ON A PROBLEM OF DE KONINCK

TOMOHIRO YAMADA*

Abstract

Let $\sigma(n)$ and $\gamma(n)$ denote the sum of divisors and the product of distinct prime divisors of n respectively. We shall show that, if $n \neq 1,1782$ and $\sigma(n)=(\gamma(n))^{2}$, then there exist odd (not necessarily distinct) primes p, p^{\prime} and (not necessarily odd) distinct primes $q_{i}(i=1,2, \ldots, k)$ such that $p, p^{\prime}\left\|n, q_{i}^{2}\right\| n(i=1,2, \ldots, k)$ and $q_{1}\left|\sigma\left(p^{2}\right), q_{i+1}\right| \sigma\left(q_{i}^{2}\right)(i=1,2, \ldots, k-1), p^{\prime} \mid \sigma\left(q_{k}^{2}\right)$.

1. Introduction

Let $\sigma(n)$ and $\gamma(n)$ denote the sum of divisors and the product of distinct prime divisors of n, called the radical of n, respectively. Moreover, let $\omega(n)$ denote the number of distinct prime divisors of n. De Koninck [6] posed the problem to prove or disprove that the only solutions

$$
\begin{equation*}
\sigma(n)=(\gamma(n))^{2} \tag{1}
\end{equation*}
$$

are $n=1,1782$.
According to the editorial comment, it is shown that such an integer $n \neq 1,1782$ must be even, have at least four prime factors, be neither squarefree and squarefull, be greater than 10^{9} and has no prime factor raised to a power congruent to $3(\bmod 4)$. Later, further necessary conditions to satisfy $\sigma(n)=(\gamma(n))^{2}$ have been shown. Broughan, De Koninck, Kátai and Luca [2] showed that, if $n>1$, then

$$
\begin{equation*}
n=2^{e_{0}} \prod_{i=1}^{s} p_{i}^{e_{i}} \tag{2}
\end{equation*}
$$

where p_{i} are distinct odd primes and e_{i} are positive integers satisfying (a) $p_{1} \equiv 3(\bmod 8), e_{1}=1$ and the other e_{i} 's are even, or (b) $p_{1} \equiv p_{2} \equiv e_{1} \equiv$ $e_{2} \equiv 1(\bmod 4), \min \left\{e_{1}, e_{2}\right\}=1$ and the other e_{i} 's are even. Moreover, they showed that $\omega(n) \geq 5$ and n cannot be fourth power free.

[^0]Luca [8] showed that, if a positive integer n satisfies $\omega(n)=T$ and $\sigma(n)$ | $L(\gamma(n))^{K}$ with K, L positive integers, then

$$
n<\exp \left(((K+\log L) T!)^{2^{T}}\right)
$$

Broughan, De Koninck, Kátai and Luca [2] showed that $\omega(n) \geq 5$ and n cannot be fourth power free. Broughan, Delbourgo and Zhou [1] showed that $p_{1} \geq 43$ in the case (a), $p_{1} \geq 173$ in the case (b) with $\alpha_{2}>\alpha_{1}=1$ and n must be divisible by the fourth power of an odd prime.

Chen and Tong [4] showed that if $n \neq 1,1782$ satisfies (1) with (a), then n is divisible by 3 and by the fourth powers of at least two odd primes, $p_{1} \geq 1571$, at most two of p_{i} 's are greater than $p_{1}, e_{i}=2$ for at least two i 's and $e_{i}=2$ for any i such that $10 p_{i}^{2} \geq p_{1}$. Moreover, they showed that for any n satisfying (1), at least half of the numbers among $e_{i}+1$'s must be either primes or prime squares.

As usual, $p^{e} \| n$ denotes that $p^{e} \mid n$ but $p^{e+1} \nmid n$. In this paper, we shall give the following new necessary condition for an integer n to satisfy (11).

Theorem 1.1. If an integer $n \neq 1,1782$ of the form (2) satisfies (1), then there exist odd (not necessarily distinct) primes p, p^{\prime} and (not necessarily odd) distinct primes $q_{j_{i}}(i=1,2, \ldots, k)$ such that $p, p^{\prime}\left\|n, q_{i}^{2}\right\| n(i=$ $1,2, \ldots, k)$ and $q_{1}\left|\sigma\left(p^{2}\right), q_{i+1}\right| \sigma\left(q_{i}^{2}\right)(i=1,2, \ldots, k-1), p^{\prime} \mid \sigma\left(q_{k}^{2}\right)$.

Our idea is based on the following simple observation. Consider the special case $e_{i}=1$ only for $i=1, q_{1} \mid \sigma\left(p^{2}\right)$ for two primes p and for each $p, p \mid \sigma\left(q_{i}^{e_{i}}\right)$ with $e_{i} \geq 4$ for two primes q_{i}. Now we have $\sigma\left(q_{i}^{e_{i}}\right) / q_{i}^{2}>$ $\sqrt{\sigma\left(q_{i}^{e_{i}}\right)} i>p^{1 / 2}>q_{1}^{1 / 4}$ for each i. Hence, $\left(\left(q_{1}+1\right) / q_{1}^{2}\right) \prod_{i} \sigma\left(q_{i}^{e_{i}}\right) / q_{i}^{2}>$ $q_{1}\left(q_{1}+1\right) / q_{1}^{2}>1$. In order to generalized this observation, we introduce a directed multigraph related to prime power divisors of n.

In the next section, we introduce some basic terms on directed multigraphs and prove an identity on directed multigraphs. In Section 3, we introduce a certain directed multigraph related to prime power divisors of n satisfying (1) and give the key point lemma for our proofs as well as some arithmetic preliminaries.

Under our settings described in Sections 2 and 3, we shall prove the following theorem.

Theorem 1.2. Let $n \neq 1,1782$ be an integer of the form (2) satisfying (11) and L be the set of odd prime divisors q_{i} 's with $e_{i}=1$. Let $G(n), N=$ $N(L), M=M(L), B=B(L)$ and $C=C(L)$ be directed multigraphs or sets defined in Section 3. Then,
i) If $q_{k+1} \rightarrow q_{k} \rightarrow \cdots \rightarrow q_{1} \rightarrow p$ is a path from a vertex q_{k+1} in B to a vertex p in L via vertices in M, then $k \leq 3$ and $q_{i} \equiv 1(\bmod 3)$ for $1 \leq i \leq k-1$.
ii) M contains at most two primes $\equiv 1(\bmod 3)$. Furthermore, $\# M \leq$ 6 if $\# L=1$ and $\# M \leq 8$ if $\# L=2$.
iii) There exists a path from q_{i} in L to q_{j} in L consisting of vertices $q_{l} \in N$ other than q_{i}, q_{j}, where q_{i} and q_{j} may be the same prime.

Now Theorem 1.1 is an arithmetic translation of iii) of Theorem 1.2. In Sections 4 and 5, we prove that the directed multigraph related to prime power divisors of n defined in Section 3 cannot have some forms, which yields iii) of Theorem (1.2). Other statements of Theorem 1.2 easily follow from an elementary divisibility property of values of $\sigma\left(p^{2}\right)$ with p prime.

2. An identity on directed multigraphs

Before stating our result on directed multigraphs, we would like to introduce some basic terms on directed multigraphs according to [5] with some modifications. A directed multigraph $G=(V, A)$ consists of a set V of elements called vertices and a multiset A, where an element may be contained more than once, of ordered pairs of distinct elements in V called arcs. $V=V(G)$ and $A=A(G)$ are called the vertex set and the arc set of G respectively. For an $\operatorname{arc}(u, v)$ in A, which we call an arc from u to v, the former vertex u and the latter vertex v are called its tail and its head respectively. We often write $u \rightarrow v$ if $(u, v) \in A$ and $u \xrightarrow{k} v$ if $(u, v) \in A$ exactly k times.

