97, 74, 434}) > 1.

B. 6. d. If 28012 → 434 and 434 ∈ B(p2), then 434 → 35002012,
σ(35002012) = 13 × 139 × 28411 × 238639. Since q ≡ 3 (mod 4) for
q = 139, 28411, 238639, q2 ∈ N(q2) and 33 | σ(132 × 612 × q2).

Thus we have a contradiction in any case. This yields that 32 → 132 →
612 → 97 is impossible. Hence, we conclude that M = M(L) cannot contain
a cycle of length ≥ 3, as stated in the lemma. �

Now a cycle in M(L) must be of the form p2i ↔ p2j . We may assume

that p2r ↔ p2r+1 for some r. In other words, we must have pr | σ(p
2
r+1) and

pr+1 | σ(p
2
r) for some primes pr, pr+1 ∈ M(L).

Lemma 2.6 of [4] shows that such pr, pr+1 must be two consecutive terms
of the binary recurrent sequence described in A101368 of OEIS. This had
already been proved by Mills [9] and Chao [3]. However, this fact is not
needed in our argument. We only use the fact that, if pr+1 > pr > 3 and
pr ↔ pr+1, then pr ≡ pr+1 ≡ 1 (mod 3) by Lemma 3.2.

We begin by proving that, we cannot have pr ↔ pr+1 if pr+1 > pr > 3.

Lemma 5.2. Assume that for there exists no arc pi → pj from pi ∈ L to
pj ∈ N(L). If M = M(L) contains a cycle p2r ↔ p2r+1 of length two with
pr+1 > pr, then (pr, pr+1) = (3, 13).

Proof. We may assume that pr, pr+1 ∈ N(p1). Hence, there exists a vertex
q ∈ N(p1) such that pr → q or pr+1 → q. However, if q ∈ M , then, since
q ≡ pr+1 ≡ pr+1 ≡ 1 (mod 3), we must have 33 | σ(q2p2rp

2
r+1) | σ(n), which

is a contradiction. Thus, we must have q ∈ L.
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Now we obtain a directed graph F by eliminating the arcs pr ↔ pr+1 and
pr or pr+1 → pi with pi ∈ L from C = C(L). Then F has two more sinks
pr, pr+1 as well as sinks in C(L).

Proceeding as in the proof of Lemma 3.3, we have

(21)
∏

pi∈B=B(L)

σ(peii ) =

(

∏

pi∈B

κi

)

∏

pj∈M,j 6=r,r+1

λ
sj
j

∏

pi∈L∪{pr,pr+1}

p
2sj
j ,

where

(22) sj =
∑

q0→q1→···→qk=pj ,
q0∈B,q1,...,qk−1∈N

1

2k
.

Let fi be the exponent pfii || σ(p2rp
2
r+1) for pi ∈ L. We observe that

d−F (pi) = 2 − fi for pi ∈ L, d−F (pr) = d−F (pr+1) = 1 and d−F (pj) = 2 for any
other vertices pj in N . Hence,

(23) sj = tj
∑

q0→q1→···→qk=pj ,
q0∈B,q1,...,qk−1∈N

1
∏k

l=1 d
−
F (ql)

,

where tj = (2 − fi)/2 for pj ∈ L, 1/2 for j = r, r + 1 and tj = 1 for any
other j such that pj ∈ N . By Lemma 2.1, we have sj = tj for any j such
that pj ∈ N and, as in Lemma 3.3,

(24) h(C) >
∏

pi∈B

κ
1

2

i p
ei
2
−2

i

∏

pj∈M,j 6=r,r+1

√

σ(p2j)

pj

p
1

2
r p

1

2

r+1

p
f1
2

1 p
f2
2

2

>

√

prpr+1

pf11 pf22
.

If pr > 3, then we have pr ≡ pr+1 ≡ 1 (mod 3) and pf11 pf22 ≤ σ(p2rp
2
r+1)/(9prpr+1).

Hence, we must have

(25) h(n) > h(C) >
3prpr+1

σ(p2rp
2
r+1)

> 1,

which is a contradiction. Thus, we must have (pr, pr+1) = (3, 13). �

Now the only remaining case is 32 ↔ 132 → 61.

Lemma 5.3. Assume that for there exists no arc pi → pj from pi ∈ L to
pj ∈ N = N(L). Then, 32 ↔ 132 → 61 is impossible.

Proof. We immediately have L = {61} or L = {61, p2} with p2 ≡ 1 (mod 4)
and 61 → 31e3.

If e3 ≥ 8, then Lemma 3.3 gives

h(n) ≥ h({2, 32, 132, 61})h(C(p2) ∪ {31e3}) > 312h({2, 61}) > 1.
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If e3 ≥ 4 and L = {p1}, then Lemma 3.3 gives

h(n) ≥ h({2, 32, 132, 61, 31e3}) ≥ h({2, 61, 314}) > 1.

If e3 ≥ 4, L = {p1, p2} and 31e3 6∈ B(p2), then Lemma 3.3 gives

h(n) ≥ h({2, 32, 132, 61, 31e3})h(C(p2)) > h({2, 61, 314}) > 1.

