arXiv:1906.10532v1 [math.NT] 25 Jun 2019

The zeta-regularized product of odious numbers

J.-P. Allouche
CNRS, IMJ-PRG
Sorbonne Université

4 Place Jussieu
F-75252 Paris Cedex 05 (France)

Abstract

What is the product of all odious integers, i.e., of all integers whose binary expansion contains
an odd number of 1’s? Or more precisely, how to define a product of these integers which is not
infinite, but still has a “reasonable” definition? We will answer this question by proving that
this product is equal to (7/ 2)1/ 4e=7¢, where v and ¢ are respectively the Euler-Mascheroni and
the Flajolet-Martin constants.

1 Introduction

Extending or generalizing “simple” notions is a basic activity in mathematics. This involves trying
to give some sense to an a priori meaningless formula, like v/—1, 1/0, Y n>1 1, etc. Among these
attempts is the question of “assigning a reasonable value” to an infinite product of increasing
positive real numbers. This question arises for example when trying to define “determinants”
for operators on infinite-dimensional vector spaces. One possible approach is to define “zeta-
regularization” (see the definition in Section [2 below). The literature on the subject is vast, going
from theoretical aspects to explicit computations in mathematics but also in physics (see, e.g.,
[9, 22]): we will —of course— not give a complete view of the existing references, but rather
restrict to a few ones to allude to general contexts where these infinite products take place. Our
purpose is modest: to give the value of an infinite arithmetic product (namely the product of all
odious integers, i.e., of all those integers whose binary expansion contains an odd number of 1’s,
see, e.g., [18])

I1X2Xx4xT7Tx8x11x13x14x16x19x21 x22x25%x26x%x28x31x32x%...

2 Definitions. First properties. Examples

2.1 Definitions
The remark that

- d e 1
log [Thi =~
Ogil;ll (ds i=1 ()‘i)s) _

suggests a way of defining the infinite product of a sequence (\;);>1 (see, e.g., [19, 21]) by means
of zeta-regularization: suppose that the Dirichlet series (a(s) := Y, 1/A; converges when the real
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part of s is large enough, that it has a meromorphic continuation to the whole complex plane, and
that it has no pole at 0, then the zeta-reqularized product of the \;’s is defined by

T = O
=1

(this definition clearly coincides with the usual product when the sequence of \;’s is finite). If
has as pole at 0, there is a slight generalization of the definition above (see [111 [15], also see [12]):

—ResCA(é)

H)\Z.—e s=0 s

where Reg g(s) stands for the residue at 0 of the function g. To put some general deep context
S=

about this definition, in particular about infinite determinants, the reader can consult [5, [16] 23]

2.2 First properties
The following equalities hold

s For all N > 1, H)\_H)\ (H )

i=N—+1

* For a > 0, ﬁ(a/\l) = (H)\ ) ¢x(0)

i=1

(o @]
x If A and B form a partition of the positive integers, then H A = H Ai H A
i=1 i€A  i€B

2.3 Examples

One can find several examples in the literature, (taken, e.g., from [12} [14] [15] [19] 24] or deduced
from properties in Section [2.2)):

H(n +z)= vam (for z > 0; Lerch formula)

I'(x)
n>0
H n =v2nr (Lerch formula for x = 1), hence, e.g., H(2n) = /7, and H(2n +1)=v2
n>1 n>1 n>1
H (n* +1) = €™ 4+ e ™ (generalization of Lerch formula)
n>0
H(n2 -—n+1)= s + e (idem)
n>0
H(n4 +1)=2 (cosh(ﬂx/i) — COS(7T\/§)) (idem)
n>0
H n"=e ¢ = Ae"/12 (A =1.2824271 ... is the Glaisher-Kinkelin constant [+])
n>1
H a" = a 12 (for a > 1, [#x])
n>0
H n = 2m (where Sq is the set of squarefree positive integers; compare with H n? = 27)
neSq n>1



[*] Recall that the Glaisher-Kinkelin constant A = 1.2824271... can be defined in several ways
(see, e.g., [10] and the references therein):
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A= lim S YEYIT e /4 — e3¢ 1):(2%)12612 a2 = | 2me” || pri-1
n—00 n

p prime

[**] As indicated in [I5] one may recall that formally Z n=_((-1)=-1/12.
n>1

Another example is given by the Fibonacci numbers (F,,),>1 in [13] where [ ; F,, is computed
in terms of the Fibonacci factorial constant and the golden ratio or in terms of the derivative of the
Jacobi theta function of the first kind and the golden ratio. Of course the result needs the study of
the Dirichlet series Y 1/F?: other similar Dirichlet series or zeta-regularized products are studied
in [4] and [6].