The subgraph of $G=(V, A)$ spanned by a given set of vertices $S \subset V$ is the directed graph whose vertex set is S and whose arc set consists of all arcs in A whose tail and head both belong to S.

A walk $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is a sequence of $\operatorname{arcs} a_{i}=\left(u_{i}, v_{i}\right)(i=1,2, \ldots, k)$ such that $v_{i}=u_{i+1}$ for all $i=1,2, \ldots, k-1$. A walk $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ with $a_{i}=\left(u_{i}, u_{i+1}\right)(i=1,2, \ldots, k)$ is called a path if $u_{1}, u_{2}, \ldots, u_{k}$ and v_{k} are all distinct and a cycle if $u_{1}, u_{2}, \ldots, u_{k}$ are all distinct and $u_{1}=v_{k}$. A walk $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ with $a_{i}=\left(u_{i}, u_{i+1}\right)(i=1,2, \ldots, k)$ is often written as $u_{1} \rightarrow u_{2} \rightarrow \cdots \rightarrow u_{k}$. A directed graph $G=(V, A)$ is acyclic if A contains no cycle.

The out-degree $d^{+}(v)=d_{G}^{+}(v)$ and the in-degree $d^{-}(v)=d_{G}^{-}(v)$ of the vertex v are the number of arcs from v and to v respectively counted with multiplicity. A vertex v is called a sink if $d^{+}(v)=0$ and a source if $d^{-}(v)=0$. $S(G)$ denotes the set of sources of the directed multigraph G.

Now we would like to state our identity.

Lemma 2.1. Let G be a directed acyclic multigraph. Then, for any vertex v_{0} of G with $d^{-}\left(v_{0}\right)>0$,

$$
\begin{equation*}
\sum_{\substack{P: v_{k} \rightarrow v_{k-1} \rightarrow \cdots \rightarrow v_{0} \subset G \\ v_{n} \in S(G)}} \frac{1}{\prod_{i=0}^{k-1} d_{G}^{-}\left(v_{i}\right)}=1 \tag{3}
\end{equation*}
$$

Proof. If G consists of only one sink v_{0} and sources $u_{1}, u_{2}, \ldots, u_{l}$ with arcs $\left(u_{i}, v_{0}\right)$, then (3) is clear.

For any fixed vertices $v_{0}, v_{1}, \ldots, v_{k-1}$ such that $v_{k-1} \rightarrow v_{k-2} \rightarrow \cdots \rightarrow v_{0}$ and any vertex $w \rightarrow v_{k-1}$ is a source in G, we have

$$
\begin{equation*}
\sum_{\substack{v_{k} \in S(G), \rightarrow v_{k-1} \rightarrow \cdots \rightarrow v_{0} \subset G}} \frac{1}{\prod_{i=0}^{k-1} d_{G}^{-}\left(v_{i}\right)}=\frac{1}{\prod_{i=0}^{k-2} d_{G}^{-}\left(v_{i}\right)} . \tag{4}
\end{equation*}
$$

Thus, setting H to be the directed multigraph obtained from G by eliminating all arcs to v_{k-1}, we have

$$
\begin{equation*}
\sum_{\substack{P: v_{k} \rightarrow v_{k-1} \rightarrow \ldots \rightarrow v_{0} \subset G \\ v_{k} \in S(G)}} \frac{1}{\prod_{i=0}^{k-1} d_{G}^{-}\left(v_{i}\right)}=\sum_{\substack{P: v_{k} \rightarrow v_{k-1} \rightarrow \ldots \rightarrow v_{0} \subset H, v_{k} \in S(H)}} \frac{1}{\prod_{i=0}^{k-1} d_{H}^{-}\left(v_{i}\right)} . \tag{5}
\end{equation*}
$$

Since G is acyclic, this descent argument eventually reduces G to a directed multigraph (V, A) with $V=\left\{v_{0}, u_{1}, u_{2}, \ldots, u_{l}\right\}$ and $A=\left\{\left(u_{i}, v_{0}\right), i=\right.$ $1, \ldots, l\}$. Now the lemma follows by induction.

3. A directed graph related to divisors of an integer

Let n be a positive integer greater than one. We define the directed multigraph $G=G(n)$ arising from n by setting its vertex set to be the set of primes dividing $n \sigma(n)$.
and each arc $p \xrightarrow{k} q$ to be of multiplicity k if $q^{k} \| \sigma\left(p^{e}\right)$ for the exponent e with $p^{e} \| n$. For convenience, we write $p^{e} \rightarrow q^{f}$ if $p \rightarrow q$ and $p^{e}, q^{f} \| n$ and $p^{e} \in S$ if $p^{e} \| n$ and p belongs to a set S of vertices.

For a set S of vertices $w_{1}, w_{2}, \ldots, w_{k}$ of G, we define their 2 -incomponent $N(S)$ to be the subgraph of G consisting $w_{1}, w_{2}, \ldots, w_{k}$ themselves and the vertices w such that there exists a path $v^{2} \rightarrow v_{1}^{2} \rightarrow \cdots \rightarrow v_{l}^{2} \rightarrow w_{i}$ to some vertex w_{i}, their 2-boundary $B(S)$ by the set of vertices $v \notin N(S)$ from which there exists an edge to some vertex in $N(S)$ and their 2 -closure $C(S)$ by the subgraph whose vertex set is $N(S) \cup B(S)$ and whose arc set consists of all edges in $B(S)$ and all arcs from $N(S)$ to $B(S)$. For convenience, we simply write $N(w)$ for $N(\{w\})$ and so on. Moreover, we put $p_{0}=2$ and $M(S)=N(S) \backslash S$. We note that $C(S)$ may contain $p_{0}=2$.

Now Theorem 1.1 can be restated as in iii) of Theorem 1.2,
For a set S of prime powers, we define $h(S)=\prod_{p^{e} \in S} \sigma\left(p^{e}\right) / p^{2}$. Clearly, we have $h\left(S_{0}\right)=\sigma(n) /(\gamma(n))^{2}$ for the set S_{0} of all prime-power divisors of n. For convenience, we write $h\left(p^{e}\right)=h\left(\left\{p^{e}\right\}\right)$ for a prime power p^{e} and $h(n)=h\left(S_{0}\right)$ for the set S_{0} mentioned above.

We clearly have the following lemma.
Lemma 3.1. We have $h(m) \geq 1$ for any positive integer m with the equality just when $m=1$. If m_{1} divides m_{2}, then $h\left(m_{1}\right) \leq h\left(m_{2}\right)$. Furthermore, if S and T are disjoint sets of prime-power divisors of n, then $h(S \cup T)=$ $h(S) h(T)$.

We also use the following divisibility property of values of the polynomial $x^{2}+x+1$.

Lemma 3.2. If m is an integer and a prime p divides $m^{2}+m+1$, then $p=3$ or $p \equiv 1(\bmod 3)$. Furthermore, 3 divides $m^{2}+m+1$ if and only if $m \equiv 1(\bmod 3)$.