Thus, in these three cases, we are led to h(n) > 1, which is a contradiction.
Hence, we must have (I) L = {p1, p2}, e3 ∈ {4, 6} and 31e3 ∈ B(p2) or (II)
e3 = 2. In both cases (I) and (II), we have a contradiction that p3 | σ(n) =
(γ(n))2 for some prime p or h(n) > 1 as follows:

I. A. If 316 ∈ B(p2), then p2 = 917087137 or 9170871372 ∈ N(p2).

I. A. 1. In the case p2 = 917087137, we observe that pe44 → p2 for a prime
p4 6= 31.

I. A. 1. a. If e4 = 2, then p4 ≥ 20612597323 and, since 32, 132, 611, 316, p12 6∈
C(p4) (we observe that p12 ∈ C(p4) implies that N(p2) must contain a cycle
p2 → · · · → p24 → p2), Lemma 3.3 yields that

h(n) > h({2, 61, 316, p2})h(C(p4)) > p4h({2, 61, 31
6, p2}) > 1.

I. A. 1. b. If e4 > 2, then h(C(p2)) > 31p4 > 312 by Lemma 3.3 and
therefore

h(n) > h({2, 61})h(C(p2)) > 312h({2, 61}) > 1.

I. A. 2. If 9170871372 ∈ N(p2), then, since any prime factor of σ(p24) is
≡ 3 (mod 4), we must have p24 → p25 with p5 = 43, 4447, 38647 or 38533987,
which is impossible since 33 | σ(132p24p

2
5).

I. B. If 314 ∈ B(p2), then one of 5, 52, 112, 173512 must belong to N(p2).

I. B. 1. If p2 = 5, then h(n) > h({2, 61, 314, 5}) > 1, a contradiction.

I. B. 2. We cannot have 52 ∈ N(p2) since σ(52) = 31 ∈ B(p2).

I. B. 3. If 112 ∈ N(p2), then 72 ∈ N(p2) or 19
2 ∈ N(p2). Since σ(72) =

3× 19, we have 192 ∈ N(p2) in any case. Now we must have 192 → 1272 ∈
N(p2). Thus, 3

3 | σ(132 × 192 × 1272) | σ(n), a contradiction.

I. B. 4. If 173512 ∈ N(p2), then 10632 ∈ N(p2) or 21787
2 ∈ N(p2).

I. B. 4. a. If 10632 ∈ N(p2), then we must have 10632 → 3770112 ∈ N(p2)
and 33 | σ(132 × 10632 × 3770112), which is a contradiction.

I. B. 4. b. If 217872 ∈ N(p2), then p2 = 5104249 or 51042492 ∈ N(p2).
Neither of them is possible since 53 | (5104249+1) and 33 | σ(132×217872×
51042492).
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II. If 61 → 312, then we must have 312 → 331e3 for some e3. Since 331 ≡ 3
(mod 4), p2 6= 331 and e3 must be even.

II. 1. e3 = 2 is impossible since 33 | σ(132 × 312 × 3312).

II. 2. If e3 ≥ 6 and 31e3 ∈ B(p2), then Lemma 3.3 gives

h(n) ≥ h({2, 61})h(C(p2) ∪ {331e3}) > 331h({2, 61}) > 1.

II. 3. If e3 ≥ 4 and L = {p1}, then Lemma 3.3 gives

h(n) ≥ h({2, 61, 331e3}) ≥ h({2, 61, 3314}) > 1.

II. 4. If e3 ≥ 4, L = {p1, p2} and 331e3 6∈ B(p2), then Lemma 3.3 gives

h(n) ≥ h({2, 61, 331e3})h(C(p2)) > h({2, 61, 3314}) > 1.

II. 5. If e3 = 4, L = {p1, p2} and 3314 ∈ B(p2), then p2 = 5, 37861, 62601
or 3314 → p24 ∈ N(p2) with p4 = 37861 or 63601 (we see that since σ(52) =
31, we cannot have 52 ∈ N(p2)).

II. 5. a. 3314 → p24 ∈ N(p2) is impossible since 33 | σ(132 × 312p24).

II. 5. b. If p2 = 5, 37861 or 63601, then, observing that pe55 → 37861 with
e5 ≥ 10, Lemma 3.3 gives,

h(n) ≥ h({2, 61, 3314, pe55 , p2}) > 378614/5h({2, 61, 3314, p2}) > 1,

which is a contradiction.

Thus we have a contradiction in any case. This shows that 32 ↔ 132 → 61
is impossible, as desired. �

Now we can easily prove Theorem 1.1. Let n be an integer of the form
(2) satisfying (1) and L be the set of odd primes pi such that pi || n. If
there exists no path between two vertices in L, then, by Lemmas 4.1, 4.2
and 4.3, N(L) must have a cycle but, by Lemmas 5.1, 5.2 and 5.3, M(L)
cannot have a cycle. Hence, G(n) must have a path between two vertices in
L or a cycle in N(L) containing a vertex in L. This proves iii) of Theorem
1.2 and therefore Theorem 1.1.

The remaining statements of Theorem 1.2 can be easily deduced from
Lemma 3.2. Let g1 and g2 be the number of primes ≡ 1 (mod 3) and 6≡ 1
(mod 3) in M respectively. i) and the former statement of ii) immediately
follow from Lemma 3.2 and the fact that 33 ∤ (γ(n))2 = σ(n). Thus, g1 ≤ 2.
If pi is a prime 6≡ 1 (mod 3) in M , then p2i → p2j for some prime pj ≡ 1
(mod 3) in M or p2i → pl for some prime pl ∈ L. Hence, we obtain g2+g1 ≤
2(g1 +#L) and g2 ≤ g1 + 2#L ≤ 2(1 + #L). Now the latter statement of
ii) follows. This completes the proof of our theorems.
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