Up to generalizing the notion of zeta-regularized product (“super-regularization”), one has ([17],

also see [20]):
H p = 4n2.

p prime

3 The zeta-regularized product of odious numbers

In what follows, we let O denote the set of odious positive integers, i.e., of positive integers whose
sum of binary digits is odd, and £ the set of ewvil numbers, i.e., of positive integers whose sum of
binary digits is even.

2 n
Theorem 3.1 We have with the notation above, with QQ = H <2 i 1) ,
n
n>1

H _ (27T)1/4Q_1/2

neO
H _ (277)1/4Q1/2

ne&

2-1/2¢7

Also Q = where @ is the Flajolet-Martin constant [§].

Proof. We let a(n) denote the characteristic function of odious numbers (i.e., a(n) = 1 if the sum
of binary digits of n is odd, and a(n) = 0 if it is even) and &, = (—1)*(™ (note that £, = 1 —2a(n)).
Clearly ¢, is equal to 41 if the sum of the binary digits of n is even, and to —1 if the sum is odd;

in other words (ey,)n>1 is (up to its first term) the famous Thue-Morse sequence on the alphabet
{—1,41} (see, e.g., [3]). Then, for Rs > 1, one has

Gols) = Y 2 = .

neO® n>1




Now, let g(s) := Z %, so that, for Rs > 1,

n>1

Cols) = 310 = 2a(s) — 5o(s).
n>1

But, by [2, Théoreme 1.2] with ¢ = 2 (also see [§, Lemma 1]) g can be analytically continued to
the whole complex plane, and it satisfies, for all s € C,

B s+k—1\g(s+k)
__14_; k+1< )W (1)

This implies that g(0) = —1 and

M B e (s+1)(s + 2)k-!. (s+k—1) g(;i—kk)

k>1

hence, by letting s end to 0:

g(0) = Y (1yrdh)

k2k
k>1

On the other hand, mimicking a computation in [2] p. 534], one has

k n
Z(—l)kﬂ%zz L 25 Z Z k;2k - anlog <1+ >:—logQ

k>1 k>1 n>1 n>1 k>1

En
where @) := H <2n n 1> . So that ¢’(0) = —log Q. We thus obtain

Col0) = 5¢/(0) — 54/(0) = — log(2m) + 3 10g @

which finally yields
H n = log 2m)— logQ — (27_‘_)1/4@—1/2'

ne®
Now
Mn[[n=[n="2r
ne® ne€ n>1
which gives
H n= (277)1/4Q1/2.
ne&

It remains to recall that the Flajolet-Martin constant ¢ [§] is equal to

_ 2 (4n +1)(4n +2)\ "
=927 1/2e72 =0. 1...
4 7311 ( dn(dn + 3) 07735

n>1

and thus ([7, Section 6.8.1], also see [1])

2-1/2¢7 2-1/2¢7
hence @Q = :
¥

p =



Remark 3.2 Instead of considering the odious and evil numbers, one might have considered —in a
rather non-natural way— the shifted odious and evil numbers, namely the sets Og := {n+1, n € O}
and & := {n+1, n € &}. Then [, .o, n = exp(—(p,(0)). But, with the notation of the proof of
Theorem [3.1] and using that ¢g = 1,

B 1« an) I l—g, I l—g, 1 1
sl =2 Gy =L a1y T2 a1y~ 2 gy — 20 T3/

neO n>1 n>1 n>0
€
where f(s) = Z ﬁ It was proved in [2] that this function f can be analytically continued to
n>0

the whole complex plane, and that f'(0) = 1052. Hence (3, (0) = —1(log(27) + log 2) = —1 log 4.
This gives finally

H n = 2Y271% and hence H n = xt/4,

neOg nels
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