Proof. The former is a special case of Theorem 94 of [7]. Indeed, if $p \neq 3$ divides $m^{2}+m+1$, then $m \not \equiv 1(\bmod p)$ and $m^{3} \equiv 1(\bmod p)$. Hence, m $(\bmod p)$ has the multiplicative order 3 and therefore $p-1$ must be divisible by 3 . The latter can be easily confirmed by calculating modulo 3 .

The following lemma is the key point of our proof of Theorem 1.1,
Lemma 3.3. Let n be an integer of the form (2) satisfying (11) and L be a set of prime power divisors of n. We define quantities κ_{i} for $p_{i} \in C=C(L)$ and λ_{i} for $p_{i} \in M=M(L)$ by

$$
\begin{equation*}
\sigma\left(p_{i}^{e_{i}}\right)=\kappa_{i} \prod_{p_{j} \in N(L)} p_{j}^{k_{i, j}} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{i}^{2}=\lambda_{i} \prod_{p_{j} \in N(L)} p_{j}^{k_{i, j}} \tag{7}
\end{equation*}
$$

If $N=N(L)$ is acyclic and any element of L is a sink of N, then

$$
\begin{equation*}
\prod_{p_{i} \in B} \sigma\left(p_{i}^{e_{i}}\right)=\prod_{p_{i} \in B} \kappa_{i} \prod_{p_{j} \in M} \lambda_{j} \prod_{p_{i} \in L} p_{i}^{2} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
h(C)>\prod_{p_{i} \in B} \kappa_{i}^{\frac{1}{2}} p_{i}^{\frac{e_{i}}{2}-2} \prod_{p_{j} \in M} \frac{\sqrt{\sigma\left(p_{j}^{2}\right)}}{p_{j}} \prod_{p_{i} \in L} p_{i}^{e_{i}-1} . \tag{9}
\end{equation*}
$$

Proof. We see that

$$
\begin{equation*}
p_{i}=\lambda_{i}^{\frac{1}{2}} \prod_{p_{i} \rightarrow p_{j}, p_{j} \in N} p_{j}^{\frac{1}{2}} \tag{10}
\end{equation*}
$$

for $p_{i} \in M$. Since we assume that a vertex in L must be a sink in $C=C(L)$, if $P=q_{1}^{2} \rightarrow \cdots \rightarrow q_{k}^{2} \rightarrow q_{0}$ is a path in N and a prime q in L occurs in P, then $q=q_{0}$. Moreover, by the assumption, N is acyclic. Hence, we iterate (10) to obtain

$$
\begin{equation*}
q_{1}=\prod_{q_{1}^{2} \rightarrow \cdots \rightarrow q_{k}^{2} \rightarrow p^{1}, p \in L}\left(\lambda_{j_{1}}^{\frac{1}{2}} \lambda_{j_{2}}^{\frac{1}{4}} \cdots \lambda_{j_{k}}^{\frac{1}{2 k}}\right) q_{i}^{\frac{1}{2^{k}}} \tag{11}
\end{equation*}
$$

for any $q_{1} \in M$, where j_{m} 's $(m=1,2, \ldots, k)$ are indices such that $p_{j_{m}}=q_{m}$.
Moreover, we see that

$$
\begin{equation*}
\sigma\left(p_{i}^{e_{i}}\right)=\kappa_{i} \prod_{j} p_{j}^{k_{i, j}}=\kappa_{i} \prod_{p_{i} \rightarrow p_{j}, p_{j} \in N} p_{j} \tag{12}
\end{equation*}
$$

for $p_{i} \in B$. Combining (11) and (12), we have

$$
\begin{equation*}
\prod_{p_{i} \in B} \sigma\left(p_{i}^{e_{i}}\right)=\left(\prod_{p_{i} \in B} \kappa_{i}\right) \prod_{p_{j} \in M} \lambda_{j}^{s_{j}} \prod_{p_{i} \in L} p_{j}^{2 s_{j}} \tag{13}
\end{equation*}
$$

where, observing that $d_{C}^{-}\left(p_{i}\right)=d_{G}^{-}\left(p_{i}\right)=2$ for any $p_{i} \in N$ from (11),

$$
\begin{equation*}
s_{j}=\sum_{\substack{q_{0} \rightarrow q_{1} \rightarrow \ldots \rightarrow q_{k}=p_{j}, q_{0} \in B, q_{1}, \ldots, q_{k-1} \in N}} \frac{1}{2^{k}}=\sum_{\substack{q_{0} \rightarrow q_{1} \rightarrow \ldots \rightarrow q_{k}=p_{j}, q_{0} \in B, q_{1}, \ldots, q_{k-1} \in N}} \frac{1}{\prod_{l=1}^{k} d_{C}^{-}\left(q_{l}\right)} . \tag{14}
\end{equation*}
$$

Since N is acyclic by the assumption, Lemma 2.1 gives that $s_{j}=1$ for all $p_{j} \in N$. Thus we obtain

$$
\begin{equation*}
\prod_{p_{i} \in B} \sigma\left(p_{i}^{e_{i}}\right)=\left(\prod_{p_{i} \in B} \kappa_{i}\right)\left(\prod_{p_{j} \in M} \lambda_{j}\right) \prod_{p_{i} \in L} p_{i}^{2} \tag{15}
\end{equation*}
$$

and therefore

$$
\begin{align*}
\prod_{p_{i} \in C} \frac{\sigma\left(p_{i}^{e_{i}}\right)}{p_{i}^{2}} & >\prod_{p_{i} \in B} p_{i}^{\frac{e_{i}}{2}-2} \sqrt{\sigma\left(p_{i}^{e_{i}}\right)} \prod_{p_{j} \in M} \frac{\sigma\left(p_{j}^{2}\right)}{p_{j}^{2}} \prod_{p_{i} \in L} p_{i}^{e_{i}-1} \\
& \geq \prod_{p_{i} \in B} \kappa_{i}^{\frac{1}{2}} p_{i}^{\frac{e_{i}}{2}-2} \prod_{p_{j} \in M} \lambda_{j}^{\frac{1}{2}} \frac{\sigma\left(p_{j}^{2}\right)}{p_{j}^{2}} \prod_{p_{i} \in L} p_{i}^{e_{i}-1} \tag{16}
\end{align*}
$$

Now the lemma immediately follows observing that $\lambda_{j} \geq p_{j}^{2} / \sigma\left(p_{j}^{2}\right)$ for $p_{j} \in$ M.

4. Acyclic cases

In this and the next section, We assume that n is an integer of the form (21) satisfying (11) and we put L to be the set of odd primes p_{i} with $e_{i}=1$. Thus, $L=\left\{p_{1}, p_{2}\right\}$ in the case (b) with $e_{1}=e_{2}=1$ and $L=\left\{p_{1}\right\}$ in the case (a) and the case (b) with $e_{1}=1<e_{2}$. In this section, we shall show that, $N=N(L)$ must have a cycle or we must have $L=\left\{p_{1}, p_{2}\right\}$ and $p_{1} \in B\left(p_{2}\right)$ or $p_{2} \in B\left(p_{1}\right)$.

Lemma 4.1. If n is divisible by 4 or 2×3^{6} or n is divisible by 2 and 3 does not belong to $C=C(L)$, then $N=N(L)$ must have a cycle or we must have $L=\left\{p_{1}, p_{2}\right\}$ and $p_{1} \in B\left(p_{2}\right)$ or $p_{2} \in B\left(p_{1}\right)$.

Proof. Assume that n of the form (2) is divisible by 2^{2} or 2×3^{6} and N is acyclic and, in the case $L=\left\{p_{1}, p_{2}\right\}, p_{1} \notin B\left(p_{2}\right)$ and $p_{2} \notin B\left(p_{1}\right)$.

We can easily see that any prime p_{i} in L must be a sink in N. Indeed, if $p_{i} \in L$ and $p_{i} \rightarrow p_{j}$ for some $p_{j} \in N$ not necessarily distinct from p_{i}, then, there exists a path from p_{i} to $p_{j} \in L$ via N, which contradicts to the assumption. Thus, we can apply Lemma 3.3 and, observing that $\kappa_{i} \geq 1$ for all $p_{i} \in B=B(L)$, we obtain

$$
\begin{equation*}
h(C)>\prod_{p_{i} \in B} p_{i}^{\frac{e_{i}}{2}-2} \tag{17}
\end{equation*}
$$

If $4=2^{2}$ divides n, then, observing that $e_{i} / 2 \geq 2$ for $p_{i} \in B$, Lemma 3.1 and (17) gives that $h(n)>h(C)>1$.

If 2 divides n and 3 does not belong to C, then, by Lemma 3.1, we have $h(n) \geq h\left(C \cup\left\{2,3^{2}\right\}\right)=h\left(\left\{2,3^{2}\right\}\right) h(C)>(4 / 3)(13 / 9)>1$.

If 2×3^{6} divides n and 3 belongs to C, then (17) yields that $h(C)>3$ and $h(n) \geq(3 / 4) h(C)>9 / 4>1$.

Thus, in any case, we have $h(n)>1$ or, equivalently, $\sigma(n)>(\gamma(n))^{2}$, which contradicts to the assumption that n satisfies (1).

Lemma 4.2. If $e_{0}=1$ and $3^{2} \in N=N(L)$, then N must have a cycle or we must have $L=\left\{p_{1}, p_{2}\right\}$ and $p_{1} \in B\left(p_{2}\right)$ or $p_{2} \in B\left(p_{1}\right)$.

Proof. Assume that $3^{2} \in N, N$ is acyclic and, in the case (b) with $e_{1}=$ $e_{2}=1, p_{1} \notin B\left(p_{2}\right)$ and $p_{2} \notin B\left(p_{1}\right)$. Since 3^{2} belongs to $N, 3^{2} \rightarrow 13$ also belongs to N. If $13 \in M=M(L)$, then $3^{2} \rightarrow 13^{2} \rightarrow 3$, which contradicts to the assumption that N is acyclic. Thus, $13^{1} \in L$. Now we may assume that $p_{1}=13$. We see that $p_{2} \in L$ and $p_{2} \equiv 1(\bmod 4)$ since $p_{1} \equiv 1(\bmod 4)$. Hence, $13 \rightarrow 7^{e}$ divides N.

We see that $e \geq 2$ must be even since $2^{3} \mid(7+1)$. If $7^{2} \| N$, then $13 \rightarrow 7^{2} \rightarrow 3^{2} \rightarrow 13$, contrary to the assumption that N is acyclic. Thus, $e \geq 4$.

If $7^{e} \notin B\left(p_{2}\right)$, then, applying Lemma 3.3, we have

$$
\begin{equation*}
h(n) \geq h\left(\left\{2,3^{2}, 13,7^{e}\right\}\right) h\left(C\left(p_{2}\right)\right)>h\left(C\left(p_{2}\right)\right)>1 \tag{18}
\end{equation*}
$$

which is a contradiction.
Thus, we may assume that $7^{e} \in B\left(p_{2}\right)$. If $e \geq 8$, then, Lemma 3.3 gives that

$$
\begin{equation*}
h\left(\left\{2,3^{2}, 13\right\}\right) h\left(C\left(p_{2}\right)\right)>7^{2} h\left(\left\{2,3^{2}, 13\right\}\right)>1, \tag{19}
\end{equation*}
$$

which is a contradiction again.
Assume that $7^{4} \in B\left(p_{2}\right)$, which immediately yields that $2801 \in N\left(p_{2}\right)$. If $p_{2}=2801$, then $p_{2} \rightarrow 3^{2} \rightarrow 13=p_{1}$, contrary to the assumption that $p_{2}^{e_{2}} \notin B\left(p_{1}\right)$. Thus, $2801^{2} \in N\left(p_{2}\right)$ and $2801^{2} \rightarrow 37,43,4933$.

If $p_{2}=37$, then $p_{3}=19$ divides n. If $p_{2}=4933$, then $p_{3}=2467$ divide n. In both cases, if $p_{3}^{2} \| n$, then $p_{2} \rightarrow p_{3}^{2} \rightarrow 3^{2} \rightarrow 13=p_{1}$, which is impossible. If $p_{3}^{4} \mid n$, then

$$
h(n) \geq h\left(\left\{2,3^{2}, 13,7^{4}, 2801^{2}, 37,19^{4}\right\}\right)>1
$$

or

$$
h(n) \geq h\left(\left\{2,3^{2}, 13,7^{4}, 2801^{2}, 4933,2467^{4}\right\}\right)>1 .
$$

Hence, $p_{2}=37$ and $p_{2}=4933$ are both impossible.
If $37^{2} \in N\left(p_{2}\right)$, then $\sigma\left(37^{2}\right)=3 \times 7 \times 67$ and therefore $67 \in N\left(p_{2}\right)$. Since $67 \equiv 3(\bmod 4)$, we have $p_{2} \neq 67$ and $37^{2} \rightarrow 67^{2}$. But this implies that $3^{3}\left|\sigma\left(2 \times 37^{2} \times 67^{2}\right)\right| \sigma(n)$, which is a contradiction.

If $4933^{2} \in N\left(p_{2}\right)$, then $\sigma\left(4933^{2}\right)=3 \times 127 \times 193 \times 331$ and therefore $p_{2}=193$, since $p_{3}^{2} \in N\left(p_{2}\right)$ with $p_{3}=127,193$ or 331 would imply that $3^{3} \mid \sigma\left(2 \times 4933^{2} \times p_{3}^{2}\right)$, a contradiction. Thus $p_{3}=97$ must divide n. If $e_{3}=2$, then $3^{3}\left|\sigma\left(2 \times 4933^{2} \times 97^{2}\right)\right| \sigma(n)$, which is impossible. But, if $e_{3} \geq 4$, then

$$
h(n) \geq h\left(\left\{2,3^{2}, 13,7^{4}, 2801^{2}, 4933^{2}, 193,97^{4}\right\}\right)>1
$$

which is a contradiction again.
If $43^{2} \in N\left(p_{2}\right)$, then $\sigma\left(43^{2}\right)=3 \times 7 \times 631$ and therefore $631 \in N\left(p_{2}\right)$. Since $631 \equiv 3(\bmod 4)$, we must have $631^{2} \in N\left(p_{2}\right)$ and $3^{3}\left|\sigma\left(2 \times 43^{2} \times 631^{2}\right)\right|$ $\sigma(n)$, which is impossible. Thus we see that $2801^{f} \notin N\left(p_{2}\right)$ and therefore $7^{4} \notin N\left(p_{2}\right)$.

Now we must have $7^{6} \in B\left(p_{2}\right) . \sigma\left(7^{6}\right)=29 \times 4733$ must divide n. It is impossible that $p_{2}=29,4733$ since this would imply that $p_{2} \rightarrow 3^{2} \rightarrow$
$13=p_{1}$. If $29^{2} \in N\left(p_{2}\right)$, then, observing that $\sigma\left(29^{2}\right)=13 \times 67$ and $\sigma\left(67^{2}\right)=3 \times 7^{2} \times 31$, we must have $29^{2} \rightarrow 67^{2} \rightarrow 31^{2}$. However, this is impossible since $3^{3} \mid \sigma\left(2 \times 67^{2} \times 31^{2}\right)$.

If $4733^{2} \in N\left(p_{2}\right)$, then, observing that $4733^{2}+4733+1=22406023 \equiv 3$ $(\bmod 4)$ is prime, we must have $22406023^{2} \in N\left(p_{2}\right)$. If $22406023^{2} \rightarrow p_{2}$, then $p_{2}=1117$ or $p_{2}=606538249$. However, neither of them is impossible since $13^{3} \mid \sigma\left(3^{2} \times 22406023^{2} \times 1117\right)$ and $5^{3} \mid \sigma(606538249)$. Hence, we must have $22406023^{2} \rightarrow p_{3}^{2} \in N\left(p_{2}\right)$ for some prime divisor $p_{3} \neq 3$ of $\sigma\left(22406023^{2}\right)$. But, this is also impossible since $3^{3} \mid \sigma\left(2 \times 22406023^{2} \times p_{3}^{2}\right)$.

Now we conclude that 7 cannot divide N and therefore 13 cannot be in L. Hence, 3^{2} cannot be in $N(L)$. This proves the lemma.

Lemma 4.3. If $e_{0}=1$ and $3^{4} \in B=B(L)$, then $n=1782, N=N(L)$ must have a cycle or we must have $L=\left\{p_{1}, p_{2}\right\}$ and $p_{1} \in B\left(p_{2}\right)$ or $p_{2} \in B\left(p_{1}\right)$.

Proof. Since $3^{4} \in B, p_{1}=11$ or $11^{2} \in N$. If $p_{1}=11$, then $n=2 \times 3^{4} \times p_{1}=$ 1782. We note that if $n=n_{0}$ is a solution of (1), then $n=k n_{0}$ with $k>1$ odd and $\operatorname{gcd}(k, n)=1$ can never be a solution of (11). Indeed, $h\left(n_{0}\right)=h\left(k n_{0}\right)=1$, then $h(k)=1$. However, this is impossible since $n=1$ is the only odd solution of (11).

Now we may assume that $11^{2} \in N$. If $p_{3}^{2} \in N$ with $p_{3}=7$ or 19 , then $3^{4} \rightarrow 11^{2} \rightarrow p_{3}^{2} \rightarrow 3^{4}$ in N, contrary to the assumption. Thus, we must have $p_{1}=19$ and $7^{4} \mid N$. Since $p_{1} \equiv 3(\bmod 8)$, we must have $L=\left\{p_{1}\right\}$. Hence,

$$
h(n) \geq h\left(\left\{2,3^{4}, 11^{2}, 7^{4}, 19\right\}\right)>1
$$

which is impossible again.

5. Cyclic cases

In the previous section, we showed that, if an integer n of the form (2) satisfies (1) and L is the set of odd primes p_{i} with $e_{i}=1$, then $N(L)$ must be cyclic or we must have $L=\left\{p_{1}, p_{2}\right\}$ and $p_{1} \in B\left(p_{2}\right)$ or $p_{2} \in B\left(p_{1}\right)$. In this section, we shall show that $M(L)$ must be acyclic and then complete the proof of Theorems 1.1 and 1.2. We begin by showing that $M=M(L)$ cannot contain a cycle of length ≥ 3.

Lemma 5.1. Assume that for there exists no arc $p_{i} \rightarrow p_{j}$ from $p_{i} \in L$ to $p_{j} \in N(L)$. Then $M=M(L)$ cannot contain a cycle of length ≥ 3.

Proof. Assume that $q_{i}(i=1,2, \ldots, l)$ is a cycle of length $l \geq 3$. We see that $q_{i} \equiv 1(\bmod 3)$ for all i except possibly one index j, for which $q_{j}=3$. We must have $l=3$ and $q_{j}=3$ for some j since otherwise we must have $q_{i} \equiv 1$
$(\bmod 3)$ for at least three i 's by Lemma 3.1 and $3^{3}\left|\prod_{j} \sigma\left(q_{i}^{2}\right)\right| n$, which is a contradiction.

Now we see that $3^{2} \rightarrow 13^{2} \rightarrow 61^{2} \rightarrow 3^{2}$ is a cycle in M and $p_{1}=97 \in L$. Hence, $97 \rightarrow 7^{e}$ must divide n and, observing that no more prime $p_{i} \equiv 1$ $(\bmod 3)$ can satisfy $p_{i}^{2} \| N$ again, $e \geq 4$ must be even. Moreover, we must have $e_{0} \geq 2$ since $3^{3} \mid \sigma\left(2 \times 13^{2} \times 61^{2}\right)$.

If $L=\left\{p_{1}\right\}$ and 7^{6} divides n, then

$$
h(n) \geq h\left(7^{6}\right) h(C(L))>h\left(\left\{3^{2}, 13^{2}, 61^{2}, 97,7^{6}\right\}\right)>1,
$$

which is a contradiction.
If $L=\left\{p_{1}, p_{2}\right\}$ and 7^{10} divides n, then, since $N\left(p_{2}\right)$ is acyclic, Lemma 3.3 gives

$$
\begin{equation*}
h(n) \geq h\left(\left\{3^{2}, 13^{2}, 61^{2}, 97\right\}\right) h\left(C\left(p_{2}\right) \cup\left\{7^{10}\right\}\right)>7^{3} h\left(\left\{3^{2}, 13^{2}, 61^{2}, 97\right\}\right)>1 . \tag{20}
\end{equation*}
$$

Now we must have $e=4,6$ or 8 . We can never have $97 \rightarrow 7^{8}$ since $3^{3} \mid \sigma\left(13^{2} \times 61^{2} \times 7^{8}\right)$. In both cases $e=4$ and $e=6$, we have a contradiction that $p^{3} \mid \sigma(n)=(\gamma(n))^{2}$ for some prime p or $h(n)>1$ as follows:
A. If $97 \rightarrow 7^{6}$, then $\sigma\left(7^{6}\right)=29 \times 4733$.
A. 1. If $7^{6} \rightarrow p_{3}^{4}$ with $p_{3}=29$ or 4733 , then $h\left(\left\{3^{2}, 13^{2}, 61^{2}, 97,7^{6}, p_{3}^{4}\right\}>1\right.$.
A. 2. If $p_{2}=29$ or 4733 , then $3^{3} \mid \sigma\left(13^{2} \times 61^{2} \times p_{2}\right)$.
A. 3. We cannot have $7^{6} \rightarrow 29^{2}$ since $13^{3} \mid \sigma\left(3^{2} \times 61^{2} \times 29^{2}\right)$.
A. 4. If $7^{6} \rightarrow 4733^{2}$, then $4733^{2} \rightarrow 22406023^{2}$ and $3^{3} \mid \sigma\left(13^{2} \times 61^{2} \times\right.$ 22406023^{2}).
B. If $97 \rightarrow 7^{4}$, then $7^{4} \rightarrow 2801^{f}$ for some integer $f>0$.

B 1 . If $f \equiv 1(\bmod 4)$, then $3^{3} \mid \sigma\left(13^{2} \times 61^{2} \times 2801\right)$.
B. 2. If $f \geq 6$ and $L=\left\{p_{1}, p_{2}\right\}$, then $h\left(\left\{3^{2}, 13^{2}, 61^{2}, 97,7^{4}, 2801^{f}\right\} \cup\right.$ $\left.C\left(p_{2}\right)\right)>2801 h\left(\left\{97,7^{4}\right\}\right)>1$.
B. 3. If $f \geq 4$ and $L=\left\{p_{1}\right\}$, then $h\left(\left\{3^{2}, 13^{2}, 61^{2}, 97,7^{4}, 2801^{f}\right\} \cup C\left(p_{2}\right)\right)>$ $2801 h\left(\left\{97,7^{4}\right\}\right)>1$.
B. 4. If $f=4,2801^{4} \notin B\left(p_{2}\right)$, then $h\left(\left\{3^{2}, 13^{2}, 61^{2}, 97,7^{4}, 2801^{4}\right\} \cup\right.$ $\left.C\left(p_{2}\right)\right)>h\left(\left\{97,7^{4}, 2801^{4}\right\}\right)>1$.
B. 5. If $f=4, L=\left\{p_{1}, p_{2}\right\}$ and $2801^{4} \in B\left(p_{2}\right)$, then $q \in N\left(p_{2}\right), q=$ 5, 195611, 6294091 .
B. 5. a. If $p_{2}=5$, then $3^{3} \mid \sigma\left(13^{2} \times 61^{2} \times p_{2}\right)$.
B. 5 . b. If $5^{2} \in N\left(p_{2}\right)$, then $5^{2} \rightarrow 31^{2}$ but $3^{3} \mid \sigma\left(13^{2} \times 61^{2} \times 31^{2}\right)$.
B. 5. c. We cannot have $6294091^{2} \in N\left(p_{2}\right)$ since $3^{3} \mid \sigma\left(13^{2} \times 61^{2} \times\right.$ 6294091^{2}).
B. 5. d. If $195611^{2} \in N\left(p_{2}\right)$, then $\sigma\left(195611^{2}\right)=211 \times 181345303$ and $195611^{2} \rightarrow p_{3}^{2}$ with $p_{3}=211$ or 181345303 . However, $3^{3} \mid \sigma\left(13^{2} \times 61^{2} \times p_{3}^{2}\right)$.
B. 6. If $f=2$, then $\sigma\left(2801^{2}\right)=37 \times 43 \times 4933$.
B. 6. a. We cannot have $2801^{2} \rightarrow 43^{2}$ since $3^{3} \mid \sigma\left(13^{2} \times 61^{2} \times 43^{2}\right)$.
B. 6. b. If $2801^{2} \rightarrow 43^{e_{3}}, e_{3} \geq 6$, then $h(n)>h\left(\left\{97,7^{4}, 43^{e_{3}}\right\} \cup C\left(p_{2}\right)\right)>$ $43 h\left(\left\{97,7^{4}\right\}\right)>1$.
B. 6. c. If $2801^{2} \rightarrow 43^{4}$ and $43^{4} \notin B\left(p_{2}\right)$, then $h(n)>h\left(\left\{97,7^{4}, 43^{4}\right\} \cup\right.$ $\left.C\left(p_{2}\right)\right)>h\left(\left\{97,7^{4}, 43^{4}\right\}\right)>1$.
B. 6. d. If $2801^{2} \rightarrow 43^{4}$ and $43^{4} \in B\left(p_{2}\right)$, then $43^{4} \rightarrow 3500201^{2}$, $\sigma\left(3500201^{2}\right)=13 \times 139 \times 28411 \times 238639$. Since $q \equiv 3(\bmod 4)$ for $q=139,28411,238639, q^{2} \in N\left(q_{2}\right)$ and $3^{3} \mid \sigma\left(13^{2} \times 61^{2} \times q^{2}\right)$.

Thus we have a contradiction in any case. This yields that $3^{2} \rightarrow 13^{2} \rightarrow$ $61^{2} \rightarrow 97$ is impossible. Hence, we conclude that $M=M(L)$ cannot contain a cycle of length ≥ 3, as stated in the lemma.

Now a cycle in $M(L)$ must be of the form $p_{i}^{2} \leftrightarrow p_{j}^{2}$. We may assume that $p_{r}^{2} \leftrightarrow p_{r+1}^{2}$ for some r. In other words, we must have $p_{r} \mid \sigma\left(p_{r+1}^{2}\right)$ and $p_{r+1} \mid \sigma\left(p_{r}^{2}\right)$ for some primes $p_{r}, p_{r+1} \in M(L)$.

Lemma 2.6 of [4] shows that such p_{r}, p_{r+1} must be two consecutive terms of the binary recurrent sequence described in A101368 of OEIS. This had already been proved by Mills [9] and Chao [3]. However, this fact is not needed in our argument. We only use the fact that, if $p_{r+1}>p_{r}>3$ and $p_{r} \leftrightarrow p_{r+1}$, then $p_{r} \equiv p_{r+1} \equiv 1(\bmod 3)$ by Lemma 3.2.

We begin by proving that, we cannot have $p_{r} \leftrightarrow p_{r+1}$ if $p_{r+1}>p_{r}>3$.
Lemma 5.2. Assume that for there exists no arc $p_{i} \rightarrow p_{j}$ from $p_{i} \in L$ to $p_{j} \in N(L)$. If $M=M(L)$ contains a cycle $p_{r}^{2} \leftrightarrow p_{r+1}^{2}$ of length two with $p_{r+1}>p_{r}$, then $\left(p_{r}, p_{r+1}\right)=(3,13)$.

Proof. We may assume that $p_{r}, p_{r+1} \in N\left(p_{1}\right)$. Hence, there exists a vertex $q \in N\left(p_{1}\right)$ such that $p_{r} \rightarrow q$ or $p_{r+1} \rightarrow q$. However, if $q \in M$, then, since $q \equiv p_{r+1} \equiv p_{r+1} \equiv 1(\bmod 3)$, we must have $3^{3}\left|\sigma\left(q^{2} p_{r}^{2} p_{r+1}^{2}\right)\right| \sigma(n)$, which is a contradiction. Thus, we must have $q \in L$.

Now we obtain a directed graph F by eliminating the $\operatorname{arcs} p_{r} \leftrightarrow p_{r+1}$ and p_{r} or $p_{r+1} \rightarrow p_{i}$ with $p_{i} \in L$ from $C=C(L)$. Then F has two more sinks p_{r}, p_{r+1} as well as sinks in $C(L)$.

Proceeding as in the proof of Lemma 3.3, we have

$$
\begin{equation*}
\prod_{p_{i} \in B=B(L)} \sigma\left(p_{i}^{e_{i}}\right)=\left(\prod_{p_{i} \in B} \kappa_{i}\right)_{p_{j} \in M, j \neq r, r+1} \lambda_{j}^{s_{j}} \prod_{p_{i} \in L \cup\left\{p_{r}, p_{r+1}\right\}} p_{j}^{2 s_{j}}, \tag{21}
\end{equation*}
$$

where

$$
\begin{equation*}
s_{j}=\sum_{\substack{q_{0} \rightarrow q_{1} \rightarrow \ldots \rightarrow q_{k}=p_{j}, q_{0} \in B, q_{1}, \ldots, q_{k-1} \in N}} \frac{1}{2^{k}} . \tag{22}
\end{equation*}
$$

Let f_{i} be the exponent $p_{i}^{f_{i}} \| \sigma\left(p_{r}^{2} p_{r+1}^{2}\right)$ for $p_{i} \in L$. We observe that $d_{F}^{-}\left(p_{i}\right)=2-f_{i}$ for $p_{i} \in L, d_{F}^{-}\left(p_{r}\right)=d_{F}^{-}\left(p_{r+1}\right)=1$ and $d_{F}^{-}\left(p_{j}\right)=2$ for any other vertices p_{j} in N. Hence,

$$
\begin{equation*}
s_{j}=t_{j} \sum_{\substack{q_{0} \rightarrow q_{1} \rightarrow \ldots \rightarrow q_{k}=p_{j}, q_{0} \in B, q_{1}, \ldots, q_{k-1} \in N}} \frac{1}{\prod_{l=1}^{k} d_{F}^{-}\left(q_{l}\right)}, \tag{23}
\end{equation*}
$$

where $t_{j}=\left(2-f_{i}\right) / 2$ for $p_{j} \in L, 1 / 2$ for $j=r, r+1$ and $t_{j}=1$ for any other j such that $p_{j} \in N$. By Lemma [2.1, we have $s_{j}=t_{j}$ for any j such that $p_{j} \in N$ and, as in Lemma 3.3,

$$
\begin{equation*}
h(C)>\prod_{p_{i} \in B} \kappa_{i}^{\frac{1}{2}} p_{i}^{\frac{e_{i}}{2}-2} \prod_{p_{j} \in M, j \neq r, r+1} \frac{\sqrt{\sigma\left(p_{j}^{2}\right)}}{p_{j}} \frac{p_{r}^{\frac{1}{2}} p_{r+1}^{\frac{1}{2}}}{p_{1}^{\frac{f_{1}}{2}} p_{2}^{\frac{f_{2}}{2}}}>\sqrt{\frac{p_{r} p_{r+1}}{p_{1}^{f_{1}} p_{2}^{f_{2}}}} \tag{24}
\end{equation*}
$$

If $p_{r}>3$, then we have $p_{r} \equiv p_{r+1} \equiv 1(\bmod 3)$ and $p_{1}^{f_{1}} p_{2}^{f_{2}} \leq \sigma\left(p_{r}^{2} p_{r+1}^{2}\right) /\left(9 p_{r} p_{r+1}\right)$. Hence, we must have

$$
\begin{equation*}
h(n)>h(C)>\frac{3 p_{r} p_{r+1}}{\sigma\left(p_{r}^{2} p_{r+1}^{2}\right)}>1 \tag{25}
\end{equation*}
$$

which is a contradiction. Thus, we must have $\left(p_{r}, p_{r+1}\right)=(3,13)$.

Now the only remaining case is $3^{2} \leftrightarrow 13^{2} \rightarrow 61$.
Lemma 5.3. Assume that for there exists no arc $p_{i} \rightarrow p_{j}$ from $p_{i} \in L$ to $p_{j} \in N=N(L)$. Then, $3^{2} \leftrightarrow 13^{2} \rightarrow 61$ is impossible.

Proof. We immediately have $L=\{61\}$ or $L=\left\{61, p_{2}\right\}$ with $p_{2} \equiv 1(\bmod 4)$ and $61 \rightarrow 31^{e_{3}}$.

If $e_{3} \geq 8$, then Lemma 3.3 gives

$$
h(n) \geq h\left(\left\{2,3^{2}, 13^{2}, 61\right\}\right) h\left(C\left(p_{2}\right) \cup\left\{31^{e_{3}}\right\}\right)>31^{2} h(\{2,61\})>1
$$

If $e_{3} \geq 4$ and $L=\left\{p_{1}\right\}$, then Lemma 3.3 gives

$$
h(n) \geq h\left(\left\{2,3^{2}, 13^{2}, 61,31^{e_{3}}\right\}\right) \geq h\left(\left\{2,61,31^{4}\right\}\right)>1 .
$$

If $e_{3} \geq 4, L=\left\{p_{1}, p_{2}\right\}$ and $31^{e_{3}} \notin B\left(p_{2}\right)$, then Lemma 3.3 gives

$$
h(n) \geq h\left(\left\{2,3^{2}, 13^{2}, 61,31^{e_{3}}\right\}\right) h\left(C\left(p_{2}\right)\right)>h\left(\left\{2,61,31^{4}\right\}\right)>1 .
$$

Thus, in these three cases, we are led to $h(n)>1$, which is a contradiction. Hence, we must have (I) $L=\left\{p_{1}, p_{2}\right\}, e_{3} \in\{4,6\}$ and $31^{e_{3}} \in B\left(p_{2}\right)$ or (II) $e_{3}=2$. In both cases (I) and (II), we have a contradiction that $p^{3} \mid \sigma(n)=$ $(\gamma(n))^{2}$ for some prime p or $h(n)>1$ as follows:
I. A. If $31^{6} \in B\left(p_{2}\right)$, then $p_{2}=917087137$ or $917087137^{2} \in N\left(p_{2}\right)$.
I. A. 1 . In the case $p_{2}=917087137$, we observe that $p_{4}^{e_{4}} \rightarrow p_{2}$ for a prime $p_{4} \neq 31$.
I. A. 1. a. If $e_{4}=2$, then $p_{4} \geq 20612597323$ and, since $3^{2}, 13^{2}, 61^{1}, 31^{6}, p_{2}^{1} \notin$ $C\left(p_{4}\right)$ (we observe that $p_{2}^{1} \in C\left(p_{4}\right)$ implies that $N\left(p_{2}\right)$ must contain a cycle $p_{2} \rightarrow \cdots \rightarrow p_{4}^{2} \rightarrow p_{2}$), Lemma 3.3 yields that

$$
h(n)>h\left(\left\{2,61,31^{6}, p_{2}\right\}\right) h\left(C\left(p_{4}\right)\right)>p_{4} h\left(\left\{2,61,31^{6}, p_{2}\right\}\right)>1 .
$$

I. A. 1. b. If $e_{4}>2$, then $h\left(C\left(p_{2}\right)\right)>31 p_{4}>31^{2}$ by Lemma 3.3 and therefore

$$
h(n)>h(\{2,61\}) h\left(C\left(p_{2}\right)\right)>31^{2} h(\{2,61\})>1 .
$$

I. A. 2. If $917087137^{2} \in N\left(p_{2}\right)$, then, since any prime factor of $\sigma\left(p_{4}^{2}\right)$ is $\equiv 3(\bmod 4)$, we must have $p_{4}^{2} \rightarrow p_{5}^{2}$ with $p_{5}=43,4447,38647$ or 38533987, which is impossible since $3^{3} \mid \sigma\left(13^{2} p_{4}^{2} p_{5}^{2}\right)$.
I. B. If $31^{4} \in B\left(p_{2}\right)$, then one of $5,5^{2}, 11^{2}, 17351^{2}$ must belong to $N\left(p_{2}\right)$.
I. B. 1. If $p_{2}=5$, then $h(n)>h\left(\left\{2,61,31^{4}, 5\right\}\right)>1$, a contradiction.
I. B. 2 . We cannot have $5^{2} \in N\left(p_{2}\right)$ since $\sigma\left(5^{2}\right)=31 \in B\left(p_{2}\right)$.
I. B. 3. If $11^{2} \in N\left(p_{2}\right)$, then $7^{2} \in N\left(p_{2}\right)$ or $19^{2} \in N\left(p_{2}\right)$. Since $\sigma\left(7^{2}\right)=$ 3×19, we have $19^{2} \in N\left(p_{2}\right)$ in any case. Now we must have $19^{2} \rightarrow 127^{2} \in$ $N\left(p_{2}\right)$. Thus, $3^{3}\left|\sigma\left(13^{2} \times 19^{2} \times 127^{2}\right)\right| \sigma(n)$, a contradiction.
I. B. 4. If $17351^{2} \in N\left(p_{2}\right)$, then $1063^{2} \in N\left(p_{2}\right)$ or $21787^{2} \in N\left(p_{2}\right)$.
I. B. 4. a. If $1063^{2} \in N\left(p_{2}\right)$, then we must have $1063^{2} \rightarrow 377011^{2} \in N\left(p_{2}\right)$ and $3^{3} \mid \sigma\left(13^{2} \times 1063^{2} \times 377011^{2}\right)$, which is a contradiction.
I. B. 4. b. If $21787^{2} \in N\left(p_{2}\right)$, then $p_{2}=5104249$ or $5104249^{2} \in N\left(p_{2}\right)$. Neither of them is possible since $5^{3} \mid(5104249+1)$ and $3^{3} \mid \sigma\left(13^{2} \times 21787^{2} \times\right.$ 5104249^{2}).
II. If $61 \rightarrow 31^{2}$, then we must have $31^{2} \rightarrow 331^{e_{3}}$ for some e_{3}. Since $331 \equiv 3$ $(\bmod 4), p_{2} \neq 331$ and e_{3} must be even.
II. 1. $e_{3}=2$ is impossible since $3^{3} \mid \sigma\left(13^{2} \times 31^{2} \times 331^{2}\right)$.
II. 2. If $e_{3} \geq 6$ and $31^{e_{3}} \in B\left(p_{2}\right)$, then Lemma 3.3 gives

$$
h(n) \geq h(\{2,61\}) h\left(C\left(p_{2}\right) \cup\left\{331^{e_{3}}\right\}\right)>331 h(\{2,61\})>1 .
$$

II. 3. If $e_{3} \geq 4$ and $L=\left\{p_{1}\right\}$, then Lemma 3.3 gives

$$
h(n) \geq h\left(\left\{2,61,331^{e_{3}}\right\}\right) \geq h\left(\left\{2,61,331^{4}\right\}\right)>1
$$

II. 4. If $e_{3} \geq 4, L=\left\{p_{1}, p_{2}\right\}$ and $331^{e_{3}} \notin B\left(p_{2}\right)$, then Lemma 3.3 gives

$$
h(n) \geq h\left(\left\{2,61,331^{e_{3}}\right\}\right) h\left(C\left(p_{2}\right)\right)>h\left(\left\{2,61,331^{4}\right\}\right)>1
$$

II. 5. If $e_{3}=4, L=\left\{p_{1}, p_{2}\right\}$ and $331^{4} \in B\left(p_{2}\right)$, then $p_{2}=5,37861,62601$ or $331^{4} \rightarrow p_{4}^{2} \in N\left(p_{2}\right)$ with $p_{4}=37861$ or 63601 (we see that since $\sigma\left(5^{2}\right)=$ 31 , we cannot have $5^{2} \in N\left(p_{2}\right)$).
II. 5. a. $331^{4} \rightarrow p_{4}^{2} \in N\left(p_{2}\right)$ is impossible since $3^{3} \mid \sigma\left(13^{2} \times 31^{2} p_{4}^{2}\right)$.
II. 5. b. If $p_{2}=5,37861$ or 63601 , then, observing that $p_{5}^{e_{5}} \rightarrow 37861$ with $e_{5} \geq 10$, Lemma 3.3 gives,

$$
h(n) \geq h\left(\left\{2,61,331^{4}, p_{5}^{e_{5}}, p_{2}\right\}\right)>37861^{4 / 5} h\left(\left\{2,61,331^{4}, p_{2}\right\}\right)>1,
$$

which is a contradiction.
Thus we have a contradiction in any case. This shows that $3^{2} \leftrightarrow 13^{2} \rightarrow 61$ is impossible, as desired.

Now we can easily prove Theorem 1.1. Let n be an integer of the form (2) satisfying (1) and L be the set of odd primes p_{i} such that $p_{i} \| n$. If there exists no path between two vertices in L, then, by Lemmas 4.1, 4.2 and 4.3, $N(L)$ must have a cycle but, by Lemmas 5.1, 5.2 and 5.3, $M(L)$ cannot have a cycle. Hence, $G(n)$ must have a path between two vertices in L or a cycle in $N(L)$ containing a vertex in L. This proves iii) of Theorem 1.2 and therefore Theorem 1.1.

The remaining statements of Theorem 1.2 can be easily deduced from Lemma 3.2. Let g_{1} and g_{2} be the number of primes $\equiv 1(\bmod 3)$ and $\not \equiv 1$ $(\bmod 3)$ in M respectively. i) and the former statement of ii) immediately follow from Lemma 3.2 and the fact that $3^{3} \nmid(\gamma(n))^{2}=\sigma(n)$. Thus, $g_{1} \leq 2$. If p_{i} is a prime $\not \equiv 1(\bmod 3)$ in M, then $p_{i}^{2} \rightarrow p_{j}^{2}$ for some prime $p_{j} \equiv 1$ $(\bmod 3)$ in M or $p_{i}^{2} \rightarrow p_{l}$ for some prime $p_{l} \in L$. Hence, we obtain $g_{2}+g_{1} \leq$ $2\left(g_{1}+\# L\right)$ and $g_{2} \leq g_{1}+2 \# L \leq 2(1+\# L)$. Now the latter statement of ii) follows. This completes the proof of our theorems.

References

[1] Kevin Broughan, Daniel Delbourgo and Qizhi Zhou, A conjecture of De Koninck regarding particular square values of the sum of divisors function, J. Number Theory 137 (2014), 50-66, Corrigendum, ibid. 180 (2017), 790-792.
[2] Kevin A. Broughan, Jean-Marie De Koninck, Imre Kátai and Florian Luca, On integers for which the sum of divisors is the square of the squarefree core, J. Integer Seq. 15 (2012), Article 12.7.5.
[3] W. W. Chao, Problem 2981, Crux Math. 30 (2004), 430, solved by Charles R. Diminnie and others, ibid. 31 (2005), 474-475.
[4] Yong-Gao Chen and Xin Tong, On the conjecture of de Koninck, J. Number Theory 154 (2015), 324-364.
[5] Jørgen Bang-Jensen and Gregory Z. Gutin, Digraphs, theory, algorithms and applications, Second edition, Springer, 2009.
[6] Jean-Marie De Koninck, Problem 10966(b), Amer. Math. Monthly 109 (2002), 759, the editorial comment, ibid. 111 (2004), 536.
[7] Trygve Nagell, Introduction to number theory, Chelsea, reprinted version, 2001.
[8] Florian Luca, On numbers n for which the prime factors $\sigma(n)$ are among the prime factors of n, Result. Math. 45 (2004), 79-87.
[9] W. H. Mills, A system of quadratic diophantine equations, Pacific J. Math. 3 (1953), 209-220.
[10] Min Tang and Zhi-Jun Zhou, On a conjecture of De Koninck, Integers 18 (2018), A60.

[^1]E-mail address: tyamada1093@gmail.com

[^0]: 2010 Mathematics Subject Classification. 05C20, 11A05, 11A25, 11A41.
 Key words and phrases. Sum of divisors, Squarefree core, Radical of an integer, De Koninck's conjecture, Directed acyclic multigraphs.

[^1]: * Center for Japanese language and culture Osaka University
 562-8558
 8-1-1, Aomatanihigashi, Minoo, Osaka
 JAPAN

